mariadb/storage/innobase/btr/btr0defragment.cc
Marko Mäkelä de4030e4d4 MDEV-30400 Assertion height == btr_page_get_level(...) on INSERT
This also fixes part of MDEV-29835 Partial server freeze
which is caused by violations of the latching order that was
defined in https://dev.mysql.com/worklog/task/?id=6326
(WL#6326: InnoDB: fix index->lock contention). Unless the
current thread is holding an exclusive dict_index_t::lock,
it must acquire page latches in a strict parent-to-child,
left-to-right order. Not all cases of MDEV-29835 are fixed yet.
Failure to follow the correct latching order will cause deadlocks
of threads due to lock order inversion.

As part of these changes, the BTR_MODIFY_TREE mode is modified
so that an Update latch (U a.k.a. SX) will be acquired on the
root page, and eXclusive latches (X) will be acquired on all pages
leading to the leaf page, as well as any left and right siblings
of the pages along the path. The DEBUG_SYNC test innodb.innodb_wl6326
will be removed, because at the time the DEBUG_SYNC point is hit,
the thread is actually holding several page latches that will be
blocking a concurrent SELECT statement.

We also remove double bookkeeping that was caused due to excessive
information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo
store information of latched pages, and ensure that
mtr_memo_slot_t::object is never a null pointer.
The tree_blocks[] and tree_savepoints[] were redundant.

buf_page_get_low(): If innodb_change_buffering_debug=1, to avoid
a hang, do not try to evict blocks if we are holding a latch on
a modified page. The test innodb.innodb-change-buffer-recovery
will be removed, because change buffering may no longer be forced
by debug injection when the change buffer comprises multiple pages.
Remove a debug assertion that could fail when
innodb_change_buffering_debug=1 fails to evict a page.
For other cases, the assertion is redundant, because we already
checked that right after the got_block: label. The test
innodb.innodb-change-buffering-recovery will be removed, because
due to this change, we will be unable to evict the desired page.

mtr_t::lock_register(): Register a change of a page latch
on an unmodified buffer-fixed block.

mtr_t::x_latch_at_savepoint(), mtr_t::sx_latch_at_savepoint():
Replaced by the use of mtr_t::upgrade_buffer_fix(), which now
also handles RW_S_LATCH.

mtr_t::set_modified(): For temporary tables, invoke
buf_page_t::set_modified() here and not in mtr_t::commit().
We will never set the MTR_MEMO_MODIFY flag on other than
persistent data pages, nor set mtr_t::m_modifications when
temporary data pages are modified.

mtr_t::commit(): Only invoke the buf_flush_note_modification() loop
if persistent data pages were modified.

mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo.
This avoids many redundant entries in mtr_t::m_memo, as well as
redundant calls to buf_page_get_gen() for blocks that had already
been looked up in a mini-transaction.

btr_get_latched_root(): Return a pointer to an already latched root page.
This replaces btr_root_block_get() in cases where the mini-transaction
has already latched the root page.

btr_page_get_parent(): Fetch a parent page that was already latched
in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched().
If needed, upgrade the root page U latch to X.
This avoids bloating mtr_t::m_memo as well as performing redundant
buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for
B-tree defragmentation, we will invoke btr_cur_search_to_nth_level().

btr_cur_search_to_nth_level(): This will only be used for non-leaf
(level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE
or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be
removed altogether, or retained for the case of
CHECK TABLE without QUICK.

btr_cur_t::left_block: Remove. btr_pcur_move_backward_from_page()
can retrieve the left sibling from the end of mtr_t::m_memo.

btr_cur_t::open_leaf(): Some clean-up.

btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level()
for searches to level=0 (the leaf level). We will never release
parent page latches before acquiring leaf page latches. If we need to
temporarily release the level=1 page latch in the BTR_SEARCH_PREV or
BTR_MODIFY_PREV latch_mode, we will reposition the cursor on the
child node pointer so that we will land on the correct leaf page.

