mariadb/storage/perfschema/pfs_global.cc
2023-05-03 09:51:25 +02:00

225 lines
6.3 KiB
C++

/* Copyright (c) 2008, 2023, Oracle and/or its affiliates. All rights
reserved.
Copyright (c) 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
/**
@file storage/perfschema/pfs_global.cc
Miscellaneous global dependencies (implementation).
*/
#include <my_global.h>
#include "pfs_global.h"
#include "pfs_builtin_memory.h"
#include "log.h"
#include "aligned.h"
#include "assume_aligned.h"
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef _WIN32
#include <winsock2.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
bool pfs_initialized= false;
/**
Memory allocation for the performance schema.
The memory used internally in the performance schema implementation.
It is allocated at startup, or during runtime with scalable buffers.
*/
void *pfs_malloc(PFS_builtin_memory_class *klass, size_t size, myf flags)
{
assert(klass != NULL);
assert(size > 0);
const size_t aligned_size= MY_ALIGN(size, CPU_LEVEL1_DCACHE_LINESIZE);
void *ptr= aligned_malloc(aligned_size, CPU_LEVEL1_DCACHE_LINESIZE);
if (unlikely(ptr == NULL))
return NULL;
klass->count_alloc(size);
if (flags & MY_ZEROFILL)
memset_aligned<CPU_LEVEL1_DCACHE_LINESIZE>(ptr, 0, aligned_size);
return ptr;
}
void pfs_free(PFS_builtin_memory_class *klass, size_t size, void *ptr)
{
if (ptr == NULL)
return;
aligned_free(ptr);
klass->count_free(size);
}
/**
Array allocation for the performance schema.
Checks for overflow of n * size before allocating.
@param klass performance schema memory class
@param n number of array elements
@param size element size
@param flags malloc flags
@return pointer to memory on success, else NULL
*/
void *pfs_malloc_array(PFS_builtin_memory_class *klass, size_t n, size_t size, myf flags)
{
assert(klass != NULL);
assert(n > 0);
assert(size > 0);
void *ptr= NULL;
size_t array_size= n * size;
/* Check for overflow before allocating. */
if (is_overflow(array_size, n, size))
{
sql_print_warning("Failed to allocate memory for %zu chunks each of size "
"%zu for buffer '%s' due to overflow", n, size,
klass->m_class.m_name);
return NULL;
}
if(NULL == (ptr= pfs_malloc(klass, array_size, flags)))
{
sql_print_warning("Failed to allocate %zu bytes for buffer '%s' due to "
"out-of-memory", array_size, klass->m_class.m_name);
}
return ptr;
}
/**
Free array allocated by @sa pfs_malloc_array.
@param klass performance schema memory class
@param n number of array elements
@param size element size
@param ptr pointer to memory
*/
void pfs_free_array(PFS_builtin_memory_class *klass, size_t n, size_t size, void *ptr)
{
if (ptr == NULL)
return;
size_t array_size= n * size;
/* Overflow should have been detected by pfs_malloc_array. */
assert(!is_overflow(array_size, n, size));
return pfs_free(klass, array_size, ptr);
}
/**
Detect multiplication overflow.
@param product multiplication product
@param n1 operand
@param n2 operand
@return true if multiplication caused an overflow.
*/
bool is_overflow(size_t product, size_t n1, size_t n2)
{
if (n1 != 0 && (product / n1 != n2))
return true;
else
return false;
}
void pfs_print_error(const char *format, ...)
{
va_list args;
va_start(args, format);
/*
Printing to anything else, like the error log, would generate even more
recursive calls to the performance schema implementation
(file io is instrumented), so that could lead to catastrophic results.
Printing to something safe, and low level: stderr only.
*/
vfprintf(stderr, format, args);
va_end(args);
fflush(stderr);
}
/** Convert raw ip address into readable format. Do not do a reverse DNS lookup. */
uint pfs_get_socket_address(char *host,
uint host_len,
uint *port,
const struct sockaddr_storage *src_addr,
socklen_t src_len)
{
assert(host);
assert(src_addr);
assert(port);
memset(host, 0, host_len);
*port= 0;
switch (src_addr->ss_family)
{
case AF_INET:
{
if (host_len < INET_ADDRSTRLEN+1)
return 0;
struct sockaddr_in *sa4= (struct sockaddr_in *)(src_addr);
#ifdef _WIN32
/* Older versions of Windows do not support inet_ntop() */
getnameinfo((struct sockaddr *)sa4, sizeof(struct sockaddr_in),
host, host_len, NULL, 0, NI_NUMERICHOST);
#else
inet_ntop(AF_INET, &(sa4->sin_addr), host, INET_ADDRSTRLEN);
#endif
*port= ntohs(sa4->sin_port);
}
break;
#ifdef HAVE_IPV6
case AF_INET6:
{
if (host_len < INET6_ADDRSTRLEN+1)
return 0;
struct sockaddr_in6 *sa6= (struct sockaddr_in6 *)(src_addr);
#ifdef _WIN32
/* Older versions of Windows do not support inet_ntop() */
getnameinfo((struct sockaddr *)sa6, sizeof(struct sockaddr_in6),
host, host_len, NULL, 0, NI_NUMERICHOST);
#else
inet_ntop(AF_INET6, &(sa6->sin6_addr), host, INET6_ADDRSTRLEN);
#endif
*port= ntohs(sa6->sin6_port);
}
break;
#endif
default:
break;
}
/* Return actual IP address string length */
return ((uint)strlen((const char*)host));
}