mariadb/mysql-test/t/cte_recursive.test
Monty 0bb0d52221 Merge remote-tracking branch 'origin/10.2' into bb-10.2-ext
Conflicts:
	mysql-test/r/cte_recursive.result
	mysql-test/r/derived_cond_pushdown.result
	mysql-test/t/cte_recursive.test
	mysql-test/t/derived_cond_pushdown.test
	sql/datadict.cc
	sql/handler.cc
2017-11-09 23:21:41 +02:00

1978 lines
44 KiB
Text

create table t1 (a int, b varchar(32));
insert into t1 values
(4,'aaaa' ), (7,'bb'), (1,'ccc'), (4,'dd');
insert into t1 values
(3,'eee'), (7,'bb'), (1,'fff'), (4,'ggg');
--ERROR ER_UNACCEPTABLE_MUTUAL_RECURSION
with recursive
t as
(
select * from t1 where t1.b >= 'c'
union
select * from r
),
r as
(
select * from t
union
select t1.* from t1,r where r.a+1 = t1.a
)
select * from r;
--ERROR ER_UNACCEPTABLE_MUTUAL_RECURSION
with recursive
a1(a,b) as
(select * from t1 where t1.a>3
union
select * from b1 where b1.a >3
union
select * from c1 where c1.a>3),
b1(a,b) as
(select * from a1 where a1.b > 'ccc'
union
select * from c1 where c1.b > 'ddd'),
c1(a,b) as
(select * from a1 where a1.a<6 and a1.b< 'zz'
union
select * from b1 where b1.b > 'auu')
select * from c1;
drop table t1;
--echo # WITH RECURSIVE vs just WITH
create table t1 (a int);
insert into t1 values
(0), (1), (2), (3), (4);
create table t2 (a int);
insert into t2 values
(1), (2), (3), (4), (5);
--echo # just WITH : s refers to t defined after s
--ERROR ER_NO_SUCH_TABLE
with
s(a) as (select t.a + 10 from t),
t(a) as (select t1.a from t1)
select * from s;
--echo # WITH RECURSIVE: s refers to t defined after s
with recursive
s(a) as (select t.a + 10 from t),
t(a) as (select t1.a from t1)
select * from s;
--echo # just WITH : defined t1 is non-recursive and uses base tables t1,t2
with
t1 as
(
select a from t2 where t2.a=3
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
explain
with
t1 as
(
select a from t2 where t2.a=3
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
--echo #WITH RECURSIVE : defined t1 is recursive and uses only base table t2
with recursive
t1 as
(
select a from t2 where t2.a=3
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
explain
with recursive
t1 as
(
select a from t2 where t2.a=3
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
--echo # just WITH : types of t1 columns are determined by all parts of union
create view v1 as
with
t1 as
(
select a from t2 where t2.a=3
union
select t2.a+1 from t1,t2 where t1.a=t2.a
)
select * from t1;
show columns from v1;
--echo # WITH RECURSIVE : types of t1 columns are determined by anchor parts
create view v2 as
with recursive
t1 as
(
select a from t2 where t2.a=3
union
select t2.a+1 from t1,t2 where t1.a=t2.a
)
select * from t1;
show columns from v2;
drop view v1,v2;
drop table t1,t2;
create table folks(id int, name char(32), dob date, father int, mother int);
insert into folks values
(100, 'Me', '2000-01-01', 20, 30),
(20, 'Dad', '1970-02-02', 10, 9),
(30, 'Mom', '1975-03-03', 8, 7),
(10, 'Grandpa Bill', '1940-04-05', null, null),
(9, 'Grandma Ann', '1941-10-15', null, null),
(25, 'Uncle Jim', '1968-11-18', 8, 7),
(98, 'Sister Amy', '2001-06-20', 20, 30),
(7, 'Grandma Sally', '1943-08-23', null, 6),
(8, 'Grandpa Ben', '1940-10-21', null, null),
(6, 'Grandgrandma Martha', '1923-05-17', null, null),
(67, 'Cousin Eddie', '1992-02-28', 25, 27),
(27, 'Auntie Melinda', '1971-03-29', null, null);
--echo # simple recursion with one anchor and one recursive select
--echo # the anchor is the first select in the specification
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' and dob = '2000-01-01'
union
select p.id, p.name, p.dob, p.father, p.mother
from folks as p, ancestors AS a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
--echo # simple recursion with one anchor and one recursive select
--echo # the anchor is the last select in the specification
with recursive
ancestors
as
(
select p.*
from folks as p, ancestors AS a
where p.id = a.father or p.id = a.mother
union
select *
from folks
where name = 'Me' and dob = '2000-01-01'
)
select * from ancestors;
--echo # simple recursion with one anchor and one recursive select
--echo # the anchor is the first select in the specification
with recursive
ancestors
as
(
select *
from folks
where name = 'Cousin Eddie'
union
select p.*
from folks as p, ancestors as a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
--echo # simple recursion with or in anchor and or in recursive part
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' or name='Sister Amy'
union
select p.*
from folks as p, ancestors as a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
--echo # two recursive definition, one uses another
with recursive
