mariadb/storage/innobase/buf/buf0mtflu.cc
2014-02-06 17:25:26 +02:00

718 lines
21 KiB
C++

/*****************************************************************************
Copyright (C) 2013, 2014, Fusion-io. All Rights Reserved.
Copyright (C) 2013, 2014, SkySQL Ab. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/******************************************************************//**
@file buf/buf0mtflu.cc
Multi-threaded flush method implementation
Created 06/11/2013 Dhananjoy Das DDas@fusionio.com
Modified 12/12/2013 Jan Lindström jan.lindstrom@skysql.com
Modified 03/02/2014 Dhananjoy Das DDas@fusionio.com
Modified 06/02/2014 Jan Lindström jan.lindstrom@skysql.com
***********************************************************************/
#include "buf0buf.h"
#include "buf0flu.h"
#include "buf0mtflu.h"
#include "buf0checksum.h"
#include "srv0start.h"
#include "srv0srv.h"
#include "page0zip.h"
#include "ut0byte.h"
#include "ut0lst.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "os0sync.h"
#include "trx0sys.h"
#include "srv0mon.h"
#include "mysql/plugin.h"
#include "mysql/service_thd_wait.h"
#include "fil0pagecompress.h"
#define MT_COMP_WATER_MARK 50
/* Work item status */
typedef enum wrk_status {
WRK_ITEM_SET=0, /*!< Work item is set */
WRK_ITEM_START=1, /*!< Processing of work item has started */
WRK_ITEM_DONE=2, /*!< Processing is done usually set to
SUCCESS/FAILED */
WRK_ITEM_SUCCESS=2, /*!< Work item successfully processed */
WRK_ITEM_FAILED=3, /*!< Work item process failed */
WRK_ITEM_EXIT=4, /*!< Exiting */
WRK_ITEM_STATUS_UNDEFINED
} wrk_status_t;
/* Work item task type */
typedef enum mt_wrk_tsk {
MT_WRK_NONE=0, /*!< Exit queue-wait */
MT_WRK_WRITE=1, /*!< Flush operation */
MT_WRK_READ=2, /*!< Read operation */
MT_WRK_UNDEFINED
} mt_wrk_tsk_t;
/* Work thread status */
typedef enum wthr_status {
WTHR_NOT_INIT=0, /*!< Work thread not initialized */
WTHR_INITIALIZED=1, /*!< Work thread initialized */
WTHR_SIG_WAITING=2, /*!< Work thread wating signal */
WTHR_RUNNING=3, /*!< Work thread running */
WTHR_NO_WORK=4, /*!< Work thread has no work */
WTHR_KILL_IT=5, /*!< Work thread should exit */
WTHR_STATUS_UNDEFINED
} wthr_status_t;
/* Write work task */
typedef struct wr_tsk {
buf_pool_t *buf_pool; /*!< buffer-pool instance */
enum buf_flush flush_type; /*!< flush-type for buffer-pool
flush operation */
ulint min; /*!< minimum number of pages
requested to be flushed */
lsn_t lsn_limit; /*!< lsn limit for the buffer-pool
flush operation */
} wr_tsk_t;
/* Read work task */
typedef struct rd_tsk {
buf_pool_t *page_pool; /*!< list of pages to decompress; */
} rd_tsk_t;
/* Work item */
typedef struct wrk_itm
{
mt_wrk_tsk_t tsk; /*!< Task type. Based on task-type
one of the entries wr_tsk/rd_tsk
will be used */
wr_tsk_t wr; /*!< Flush page list */
rd_tsk_t rd; /*!< Decompress page list */
ulint n_flushed; /*!< Flushed pages count */
os_thread_t id_usr; /*!< Thread-id currently working */
wrk_status_t wi_status; /*!< Work item status */
struct wrk_itm *next; /*!< Next work item */
} wrk_t;
/* Thread syncronization data */
