mariadb/newbrt/tests/test3884.c
Zardosht Kasheff 9948adca3c [t:3923], merge to main
git-svn-id: file:///svn/toku/tokudb@35506 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-16 23:59:50 -04:00

509 lines
20 KiB
C

/* -*- mode: C; c-basic-offset: 4 -*- */
#ident "$Id$"
#ident "Copyright (c) 2007-2011 Tokutek Inc. All rights reserved."
// it used to be the case that we copied the left and right keys of a
// range to be prelocked but never freed them, this test checks that they
// are freed (as of this time, this happens in destroy_bfe_for_prefetch)
#include "test.h"
#include "includes.h"
static TOKUTXN const null_txn = 0;
static DB * const null_db = 0;
static const char fname[]= __FILE__ ".brt";
static int omt_long_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
assert(al == sizeof(long) && bl == sizeof(long));
long *ai = (long *) ak;
long *bi = (long *) bk;
return (*ai > *bi) - (*ai < *bi);
}
static LEAFENTRY
le_fastmalloc(char *key, int keylen, char *val, int vallen)
{
LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) +
keylen + vallen);
resource_assert(r);
r->type = LE_CLEAN;
r->keylen = keylen;
r->u.clean.vallen = vallen;
memcpy(&r->u.clean.key_val[0], key, keylen);
memcpy(&r->u.clean.key_val[keylen], val, vallen);
return r;
}
static void
test_split_on_boundary(void)
{
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize;
sn.dirty = 1;
LEAFENTRY elts[nelts];
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BLB_NBYTESINBUF(&sn,bn) = 0;
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
char val[vallen];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
for (int i = 0; i < sn.n_children - 1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_free_items(BLB_BUFFER(&sn, i));
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
}
static void
test_split_with_everything_on_the_left(void)
{
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize + 1;
sn.dirty = 1;
LEAFENTRY elts[nelts];
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
LEAFENTRY big_element;
char *big_val;
for (int bn = 0; bn < sn.n_children; ++bn) {
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BLB_NBYTESINBUF(&sn,bn) = 0;
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
long k;
if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
char val[vallen];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k);
} else {
k = bn * eltsperbn;
big_val = toku_xmalloc(nelts * eltsize - 1);
memset(big_val, k, nelts * eltsize - 1);
big_element = le_fastmalloc((char *) &k, keylen, big_val, nelts * eltsize - 1);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(big_element);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
for (int i = 0; i < sn.n_children - 1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_free_items(BLB_BUFFER(&sn, i));
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_free(big_val);
}
static void
test_split_on_boundary_of_last_node(void)
{
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize + 1;
sn.dirty = 1;
LEAFENTRY elts[nelts];
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
LEAFENTRY big_element;
char *big_val;
for (int bn = 0; bn < sn.n_children; ++bn) {
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BLB_NBYTESINBUF(&sn,bn) = 0;
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
long k;
if (bn < sn.n_children - 1) {
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
char val[vallen];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k);
} else {
k = bn * eltsperbn;
big_val = toku_xmalloc(nelts * eltsize - 100);
memset(big_val, k, nelts * eltsize - 100);
big_element = le_fastmalloc((char *) &k, keylen, big_val, nelts * eltsize - 100);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), big_element, omt_long_cmp, big_element, NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(big_element);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
for (int i = 0; i < sn.n_children - 1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_free_items(BLB_BUFFER(&sn, i));
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_free(big_val);
}
static void
test_split_at_begin(void)
{
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize;
sn.dirty = 1;
LEAFENTRY elts[nelts];
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
long totalbytes = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BLB_NBYTESINBUF(&sn,bn) = 0;
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
if (bn == 0 && i == 0) {
// we'll add the first element later when we know how big
// to make it
continue;
}
char val[vallen];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k);
}
}
{ // now add the first element
int bn = 0; long k = 0;
char val[totalbytes + 3];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, totalbytes + 3);
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
for (int i = 0; i < sn.n_children - 1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_free_items(BLB_BUFFER(&sn, i));
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
}
static void
test_split_at_end(void)
{
const int nodesize = 1024, eltsize = 64, bnsize = 256;
const int keylen = sizeof(long), vallen = eltsize - keylen - (sizeof(((LEAFENTRY)NULL)->type) // overhead from LE_CLEAN_MEMSIZE
+sizeof(((LEAFENTRY)NULL)->keylen)
+sizeof(((LEAFENTRY)NULL)->u.clean.vallen));
const int eltsperbn = bnsize / eltsize;
struct brtnode sn;
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
const int nelts = 2 * nodesize / eltsize;
sn.n_children = nelts * eltsize / bnsize;
sn.dirty = 1;
LEAFENTRY elts[nelts];
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children - 1, sn.childkeys);
sn.totalchildkeylens = 0;
long totalbytes = 0;
for (int bn = 0; bn < sn.n_children; ++bn) {
BP_SUBTREE_EST(&sn,bn).ndata = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).nkeys = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).dsize = random() + (((long long)random())<<32);
BP_SUBTREE_EST(&sn,bn).exact = (BOOL)(random()%2 != 0);
BP_STATE(&sn,bn) = PT_AVAIL;
set_BLB(&sn, bn, toku_create_empty_bn());
BLB_NBYTESINBUF(&sn,bn) = 0;
BLB_OPTIMIZEDFORUPGRADE(&sn, bn) = BRT_LAYOUT_VERSION;
long k;
for (int i = 0; i < eltsperbn; ++i) {
k = bn * eltsperbn + i;
if (bn < sn.n_children - 1 || i < eltsperbn - 1) {
char val[vallen];
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, vallen);
} else { // the last element
char val[totalbytes + 3]; // just to be sure
memset(val, k, sizeof val);
elts[k] = le_fastmalloc((char *) &k, keylen, val, totalbytes + 3);
}
r = toku_omt_insert(BLB_BUFFER(&sn, bn), elts[k], omt_long_cmp, elts[k], NULL); assert(r == 0);
BLB_NBYTESINBUF(&sn, bn) += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
totalbytes += OMT_ITEM_OVERHEAD + leafentry_disksize(elts[k]);
}
if (bn < sn.n_children - 1) {
sn.childkeys[bn] = kv_pair_malloc(&k, sizeof k, 0, 0);
sn.totalchildkeylens += (sizeof k);
}
}
unlink(fname);
CACHETABLE ct;
BRT brt;
r = toku_brt_create_cachetable(&ct, 0, ZERO_LSN, NULL_LOGGER); assert(r==0);
r = toku_open_brt(fname, 1, &brt, nodesize, bnsize, ct, null_txn, toku_builtin_compare_fun, null_db); assert(r==0);
BRTNODE nodea, nodeb;
DBT splitk;
// if we haven't done it right, we should hit the assert in the top of move_leafentries
brtleaf_split(brt, &sn, &nodea, &nodeb, &splitk, TRUE, 0, NULL);
toku_unpin_brtnode(brt, nodeb);
r = toku_close_brt(brt, NULL); assert(r == 0);
r = toku_cachetable_close(&ct); assert(r == 0);
if (splitk.data) {
toku_free(splitk.data);
}
for (int i = 0; i < sn.n_children - 1; ++i) {
kv_pair_free(sn.childkeys[i]);
}
for (int i = 0; i < sn.n_children; ++i) {
toku_omt_free_items(BLB_BUFFER(&sn, i));
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
toku_memory_check = 1;
test_split_on_boundary();
test_split_with_everything_on_the_left();
test_split_on_boundary_of_last_node();
test_split_at_begin();
test_split_at_end();
return 0;
}