mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 01:04:19 +01:00
0594e1b84b
this is a cleanup patch for our current auto_increment handling: new names for auto_increment variables in THD, new methods to manipulate them (see sql_class.h), some move into handler::, causing less backup/restore work when executing substatements. This makes the logic hopefully clearer, less work is is needed in mysql_insert(). By cleaning up, using different variables for different purposes (instead of one for 3 things...), we fix those bugs, which someone may want to fix in 5.0 too: BUG#20339 "stored procedure using LAST_INSERT_ID() does not replicate statement-based" BUG#20341 "stored function inserting into one auto_increment puts bad data in slave" BUG#19243 "wrong LAST_INSERT_ID() after ON DUPLICATE KEY UPDATE" (now if a row is updated, LAST_INSERT_ID() will return its id) and re-fixes: BUG#6880 "LAST_INSERT_ID() value changes during multi-row INSERT" (already fixed differently by Ramil in 4.1) Test of documented behaviour of mysql_insert_id() (there was no test). The behaviour changes introduced are: - LAST_INSERT_ID() now returns "the first autogenerated auto_increment value successfully inserted", instead of "the first autogenerated auto_increment value if any row was successfully inserted", see auto_increment.test. Same for mysql_insert_id(), see mysql_client_test.c. - LAST_INSERT_ID() returns the id of the updated row if ON DUPLICATE KEY UPDATE, see auto_increment.test. Same for mysql_insert_id(), see mysql_client_test.c. - LAST_INSERT_ID() does not change if no autogenerated value was successfully inserted (it used to then be 0), see auto_increment.test. - if in INSERT SELECT no autogenerated value was successfully inserted, mysql_insert_id() now returns the id of the last inserted row (it already did this for INSERT VALUES), see mysql_client_test.c. - if INSERT SELECT uses LAST_INSERT_ID(X), mysql_insert_id() now returns X (it already did this for INSERT VALUES), see mysql_client_test.c. - NDB now behaves like other engines wrt SET INSERT_ID: with INSERT IGNORE, the id passed in SET INSERT_ID is re-used until a row succeeds; SET INSERT_ID influences not only the first row now. Additionally, when unlocking a table we check that the thread is not keeping a next_insert_id (as the table is unlocked that id is potentially out-of-date); forgetting about this next_insert_id is done in a new handler::ha_release_auto_increment(). Finally we prepare for engines capable of reserving finite-length intervals of auto_increment values: we store such intervals in THD. The next step (to be done by the replication team in 5.1) is to read those intervals from THD and actually store them in the statement-based binary log. NDB will be a good engine to test that.
348 lines
11 KiB
C++
348 lines
11 KiB
C++
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
|
|
/* The old structures from unireg */
|
|
|
|
struct st_table;
|
|
class Field;
|
|
|
|
typedef struct st_date_time_format {
|
|
uchar positions[8];
|
|
char time_separator; /* Separator between hour and minute */
|
|
uint flag; /* For future */
|
|
LEX_STRING format;
|
|
} DATE_TIME_FORMAT;
|
|
|
|
|
|
typedef struct st_keyfile_info { /* used with ha_info() */
|
|
byte ref[MAX_REFLENGTH]; /* Pointer to current row */
|
|
byte dupp_ref[MAX_REFLENGTH]; /* Pointer to dupp row */
|
|
uint ref_length; /* Length of ref (1-8) */
|
|
uint block_size; /* index block size */
|
|
File filenr; /* (uniq) filenr for table */
|
|
ha_rows records; /* Records i datafilen */
|
|
ha_rows deleted; /* Deleted records */
|
|
ulonglong data_file_length; /* Length off data file */
|
|
ulonglong max_data_file_length; /* Length off data file */
|
|
ulonglong index_file_length;
|
|
ulonglong max_index_file_length;
|
|
ulonglong delete_length; /* Free bytes */
|
|
ulonglong auto_increment_value;
|
|
int errkey,sortkey; /* Last errorkey and sorted by */
|
|
time_t create_time; /* When table was created */
|
|
time_t check_time;
|
|
time_t update_time;
|
|
ulong mean_rec_length; /* physical reclength */
|
|
} KEYFILE_INFO;
|
|
|
|
|
|
typedef struct st_key_part_info { /* Info about a key part */
|
|
Field *field;
|
|
uint offset; /* offset in record (from 0) */
|
|
uint null_offset; /* Offset to null_bit in record */
|
|
uint16 length; /* Length of keypart value in bytes */
|
|
/*
|
|
Number of bytes required to store the keypart value. This may be
|
|
different from the "length" field as it also counts
|
|
- possible NULL-flag byte (see HA_KEY_NULL_LENGTH)
|
|
- possible HA_KEY_BLOB_LENGTH bytes needed to store actual value length.
