mariadb/innobase/dict/dict0dict.c
heikki@hundin.mysql.fi db1693101b Many files:
Merge InnoDB-4.0.5b: minor improvements to foreign keys, more logical data dictionary lock
2002-11-06 00:41:27 +02:00

3446 lines
83 KiB
C

/**********************************************************************
Data dictionary system
(c) 1996 Innobase Oy
Created 1/8/1996 Heikki Tuuri
***********************************************************************/
#include "dict0dict.h"
#ifdef UNIV_NONINL
#include "dict0dict.ic"
#endif
#include "buf0buf.h"
#include "data0type.h"
#include "mach0data.h"
#include "dict0boot.h"
#include "dict0mem.h"
#include "dict0crea.h"
#include "trx0undo.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "btr0sea.h"
#include "pars0pars.h"
#include "pars0sym.h"
#include "que0que.h"
#include "rem0cmp.h"
dict_sys_t* dict_sys = NULL; /* the dictionary system */
rw_lock_t dict_operation_lock; /* table create, drop, etc. reserve
this in X-mode; implicit or backround
operations purge, rollback, foreign
key checks reserve this in S-mode; we
cannot trust that MySQL protects
implicit or background operations
a table drop since MySQL does not
know of them; therefore we need this;
NOTE: a transaction which reserves
this must keep book on the mode in
trx->dict_operation_lock_mode */
#define DICT_HEAP_SIZE 100 /* initial memory heap size when
creating a table or index object */
#define DICT_POOL_PER_PROCEDURE_HASH 512 /* buffer pool max size per stored
procedure hash table fixed size in
bytes */
#define DICT_POOL_PER_TABLE_HASH 512 /* buffer pool max size per table
hash table fixed size in bytes */
#define DICT_POOL_PER_COL_HASH 128 /* buffer pool max size per column
hash table fixed size in bytes */
#define DICT_POOL_PER_VARYING 4 /* buffer pool max size per data
dictionary varying size in bytes */
/**************************************************************************
Adds a column to the data dictionary hash table. */
static
void
dict_col_add_to_cache(
/*==================*/
dict_table_t* table, /* in: table */
dict_col_t* col); /* in: column */
/**************************************************************************
Repositions a column in the data dictionary hash table when the table name
changes. */
static
void
dict_col_reposition_in_cache(
/*=========================*/
dict_table_t* table, /* in: table */
dict_col_t* col, /* in: column */
char* new_name); /* in: new table name */
/**************************************************************************
Removes a column from the data dictionary hash table. */
static
void
dict_col_remove_from_cache(
/*=======================*/
dict_table_t* table, /* in: table */
dict_col_t* col); /* in: column */
/**************************************************************************
Removes an index from the dictionary cache. */
static
void
dict_index_remove_from_cache(
/*=========================*/
dict_table_t* table, /* in: table */
dict_index_t* index); /* in, own: index */
/***********************************************************************
Adds a column to index. */
UNIV_INLINE
void
dict_index_add_col(
/*===============*/
dict_index_t* index, /* in: index */
dict_col_t* col, /* in: column */
ulint order); /* in: order criterion */
/***********************************************************************
Copies fields contained in index2 to index1. */
static
void
dict_index_copy(
/*============*/
dict_index_t* index1, /* in: index to copy to */
dict_index_t* index2, /* in: index to copy from */
ulint start, /* in: first position to copy */
ulint end); /* in: last position to copy */
/***********************************************************************
Tries to find column names for the index in the column hash table and
sets the col field of the index. */
static
ibool
dict_index_find_cols(
/*=================*/
/* out: TRUE if success */
dict_table_t* table, /* in: table */
dict_index_t* index); /* in: index */
/***********************************************************************
Builds the internal dictionary cache representation for a clustered
index, containing also system fields not defined by the user. */
static
dict_index_t*
dict_index_build_internal_clust(
/*============================*/
/* out, own: the internal representation
of the clustered index */
dict_table_t* table, /* in: table */
dict_index_t* index); /* in: user representation of a clustered
index */
/***********************************************************************
Builds the internal dictionary cache representation for a non-clustered
index, containing also system fields not defined by the user. */
static
dict_index_t*
dict_index_build_internal_non_clust(
/*================================*/
/* out, own: the internal representation
of the non-clustered index */
dict_table_t* table, /* in: table */
dict_index_t* index); /* in: user representation of a non-clustered
index */
/**************************************************************************
In an index tree, finds the index corresponding to a record in the tree. */
UNIV_INLINE
dict_index_t*
dict_tree_find_index_low(
/*=====================*/
/* out: index */
dict_tree_t* tree, /* in: index tree */
rec_t* rec); /* in: record for which to find correct index */
/**************************************************************************
Removes a foreign constraint struct from the dictionet cache. */
static
void
dict_foreign_remove_from_cache(
/*===========================*/
dict_foreign_t* foreign); /* in, own: foreign constraint */