prev_gen
as
(
select folks.*
from folks, prev_gen
where folks.id=prev_gen.father or folks.id=prev_gen.mother
union
select *
from folks
where name='Me'
),
ancestors
as
(
select *
from folks
where name='Me'
union
select *
from ancestors
union
select *
from prev_gen
)
select ancestors.name, ancestors.dob from ancestors;
--echo # recursive definition with two attached non-recursive
with recursive
ancestors(id,name,dob)
as
(
with
father(child_id,id,name,dob)
as
(
select folks.id, f.id, f.name, f.dob
from folks, folks f
where folks.father=f.id
),
mother(child_id,id,name,dob)
as
(
select folks.id, m.id, m.name, m.dob
from folks, folks m
where folks.mother=m.id
)
select folks.id, folks.name, folks.dob
from folks
where name='Me'
union
select f.id, f.name, f.dob
from ancestors a, father f
where f.child_id=a.id
union
select m.id, m.name, m.dob
from ancestors a, mother m
where m.child_id=a.id
)
select ancestors.name, ancestors.dob from ancestors;
--echo # simple recursion with one anchor and one recursive select
--echo # the anchor is the first select in the specification
with recursive
descendants
as
(
select *
from folks
where name = 'Grandpa Bill'
union
select folks.*
from folks, descendants as d
where d.id=folks.father or d.id=folks.mother
)
select * from descendants;
--echo # simple recursion with one anchor and one recursive select
--echo # the anchor is the first select in the specification
with recursive
descendants
as
(
select *
from folks
where name = 'Grandma Sally'
union
select folks.*
from folks, descendants as d
where d.id=folks.father or d.id=folks.mother
)
select * from descendants;
--echo # simple recursive table used three times in the main query
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' and dob = '2000-01-01'
union
select p.*
from folks as p, ancestors AS a
where p.id = a.father OR p.id = a.mother
)
select *
from ancestors t1, ancestors t2
where exists (select * from ancestors a
where a.father=t1.id AND a.mother=t2.id);
--echo # simple recursive table used three times in the main query
with
ancestor_couples(husband, h_dob, wife, w_dob)
as
(
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union
select p.*
from folks as p, ancestors AS a
where p.id = a.father OR p.id = a.mother
)
select t1.name, t1.dob, t2.name, t2.dob
from ancestors t1, ancestors t2
where exists (select * from ancestors a
where a.father=t1.id AND a.mother=t2.id)
)
select * from ancestor_couples;
--echo # simple recursion with two selects in recursive part
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union
select p.*
from folks as p, ancestors as fa
where p.id = fa.father
union
select p.*
from folks as p, ancestors as ma
where p.id = ma.mother
)
select * from ancestors;
--echo # mutual recursion with renaming
with recursive
ancestor_couples(h_id, h_name, h_dob, h_father, h_mother,
w_id, w_name, w_dob, w_father, w_mother)
as
(
select h.*, w.*
from folks h, folks w, coupled_ancestors a
where a.father = h.id AND a.mother = w.id
union
select h.*, w.*
from folks v, folks h, folks w
where v.name = 'Me' and
(v.father = h.id AND v.mother= w.id)
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select h_id, h_name, h_dob, h_father, h_mother
from ancestor_couples
union
select w_id, w_name, w_dob, w_father, w_mother
from ancestor_couples
)
select h_name, h_dob, w_name, w_dob
from ancestor_couples;
--echo # mutual recursion with union all
with recursive
ancestor_couples(h_id, h_name, h_dob, h_father, h_mother,
w_id, w_name, w_dob, w_father, w_mother)
as
(
select h.*, w.*
from folks h, folks w, coupled_ancestors a
where a.father = h.id AND a.mother = w.id
union
select h.*, w.*
from folks v, folks h, folks w
where v.name = 'Me' and
(v.father = h.id AND v.mother= w.id)
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select h_id, h_name, h_dob, h_father, h_mother
from ancestor_couples
union all
select w_id, w_name, w_dob, w_father, w_mother
from ancestor_couples
)
select h_name, h_dob, w_name, w_dob
from ancestor_couples;
--echo # mutual recursion with renaming
with recursive
ancestor_couples(h_id, h_name, h_dob, h_father, h_mother,
w_id, w_name, w_dob, w_father, w_mother)
as
(
select h.*, w.*
from folks h, folks w, coupled_ancestors a
where a.father = h.id AND a.mother = w.id
union
select h.*, w.*
from folks v, folks h, folks w
where v.name = 'Me' and
(v.father = h.id AND v.mother= w.id)
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select h_id, h_name, h_dob, h_father, h_mother
from ancestor_couples
union
select w_id, w_name, w_dob, w_father, w_mother
from ancestor_couples
)
select h_name, h_dob, w_name, w_dob
from ancestor_couples;
--echo # mutual recursion with union all