typedef struct thread_sync
{
os_thread_id_t wthread_id; /*!< Identifier */
os_thread_t wthread; /*!< Thread id */
ib_wqueue_t *wq; /*!< Work Queue */
ib_wqueue_t *wr_cq; /*!< Write Completion Queue */
ib_wqueue_t *rd_cq; /*!< Read Completion Queue */
wthr_status_t wt_status; /*!< Worker thread status */
ulint stat_universal_num_processed;
/*!< Total number of pages
processed by this thread */
ulint stat_cycle_num_processed;
/*!< Number of pages processed
on this cycle */
mem_heap_t* wheap; /*!< Work heap where memory
is allocated */
wrk_t* work_item; /*!< Work items to be processed */
} thread_sync_t;
/* QUESTION: Is this array used from several threads concurrently ? */
// static wrk_t work_items[MTFLUSH_MAX_WORKER];
/* TODO: REALLY NEEDED ? */
static int mtflush_work_initialized = -1;
static os_fast_mutex_t mtflush_mtx;
static thread_sync_t* mtflush_ctx=NULL;
/******************************************************************//**
Initialize work items. */
static
void
mtflu_setup_work_items(
/*===================*/
wrk_t* work_items, /*!< inout: Work items */
ulint n_items) /*!< in: Number of work items */
{
ulint i;
for(i=0; i<n_items; i++) {
work_items[i].rd.page_pool = NULL;
work_items[i].wr.buf_pool = NULL;
work_items[i].n_flushed = 0;
work_items[i].id_usr = -1;
work_items[i].wi_status = WRK_ITEM_STATUS_UNDEFINED;
work_items[i].next = &work_items[(i+1)%n_items];
}
/* last node should be the tail */
work_items[n_items-1].next = NULL;
}
/******************************************************************//**
Set multi-threaded flush work initialized. */
static inline
void
buf_mtflu_work_init(void)
/*=====================*/
{
mtflush_work_initialized = 1;
}
/******************************************************************//**
Return true if multi-threaded flush is initialized
@return true if initialized */
bool
buf_mtflu_init_done(void)
/*=====================*/
{
return(mtflush_work_initialized == 1);
}
/******************************************************************//**
Fush buffer pool instance.
@return number of flushed pages, or 0 if error happened
*/
static
ulint
buf_mtflu_flush_pool_instance(
/*==========================*/
wrk_t *work_item) /*!< inout: work item to be flushed */
{
ut_a(work_item != NULL);
ut_a(work_item->wr.buf_pool != NULL);
if (!buf_flush_start(work_item->wr.buf_pool, work_item->wr.flush_type)) {
/* We have two choices here. If lsn_limit was
specified then skipping an instance of buffer
pool means we cannot guarantee that all pages
up to lsn_limit has been flushed. We can
return right now with failure or we can try
to flush remaining buffer pools up to the
lsn_limit. We attempt to flush other buffer
pools based on the assumption that it will
help in the retry which will follow the
failure. */
#ifdef UNIV_DEBUG
/* QUESTION: is this a really failure ? */
fprintf(stderr, "flush_start Failed, flush_type:%d\n",
work_item->wr.flush_type);
#endif
return 0;
}
if (work_item->wr.flush_type == BUF_FLUSH_LRU) {
/* srv_LRU_scan_depth can be arbitrarily large value.
* We cap it with current LRU size.
