mariadb/sql/sp_head.h
gluh@gluh.mysql.r18.ru ee4ed0c969 WL#1241: SHOW PROCEDURE/FUNCTION
WL#1263: Support for the attributes COMMENT and SUID
         in CREATE/ALTER PROCEDURE/FUNCTION
2003-11-17 21:21:36 +04:00

651 lines
13 KiB
C++

/* -*- C++ -*- */
/* Copyright (C) 2002 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef _SP_HEAD_H_
#define _SP_HEAD_H_
#ifdef __GNUC__
#pragma interface /* gcc class implementation */
#endif
#include <stddef.h>
// Values for the type enum. This reflects the order of the enum declaration
// in the CREATE TABLE command.
#define TYPE_ENUM_FUNCTION 1
#define TYPE_ENUM_PROCEDURE 2
Item_result
sp_map_result_type(enum enum_field_types type);
struct sp_label;
class sp_instr;
struct sp_cond_type;
struct sp_pvar;
class sp_head : public Sql_alloc
{
sp_head(const sp_head &); /* Prevent use of these */
void operator=(sp_head &);
public:
int m_type; // TYPE_ENUM_FUNCTION or TYPE_ENUM_PROCEDURE
enum enum_field_types m_returns; // For FUNCTIONs only
my_bool m_has_return; // For FUNCTIONs only
my_bool m_simple_case; // TRUE if parsing simple case, FALSE otherwise
my_bool m_multi_results; // TRUE if a procedure with SELECT(s)
uint m_old_cmq; // Old CLIENT_MULTI_QUERIES value
#if NOT_USED_NOW
// QQ We're not using this at the moment.
List<char *> m_calls; // Called procedures.
List<char *> m_tables; // Used tables.
#endif
static void *
operator new(size_t size);
static void
operator delete(void *ptr, size_t size);
sp_head();
// Initialize after we have reset mem_root
void
init(LEX_STRING *name, LEX *lex);
void
init_options(LEX_STRING *comment, enum suid_behaviour suid)
{
m_comment.length= 0;
m_comment.str= 0;
if (comment)
{
m_comment.length= comment->length;
m_comment.str= comment->str;
}
m_suid= suid ? suid - 1 : 1;
}
int
create(THD *thd);
virtual ~sp_head();
// Free memory
void
destroy();
int
execute_function(THD *thd, Item **args, uint argcount, Item **resp);
int
execute_procedure(THD *thd, List<Item> *args);
int
show_create_procedure(THD *thd);
int
show_create_function(THD *thd);
inline void
add_instr(sp_instr *i)
{
insert_dynamic(&m_instr, (gptr)&i);
}
inline uint
instructions()
{
return m_instr.elements;
}
inline sp_instr *
last_instruction()
{
sp_instr *i;
get_dynamic(&m_instr, (gptr)&i, m_instr.elements-1);
return i;
}
// Resets lex in 'thd' and keeps a copy of the old one.
void
reset_lex(THD *thd);
// Restores lex in 'thd' from our copy, but keeps some status from the
// one in 'thd', like ptr, tables, fields, etc.
void
restore_lex(THD *thd);
// Put the instruction on the backpatch list, associated with the label.
void
push_backpatch(sp_instr *, struct sp_label *);
// Update all instruction with this label in the backpatch list to
// the current position.
void
backpatch(struct sp_label *);
char *name(uint *lenp = 0) const
{
if (lenp)
*lenp= m_name.length;
return m_name.str;
}
inline Item_result result()
{
return sp_map_result_type(m_returns);
}
void sp_set_info(char *creator, uint creatorlen,
longlong created, longlong modified,
bool suid, char *comment, uint commentlen)
{
m_creator= creator;
m_creatorlen= creatorlen;
m_created= created;
m_modified= modified;
m_comment.length= commentlen;
m_comment.str= comment;
m_suid= suid;
}
inline void reset_thd_mem_root(THD *thd)
{
m_thd_root= thd->mem_root;
thd->mem_root= m_mem_root;
m_free_list= thd->free_list; // Keep the old list
thd->free_list= NULL; // Start a new one
m_thd= thd;
}
inline void restore_thd_mem_root(THD *thd)
{
Item *flist= m_free_list; // The old list
m_free_list= thd->free_list; // Get the new one
thd->free_list= flist; // Restore the old one
m_mem_root= thd->mem_root;
thd->mem_root= m_thd_root;
m_thd= NULL;
}
private:
MEM_ROOT m_mem_root; // My own mem_root
MEM_ROOT m_thd_root; // Temp. store for thd's mem_root
Item *m_free_list; // Where the items go
THD *m_thd; // Set if we have reset mem_root
LEX_STRING m_name;
LEX_STRING m_defstr;
LEX_STRING m_comment;
char *m_creator;
uint m_creatorlen;
longlong m_created;
longlong m_modified;
bool m_suid;
sp_pcontext *m_pcont; // Parse context
List<LEX> m_lex; // Temp. store for the other lex
DYNAMIC_ARRAY m_instr; // The "instructions"
typedef struct
{
struct sp_label *lab;
sp_instr *instr;
} bp_t;
List<bp_t> m_backpatch; // Instructions needing backpatching
inline sp_instr *
get_instr(uint i)
{
sp_instr *ip;
if (i < m_instr.elements)
get_dynamic(&m_instr, (gptr)&ip, i);
else
ip= NULL;
return ip;
}
int
execute(THD *thd);
}; // class sp_head : public Sql_alloc
//
// "Instructions"...
