mariadb/sql/ha_heap.cc

487 lines
13 KiB
C++

/* Copyright (C) 2000,2004 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <myisampack.h>
#include "ha_heap.h"
/*****************************************************************************
** HEAP tables
*****************************************************************************/
const char **ha_heap::bas_ext() const
{ static const char *ext[1]= { NullS }; return ext; }
int ha_heap::open(const char *name, int mode, uint test_if_locked)
{
if (!(file= heap_open(name, mode)) && my_errno == ENOENT)
{
HA_CREATE_INFO create_info;
bzero(&create_info, sizeof(create_info));
if (!create(name, table, &create_info))
{
file= heap_open(name, mode);
implicit_emptied= 1;
}
}
ref_length= sizeof(HEAP_PTR);
if (file)
{
/* Initialize variables for the opened table */
set_keys_for_scanning();
}
return (file ? 0 : 1);
}
int ha_heap::close(void)
{
return heap_close(file);
}
/*
Compute which keys to use for scanning
SYNOPSIS
set_keys_for_scanning()
no parameter
DESCRIPTION
Set the bitmap btree_keys, which is used when the upper layers ask
which keys to use for scanning. For each btree index the
corresponding bit is set.
RETURN
void
*/
void ha_heap::set_keys_for_scanning(void)
{
btree_keys.clear_all();
for (uint i= 0 ; i < table->keys ; i++)
{
if (table->key_info[i].algorithm == HA_KEY_ALG_BTREE)
btree_keys.set_bit(i);
}
}
int ha_heap::write_row(byte * buf)
{
statistic_increment(ha_write_count,&LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
if (table->next_number_field && buf == table->record[0])
update_auto_increment();
return heap_write(file,buf);
}
int ha_heap::update_row(const byte * old_data, byte * new_data)
{
statistic_increment(ha_update_count,&LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
table->timestamp_field->set_time();
return heap_update(file,old_data,new_data);
}
int ha_heap::delete_row(const byte * buf)
{
statistic_increment(ha_delete_count,&LOCK_status);
return heap_delete(file,buf);
}
int ha_heap::index_read(byte * buf, const byte * key, uint key_len,
enum ha_rkey_function find_flag)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_key_count, &LOCK_status);
int error = heap_rkey(file,buf,active_index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_last(byte *buf, const byte *key, uint key_len)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_key_count, &LOCK_status);
int error= heap_rkey(file, buf, active_index, key, key_len,
HA_READ_PREFIX_LAST);
table->status= error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_idx(byte * buf, uint index, const byte * key,
uint key_len, enum ha_rkey_function find_flag)
{
statistic_increment(ha_read_key_count, &LOCK_status);
int error = heap_rkey(file, buf, index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_next(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_next_count,&LOCK_status);
int error=heap_rnext(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_prev(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_prev_count,&LOCK_status);
int error=heap_rprev(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_first(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_first_count,&LOCK_status);
int error=heap_rfirst(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_last(byte * buf)
{
DBUG_ASSERT(inited==INDEX);
statistic_increment(ha_read_last_count,&LOCK_status);
int error=heap_rlast(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_init(bool scan)
{
return scan ? heap_scan_init(file) : 0;
}
int ha_heap::rnd_next(byte *buf)
{
statistic_increment(ha_read_rnd_next_count,&LOCK_status);
int error=heap_scan(file, buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_pos(byte * buf, byte *pos)
{
int error;
HEAP_PTR position;
statistic_increment(ha_read_rnd_count,&LOCK_status);
memcpy_fixed((char*) &position,pos,sizeof(HEAP_PTR));
error=heap_rrnd(file, buf, position);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
void ha_heap::position(const byte *record)
{
*(HEAP_PTR*) ref= heap_position(file); // Ref is aligned
}
void ha_heap::info(uint flag)
{
HEAPINFO info;
(void) heap_info(file,&info,flag);
records = info.records;
deleted = info.deleted;
errkey = info.errkey;
mean_rec_length=info.reclength;
data_file_length=info.data_length;
index_file_length=info.index_length;
max_data_file_length= info.max_records* info.reclength;
delete_length= info.deleted * info.reclength;
if (flag & HA_STATUS_AUTO)
auto_increment_value= info.auto_increment;
}
int ha_heap::extra(enum ha_extra_function operation)
{
return heap_extra(file,operation);
}
int ha_heap::delete_all_rows()
{
heap_clear(file);
return 0;
}
int ha_heap::external_lock(THD *thd, int lock_type)
{
return 0; // No external locking
}
/*
Disable indexes.
SYNOPSIS
disable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ disable all non-unique keys
HA_KEY_SWITCH_ALL disable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE dis. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE dis. all keys and make persistent
DESCRIPTION
Disable indexes and clear keys to use for scanning.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::disable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_disable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Enable indexes.
SYNOPSIS
enable_indexes()
mode mode of operation:
HA_KEY_SWITCH_NONUNIQ enable all non-unique keys
HA_KEY_SWITCH_ALL enable all keys
HA_KEY_SWITCH_NONUNIQ_SAVE en. non-uni. and make persistent
HA_KEY_SWITCH_ALL_SAVE en. all keys and make persistent
DESCRIPTION
Enable indexes and set keys to use for scanning.
The indexes might have been disabled by disable_index() before.
The function works only if both data and indexes are empty,
since the heap storage engine cannot repair the indexes.
To be sure, call handler::delete_all_rows() before.
IMPLEMENTATION
HA_KEY_SWITCH_NONUNIQ is not implemented.