*/
buf_pool_mutex_enter(work_item->wr.buf_pool);
work_item->wr.min = UT_LIST_GET_LEN(work_item->wr.buf_pool->LRU);
buf_pool_mutex_exit(work_item->wr.buf_pool);
work_item->wr.min = ut_min(srv_LRU_scan_depth,work_item->wr.min);
}
work_item->n_flushed = buf_flush_batch(work_item->wr.buf_pool,
work_item->wr.flush_type,
work_item->wr.min,
work_item->wr.lsn_limit);
buf_flush_end(work_item->wr.buf_pool, work_item->wr.flush_type);
buf_flush_common(work_item->wr.flush_type, work_item->n_flushed);
return 0;
}
#ifdef UNIV_DEBUG
/******************************************************************//**
Output work item list status,
*/
static
void
mtflu_print_work_list(
/*==================*/
wrk_t* wi_list) /*!< in: Work item list */
{
wrk_t* wi = wi_list;
ulint i=0;
if(!wi_list) {
fprintf(stderr, "list NULL\n");
}
while(wi) {
fprintf(stderr, "-\t[%p]\t[%s]\t[%lu] > %p\n",
wi, (wi->id_usr == -1)?"free":"Busy", wi->n_flushed, wi->next);
wi = wi->next;
i++;
}
fprintf(stderr, "list len: %d\n", i);
}
#endif /* UNIV_DEBUG */
/******************************************************************//**
Worker function to wait for work items and processing them and
sending reply back.
*/
static
void
mtflush_service_io(
/*===============*/
thread_sync_t* mtflush_io) /*!< inout: multi-threaded flush
syncronization data */
{
wrk_t *work_item = NULL;
ulint n_flushed=0;
ib_time_t max_wait_usecs = 5000000;
mtflush_io->wt_status = WTHR_SIG_WAITING;
work_item = (wrk_t *)ib_wqueue_timedwait(mtflush_io->wq, max_wait_usecs);
#ifdef UNIV_DEBUG
mtflu_print_work_list(mtflush_io->work_item);
#endif
if (work_item) {
mtflush_io->wt_status = WTHR_RUNNING;
} else {
/* Because of timeout this thread did not get any work */
mtflush_io->wt_status = WTHR_NO_WORK;
return;
}
work_item->id_usr = mtflush_io->wthread;
switch(work_item->tsk) {
case MT_WRK_NONE:
ut_a(work_item->wi_status == WRK_ITEM_EXIT);
work_item->wi_status = WRK_ITEM_SUCCESS;
/* QUESTION: Why completed work items are inserted to
completion queue ? */
ib_wqueue_add(mtflush_io->wr_cq, work_item, mtflush_io->wheap);
break;
case MT_WRK_WRITE:
work_item->wi_status = WRK_ITEM_START;
/* Process work item */
/* QUESTION: Is this a really a error ? */
if (0 != (n_flushed = buf_mtflu_flush_pool_instance(work_item))) {
fprintf(stderr, "FLUSH op failed ret:%lu\n", n_flushed);
work_item->wi_status = WRK_ITEM_FAILED;
}
work_item->wi_status = WRK_ITEM_SUCCESS;
ib_wqueue_add(mtflush_io->wr_cq, work_item, mtflush_io->wheap);
break;
case MT_WRK_READ:
/* Need to also handle the read case */
/* TODO: ? */
ut_a(0);
/* completed task get added to rd_cq */
/* work_item->wi_status = WRK_ITEM_SUCCESS;
ib_wqueue_add(mtflush_io->rd_cq, work_item, mtflush_io->wheap);*/
break;
default:
/* None other than Write/Read handling planned */
ut_a(0);
}
mtflush_io->wt_status = WTHR_NO_WORK;
}
/******************************************************************//**
Thead used to flush dirty pages when multi-threaded flush is
used.
@return a dummy parameter*/
extern "C" UNIV_INTERN
os_thread_ret_t
DECLARE_THREAD(mtflush_io_thread)(
/*==============================*/
void * arg)
{
thread_sync_t *mtflush_io = ((thread_sync_t *)arg);
while (srv_shutdown_state != SRV_SHUTDOWN_EXIT_THREADS) {
mtflush_service_io(mtflush_io);
mtflush_io->stat_cycle_num_processed = 0;
}
/* This should make sure that all current work items are
processed before threads exit. */
while (!ib_wqueue_is_empty(mtflush_io->wq)) {
mtflush_service_io(mtflush_io);
}
os_thread_exit(NULL);
OS_THREAD_DUMMY_RETURN;
}
/******************************************************************//**
Add exit work item to work queue to signal multi-threded flush
threads that they should exit.