|
|
*/
|
|
uint16 store_length;
|
|
uint16 key_type;
|
|
uint16 fieldnr; /* Fieldnum in UNIREG */
|
|
uint16 key_part_flag; /* 0 or HA_REVERSE_SORT */
|
|
uint8 type;
|
|
uint8 null_bit; /* Position to null_bit */
|
|
} KEY_PART_INFO ;
|
|
|
|
|
|
typedef struct st_key {
|
|
uint key_length; /* Tot length of key */
|
|
uint flags; /* dupp key and pack flags */
|
|
uint key_parts; /* How many key_parts */
|
|
uint extra_length;
|
|
uint usable_key_parts; /* Should normally be = key_parts */
|
|
uint block_size;
|
|
enum ha_key_alg algorithm;
|
|
/*
|
|
Note that parser is used when the table is opened for use, and
|
|
parser_name is used when the table is being created.
|
|
*/
|
|
union
|
|
{
|
|
struct st_plugin_int *parser; /* Fulltext [pre]parser */
|
|
LEX_STRING *parser_name; /* Fulltext [pre]parser name */
|
|
};
|
|
KEY_PART_INFO *key_part;
|
|
char *name; /* Name of key */
|
|
/*
|
|
Array of AVG(#records with the same field value) for 1st ... Nth key part.
|
|
0 means 'not known'.
|
|
For temporary heap tables this member is NULL.
|
|
*/
|
|
ulong *rec_per_key;
|
|
union {
|
|
int bdb_return_if_eq;
|
|
} handler;
|
|
struct st_table *table;
|
|
} KEY;
|
|
|
|
|
|
struct st_join_table;
|
|
|
|
typedef struct st_reginfo { /* Extra info about reg */
|
|
struct st_join_table *join_tab; /* Used by SELECT() */
|
|
enum thr_lock_type lock_type; /* How database is used */
|
|
bool not_exists_optimize;
|
|
bool impossible_range;
|
|
} REGINFO;
|
|
|
|
|
|
struct st_read_record; /* For referense later */
|
|
class SQL_SELECT;
|
|
class THD;
|
|
class handler;
|
|
|
|
typedef struct st_read_record { /* Parameter to read_record */
|
|
struct st_table *table; /* Head-form */
|
|
handler *file;
|
|
struct st_table **forms; /* head and ref forms */
|
|
int (*read_record)(struct st_read_record *);
|
|
THD *thd;
|
|
SQL_SELECT *select;
|
|
uint cache_records;
|
|
uint ref_length,struct_length,reclength,rec_cache_size,error_offset;
|
|
uint index;
|
|
byte *ref_pos; /* pointer to form->refpos */
|
|
byte *record;
|
|
byte *rec_buf; /* to read field values after filesort */
|
|
byte *cache,*cache_pos,*cache_end,*read_positions;
|
|
IO_CACHE *io_cache;
|
|
bool print_error, ignore_not_found_rows;
|
|
} READ_RECORD;
|
|
|
|
|
|
/*
|
|
Originally MySQL used TIME structure inside server only, but since
|
|
4.1 it's exported to user in the new client API. Define aliases for
|
|
new names to keep existing code simple.
