mariadb/myisam/rt_split.c
unknown 548a39a104 Bug#25673 - spatial index corruption, error 126
incorrect key file for table

In certain cases it could happen that deleting a row could
corrupt an RTREE index.

According to Guttman's algorithm, page underflow is handled
by storing the page in a list for later re-insertion. The
keys from the stored pages have to be inserted into the
remaining pages of the same level of the tree. Hence the
level number is stored in the re-insertion list together
with the page.

In the MySQL RTree implementation the level counts from zero
at the root page, increasing numbers for levels down the tree.

If during re-insertion of the keys the tree height grows, all
level numbers become invalid. The remaining keys will be
inserted at the wrong level.

The fix is to increment the level numbers stored in the
reinsert list after a split of the root block during reinsertion.


myisam/rt_index.c:
  Bug#25673 - spatial index corruption, error 126
              incorrect key file for table
  Added a loop in rtree_delete() to increment the level numbers
  stored in the reinsert list after a split of the root block
  during reinsertion.
  Added comments and DBUG statements.
myisam/rt_key.c:
  Bug#25673 - spatial index corruption, error 126
              incorrect key file for table
  Added DBUG statements.
myisam/rt_split.c:
  Bug#25673 - spatial index corruption, error 126
              incorrect key file for table
  Added DBUG statements.
mysql-test/r/gis-rtree.result:
  Bug#25673 - spatial index corruption, error 126
              incorrect key file for table
  Added the test result.
mysql-test/t/gis-rtree.test:
  Bug#25673 - spatial index corruption, error 126
              incorrect key file for table
  Added a test.
2007-03-08 09:54:37 +01:00