//
class sp_instr : public Sql_alloc
{
sp_instr(const sp_instr &); /* Prevent use of these */
void operator=(sp_instr &);
public:
// Should give each a name or type code for debugging purposes?
sp_instr(uint ip)
: Sql_alloc(), m_ip(ip)
{}
virtual ~sp_instr()
{}
// Execute this instrution. '*nextp' will be set to the index of the next
// instruction to execute. (For most instruction this will be the
// instruction following this one.)
// Returns 0 on success, non-zero if some error occured.
virtual int
execute(THD *thd, uint *nextp)
{ // Default is a no-op.
*nextp = m_ip+1; // Next instruction
return 0;
}
protected:
uint m_ip; // My index
}; // class sp_instr : public Sql_alloc
//
// Call out to some prepared SQL statement.
//
class sp_instr_stmt : public sp_instr
{
sp_instr_stmt(const sp_instr_stmt &); /* Prevent use of these */
void operator=(sp_instr_stmt &);
public:
sp_instr_stmt(uint ip)
: sp_instr(ip), m_lex(NULL)
{}
virtual ~sp_instr_stmt();
virtual int execute(THD *thd, uint *nextp);
inline void
set_lex(LEX *lex)
{
m_lex= lex;
}
inline LEX *
get_lex()
{
return m_lex;
}
protected:
int exec_stmt(THD *thd, LEX *lex); // Execute a statement
private:
LEX *m_lex; // My own lex
}; // class sp_instr_stmt : public sp_instr
class sp_instr_set : public sp_instr
{
sp_instr_set(const sp_instr_set &); /* Prevent use of these */
void operator=(sp_instr_set &);
public:
sp_instr_set(uint ip, uint offset, Item *val, enum enum_field_types type)
: sp_instr(ip), m_offset(offset), m_value(val), m_type(type)
{}
virtual ~sp_instr_set()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_offset; // Frame offset
Item *m_value;
enum enum_field_types m_type; // The declared type
}; // class sp_instr_set : public sp_instr
class sp_instr_jump : public sp_instr
{
sp_instr_jump(const sp_instr_jump &); /* Prevent use of these */
void operator=(sp_instr_jump &);
public:
sp_instr_jump(uint ip)
: sp_instr(ip)
{}
sp_instr_jump(uint ip, uint dest)
: sp_instr(ip), m_dest(dest)
{}
virtual ~sp_instr_jump()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void
set_destination(uint dest)
{
m_dest= dest;
}
protected:
int m_dest; // Where we will go
}; // class sp_instr_jump : public sp_instr
class sp_instr_jump_if : public sp_instr_jump
{
sp_instr_jump_if(const sp_instr_jump_if &); /* Prevent use of these */
void operator=(sp_instr_jump_if &);
public:
sp_instr_jump_if(uint ip, Item *i)
: sp_instr_jump(ip), m_expr(i)
{}
sp_instr_jump_if(uint ip, Item *i, uint dest)
: sp_instr_jump(ip, dest), m_expr(i)
{}
virtual ~sp_instr_jump_if()
{}
virtual int execute(THD *thd, uint *nextp);
private:
Item *m_expr; // The condition
}; // class sp_instr_jump_if : public sp_instr_jump
class sp_instr_jump_if_not : public sp_instr_jump
{
sp_instr_jump_if_not(const sp_instr_jump_if_not &); /* Prevent use of these */
void operator=(sp_instr_jump_if_not &);
public:
sp_instr_jump_if_not(uint ip, Item *i)
: sp_instr_jump(ip), m_expr(i)
{}
sp_instr_jump_if_not(uint ip, Item *i, uint dest)
: sp_instr_jump(ip, dest), m_expr(i)
{}
virtual ~sp_instr_jump_if_not()
{}
virtual int execute(THD *thd, uint *nextp);
private:
Item *m_expr; // The condition
}; // class sp_instr_jump_if_not : public sp_instr_jump
class sp_instr_freturn : public sp_instr
{
sp_instr_freturn(const sp_instr_freturn &); /* Prevent use of these */
void operator=(sp_instr_freturn &);
public:
sp_instr_freturn(uint ip, Item *val, enum enum_field_types type)
: sp_instr(ip), m_value(val), m_type(type)
{}