btr_cur_t::pessimistic_search_leaf(): Implement new BTR_MODIFY_TREE
latching logic in the case that page splits or merges will be needed.
The parent pages (and their siblings) should already be latched on
the first dive to the leaf and be present in mtr_t::m_memo; there
should be no need for BTR_CONT_MODIFY_TREE. This pre-latching almost
suffices; it must be revised in MDEV-29835 and work-arounds removed
for cases where mtr_t::get_already_latched() fails to find a block.

rtr_search_to_nth_level(): A SPATIAL INDEX version of
btr_search_to_nth_level() that can search to any level
(including the leaf level).

rtr_search_leaf(), rtr_insert_leaf(): Wrappers for
rtr_search_to_nth_level().

rtr_search(): Replaces rtr_pcur_open().

rtr_latch_leaves(): Replaces btr_cur_latch_leaves(). Note that unlike
in the B-tree code, there is no error handling in case the sibling
pages are corrupted.

rtr_cur_restore_position(): Remove an unused constant parameter.

btr_pcur_open_on_user_rec(): Remove the constant parameter
mode=PAGE_CUR_GE.

row_ins_clust_index_entry_low(): Use a new
mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page
when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC.

BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove.

BTR_CONT_MODIFY_TREE: Note that this is only used by
rtr_search_to_nth_level().

btr_pcur_optimistic_latch_leaves(): Replaces
btr_cur_optimistic_latch_leaves().

ibuf_delete_rec(): Acquire exclusive ibuf.index->lock in order
to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV).

btr_blob_log_check_t(): Acquire a U latch on the root page,
so that btr_page_alloc() in btr_store_big_rec_extern_fields()
will avoid a deadlock.

btr_store_big_rec_extern_fields(): Assert that the root page latch
is being held.

Tested by: Matthias Leich
Reviewed by: Vladislav Lesin
2023-01-24 14:09:21 +02:00