360 lines
8.2 KiB
C

/* Copyright (C) 2000 MySQL AB & Alexey Botchkov & MySQL Finland AB
& TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "myisamdef.h"
#ifdef HAVE_RTREE_KEYS
#include "rt_index.h"
#include "rt_key.h"
#include "rt_mbr.h"
typedef struct
{
double square;
int n_node;
uchar *key;
double *coords;
} SplitStruct;
inline static double *reserve_coords(double **d_buffer, int n_dim)
{
double *coords = *d_buffer;
(*d_buffer) += n_dim * 2;
return coords;
}
static void mbr_join(double *a, const double *b, int n_dim)
{
double *end = a + n_dim * 2;
do
{
if (a[0] > b[0])
a[0] = b[0];
if (a[1] < b[1])
a[1] = b[1];
a += 2;
b += 2;
}while (a != end);
}
/*
Counts the square of mbr which is a join of a and b
*/
static double mbr_join_square(const double *a, const double *b, int n_dim)
{
const double *end = a + n_dim * 2;
double square = 1.0;
do
{
square *=
((a[1] < b[1]) ? b[1] : a[1]) - ((a[0] > b[0]) ? b[0] : a[0]);
a += 2;
b += 2;
}while (a != end);
return square;
}
static double count_square(const double *a, int n_dim)
{
const double *end = a + n_dim * 2;
double square = 1.0;
do
{
square *= a[1] - a[0];
a += 2;
}while (a != end);
return square;
}
inline static void copy_coords(double *dst, const double *src, int n_dim)
{
memcpy(dst, src, sizeof(double) * (n_dim * 2));
}
/*
Select two nodes to collect group upon
*/
static void pick_seeds(SplitStruct *node, int n_entries,
SplitStruct **seed_a, SplitStruct **seed_b, int n_dim)
{
SplitStruct *cur1;
SplitStruct *lim1 = node + (n_entries - 1);
SplitStruct *cur2;
SplitStruct *lim2 = node + n_entries;
double max_d = -DBL_MAX;
double d;
for (cur1 = node; cur1 < lim1; ++cur1)
{
for (cur2=cur1 + 1; cur2 < lim2; ++cur2)
{
d = mbr_join_square(cur1->coords, cur2->coords, n_dim) - cur1->square -
cur2->square;
if (d > max_d)
{
max_d = d;
*seed_a = cur1;
*seed_b = cur2;
}
}
}
}
/*
Select next node and group where to add
*/
static void pick_next(SplitStruct *node, int n_entries, double *g1, double *g2,
SplitStruct **choice, int *n_group, int n_dim)
{
SplitStruct *cur = node;
SplitStruct *end = node + n_entries;
double max_diff = -DBL_MAX;
for (; cur<end; ++cur)
{
double diff;
double abs_diff;
if (cur->n_node)
{
continue;
}
diff = mbr_join_square(g1, cur->coords, n_dim) -
mbr_join_square(g2, cur->coords, n_dim);
abs_diff = fabs(diff);
if (abs_diff > max_diff)
{
max_diff = abs_diff;
*n_group = 1 + (diff > 0);
*choice = cur;
}
}
}
/*
Mark not-in-group entries as n_group
*/
static void mark_all_entries(SplitStruct *node, int n_entries, int n_group)
{
SplitStruct *cur = node;
SplitStruct *end = node + n_entries;
for (; cur<end; ++cur)
{
if (cur->n_node)
{
continue;
}
cur->n_node = n_group;
}
}
static int split_rtree_node(SplitStruct *node, int n_entries,
int all_size, /* Total key's size */
int key_size,
int min_size, /* Minimal group size */
int size1, int size2 /* initial group sizes */,
double **d_buffer, int n_dim)
{
SplitStruct *cur;
SplitStruct *a;
SplitStruct *b;
double *g1 = reserve_coords(d_buffer, n_dim);
double *g2 = reserve_coords(d_buffer, n_dim);
SplitStruct *next;
int next_node;
int i;
SplitStruct *end = node + n_entries;
LINT_INIT(a);
LINT_INIT(b);
LINT_INIT(next);
LINT_INIT(next_node);
if (all_size < min_size * 2)
{
return 1;
}
cur = node;
for (; cur<end; ++cur)
{
cur->square = count_square(cur->coords, n_dim);
cur->n_node = 0;
}
pick_seeds(node, n_entries, &a, &b, n_dim);
a->n_node = 1;
b->n_node = 2;
copy_coords(g1, a->coords, n_dim);
size1 += key_size;
copy_coords(g2, b->coords, n_dim);
size2 += key_size;
for (i=n_entries - 2; i>0; --i)
{
if (all_size - (size2 + key_size) < min_size) /* Can't write into group 2 */
{
mark_all_entries(node, n_entries, 1);
break;
}
if (all_size - (size1 + key_size) < min_size) /* Can't write into group 1 */
{
mark_all_entries(node, n_entries, 2);
break;
}
pick_next(node, n_entries, g1, g2, &next, &next_node, n_dim);
if (next_node == 1)
{
size1 += key_size;
mbr_join(g1, next->coords, n_dim);
}
else
{
size2 += key_size;
mbr_join(g2, next->coords, n_dim);
}
next->n_node = next_node;
}
return 0;
}
int rtree_split_page(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *page, uchar *key,
uint key_length, my_off_t *new_page_offs)
{
int n1, n2; /* Number of items in groups */
SplitStruct *task;
SplitStruct *cur;
SplitStruct *stop;
double *coord_buf;
double *next_coord;
double *old_coord;
int n_dim;
uchar *source_cur, *cur1, *cur2;
uchar *new_page;
int err_code = 0;
uint nod_flag = mi_test_if_nod(page);
uint full_length = key_length + (nod_flag ? nod_flag :
info->s->base.rec_reflength);
int max_keys = (mi_getint(page)-2) / (full_length);
DBUG_ENTER("rtree_split_page");
DBUG_PRINT("rtree", ("splitting block"));
n_dim = keyinfo->keysegs / 2;
if (!(coord_buf= (double*) my_alloca(n_dim * 2 * sizeof(double) *
(max_keys + 1 + 4) +
sizeof(SplitStruct) * (max_keys + 1))))
DBUG_RETURN(-1); /* purecov: inspected */
task= (SplitStruct *)(coord_buf + n_dim * 2 * (max_keys + 1 + 4));
next_coord = coord_buf;
stop = task + max_keys;
source_cur = rt_PAGE_FIRST_KEY(page, nod_flag);
for (cur = task; cur < stop; ++cur, source_cur = rt_PAGE_NEXT_KEY(source_cur,
key_length, nod_flag))
{
cur->coords = reserve_coords(&next_coord, n_dim);
cur->key = source_cur;
rtree_d_mbr(keyinfo->seg, source_cur, key_length, cur->coords);
}
cur->coords = reserve_coords(&next_coord, n_dim);
rtree_d_mbr(keyinfo->seg, key, key_length, cur->coords);
cur->key = key;
old_coord = next_coord;
if (split_rtree_node(task, max_keys + 1,
mi_getint(page) + full_length + 2, full_length,
rt_PAGE_MIN_SIZE(keyinfo->block_length),
2, 2, &next_coord, n_dim))
{
err_code = 1;
goto split_err;
}
if (!(new_page = (uchar*)my_alloca((uint)keyinfo->block_length)))
{
err_code= -1;
goto split_err;
}
stop = task + (max_keys + 1);
cur1 = rt_PAGE_FIRST_KEY(page, nod_flag);
cur2 = rt_PAGE_FIRST_KEY(new_page, nod_flag);
n1 = 0;
n2 = 0;
for (cur = task; cur < stop; ++cur)
{
uchar *to;
if (cur->n_node == 1)
{
to = cur1;
cur1 = rt_PAGE_NEXT_KEY(cur1, key_length, nod_flag);
++n1;
}
else
{
to = cur2;
cur2 = rt_PAGE_NEXT_KEY(cur2, key_length, nod_flag);
++n2;
}
if (to != cur->key)
memcpy(to - nod_flag, cur->key - nod_flag, full_length);
}
mi_putint(page, 2 + n1 * full_length, nod_flag);
mi_putint(new_page, 2 + n2 * full_length, nod_flag);
if ((*new_page_offs= _mi_new(info, keyinfo, DFLT_INIT_HITS)) ==
HA_OFFSET_ERROR)
err_code= -1;
else
err_code= _mi_write_keypage(info, keyinfo, *new_page_offs,
DFLT_INIT_HITS, new_page);
DBUG_PRINT("rtree", ("split new block: %lu", (ulong) *new_page_offs));
my_afree((byte*)new_page);
split_err:
my_afree((byte*) coord_buf);
DBUG_RETURN(err_code);
}
#endif /*HAVE_RTREE_KEYS*/