HA_KEY_SWITCH_NONUNIQ_SAVE is not implemented with HEAP.
HA_KEY_SWITCH_ALL_SAVE is not implemented with HEAP.
RETURN
0 ok
HA_ERR_CRASHED data or index is non-empty. Delete all rows and retry.
HA_ERR_WRONG_COMMAND mode not implemented.
*/
int ha_heap::enable_indexes(uint mode)
{
int error;
if (mode == HA_KEY_SWITCH_ALL)
{
if (!(error= heap_enable_indexes(file)))
set_keys_for_scanning();
}
else
{
/* mode not implemented */
error= HA_ERR_WRONG_COMMAND;
}
return error;
}
/*
Test if indexes are disabled.
SYNOPSIS
indexes_are_disabled()
no parameters
RETURN
0 indexes are not disabled
1 all indexes are disabled
[2 non-unique indexes are disabled - NOT YET IMPLEMENTED]
*/
int ha_heap::indexes_are_disabled(void)
{
return heap_indexes_are_disabled(file);
}
THR_LOCK_DATA **ha_heap::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type != TL_IGNORE && file->lock.type == TL_UNLOCK)
file->lock.type=lock_type;
*to++= &file->lock;
return to;
}
/*
We have to ignore ENOENT entries as the HEAP table is created on open and
not when doing a CREATE on the table.
*/
int ha_heap::delete_table(const char *name)
{
char buff[FN_REFLEN];
int error= heap_delete_table(fn_format(buff,name,"","",4+2));
return error == ENOENT ? 0 : error;
}
int ha_heap::rename_table(const char * from, const char * to)
{
return heap_rename(from,to);
}
ha_rows ha_heap::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
KEY *key=table->key_info+inx;
if (key->algorithm == HA_KEY_ALG_BTREE)
return hp_rb_records_in_range(file, inx, min_key, max_key);
if (min_key->length != max_key->length ||
min_key->length != key->key_length ||
min_key->flag != HA_READ_KEY_EXACT ||
max_key->flag != HA_READ_AFTER_KEY)
return HA_POS_ERROR; // Can only use exact keys
return 10; // Good guess
}
int ha_heap::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
uint key, parts, mem_per_row= 0;
uint auto_key= 0, auto_key_type= 0;
ha_rows max_rows;
HP_KEYDEF *keydef;
HA_KEYSEG *seg;
char buff[FN_REFLEN];
int error;
for (key= parts= 0; key < table_arg->keys; key++)
parts+= table_arg->key_info[key].key_parts;
if (!(keydef= (HP_KEYDEF*) my_malloc(table_arg->keys * sizeof(HP_KEYDEF) +
parts * sizeof(HA_KEYSEG),
MYF(MY_WME))))
return my_errno;
seg= my_reinterpret_cast(HA_KEYSEG*) (keydef + table_arg->keys);
for (key= 0; key < table_arg->keys; key++)
{
KEY *pos= table_arg->key_info+key;
KEY_PART_INFO *key_part= pos->key_part;
KEY_PART_INFO *key_part_end= key_part + pos->key_parts;
mem_per_row+= (pos->key_length + (sizeof(char*) * 2));
keydef[key].keysegs= (uint) pos->key_parts;
keydef[key].flag= (pos->flags & (HA_NOSAME | HA_NULL_ARE_EQUAL));
keydef[key].seg= seg;
keydef[key].algorithm= ((pos->algorithm == HA_KEY_ALG_UNDEF) ?
HA_KEY_ALG_HASH : pos->algorithm);
for (; key_part != key_part_end; key_part++, seg++)
{
uint flag= key_part->key_type;
Field *field= key_part->field;
if (pos->algorithm == HA_KEY_ALG_BTREE)
seg->type= field->key_type();
else
{
if ((seg->type = field->key_type()) != (int) HA_KEYTYPE_TEXT)
seg->type= HA_KEYTYPE_BINARY;
}
seg->start= (uint) key_part->offset;
seg->length= (uint) key_part->length;
seg->flag = 0;
seg->charset= field->charset();
if (field->null_ptr)
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table_arg->record[0]);
}
else
{
seg->null_bit= 0;
seg->null_pos= 0;
}
if (field->flags & AUTO_INCREMENT_FLAG)
{
auto_key= key + 1;
auto_key_type= field->key_type();
}
}
}
mem_per_row+= MY_ALIGN(table_arg->reclength + 1, sizeof(char*));
max_rows = (ha_rows) (current_thd->variables.max_heap_table_size /
mem_per_row);
HP_CREATE_INFO hp_create_info;
hp_create_info.auto_key= auto_key;
hp_create_info.auto_key_type= auto_key_type;
hp_create_info.auto_increment= (create_info->auto_increment_value ?
create_info->auto_increment_value - 1 : 0);
error= heap_create(fn_format(buff,name,"","",4+2),
table_arg->keys,keydef, table_arg->reclength,
(ulong) ((table_arg->max_rows < max_rows &&
table_arg->max_rows) ?
table_arg->max_rows : max_rows),
(ulong) table_arg->min_rows, &hp_create_info);
my_free((gptr) keydef, MYF(0));
if (file)
info(HA_STATUS_NO_LOCK | HA_STATUS_CONST | HA_STATUS_VARIABLE);
return (error);
}
void ha_heap::update_create_info(HA_CREATE_INFO *create_info)
{
table->file->info(HA_STATUS_AUTO);
if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
create_info->auto_increment_value= auto_increment_value;
}
longlong ha_heap::get_auto_increment()
{
ha_heap::info(HA_STATUS_AUTO);
return auto_increment_value;
}