820 lines
26 KiB
C++

/*****************************************************************************
Copyright (C) 2012, 2014 Facebook, Inc. All Rights Reserved.
Copyright (C) 2014, 2023, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file btr/btr0defragment.cc
Index defragmentation.
Created 05/29/2014 Rongrong Zhong
Modified 16/07/2014 Sunguck Lee
Modified 30/07/2014 Jan Lindström jan.lindstrom@mariadb.com
*******************************************************/
#include "btr0defragment.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "btr0sea.h"
#include "btr0pcur.h"
#include "dict0stats.h"
#include "dict0stats_bg.h"
#include "dict0defrag_bg.h"
#include "ibuf0ibuf.h"
#include "lock0lock.h"
#include "srv0start.h"
#include "mysqld.h"
#include <list>
/* When there's no work, either because defragment is disabled, or because no
query is submitted, thread checks state every BTR_DEFRAGMENT_SLEEP_IN_USECS.*/
#define BTR_DEFRAGMENT_SLEEP_IN_USECS 1000000
/* Reduce the target page size by this amount when compression failure happens
during defragmentaiton. 512 is chosen because it's a power of 2 and it is about
3% of the page size. When there are compression failures in defragmentation,
our goal is to get a decent defrag ratio with as few compression failure as
possible. From experimentation it seems that reduce the target size by 512 every
time will make sure the page is compressible within a couple of iterations. */
#define BTR_DEFRAGMENT_PAGE_REDUCTION_STEP_SIZE 512
/** Item in the work queue for btr_degrament_thread. */
struct btr_defragment_item_t
{
/** persistent cursor where btr_defragment_n_pages should start */
btr_pcur_t * const pcur;
/** completion signal */
pthread_cond_t *cond;
/** timestamp of last time this index is processed by defragment thread */
ulonglong last_processed= 0;
btr_defragment_item_t(btr_pcur_t *pcur, pthread_cond_t *cond)
: pcur(pcur), cond(cond) {}
};
/* Work queue for defragmentation. */
typedef std::list<btr_defragment_item_t*> btr_defragment_wq_t;
static btr_defragment_wq_t btr_defragment_wq;
/* Mutex protecting the defragmentation work queue.*/
static mysql_mutex_t btr_defragment_mutex;
#ifdef UNIV_PFS_MUTEX
mysql_pfs_key_t btr_defragment_mutex_key;
#endif /* UNIV_PFS_MUTEX */
/* Number of compression failures caused by defragmentation since server
start. */
Atomic_counter<ulint> btr_defragment_compression_failures;
/* Number of btr_defragment_n_pages calls that altered page but didn't
manage to release any page. */
Atomic_counter<ulint> btr_defragment_failures;
/* Total number of btr_defragment_n_pages calls that altered page.
The difference between btr_defragment_count and btr_defragment_failures shows
the amount of effort wasted. */
Atomic_counter<ulint> btr_defragment_count;
bool btr_defragment_active;
static void btr_defragment_chunk(void*);
static tpool::timer* btr_defragment_timer;
static tpool::task_group task_group(1);
static tpool::task btr_defragment_task(btr_defragment_chunk, 0, &task_group);
static void btr_defragment_start();
static void submit_defragment_task(void*arg=0)
{
srv_thread_pool->submit_task(&btr_defragment_task);
}
/******************************************************************//**
Initialize defragmentation. */
void
btr_defragment_init()
{
srv_defragment_interval = 1000000000ULL / srv_defragment_frequency;
mysql_mutex_init(btr_defragment_mutex_key, &btr_defragment_mutex,
nullptr);
btr_defragment_timer = srv_thread_pool->create_timer(submit_defragment_task);
btr_defragment_active = true;
}
/******************************************************************//**
Shutdown defragmentation. Release all resources. */
void
btr_defragment_shutdown()
{
if (!btr_defragment_timer)
return;
delete btr_defragment_timer;
btr_defragment_timer = 0;
task_group.cancel_pending(&btr_defragment_task);
mysql_mutex_lock(&btr_defragment_mutex);
std::list< btr_defragment_item_t* >::iterator iter = btr_defragment_wq.begin();
while(iter != btr_defragment_wq.end()) {