with recursive
ancestor_couples(h_id, h_name, h_dob, h_father, h_mother,
w_id, w_name, w_dob, w_father, w_mother)
as
(
select h.*, w.*
from folks h, folks w, coupled_ancestors a
where a.father = h.id AND a.mother = w.id
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select h_id, h_name, h_dob, h_father, h_mother
from ancestor_couples
union all
select w_id, w_name, w_dob, w_father, w_mother
from ancestor_couples
)
select h_name, h_dob, w_name, w_dob
from ancestor_couples;
--echo # mutual recursion with one select in the first definition
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
where a.father is not null and a.mother is not null
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select *
from ancestor_couple_ids;
--echo # join of a mutually recursive table with base tables
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
where a.father is not null and a.mother is not null
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select h.name, h.dob, w.name, w.dob
from ancestor_couple_ids c, folks h, folks w
where c.h_id = h.id and c.w_id= w.id;
--echo # join of two mutually recursive tables
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
where a.father is not null and a.mother is not null
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select h.name, h.dob, w.name, w.dob
from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w
where c.h_id = h.id and c.w_id= w.id;
explain extended
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
where a.father is not null and a.mother is not null
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select h.name, h.dob, w.name, w.dob
from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w
where c.h_id = h.id and c.w_id= w.id;
--echo # simple mutual recursion
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select *
from ancestor_couple_ids;
--echo # join of two mutually recursive tables
with recursive
ancestor_couple_ids(h_id, w_id)
as
(
select a.father, a.mother
from coupled_ancestors a
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks p, ancestor_couple_ids fa
where p.id = fa.h_id
union all
select p.*
from folks p, ancestor_couple_ids ma
where p.id = ma.w_id
)
select h.name, h.dob, w.name, w.dob
from ancestor_couple_ids c, coupled_ancestors h, coupled_ancestors w
where c.h_id = h.id and c.w_id= w.id;
--echo # execution of prepared query using a recursive table
prepare stmt1 from "
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' and dob = '2000-01-01'
union
select p.id, p.name, p.dob, p.father, p.mother
from folks as p, ancestors AS a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
";
execute stmt1;
execute stmt1;
deallocate prepare stmt1;
--echo # view using a recursive table
create view v1 as
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' and dob = '2000-01-01'
union
select p.id, p.name, p.dob, p.father, p.mother
from folks as p, ancestors AS a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
show create view v1;
select * from v1;
create view v2 as
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union
select p.*
from folks as p, ancestors as fa
where p.id = fa.father
union
select p.*
from folks as p, ancestors as ma
where p.id = ma.mother
)
select * from ancestors;
show create view v2;
select * from v2;
drop view v1,v2;
explain extended
with recursive
ancestors
as
(
select *
from folks
where name = 'Me' and dob = '2000-01-01'
union
select p.id, p.name, p.dob, p.father, p.mother
from folks as p, ancestors AS a
where p.id = a.father or p.id = a.mother
)
select * from ancestors;
--echo # recursive spec with two anchor selects and two recursive ones
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
),
ancestors
as
(
select p.* from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
--echo # recursive spec using union all
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union all
select p.*
from folks as p, ancestors as fa
where p.id = fa.father
union all
select p.*
from folks as p, ancestors as ma
where p.id = ma.mother
)
select * from ancestors;
--ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me' and father is not null
union all
select mother, 1 from folks where name = 'Me' and mother is not null
union all
select father, fa.generation+1 from folks, ancestor_ids fa
where folks.id = fa.id and (father not in (select id from ancestor_ids))
union all
select mother, ma.generation+1 from folks, ancestor_ids ma
where folks.id = ma.id and (mother not in (select id from ancestor_ids))
)
select generation, name from ancestor_ids a, folks
where a.id = folks.id;
set standard_compliant_cte=0;
--ERROR ER_WITH_COL_WRONG_LIST