*/
void
buf_mtflu_io_thread_exit(void)
/*==========================*/
{
ulint i;
thread_sync_t* mtflush_io = mtflush_ctx;
ut_a(mtflush_io != NULL);
fprintf(stderr, "signal page_comp_io_threads to exit [%lu]\n",
srv_buf_pool_instances);
/* Send one exit work item/thread */
for (i=0; i < srv_buf_pool_instances; i++) {
mtflush_io->work_item[i].wr.buf_pool = NULL;
mtflush_io->work_item[i].rd.page_pool = NULL;
mtflush_io->work_item[i].tsk = MT_WRK_NONE;
mtflush_io->work_item[i].wi_status = WRK_ITEM_EXIT;
ib_wqueue_add(mtflush_io->wq,
(void *)&(mtflush_io->work_item[i]),
mtflush_io->wheap);
}
/* Wait until all work items on a work queue are processed */
while(!ib_wqueue_is_empty(mtflush_io->wq)) {
/* Wait about 1/2 sec */
os_thread_sleep(50000);
}
ut_a(ib_wqueue_is_empty(mtflush_io->wq));
/* Collect all work done items */
for (i=0; i < srv_buf_pool_instances;) {
wrk_t* work_item;
work_item = (wrk_t *)ib_wqueue_timedwait(mtflush_io->wr_cq, 50000);
if (work_item) {
i++;
}
}
ut_a(ib_wqueue_is_empty(mtflush_io->wr_cq));
ut_a(ib_wqueue_is_empty(mtflush_io->rd_cq));
/* Free all queues */
ib_wqueue_free(mtflush_io->wq);
ib_wqueue_free(mtflush_io->wr_cq);
ib_wqueue_free(mtflush_io->rd_cq);
/* Free heap */
mem_heap_free(mtflush_io->wheap);
os_fast_mutex_free(&mtflush_mtx);
}
/******************************************************************//**
Initialize multi-threaded flush thread syncronization data.
@return Initialized multi-threaded flush thread syncroniztion data. */
void*
buf_mtflu_handler_init(
/*===================*/
ulint n_threads, /*!< in: Number of threads to create */
ulint wrk_cnt) /*!< in: Number of work items */
{
ulint i;
mem_heap_t* mtflush_heap;
ib_wqueue_t* mtflush_work_queue;
ib_wqueue_t* mtflush_write_comp_queue;
ib_wqueue_t* mtflush_read_comp_queue;
wrk_t* work_items;
os_fast_mutex_init(PFS_NOT_INSTRUMENTED, &mtflush_mtx);
/* Create heap, work queue, write completion queue, read
completion queue for multi-threaded flush, and init
handler. */
mtflush_heap = mem_heap_create(0);
ut_a(mtflush_heap != NULL);
mtflush_work_queue = ib_wqueue_create();
ut_a(mtflush_work_queue != NULL);
mtflush_write_comp_queue = ib_wqueue_create();
ut_a(mtflush_write_comp_queue != NULL);
mtflush_read_comp_queue = ib_wqueue_create();
ut_a(mtflush_read_comp_queue != NULL);
mtflush_ctx = (thread_sync_t *)mem_heap_alloc(mtflush_heap,
MTFLUSH_MAX_WORKER * sizeof(thread_sync_t));
ut_a(mtflush_ctx != NULL);
work_items = (wrk_t*)mem_heap_alloc(mtflush_heap,
MTFLUSH_MAX_WORKER * sizeof(wrk_t));
ut_a(work_items != NULL);
/* Initialize work items */
mtflu_setup_work_items(work_items, MTFLUSH_MAX_WORKER);
/* Create threads for page-compression-flush */
for(i=0; i < n_threads; i++) {
os_thread_id_t new_thread_id;
mtflush_ctx[i].wq = mtflush_work_queue;
mtflush_ctx[i].wr_cq = mtflush_write_comp_queue;
mtflush_ctx[i].rd_cq = mtflush_read_comp_queue;
mtflush_ctx[i].wheap = mtflush_heap;
mtflush_ctx[i].wt_status = WTHR_INITIALIZED;
mtflush_ctx[i].work_item = work_items;
mtflush_ctx[i].wthread = os_thread_create(
mtflush_io_thread,
((void *)(mtflush_ctx + i)),
&new_thread_id);
mtflush_ctx[i].wthread_id = new_thread_id;
}
buf_mtflu_work_init();
return((void *)mtflush_ctx);
}
/******************************************************************//**
Flush buffer pool instances.