btr_defragment_item_t* item = *iter;
iter = btr_defragment_wq.erase(iter);
if (item->cond) {
pthread_cond_signal(item->cond);
}
}
mysql_mutex_unlock(&btr_defragment_mutex);
mysql_mutex_destroy(&btr_defragment_mutex);
btr_defragment_active = false;
}
/******************************************************************//**
Functions used by the query threads: btr_defragment_xxx_index
Query threads find/add/remove index. */
/******************************************************************//**
Check whether the given index is in btr_defragment_wq. We use index->id
to identify indices. */
bool
btr_defragment_find_index(
dict_index_t* index) /*!< Index to find. */
{
mysql_mutex_lock(&btr_defragment_mutex);
for (std::list< btr_defragment_item_t* >::iterator iter = btr_defragment_wq.begin();
iter != btr_defragment_wq.end();
++iter) {
btr_defragment_item_t* item = *iter;
btr_pcur_t* pcur = item->pcur;
btr_cur_t* cursor = btr_pcur_get_btr_cur(pcur);
dict_index_t* idx = btr_cur_get_index(cursor);
if (index->id == idx->id) {
mysql_mutex_unlock(&btr_defragment_mutex);
return true;
}
}
mysql_mutex_unlock(&btr_defragment_mutex);
return false;
}
/** Defragment an index.
@param pcur persistent cursor
@param thd current session, for checking thd_killed()
@return whether the operation was interrupted */
bool btr_defragment_add_index(btr_pcur_t *pcur, THD *thd)
{
dict_stats_empty_defrag_summary(pcur->index());
pthread_cond_t cond;
pthread_cond_init(&cond, nullptr);
btr_defragment_item_t item(pcur, &cond);
mysql_mutex_lock(&btr_defragment_mutex);
btr_defragment_wq.push_back(&item);
if (btr_defragment_wq.size() == 1)
/* Kick off defragmentation work */
btr_defragment_start();
bool interrupted= false;
for (;;)
{
timespec abstime;
set_timespec(abstime, 1);
if (!my_cond_timedwait(&cond, &btr_defragment_mutex.m_mutex, &abstime))
break;
if (thd_killed(thd))
{
item.cond= nullptr;
interrupted= true;
break;
}
}
pthread_cond_destroy(&cond);
mysql_mutex_unlock(&btr_defragment_mutex);
return interrupted;
}
/******************************************************************//**
When table is dropped, this function is called to mark a table as removed in
btr_efragment_wq. The difference between this function and the remove_index
function is this will not NULL the event. */
void
btr_defragment_remove_table(
dict_table_t* table) /*!< Index to be removed. */
{
mysql_mutex_lock(&btr_defragment_mutex);
for (auto item : btr_defragment_wq)
{
if (item->cond && table == item->pcur->index()->table)
{
pthread_cond_signal(item->cond);
item->cond= nullptr;
}
}
mysql_mutex_unlock(&btr_defragment_mutex);
}
/*********************************************************************//**
Check whether we should save defragmentation statistics to persistent storage.
Currently we save the stats to persistent storage every 100 updates. */
void btr_defragment_save_defrag_stats_if_needed(dict_index_t *index)
{
if (srv_defragment_stats_accuracy != 0 // stats tracking disabled
&& index->table->space_id != 0 // do not track system tables
&& !index->table->is_temporary()
&& index->stat_defrag_modified_counter
>= srv_defragment_stats_accuracy) {
dict_stats_defrag_pool_add(index);
index->stat_defrag_modified_counter = 0;
}
}
/*********************************************************************//**
Main defragment functionalities used by defragment thread.*/
/*************************************************************//**
Calculate number of records from beginning of block that can
fit into size_limit
@return number of records */
static
ulint
btr_defragment_calc_n_recs_for_size(
buf_block_t* block, /*!< in: B-tree page */
dict_index_t* index, /*!< in: index of the page */
ulint size_limit, /*!< in: size limit to fit records in */
ulint* n_recs_size) /*!< out: actual size of the records that fit
in size_limit. */
{
page_t* page = buf_block_get_frame(block);
ulint n_recs = 0;
rec_offs offsets_[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets = offsets_;
rec_offs_init(offsets_);
mem_heap_t* heap = NULL;