with recursive
ancestor_ids (id, generation)
as
(
select father from folks where name = 'Me' and father is not null
union all
select mother from folks where name = 'Me' and mother is not null
union all
select father, fa.generation+1 from folks, ancestor_ids fa
where folks.id = fa.id and (father not in (select id from ancestor_ids))
union all
select mother, ma.generation+1 from folks, ancestor_ids ma
where folks.id = ma.id and (mother not in (select id from ancestor_ids))
)
select generation, name from ancestor_ids a, folks
where a.id = folks.id;
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me' and father is not null
union all
select mother, 1 from folks where name = 'Me' and mother is not null
union all
select father, fa.generation+1 from folks, ancestor_ids fa
where folks.id = fa.id and father is not null and
(father not in (select id from ancestor_ids))
union all
select mother, ma.generation+1 from folks, ancestor_ids ma
where folks.id = ma.id and mother is not null and
(mother not in (select id from ancestor_ids))
)
select generation, name from ancestor_ids a, folks
where a.id = folks.id;
set standard_compliant_cte=1;
--ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE
with recursive
coupled_ancestor_ids (id)
as
(
select father from folks where name = 'Me' and father is not null
union
select mother from folks where name = 'Me' and mother is not null
union
select n.father
from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n
where folks.father = fa.id and folks.mother = ma.id and
(fa.id = n.id or ma.id = n.id) and
n.father is not null and n.mother is not null
union
select n.mother
from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n
where folks.father = fa.id and folks.mother = ma.id and
(fa.id = n.id or ma.id = n.id) and
n.father is not null and n.mother is not null
)
select p.* from coupled_ancestor_ids a, folks p
where a.id = p.id;
set statement standard_compliant_cte=0 for
with recursive
coupled_ancestor_ids (id)
as
(
select father from folks where name = 'Me' and father is not null
union
select mother from folks where name = 'Me' and mother is not null
union
select n.father
from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n
where folks.father = fa.id and folks.mother = ma.id and
(fa.id = n.id or ma.id = n.id) and
n.father is not null and n.mother is not null
union
select n.mother
from folks, coupled_ancestor_ids fa, coupled_ancestor_ids ma, folks n
where folks.father = fa.id and folks.mother = ma.id and
(fa.id = n.id or ma.id = n.id) and
n.father is not null and n.mother is not null
)
select p.* from coupled_ancestor_ids a, folks p
where a.id = p.id;
--ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks left join ancestor_ids a on folks.id = a.id
union
select mother from folks left join ancestor_ids a on folks.id = a.id
),
ancestors
as
(
select p.* from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
set statement standard_compliant_cte=0 for
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks left join ancestor_ids a on folks.id = a.id
union
select mother from folks left join ancestor_ids a on folks.id = a.id
),
ancestors
as
(
select p.* from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me'
union
select mother, 1 from folks where name = 'Me'
union
select father, a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
union
select mother, a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
),
ancestors
as
(
select generation, name from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
--ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me'
union
select mother, 1 from folks where name = 'Me'
union
select max(father), max(a.generation)+1 from folks, ancestor_ids a
where folks.id = a.id
group by a.generation
union
select max(mother), max(a.generation)+1 from folks, ancestor_ids a
where folks.id = a.id
group by a.generation
),
ancestors
as
(
select generation, name from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
set statement standard_compliant_cte=0 for
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me'
union
select mother, 1 from folks where name = 'Me'
union
select max(father), a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
group by a.generation
union
select max(mother), a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
group by a.generation
),
ancestors
as
(
select generation, name from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
set statement max_recursive_iterations=1 for
with recursive
ancestor_ids (id, generation)
as
(
select father, 1 from folks where name = 'Me'
union
select mother, 1 from folks where name = 'Me'
union