|
|
*/
|
|
|
|
typedef struct st_mysql_time TIME;
|
|
typedef enum enum_mysql_timestamp_type timestamp_type;
|
|
|
|
|
|
typedef struct {
|
|
ulong year,month,day,hour;
|
|
ulonglong minute,second,second_part;
|
|
bool neg;
|
|
} INTERVAL;
|
|
|
|
|
|
typedef struct st_known_date_time_format {
|
|
const char *format_name;
|
|
const char *date_format;
|
|
const char *datetime_format;
|
|
const char *time_format;
|
|
} KNOWN_DATE_TIME_FORMAT;
|
|
|
|
enum SHOW_COMP_OPTION { SHOW_OPTION_YES, SHOW_OPTION_NO, SHOW_OPTION_DISABLED};
|
|
|
|
extern const char *show_comp_option_name[];
|
|
|
|
typedef int *(*update_var)(THD *, struct st_mysql_show_var *);
|
|
|
|
typedef struct st_lex_user {
|
|
LEX_STRING user, host, password;
|
|
} LEX_USER;
|
|
|
|
/*
|
|
This structure specifies the maximum amount of resources which
|
|
can be consumed by each account. Zero value of a member means
|
|
there is no limit.
|
|
*/
|
|
typedef struct user_resources {
|
|
/* Maximum number of queries/statements per hour. */
|
|
uint questions;
|
|
/*
|
|
Maximum number of updating statements per hour (which statements are
|
|
updating is defined by sql_command_flags array).
|
|
*/
|
|
uint updates;
|
|
/* Maximum number of connections established per hour. */
|
|
uint conn_per_hour;
|
|
/* Maximum number of concurrent connections. */
|
|
uint user_conn;
|
|
/*
|
|
Values of this enum and specified_limits member are used by the
|
|
parser to store which user limits were specified in GRANT statement.
|
|
*/
|
|
enum {QUERIES_PER_HOUR= 1, UPDATES_PER_HOUR= 2, CONNECTIONS_PER_HOUR= 4,
|
|
USER_CONNECTIONS= 8};
|
|
uint specified_limits;
|
|
} USER_RESOURCES;
|
|
|
|
|
|
/*
|
|
This structure is used for counting resources consumed and for checking
|
|
them against specified user limits.
|
|
*/
|
|
typedef struct user_conn {
|
|
/*
|
|
Pointer to user+host key (pair separated by '\0') defining the entity
|
|
for which resources are counted (By default it is user account thus
|
|
priv_user/priv_host pair is used. If --old-style-user-limits option
|
|
is enabled, resources are counted for each user+host separately).
|
|
*/
|
|
char *user;
|
|
/* Pointer to host part of the key. */
|
|
char *host;
|
|
/* Total length of the key. */
|
|
uint len;
|
|
/* Current amount of concurrent connections for this account. */
|
|
uint connections;
|
|
/*
|
|
Current number of connections per hour, number of updating statements
|
|
per hour and total number of statements per hour for this account.
|
|
*/
|
|
uint conn_per_hour, updates, questions;
|
|
/* Maximum amount of resources which account is allowed to consume. */
|
|
USER_RESOURCES user_resources;
|
|
/*
|
|
The moment of time when per hour counters were reset last time
|
|
(i.e. start of "hour" for conn_per_hour, updates, questions counters).
|
|
*/
|
|
time_t intime;
|
|
} USER_CONN;
|
|
|
|
/* Bits in form->update */
|
|
#define REG_MAKE_DUPP 1 /* Make a copy of record when read */
|
|
#define REG_NEW_RECORD 2 /* Write a new record if not found */
|
|
#define REG_UPDATE 4 /* Uppdate record */
|
|
#define REG_DELETE 8 /* Delete found record */
|
|
#define REG_PROG 16 /* User is updating database */
|
|
#define REG_CLEAR_AFTER_WRITE 32
|
|
#define REG_MAY_BE_UPDATED 64
|
|
#define REG_AUTO_UPDATE 64 /* Used in D-forms for scroll-tables */
|
|
#define REG_OVERWRITE 128
|
|
#define REG_SKIP_DUP 256
|
|
|
|
/* Bits in form->status */
|
|
#define STATUS_NO_RECORD (1+2) /* Record isn't usably */
|
|
#define STATUS_GARBAGE 1
|
|
#define STATUS_NOT_FOUND 2 /* No record in database when needed */
|
|
#define STATUS_NO_PARENT 4 /* Parent record wasn't found */
|
|
#define STATUS_NOT_READ 8 /* Record isn't read */
|
|
#define STATUS_UPDATED 16 /* Record is updated by formula */
|
|
#define STATUS_NULL_ROW 32 /* table->null_row is set */
|
|
#define STATUS_DELETED 64
|
|
|
|
/*
|
|
Such interval is "discrete": it is the set of
|
|
{ auto_inc_interval_min + k * increment,
|
|
0 <= k <= (auto_inc_interval_values-1) }
|
|
Where "increment" is maintained separately by the user of this class (and is
|
|
currently only thd->variables.auto_increment_increment).