ulint size = 0;
page_cur_t cur;
const ulint n_core = page_is_leaf(page) ? index->n_core_fields : 0;
page_cur_set_before_first(block, &cur);
while (rec_t* cur_rec = page_cur_move_to_next(&cur)) {
if (page_rec_is_supremum(cur_rec)) {
break;
}
offsets = rec_get_offsets(cur_rec, index, offsets, n_core,
ULINT_UNDEFINED, &heap);
ulint rec_size = rec_offs_size(offsets);
size += rec_size;
if (size > size_limit) {
size = size - rec_size;
break;
}
n_recs ++;
}
*n_recs_size = size;
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return n_recs;
}
MY_ATTRIBUTE((nonnull(2,3,4), warn_unused_result))
/************************************************************//**
Returns the upper level node pointer to a page. It is assumed that mtr holds
an sx-latch on the tree.
@return rec_get_offsets() of the node pointer record */
static
rec_offs*
btr_page_search_father_node_ptr(
rec_offs* offsets,/*!< in: work area for the return value */
mem_heap_t* heap, /*!< in: memory heap to use */
btr_cur_t* cursor, /*!< in: cursor pointing to user record,
out: cursor on node pointer record,
its page x-latched */
mtr_t* mtr) /*!< in: mtr */
{
const uint32_t page_no = btr_cur_get_block(cursor)->page.id().page_no();
dict_index_t* index = btr_cur_get_index(cursor);
ut_ad(!index->is_spatial());
ut_ad(mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK
| MTR_MEMO_SX_LOCK));
ut_ad(dict_index_get_page(index) != page_no);
const auto level = btr_page_get_level(btr_cur_get_page(cursor));
const rec_t* user_rec = btr_cur_get_rec(cursor);
ut_a(page_rec_is_user_rec(user_rec));
if (btr_cur_search_to_nth_level(level + 1,
dict_index_build_node_ptr(index,
user_rec, 0,
heap, level),
RW_X_LATCH,
cursor, mtr) != DB_SUCCESS) {
return nullptr;
}
const rec_t* node_ptr = btr_cur_get_rec(cursor);
ut_ad(!btr_cur_get_block(cursor)->page.lock.not_recursive()
|| mtr->memo_contains(index->lock, MTR_MEMO_X_LOCK));
offsets = rec_get_offsets(node_ptr, index, offsets, 0,
ULINT_UNDEFINED, &heap);
if (btr_node_ptr_get_child_page_no(node_ptr, offsets) != page_no) {
offsets = nullptr;
}
return(offsets);
}
static bool btr_page_search_father(mtr_t *mtr, btr_cur_t *cursor)
{
rec_t *rec=
page_rec_get_next(page_get_infimum_rec(cursor->block()->page.frame));
if (UNIV_UNLIKELY(!rec))
return false;
cursor->page_cur.rec= rec;
mem_heap_t *heap= mem_heap_create(100);
const bool got= btr_page_search_father_node_ptr(nullptr, heap, cursor, mtr);
mem_heap_free(heap);
return got;
}
/*************************************************************//**
Merge as many records from the from_block to the to_block. Delete
the from_block if all records are successfully merged to to_block.
@return the to_block to target for next merge operation.
@retval nullptr if corruption was noticed */
static
buf_block_t*
btr_defragment_merge_pages(
dict_index_t* index, /*!< in: index tree */
buf_block_t* from_block, /*!< in: origin of merge */
buf_block_t* to_block, /*!< in: destination of merge */
ulint zip_size, /*!< in: ROW_FORMAT=COMPRESSED size */
ulint reserved_space, /*!< in: space reserved for future
insert to avoid immediate page split */
ulint* max_data_size, /*!< in/out: max data size to
fit in a single compressed page. */
mem_heap_t* heap, /*!< in/out: pointer to memory heap */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
page_t* from_page = buf_block_get_frame(from_block);
page_t* to_page = buf_block_get_frame(to_block);
ulint level = btr_page_get_level(from_page);
ulint n_recs = page_get_n_recs(from_page);
ulint new_data_size = page_get_data_size(to_page);
ulint max_ins_size =
page_get_max_insert_size(to_page, n_recs);
ulint max_ins_size_reorg =
page_get_max_insert_size_after_reorganize(
to_page, n_recs);
ulint max_ins_size_to_use = max_ins_size_reorg > reserved_space
? max_ins_size_reorg - reserved_space : 0;
ulint move_size = 0;
ulint n_recs_to_move = 0;
rec_t* rec = NULL;
ulint target_n_recs = 0;
rec_t* orig_pred;
// Estimate how many records can be moved from the from_page to
// the to_page.