select father, a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
union
select mother, a.generation+1 from folks, ancestor_ids a
where folks.id = a.id
),
ancestors
as
(
select generation, name from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
--echo # query with recursive tables using key access
alter table folks add primary key (id);
explain
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union
select p.*
from folks as p, ancestors as fa
where p.id = fa.father
union
select p.*
from folks as p, ancestors as ma
where p.id = ma.mother
)
select * from ancestors;
with recursive
ancestors
as
(
select *
from folks
where name = 'Me'
union
select p.*
from folks as p, ancestors as fa
where p.id = fa.father
union
select p.*
from folks as p, ancestors as ma
where p.id = ma.mother
)
select * from ancestors;
--echo #
--echo # EXPLAIN FORMAT=JSON on a query where one recursive CTE uses another:
--echo #
explain
with recursive
prev_gen
as
(
select folks.*
from folks, prev_gen
where folks.id=prev_gen.father or folks.id=prev_gen.mother
union
select *
from folks
where name='Me'
),
ancestors
as
(
select *
from folks
where name='Me'
union
select *
from ancestors
union
select *
from prev_gen
)
select ancestors.name, ancestors.dob from ancestors;
explain FORMAT=JSON
with recursive
prev_gen
as
(
select folks.*
from folks, prev_gen
where folks.id=prev_gen.father or folks.id=prev_gen.mother
union
select *
from folks
where name='Me'
),
ancestors
as
(
select *
from folks
where name='Me2'
union
select *
from ancestors where id < 234
union
select *
from prev_gen where id < 345
)
select ancestors.name, ancestors.dob from ancestors;
--echo #
explain format=json
with recursive
ancestor_couples(h_id, h_name, h_dob, h_father, h_mother,
w_id, w_name, w_dob, w_father, w_mother)
as
(
select h.*, w.*
from folks h, folks w, coupled_ancestors a
where a.father = h.id AND a.mother = w.id
union
select h.*, w.*
from folks v, folks h, folks w
where v.name = 'Me' and
(v.father = h.id AND v.mother= w.id)
),
coupled_ancestors (id, name, dob, father, mother)
as
(
select h_id, h_name, h_dob, h_father, h_mother
from ancestor_couples
union all
select w_id, w_name, w_dob, w_father, w_mother
from ancestor_couples
)
select h_name, h_dob, w_name, w_dob
from ancestor_couples;
create table my_ancestors
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id;
select * from my_ancestors;
delete from my_ancestors;
insert into my_ancestors
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id;
select * from my_ancestors;
drop table my_ancestors;
--echo #
--echo # MDEV-10883: execution of prepared statement from SELECT
--echo # with recursive CTE that renames columns
--echo #
prepare stmt from"
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id;
";
execute stmt;
deallocate prepare stmt;
--echo #
--echo # MDEV-10881: execution of prepared statement from
--echo # CREATE ... SELECT, INSERT ... SELECT
--echo #
prepare stmt from"
create table my_ancestors
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id;
";
execute stmt;
deallocate prepare stmt;
select * from my_ancestors;
delete from my_ancestors;
prepare stmt from"
insert into my_ancestors
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id;
";
execute stmt;
deallocate prepare stmt;
select * from my_ancestors;
drop table my_ancestors;
--echo #
--echo # MDEV-10933: WITH clause together with SELECT in parenthesis
--echo # CREATE SELECT
--echo #
create table my_ancestors
(
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from folks, ancestor_ids a where folks.id = a.id
union
select mother from folks, ancestor_ids a where folks.id = a.id
)
select p.* from folks as p, ancestor_ids as a where p.id = a.id
);
select * from my_ancestors;
drop table my_ancestors;
drop table folks;
--echo #
--echo # MDEV-10372: [bb-10.2-mdev9864 tree] EXPLAIN with recursive CTE enters endless recursion
--echo #
create table t1(a int);
insert into t1 values (0),(1),(2),(3),(4),(5),(6),(7),(8),(9);
explain format=json
with recursive t as (select a from t1 union select a+10 from t where a < 1000)
select * from t;
drop table t1;
--echo #
--echo # MDEV-10737: recursive union with several anchors at the end
--echo #
WITH RECURSIVE cte(n) AS
( SELECT n+1 FROM cte WHERE n < 5 UNION SELECT 1 UNION SELECT 1 )
SELECT * FROM cte;
--echo #
--echo # MDEV-10736: recursive definition with anchor over a table with blob
--echo #
CREATE TABLE t1 (f VARCHAR(1024));
WITH RECURSIVE cte(f) AS
(SELECT t1.f FROM t1 UNION ALL SELECT cte.f FROM cte)
SELECT * FROM cte as t;
DROP TABLE t1;
--echo #
--echo # MDEV-10899: mergeable derived in the spec of recursive CTE
--echo #
create table t1 (a int);