|
|
It mustn't derive from Sql_alloc, because SET INSERT_ID needs to
|
|
allocate memory which must stay allocated for use by the next statement.
|
|
*/
|
|
class Discrete_interval {
|
|
private:
|
|
ulonglong interval_min;
|
|
ulonglong interval_values;
|
|
ulonglong interval_max; // excluded bound. Redundant.
|
|
public:
|
|
Discrete_interval *next; // used when linked into Discrete_intervals_list
|
|
void replace(ulonglong start, ulonglong val, ulonglong incr)
|
|
{
|
|
interval_min= start;
|
|
interval_values= val;
|
|
interval_max= (val == ULONGLONG_MAX) ? val : start + val * incr;
|
|
}
|
|
Discrete_interval(ulonglong start, ulonglong val, ulonglong incr) :
|
|
next(NULL) { replace(start, val, incr); };
|
|
Discrete_interval() : next(NULL) { replace(0, 0, 0); };
|
|
ulonglong minimum() const { return interval_min; };
|
|
ulonglong values() const { return interval_values; };
|
|
ulonglong maximum() const { return interval_max; };
|
|
/*
|
|
If appending [3,5] to [1,2], we merge both in [1,5] (they should have the
|
|
same increment for that, user of the class has to ensure that). That is
|
|
just a space optimization. Returns 0 if merge succeeded.
|
|
*/
|
|
bool merge_if_contiguous(ulonglong start, ulonglong val, ulonglong incr)
|
|
{
|
|
if (interval_max == start)
|
|
{
|
|
if (val == ULONGLONG_MAX)
|
|
{
|
|
interval_values= interval_max= val;
|
|
}
|
|
else
|
|
{
|
|
interval_values+= val;
|
|
interval_max= start + val * incr;
|
|
}
|
|
return 0;
|
|
}
|
|
return 1;
|
|
};
|
|
};
|
|
|
|
/* List of Discrete_interval objects */
|
|
class Discrete_intervals_list {
|
|
private:
|
|
Discrete_interval *head;
|
|
Discrete_interval *tail;
|
|
/*
|
|
When many intervals are provided at the beginning of the execution of a
|
|
statement (in a replication slave or SET INSERT_ID), "current" points to
|
|
the interval being consumed by the thread now (so "current" goes from
|
|
"head" to "tail" then to NULL).
|
|
*/
|
|
Discrete_interval *current;
|
|
uint elements; // number of elements
|
|
public:
|
|
Discrete_intervals_list() : head(NULL), current(NULL), elements(0) {};
|
|
void empty_no_free()
|
|
{
|
|
head= current= NULL;
|
|
elements= 0;
|
|
}
|
|
void empty()
|
|
{
|
|
for (Discrete_interval *i= head; i;)
|
|
{
|
|
Discrete_interval *next= i->next;
|
|
delete i;
|
|
i= next;
|
|
}
|
|
empty_no_free();
|
|
}
|
|
const Discrete_interval* get_next()
|
|
{
|
|
Discrete_interval *tmp= current;
|
|
if (current != NULL)
|
|
current= current->next;
|
|
return tmp;
|
|
}
|
|
~Discrete_intervals_list() { empty(); };
|
|
bool append(ulonglong start, ulonglong val, ulonglong incr);
|
|
ulonglong minimum() const { return (head ? head->minimum() : 0); };
|
|
ulonglong maximum() const { return (head ? tail->maximum() : 0); };
|
|
uint nb_elements() const { return elements; }
|
|
};
|