if (zip_size) {
ulint page_diff = srv_page_size - *max_data_size;
max_ins_size_to_use = (max_ins_size_to_use > page_diff)
? max_ins_size_to_use - page_diff : 0;
}
n_recs_to_move = btr_defragment_calc_n_recs_for_size(
from_block, index, max_ins_size_to_use, &move_size);
// If max_ins_size >= move_size, we can move the records without
// reorganizing the page, otherwise we need to reorganize the page
// first to release more space.
if (move_size > max_ins_size) {
dberr_t err = btr_page_reorganize_block(page_zip_level,
to_block, index, mtr);
if (err != DB_SUCCESS) {
if (!dict_index_is_clust(index)
&& page_is_leaf(to_page)) {
ibuf_reset_free_bits(to_block);
}
// If reorganization fails, that means page is
// not compressable. There's no point to try
// merging into this page. Continue to the
// next page.
return err == DB_FAIL ? from_block : nullptr;
}
ut_ad(page_validate(to_page, index));
max_ins_size = page_get_max_insert_size(to_page, n_recs);
if (max_ins_size < move_size) {
return nullptr;
}
}
// Move records to pack to_page more full.
orig_pred = NULL;
target_n_recs = n_recs_to_move;
dberr_t err;
while (n_recs_to_move > 0) {
if (!(rec = page_rec_get_nth(from_page, n_recs_to_move + 1))) {
return nullptr;
}
orig_pred = page_copy_rec_list_start(
to_block, from_block, rec, index, mtr, &err);
if (orig_pred)
break;
if (err != DB_FAIL) {
return nullptr;
}
// If we reach here, that means compression failed after packing
// n_recs_to_move number of records to to_page. We try to reduce
// the targeted data size on the to_page by
// BTR_DEFRAGMENT_PAGE_REDUCTION_STEP_SIZE and try again.
btr_defragment_compression_failures++;
max_ins_size_to_use =
move_size > BTR_DEFRAGMENT_PAGE_REDUCTION_STEP_SIZE
? move_size - BTR_DEFRAGMENT_PAGE_REDUCTION_STEP_SIZE
: 0;
if (max_ins_size_to_use == 0) {
n_recs_to_move = 0;
move_size = 0;
break;
}
n_recs_to_move = btr_defragment_calc_n_recs_for_size(
from_block, index, max_ins_size_to_use, &move_size);
}
// If less than target_n_recs are moved, it means there are
// compression failures during page_copy_rec_list_start. Adjust
// the max_data_size estimation to reduce compression failures
// in the following runs.
if (target_n_recs > n_recs_to_move
&& *max_data_size > new_data_size + move_size) {
*max_data_size = new_data_size + move_size;
}
// Set ibuf free bits if necessary.
if (!dict_index_is_clust(index)
&& page_is_leaf(to_page)) {
if (zip_size) {
ibuf_reset_free_bits(to_block);
} else {
ibuf_update_free_bits_if_full(
to_block,
srv_page_size,
ULINT_UNDEFINED);
}
}
btr_cur_t parent;
parent.page_cur.index = index;
parent.page_cur.block = from_block;
if (!btr_page_search_father(mtr, &parent)) {
to_block = nullptr;
} else if (n_recs_to_move == n_recs) {
/* The whole page is merged with the previous page,
free it. */
lock_update_merge_left(*to_block, orig_pred,
from_block->page.id());
btr_search_drop_page_hash_index(from_block, false);
if (btr_level_list_remove(*from_block, *index, mtr)
!= DB_SUCCESS
|| btr_cur_node_ptr_delete(&parent, mtr) != DB_SUCCESS
|| btr_page_free(index, from_block, mtr) != DB_SUCCESS) {
return nullptr;
}
} else {
// There are still records left on the page, so
// increment n_defragmented. Node pointer will be changed
// so remove the old node pointer.
if (n_recs_to_move > 0) {
// Part of the page is merged to left, remove
// the merged records, update record locks and
// node pointer.
dtuple_t* node_ptr;
page_delete_rec_list_start(rec, from_block,
index, mtr);
lock_update_split_and_merge(to_block,
orig_pred,
from_block);
// FIXME: reuse the node_ptr!
if (btr_cur_node_ptr_delete(&parent, mtr)
!= DB_SUCCESS) {
return nullptr;
}
rec = page_rec_get_next(
page_get_infimum_rec(from_page));
if (!rec) {
return nullptr;
}
node_ptr = dict_index_build_node_ptr(
index, rec, page_get_page_no(from_page),
heap, level);
if (btr_insert_on_non_leaf_level(0, index, level+1,
node_ptr, mtr)
!= DB_SUCCESS) {
return nullptr;
}
}
to_block = from_block;
}
return to_block;
}