insert into t1 values
(0), (1), (2), (3), (4);
create table t2 (a int);
insert into t2 values
(1), (2), (3), (4), (5);
with recursive
t1 as
(
select x.a from (select a from t2 where t2.a=3) x
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
explain
with recursive
t1 as
(
select x.a from (select a from t2 where t2.a=3) x
union
select t2.a from t1,t2 where t1.a+1=t2.a
)
select * from t1;
drop table t1,t2;
--echo #
--echo # MDEV-11278: non-mergeable view in the spec of recursive CTE
--echo #
create table t1 (a int);
insert into t1 values
(0), (1), (2), (3), (4);
create table t2 (a int);
insert into t2 values
(1), (2), (3), (4), (5);
create view v1 as
select a from t2 where a < 3
union
select a from t2 where a > 4;
with recursive
t1 as
(
select a from v1 where a=1
union
select v1.a from t1,v1 where t1.a+1=v1.a
)
select * from t1;
drop view v1;
drop table t1,t2;
--echo #
--echo # MDEV-11259: recursive CTE with concatenation operation
--echo #
DROP TABLE IF EXISTS edges;
CREATE TABLE edges(
a int(10) unsigned NOT NULL,
b int(10) unsigned NOT NULL,
PRIMARY KEY (a,b),
KEY b(b)
);
INSERT INTO edges
VALUES (1,3),(2,1),(2,4),(3,4),(3,5),(3,6),(4,7),(5,1),(5,6),(6,1);
DROP TABLE IF EXISTS edges2;
CREATE VIEW edges2 (a, b) AS
SELECT a, b FROM edges UNION ALL SELECT b, a FROM edges;
--sorted_result
WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS
( SELECT a, b, 1 AS distance,
concat(a, '.', b, '.') AS path_string
FROM edges
UNION ALL
SELECT tc.a, e.b, tc.distance + 1,
concat(tc.path_string, e.b, '.') AS path_string
FROM edges AS e
JOIN transitive_closure AS tc
ON e.a = tc.b
WHERE tc.path_string NOT LIKE concat('%', e.b, '.%')
)
SELECT * FROM transitive_closure
ORDER BY a, b, distance;
--sorted_result
WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS
( SELECT a, b, 1 AS distance,
concat(a, '.', b, '.') AS path_string
FROM edges
WHERE a = 1 -- source
UNION ALL
SELECT tc.a, e.b, tc.distance + 1,
concat(tc.path_string, e.b, '.') AS path_string
FROM edges AS e
JOIN transitive_closure AS tc ON e.a = tc.b
WHERE tc.path_string NOT LIKE concat('%', e.b, '.%')
)
SELECT * FROM transitive_closure
WHERE b = 6 -- destination
ORDER BY a, b, distance;
--sorted_result
WITH RECURSIVE transitive_closure(a, b, distance, path_string) AS
( SELECT a, b, 1 AS distance,
concat(a, '.', b, '.') AS path_string
FROM edges2
UNION ALL
SELECT tc.a, e.b, tc.distance + 1,
concat(tc.path_string, e.b, '.') AS path_string
FROM edges2 AS e
JOIN transitive_closure AS tc ON e.a = tc.b
WHERE tc.path_string NOT LIKE concat('%', e.b, '.%')
)
SELECT * FROM transitive_closure
ORDER BY a, b, distance;
--sorted_result
WITH RECURSIVE transitive_closure(a, b, distance, path_string)
AS
( SELECT a, b, 1 AS distance,
concat(a, '.', b, '.') AS path_string
FROM edges2
UNION ALL
SELECT tc.a, e.b, tc.distance + 1,
concat(tc.path_string, e.b, '.') AS path_string
FROM edges2 AS e
JOIN transitive_closure AS tc ON e.a = tc.b
WHERE tc.path_string NOT LIKE concat('%', e.b, '.%')
)
SELECT a, b, min(distance) AS dist FROM transitive_closure
GROUP BY a, b
ORDER BY a, dist, b;
DROP VIEW edges2;
DROP TABLE edges;
--echo #
--echo # MDEV-11674: recursive CTE table that cannot be stored
--echo # in a heap table
--echo #
create table t1 (id int, test_data varchar(36));
insert into t1(id, test_data)
select id, test_data
from (
with recursive data_generator(id, test_data) as (
select 1 as id, uuid() as test_data
union all
select id + 1, uuid() from data_generator where id < 150000
)
select * from data_generator
) as a;
drop table t1;
--echo #
--echo # MDEV-10773: ANALYZE for query with recursive CTE
--echo #
--source include/analyze-format.inc
analyze format=json
with recursive src(counter) as
(select 1
union
select counter+1 from src where counter<10
) select * from src;
--echo #
--echo # mdev-12360: recursive reference in left operand of LEFT JOIN
--echo #
create table folks(id int, name char(32), dob date, father int, mother int);
insert into folks values
(100, 'Me', '2000-01-01', 20, 30),
(20, 'Dad', '1970-02-02', 10, 9),
(30, 'Mom', '1975-03-03', 8, 7),
(10, 'Grandpa Bill', '1940-04-05', null, null),
(9, 'Grandma Ann', '1941-10-15', null, null),
(25, 'Uncle Jim', '1968-11-18', 8, 7),
(98, 'Sister Amy', '2001-06-20', 20, 30),
(7, 'Grandma Sally', '1943-08-23', null, 6),
(8, 'Grandpa Ben', '1940-10-21', null, null),
(6, 'Grandgrandma Martha', '1923-05-17', null, null),
(67, 'Cousin Eddie', '1992-02-28', 25, 27),
(27, 'Auntie Melinda', '1971-03-29', null, null);
with recursive
ancestor_ids (id)
as
(
select father from folks where name = 'Me'
union
select mother from folks where name = 'Me'
union