@return number of pages flushed. */
ulint
buf_mtflu_flush_work_items(
/*=======================*/
ulint buf_pool_inst, /*!< in: Number of buffer pool instances */
ulint *per_pool_pages_flushed, /*!< out: Number of pages
flushed/instance */
enum buf_flush flush_type, /*!< in: Type of flush */
ulint min_n, /*!< in: Wished minimum number of
blocks to be flushed */
lsn_t lsn_limit) /*!< in: All blocks whose
oldest_modification is smaller than
this should be flushed (if their
number does not exceed min_n) */
{
ulint n_flushed=0, i;
wrk_t *done_wi;
for(i=0;i<buf_pool_inst; i++) {
mtflush_ctx->work_item[i].tsk = MT_WRK_WRITE;
mtflush_ctx->work_item[i].rd.page_pool = NULL;
mtflush_ctx->work_item[i].wr.buf_pool = buf_pool_from_array(i);
mtflush_ctx->work_item[i].wr.flush_type = flush_type;
mtflush_ctx->work_item[i].wr.min = min_n;
mtflush_ctx->work_item[i].wr.lsn_limit = lsn_limit;
mtflush_ctx->work_item[i].id_usr = -1;
mtflush_ctx->work_item[i].wi_status = WRK_ITEM_SET;
ib_wqueue_add(mtflush_ctx->wq,
(void *)(&(mtflush_ctx->work_item[i])),
mtflush_ctx->wheap);
}
/* wait on the completion to arrive */
for(i=0; i< buf_pool_inst;) {
done_wi = (wrk_t *)ib_wqueue_timedwait(mtflush_ctx->wr_cq, 50000);
if (done_wi != NULL) {
if(done_wi->n_flushed == 0) {
per_pool_pages_flushed[i] = 0;
} else {
per_pool_pages_flushed[i] = done_wi->n_flushed;
}
if(done_wi->id_usr == -1 &&
done_wi->wi_status == WRK_ITEM_SET ) {
fprintf(stderr,
"**Set/Unused work_item[%d] flush_type=%lu\n",
i,
done_wi->wr.flush_type);
ut_a(0);
}
n_flushed+= done_wi->n_flushed;
/* Reset for next round*/
mtflush_ctx->work_item[i].id_usr = -1;
i++;
}
}
return(n_flushed);
}
/*******************************************************************//**
Flushes dirty blocks from the end of the LRU list and also
puts replaceable clean pages from the end of the LRU list to the free
list.
NOTE: The calling thread is not allowed to own any latches on pages!