/*************************************************************//**
Tries to merge N consecutive pages, starting from the page pointed by the
cursor. Skip space 0. Only consider leaf pages.
This function first loads all N pages into memory, then for each of
the pages other than the first page, it tries to move as many records
as possible to the left sibling to keep the left sibling full. During
the process, if any page becomes empty, that page will be removed from
the level list. Record locks, hash, and node pointers are updated after
page reorganization.
@return pointer to the last block processed, or NULL if reaching end of index */
static
buf_block_t*
btr_defragment_n_pages(
buf_block_t* block, /*!< in: starting block for defragmentation */
dict_index_t* index, /*!< in: index tree */
uint n_pages,/*!< in: number of pages to defragment */
mtr_t* mtr) /*!< in/out: mini-transaction */
{
/* We will need to load the n+1 block because if the last page is freed
and we need to modify the prev_page_no of that block. */
buf_block_t* blocks[BTR_DEFRAGMENT_MAX_N_PAGES + 1];
page_t* first_page;
buf_block_t* current_block;
ulint total_data_size = 0;
ulint total_n_recs = 0;
ulint data_size_per_rec;
ulint optimal_page_size;
ulint reserved_space;
ulint max_data_size = 0;
uint n_defragmented = 0;
uint n_new_slots;
mem_heap_t* heap;
ibool end_of_index = FALSE;
/* It doesn't make sense to call this function with n_pages = 1. */
ut_ad(n_pages > 1);
if (!page_is_leaf(block->page.frame)) {
return NULL;
}
if (!index->table->space || !index->table->space_id) {
/* Ignore space 0. */
return NULL;
}
if (n_pages > BTR_DEFRAGMENT_MAX_N_PAGES) {
n_pages = BTR_DEFRAGMENT_MAX_N_PAGES;
}
first_page = buf_block_get_frame(block);
const ulint zip_size = index->table->space->zip_size();
/* 1. Load the pages and calculate the total data size. */
blocks[0] = block;
for (uint i = 1; i <= n_pages; i++) {
page_t* page = buf_block_get_frame(blocks[i-1]);
uint32_t page_no = btr_page_get_next(page);
total_data_size += page_get_data_size(page);
total_n_recs += page_get_n_recs(page);
if (page_no == FIL_NULL) {
n_pages = i;
end_of_index = TRUE;
break;
}
blocks[i] = btr_block_get(*index, page_no, RW_X_LATCH, true,
mtr);
if (!blocks[i]) {
return nullptr;
}
}
if (n_pages == 1) {
if (!page_has_prev(first_page)) {
/* last page in the index */
if (dict_index_get_page(index)
== page_get_page_no(first_page))
return NULL;
/* given page is the last page.
Lift the records to father. */
dberr_t err;
btr_lift_page_up(index, block, mtr, &err);
}
return NULL;
}
/* 2. Calculate how many pages data can fit in. If not compressable,
return early. */
ut_a(total_n_recs != 0);
data_size_per_rec = total_data_size / total_n_recs;
// For uncompressed pages, the optimal data size if the free space of a
// empty page.
optimal_page_size = page_get_free_space_of_empty(
page_is_comp(first_page));
// For compressed pages, we take compression failures into account.
if (zip_size) {
ulint size = 0;
uint i = 0;
// We estimate the optimal data size of the index use samples of
// data size. These samples are taken when pages failed to
// compress due to insertion on the page. We use the average
// of all samples we have as the estimation. Different pages of
// the same index vary in compressibility. Average gives a good
// enough estimation.
for (;i < STAT_DEFRAG_DATA_SIZE_N_SAMPLE; i++) {
if (index->stat_defrag_data_size_sample[i] == 0) {
break;
}
size += index->stat_defrag_data_size_sample[i];
}
if (i != 0) {
size /= i;
optimal_page_size = ut_min(optimal_page_size, size);
}
max_data_size = optimal_page_size;
}
reserved_space = ut_min(static_cast<ulint>(
static_cast<double>(optimal_page_size)
* (1 - srv_defragment_fill_factor)),
(data_size_per_rec
* srv_defragment_fill_factor_n_recs));
optimal_page_size -= reserved_space;
n_new_slots = uint((total_data_size + optimal_page_size - 1)
/ optimal_page_size);
if (n_new_slots >= n_pages) {
/* Can't defragment. */
if (end_of_index)
return NULL;
return blocks[n_pages-1];
}
/* 3. Defragment pages. */