select father from ancestor_ids as a left join folks on folks.id = a.id
union
select mother from ancestor_ids as a left join folks on folks.id = a.id
),
ancestors
as
(
select p.* from folks as p, ancestor_ids as a
where p.id = a.id
)
select * from ancestors;
drop table folks;
--echo #
--echo # mdev-12368: crash with mutually recursive CTE
--echo # that arenot Standard compliant
--echo #
create table value_nodes (v char(4));
create table module_nodes(m char(4));
create table module_arguments(m char(4), v char(4));
create table module_results(m char(4), v char(4));
--ERROR ER_NOT_STANDARD_COMPLIANT_RECURSIVE
with recursive
reached_values as
(
select v from value_nodes where v in ('v3','v7','v9')
union
select module_results.v from module_results, applied_modules
where module_results.m = applied_modules.m
),
applied_modules as
(
select module_nodes.m
from
module_nodes
left join
(
module_arguments
left join
reached_values
on module_arguments.v = reached_values.v
)
on reached_values.v is null and
module_nodes.m = module_arguments.m
where module_arguments.m is null
)
select * from reached_values;
drop table value_nodes, module_nodes, module_arguments, module_results;
--echo #
--echo # mdev-12375: query using one of two mutually recursive CTEs
--echo # whose non-recursive part returns an empty set
--echo #
create table value_nodes (v char(4));
insert into value_nodes values
('v1'), ('v2'), ('v3'), ('v4'), ('v5'), ('v6'), ('v7'), ('v8'), ('v9'),
('v10'), ('v11'), ('v12'), ('v13'), ('v14'), ('v15'), ('v16');
create table module_nodes(m char(4));
insert into module_nodes values
('m1'), ('m2'), ('m3'), ('m4'), ('m5'), ('m6'), ('m7');
create table module_arguments(m char(4), v char(4));
insert into module_arguments values
('m1','v3'), ('m1','v9'),
('m2','v4'), ('m2','v3'), ('m2','v7'),
('m3','v6'),
('m4','v4'), ('m4','v1'),
('m5','v10'), ('m5','v8'), ('m5','v3'),
('m6','v8'), ('m6','v1'),
('m7','v11'), ('m7','v12');
create table module_results(m char(4), v char(4));
insert into module_results values
('m1','v4'),
('m2','v1'), ('m2','v6'),
('m3','v10'),
('m4','v8'),
('m5','v11'), ('m5','v9'),
('m6','v12'), ('m6','v4'),
('m7','v2');
set statement max_recursive_iterations=2, standard_compliant_cte=0 for
with recursive
reached_values as
(
select v from value_nodes where v in ('v3','v7','v9')
union
select module_results.v from module_results, applied_modules
where module_results.m = applied_modules.m
),
applied_modules as
(
select * from module_nodes where 1=0
union
select module_nodes.m
from
module_nodes
left join
(
module_arguments
left join
reached_values
on module_arguments.v = reached_values.v
)
on reached_values.v is null and
module_nodes.m = module_arguments.m
where module_arguments.m is null
)
select * from applied_modules;
drop table value_nodes, module_nodes, module_arguments, module_results;
--echo #
--echo # mdev-12519: recursive references in subqueries
--echo #
create table t1 (lp char(4) not null, rp char(4) not null);
insert into t1 values
('p1','p2'), ('p2','p3'), ('p3','p4'), ('p4','p5'),
('p2','p7'), ('p7','p8'), ('p8','p3'), ('p8','p4');
set standard_compliant_cte=0;
with recursive
reachables(p) as
(
select lp from t1 where lp = 'p1'
union
select t1.rp from reachables, t1
where t1.lp = reachables.p
)
select * from reachables;
with recursive
reachables(p) as
(
select lp from t1 where lp = 'p1'
union
select t1.rp from reachables, t1
where 'p3' not in (select * from reachables) and
t1.lp = reachables.p
)
select * from reachables;
with recursive
reachables(p) as
(
select lp from t1 where lp = 'p1'
union
select t1.rp from reachables, t1
where 'p3' not in (select p from reachables where p <= 'p5'
union
select p from reachables where p > 'p5') and
t1.lp = reachables.p
)
select * from reachables;
prepare stmt from "
with recursive
reachables(p) as
(
select lp from t1 where lp = 'p1'
union
select t1.rp from reachables, t1
where 'p3' not in (select p from reachables where p <= 'p5'
union
select p from reachables where p > 'p5') and
t1.lp = reachables.p
)
select * from reachables;
";
execute stmt;
execute stmt;
deallocate prepare stmt;
drop table t1;
create table objects(v char(4) not null);
insert into objects values
('v1'), ('v2'), ('v3'), ('v4'), ('v5'),
('v6'), ('v7'), ('v8'), ('v9'), ('v10');
create table modules(m char(4) not null);
insert into modules values
('m1'), ('m2'), ('m3'), ('m4');
create table module_arguments(m char(4) not null, v char(4) not null);
insert into module_arguments values
('m1','v3'), ('m1','v9'),
('m2','v4'), ('m2','v7'),
('m3','v6'), ('m4','v2');
create table module_results(m char(4) not null, v char(4) not null);
insert into module_results values
('m1','v4'),