virtual ~sp_instr_freturn()
{}
virtual int execute(THD *thd, uint *nextp);
protected:
Item *m_value;
enum enum_field_types m_type;
}; // class sp_instr_freturn : public sp_instr
class sp_instr_hpush_jump : public sp_instr_jump
{
sp_instr_hpush_jump(const sp_instr_hpush_jump &); /* Prevent use of these */
void operator=(sp_instr_hpush_jump &);
public:
sp_instr_hpush_jump(uint ip, int htype, uint fp)
: sp_instr_jump(ip), m_type(htype), m_frame(fp)
{
m_handler= ip+1;
m_cond.empty();
}
virtual ~sp_instr_hpush_jump()
{
m_cond.empty();
}
virtual int execute(THD *thd, uint *nextp);
inline void add_condition(struct sp_cond_type *cond)
{
m_cond.push_front(cond);
}
private:
int m_type; // Handler type
uint m_frame;
uint m_handler; // Location of handler
List<struct sp_cond_type> m_cond;
}; // class sp_instr_hpush_jump : public sp_instr_jump
class sp_instr_hpop : public sp_instr
{
sp_instr_hpop(const sp_instr_hpop &); /* Prevent use of these */
void operator=(sp_instr_hpop &);
public:
sp_instr_hpop(uint ip, uint count)
: sp_instr(ip), m_count(count)
{}
virtual ~sp_instr_hpop()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_count;
}; // class sp_instr_hpop : public sp_instr
class sp_instr_hreturn : public sp_instr
{
sp_instr_hreturn(const sp_instr_hreturn &); /* Prevent use of these */
void operator=(sp_instr_hreturn &);
public:
sp_instr_hreturn(uint ip, uint fp)
: sp_instr(ip), m_frame(fp)
{}
virtual ~sp_instr_hreturn()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_frame;
}; // class sp_instr_hreturn : public sp_instr
class sp_instr_cpush : public sp_instr
{
sp_instr_cpush(const sp_instr_cpush &); /* Prevent use of these */
void operator=(sp_instr_cpush &);
public:
sp_instr_cpush(uint ip, LEX *lex)
: sp_instr(ip), m_lex(lex)
{}
virtual ~sp_instr_cpush();
virtual int execute(THD *thd, uint *nextp);
private:
LEX *m_lex;
}; // class sp_instr_cpush : public sp_instr
class sp_instr_cpop : public sp_instr
{
sp_instr_cpop(const sp_instr_cpop &); /* Prevent use of these */
void operator=(sp_instr_cpop &);
public:
sp_instr_cpop(uint ip, uint count)
: sp_instr(ip), m_count(count)
{}
virtual ~sp_instr_cpop()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_count;
}; // class sp_instr_cpop : public sp_instr
class sp_instr_copen : public sp_instr_stmt
{
sp_instr_copen(const sp_instr_copen &); /* Prevent use of these */
void operator=(sp_instr_copen &);
public:
sp_instr_copen(uint ip, uint c)
: sp_instr_stmt(ip), m_cursor(c)
{}
virtual ~sp_instr_copen()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_cursor; // Stack index
}; // class sp_instr_copen : public sp_instr_stmt
class sp_instr_cclose : public sp_instr
{
sp_instr_cclose(const sp_instr_cclose &); /* Prevent use of these */
void operator=(sp_instr_cclose &);
public:
sp_instr_cclose(uint ip, uint c)
: sp_instr(ip), m_cursor(c)
{}
virtual ~sp_instr_cclose()
{}
virtual int execute(THD *thd, uint *nextp);
private:
uint m_cursor;
}; // class sp_instr_cclose : public sp_instr
class sp_instr_cfetch : public sp_instr
{
sp_instr_cfetch(const sp_instr_cfetch &); /* Prevent use of these */
void operator=(sp_instr_cfetch &);
public:
sp_instr_cfetch(uint ip, uint c)
: sp_instr(ip), m_cursor(c)
{
m_varlist.empty();
}
virtual ~sp_instr_cfetch()
{}
virtual int execute(THD *thd, uint *nextp);
void add_to_varlist(struct sp_pvar *var)
{
m_varlist.push_back(var);
}
private:
uint m_cursor;
List<struct sp_pvar> m_varlist;
}; // class sp_instr_cfetch : public sp_instr
#endif /* _SP_HEAD_H_ */