@return true if a batch was queued successfully. false if another batch
of same type was already running. */
bool
buf_mtflu_flush_LRU(
/*================*/
buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
ulint* n_processed) /*!< out: the number of pages
which were processed is passed
back to caller. Ignored if NULL */
{
ulint page_count;
if (n_processed) {
*n_processed = 0;
}
if (!buf_flush_start(buf_pool, BUF_FLUSH_LRU)) {
return(false);
}
page_count = buf_flush_batch(buf_pool, BUF_FLUSH_LRU, min_n, 0);
buf_flush_end(buf_pool, BUF_FLUSH_LRU);
buf_flush_common(BUF_FLUSH_LRU, page_count);
if (n_processed) {
*n_processed = page_count;
}
return(true);
}
/*******************************************************************//**
Multi-threaded version of buf_flush_list
*/
bool
buf_mtflu_flush_list(
/*=================*/
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
lsn_t lsn_limit, /*!< in the case BUF_FLUSH_LIST all
blocks whose oldest_modification is
smaller than this should be flushed
(if their number does not exceed
min_n), otherwise ignored */
ulint* n_processed) /*!< out: the number of pages
which were processed is passed
back to caller. Ignored if NULL */
{
ulint i;
bool success = true;
ulint cnt_flush[MTFLUSH_MAX_WORKER];
if (n_processed) {
*n_processed = 0;
}
if (min_n != ULINT_MAX) {
/* Ensure that flushing is spread evenly amongst the
buffer pool instances. When min_n is ULINT_MAX
we need to flush everything up to the lsn limit
so no limit here. */
min_n = (min_n + srv_buf_pool_instances - 1)
/ srv_buf_pool_instances;
}
/* QUESTION: What is procted by below mutex ? */
os_fast_mutex_lock(&mtflush_mtx);
buf_mtflu_flush_work_items(srv_buf_pool_instances,
cnt_flush, BUF_FLUSH_LIST,
min_n, lsn_limit);
os_fast_mutex_unlock(&mtflush_mtx);
for (i = 0; i < srv_buf_pool_instances; i++) {
if (n_processed) {
*n_processed += cnt_flush[i];
}
if (cnt_flush[i]) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_BATCH_TOTAL_PAGE,
MONITOR_FLUSH_BATCH_COUNT,
MONITOR_FLUSH_BATCH_PAGES,
cnt_flush[i]);
}
}
#ifdef UNIV_DEBUG
fprintf(stderr, "%s: [1] [*n_processed: (min:%lu)%lu ]\n",
__FUNCTION__, (min_n * srv_buf_pool_instances), *n_processed);
#endif
return(success);
}
/*********************************************************************//**
Clears up tail of the LRU lists:
* Put replaceable pages at the tail of LRU to the free list
* Flush dirty pages at the tail of LRU to the disk
The depth to which we scan each buffer pool is controlled by dynamic
config parameter innodb_LRU_scan_depth.
@return total pages flushed */
UNIV_INTERN
ulint
buf_mtflu_flush_LRU_tail(void)
/*==========================*/
{
ulint total_flushed=0, i;
ulint cnt_flush[MTFLUSH_MAX_WORKER];
ut_a(buf_mtflu_init_done());
/* QUESTION: What is protected by below mutex ? */
os_fast_mutex_lock(&mtflush_mtx);
buf_mtflu_flush_work_items(srv_buf_pool_instances,
cnt_flush, BUF_FLUSH_LRU, srv_LRU_scan_depth, 0);
os_fast_mutex_unlock(&mtflush_mtx);
for (i = 0; i < srv_buf_pool_instances; i++) {
if (cnt_flush[i]) {
total_flushed += cnt_flush[i];
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_TOTAL_PAGE,
MONITOR_LRU_BATCH_COUNT,
MONITOR_LRU_BATCH_PAGES,
cnt_flush[i]);
}
}
#if UNIV_DEBUG
fprintf(stderr, "[1] [*n_processed: (min:%lu)%lu ]\n", (
srv_LRU_scan_depth * srv_buf_pool_instances), total_flushed);
#endif
return(total_flushed);
}
/*********************************************************************//**
Set correct thread identifiers to io thread array based on
information we have. */
void
buf_mtflu_set_thread_ids(
/*=====================*/
ulint n_threads, /*!<in: Number of threads to fill */
void* ctx, /*!<in: thread context */
os_thread_id_t* thread_ids) /*!<in: thread id array */
{
thread_sync_t *mtflush_io = ((thread_sync_t *)ctx);
ulint i;
ut_a(mtflush_io != NULL);
ut_a(thread_ids != NULL);
for(i = 0; i < n_threads; i++) {
thread_ids[i] = mtflush_io[i].wthread_id;
}
}