('m2','v1'), ('m2','v6'),
('m3','v10'), ('m4','v7');
set standard_compliant_cte=0;
with recursive
reached_objects as
(
select v, 'init' as m from objects where v in ('v3','v7','v9')
union
select module_results.v, module_results.m from module_results, applied_modules
where module_results.m = applied_modules.m
),
applied_modules as
(
select * from modules where 1=0
union
select modules.m
from
modules
where
not exists (select * from module_arguments
where module_arguments.m = modules.m and
module_arguments.v not in
(select v from reached_objects))
)
select * from reached_objects;
with recursive
reached_objects as
(
select v, 'init' as m from objects where v in ('v3','v7','v9')
union
select module_results.v, module_results.m from module_results, applied_modules
where module_results.m = applied_modules.m
),
applied_modules as
(
select * from modules where 1=0
union
select modules.m
from
modules
where
'v6' not in (select v from reached_objects) and
not exists (select * from module_arguments
where module_arguments.m = modules.m and
module_arguments.v not in
(select v from reached_objects))
)
select * from reached_objects;
prepare stmt from "
with recursive
reached_objects as
(
select v, 'init' as m from objects where v in ('v3','v7','v9')
union
select module_results.v, module_results.m from module_results, applied_modules
where module_results.m = applied_modules.m
),
applied_modules as
(
select * from modules where 1=0
union
select modules.m
from
modules
where
'v6' not in (select v from reached_objects) and
not exists (select * from module_arguments
where module_arguments.m = modules.m and
module_arguments.v not in
(select v from reached_objects))
)
select * from reached_objects;
";
execute stmt;
execute stmt;
deallocate prepare stmt;
drop table objects, modules, module_arguments, module_results;
set standard_compliant_cte=default;
select @@standard_compliant_cte;
--echo #
--echo # mdev-12554: impossible where in recursive select
--echo #
CREATE TABLE t1 (i int);
INSERT INTO t1 VALUES (1),(2);
WITH RECURSIVE
cte(f) AS ( SELECT i FROM t1 UNION SELECT f FROM t1, cte WHERE 1=0 )
SELECT * FROM cte;
DROP TABLE t1;
--echo #
--echo # mdev-12556: recursive execution uses Aria temporary tables
--echo #
CREATE TABLE t (c1 varchar(255), c2 tinytext);
INSERT INTO t VALUES ('a','a'),('b','b'),('c','c'),('d','d');
let $q1=
WITH RECURSIVE cte(f) AS (
SELECT c1 FROM t
UNION
SELECT c1 FROM t, cte
) SELECT COUNT(*) FROM cte;
let $q2=
WITH RECURSIVE cte(f) AS (
SELECT c2 FROM t
UNION
SELECT c2 FROM t, cte
) SELECT COUNT(*) FROM cte;
eval ANALYZE $q1;
eval $q1;
eval ANALYZE $q2;
eval $q2;
DROP TABLE t;
--echo #
--echo # mdev-12563: no recursive references on the top level of the CTE spec
--echo #
CREATE TABLE t (i int);
INSERT INTO t VALUES (3), (1),(2);
SET standard_compliant_cte=0;
WITH RECURSIVE cte(f) AS (
SELECT i FROM t
UNION
SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte )
) SELECT * FROM cte;
WITH RECURSIVE cte(f) AS (
SELECT i FROM t
UNION
SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte WHERE i < 2 )
UNION
SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte WHERE i > 2 )
) SELECT * FROM cte;
WITH RECURSIVE cte(f) AS (
SELECT i FROM t
UNION
SELECT i FROM t
WHERE i NOT IN ( SELECT * FROM cte WHERE i < 2
UNION
SELECT * FROM cte WHERE i > 2)
) SELECT * FROM cte;
WITH RECURSIVE cte(f) AS (
SELECT i FROM t
UNION
SELECT i FROM t
WHERE i NOT IN ( SELECT * FROM t
WHERE i IN ( SELECT * FROM cte ) GROUP BY i )
) SELECT * FROM cte;
WITH RECURSIVE cte(f) AS (
SELECT i FROM t
UNION
SELECT i FROM t WHERE i NOT IN ( SELECT * FROM cte )
UNION
SELECT * FROM cte WHERE f > 2
) SELECT * FROM cte;
set standard_compliant_cte=default;
DROP TABLE t;
--echo #
--echo # mdev-14184: recursive CTE embedded into CTE with multiple references
--echo #
WITH
cte1 AS (
SELECT n FROM (
WITH RECURSIVE rec_cte(n) AS (
SELECT 1 as n1
UNION ALL
SELECT n+1 as n2 FROM rec_cte WHERE n < 3
) SELECT n FROM rec_cte
) AS X
),
cte2 as (
SELECT 2 FROM cte1
)
SELECT *
FROM cte1;
--echo #
--echo # MDEV-14217 [db crash] Recursive CTE when SELECT includes new field
--echo #
CREATE TEMPORARY TABLE a_tbl (
a VARCHAR(33) PRIMARY KEY,
b VARCHAR(33)
);
INSERT INTO a_tbl VALUES ('block0', 'block0'), ('block1', NULL);
--error ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT
WITH RECURSIVE Q0 AS (
SELECT T0.a, T0.b, 5
FROM a_tbl T0
WHERE b IS NULL
UNION ALL
SELECT T1.a, T1.b
FROM Q0
JOIN a_tbl T1
ON T1.a=Q0.a
) SELECT distinct(Q0.a), Q0.b
FROM Q0;
DROP TABLE a_tbl;
--error ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT
WITH RECURSIVE x AS (SELECT 1,2 UNION ALL SELECT 1 FROM x) SELECT * FROM x;