heap = mem_heap_create(256);
// First defragmented page will be the first page.
current_block = blocks[0];
// Start from the second page.
for (uint i = 1; i < n_pages; i ++) {
buf_block_t* new_block = btr_defragment_merge_pages(
index, blocks[i], current_block, zip_size,
reserved_space, &max_data_size, heap, mtr);
if (new_block != current_block) {
n_defragmented ++;
current_block = new_block;
if (!new_block) {
break;
}
}
}
mem_heap_free(heap);
n_defragmented ++;
btr_defragment_count++;
if (n_pages == n_defragmented) {
btr_defragment_failures++;
} else {
index->stat_defrag_n_pages_freed += (n_pages - n_defragmented);
}
if (end_of_index)
return NULL;
return current_block;
}
void btr_defragment_start() {
if (!srv_defragment)
return;
ut_ad(!btr_defragment_wq.empty());
submit_defragment_task();
}
/**
Callback used by defragment timer
Throttling "sleep", is implemented via rescheduling the
threadpool timer, which, when fired, will resume the work again,
where it is left.
The state (current item) is stored in function parameter.
*/
static void btr_defragment_chunk(void*)
{
THD *thd = innobase_create_background_thd("InnoDB defragment");
set_current_thd(thd);
btr_defragment_item_t* item = nullptr;
mtr_t mtr;
mysql_mutex_lock(&btr_defragment_mutex);
while (srv_shutdown_state == SRV_SHUTDOWN_NONE) {
if (!item) {
if (btr_defragment_wq.empty()) {
release_and_exit:
mysql_mutex_unlock(&btr_defragment_mutex);
func_exit:
set_current_thd(nullptr);
destroy_background_thd(thd);
return;
}
item = *btr_defragment_wq.begin();
ut_ad(item);
}
if (!item->cond) {
processed:
btr_defragment_wq.remove(item);
item = nullptr;
continue;
}
mysql_mutex_unlock(&btr_defragment_mutex);
ulonglong now = my_interval_timer();
ulonglong elapsed = now - item->last_processed;
if (elapsed < srv_defragment_interval) {
/* If we see an index again before the interval
determined by the configured frequency is reached,
we just sleep until the interval pass. Since
defragmentation of all indices queue up on a single
thread, it's likely other indices that follow this one
don't need to sleep again. */
int sleep_ms = (int)((srv_defragment_interval - elapsed) / 1000 / 1000);
if (sleep_ms) {
btr_defragment_timer->set_time(sleep_ms, 0);
goto func_exit;
}
}
log_free_check();
mtr_start(&mtr);
dict_index_t *index = item->pcur->index();
index->set_modified(mtr);
/* To follow the latching order defined in WL#6326,
acquire index->lock X-latch. This entitles us to
acquire page latches in any order for the index. */
mtr_x_lock_index(index, &mtr);
if (buf_block_t *last_block =
item->pcur->restore_position(
BTR_PURGE_TREE_ALREADY_LATCHED, &mtr)
== btr_pcur_t::CORRUPTED
? nullptr
: btr_defragment_n_pages(btr_pcur_get_block(item->pcur),
index, srv_defragment_n_pages,
&mtr)) {
/* If we haven't reached the end of the index,
place the cursor on the last record of last page,
store the cursor position, and put back in queue. */
page_t* last_page = buf_block_get_frame(last_block);
rec_t* rec = page_rec_get_prev(
page_get_supremum_rec(last_page));
if (rec && page_rec_is_user_rec(rec)) {
page_cur_position(rec, last_block,
btr_pcur_get_page_cur(
item->pcur));
}
btr_pcur_store_position(item->pcur, &mtr);
mtr_commit(&mtr);
/* Update the last_processed time of this index. */
item->last_processed = now;
mysql_mutex_lock(&btr_defragment_mutex);
} else {
mtr_commit(&mtr);
/* Reaching the end of the index. */
dict_stats_empty_defrag_stats(index);
if (dberr_t err= dict_stats_save_defrag_stats(index)) {
ib::error() << "Saving defragmentation stats for table "
<< index->table->name
<< " index " << index->name()
<< " failed with error " << err;
} else {
err = dict_stats_save_defrag_summary(index,
thd);
if (err != DB_SUCCESS) {
ib::error() << "Saving defragmentation summary for table "
<< index->table->name
<< " index " << index->name()
<< " failed with error " << err;
}
}
mysql_mutex_lock(&btr_defragment_mutex);
if (item->cond) {
pthread_cond_signal(item->cond);
}
goto processed;
}
}
goto release_and_exit;
}