/**************************************************************************
Prints a column data. */
static
void
dict_col_print_low(
/*===============*/
dict_col_t* col); /* in: column */
/**************************************************************************
Prints an index data. */
static
void
dict_index_print_low(
/*=================*/
dict_index_t* index); /* in: index */
/**************************************************************************
Prints a field data. */
static
void
dict_field_print_low(
/*=================*/
dict_field_t* field); /* in: field */
/*************************************************************************
Frees a foreign key struct. */
static
void
dict_foreign_free(
/*==============*/
dict_foreign_t* foreign); /* in, own: foreign key struct */
/************************************************************************
Checks if the database name in two table names is the same. */
static
ibool
dict_tables_have_same_db(
/*=====================*/
/* out: TRUE if same db name */
char* name1, /* in: table name in the form dbname '/' tablename */
char* name2) /* in: table name in the form dbname '/' tablename */
{
ulint i;
for (i = 0; i < 100000; i++) {
if (name1[i] == '/' && name2[i] == '/') {
return(TRUE);
}
if (name1[i] != name2[i]) {
return(FALSE);
}
}
ut_a(0);
return(FALSE);
}
/************************************************************************
Return the end of table name where we have removed dbname and '/'. */
static
char*
dict_remove_db_name(
/*================*/
/* out: table name */
char* name) /* in: table name in the form dbname '/' tablename */
{
ulint i;
for (i = 0; i < 100000 ; i++) {
if (name[i] == '/') {
return(name + i + 1);
}
}
ut_a(0);
return(NULL);
}
/************************************************************************
Reserves the dictionary system mutex for MySQL. */
void
dict_mutex_enter_for_mysql(void)
/*============================*/
{
mutex_enter(&(dict_sys->mutex));
}
/************************************************************************
Releases the dictionary system mutex for MySQL. */
void
dict_mutex_exit_for_mysql(void)
/*===========================*/
{
mutex_exit(&(dict_sys->mutex));
}
/************************************************************************
Decrements the count of open MySQL handles to a table. */
void
dict_table_decrement_handle_count(
/*==============================*/
dict_table_t* table) /* in: table */
{
mutex_enter(&(dict_sys->mutex));
ut_a(table->n_mysql_handles_opened > 0);
table->n_mysql_handles_opened--;
mutex_exit(&(dict_sys->mutex));
}
/************************************************************************
Gets the nth column of a table. */
dict_col_t*
dict_table_get_nth_col_noninline(
/*=============================*/
/* out: pointer to column object */
dict_table_t* table, /* in: table */
ulint pos) /* in: position of column */
{
return(dict_table_get_nth_col(table, pos));
}
/************************************************************************
Gets the first index on the table (the clustered index). */
dict_index_t*
dict_table_get_first_index_noninline(
/*=================================*/
/* out: index, NULL if none exists */
dict_table_t* table) /* in: table */
{
return(dict_table_get_first_index(table));
}
/************************************************************************
Gets the next index on the table. */
dict_index_t*
dict_table_get_next_index_noninline(
/*================================*/
/* out: index, NULL if none left */
dict_index_t* index) /* in: index */
{
return(dict_table_get_next_index(index));
}
/**************************************************************************
Returns an index object. */
dict_index_t*
dict_table_get_index_noninline(
/*===========================*/
/* out: index, NULL if does not exist */
dict_table_t* table, /* in: table */
char* name) /* in: index name */
{
return(dict_table_get_index(table, name));
}
/************************************************************************
Initializes the autoinc counter. It is not an error to initialize an already
initialized counter. */
void
dict_table_autoinc_initialize(
/*==========================*/
dict_table_t* table, /* in: table */
ib_longlong value) /* in: next value to assign to a row */
{
mutex_enter(&(table->autoinc_mutex));
table->autoinc_inited = TRUE;
table->autoinc = value;
mutex_exit(&(table->autoinc_mutex));
}
/************************************************************************
Gets the next autoinc value (== autoinc counter value), 0 if not yet
initialized. If initialized, increments the counter by 1. */
ib_longlong
dict_table_autoinc_get(
/*===================*/
/* out: value for a new row, or 0 */
dict_table_t* table) /* in: table */
{
ib_longlong value;
mutex_enter(&(table->autoinc_mutex));
if (!table->autoinc_inited) {
value = 0;
} else {
value = table->autoinc;
table->autoinc = table->autoinc + 1;
}
mutex_exit(&(table->autoinc_mutex));
return(value);
}
/************************************************************************
Decrements the autoinc counter value by 1. */
void
dict_table_autoinc_decrement(
/*=========================*/
dict_table_t* table) /* in: table */
{
mutex_enter(&(table->autoinc_mutex));
table->autoinc = table->autoinc - 1;
mutex_exit(&(table->autoinc_mutex));
}
/************************************************************************
Reads the next autoinc value (== autoinc counter value), 0 if not yet
initialized. */
ib_longlong
dict_table_autoinc_read(
/*====================*/
/* out: value for a new row, or 0 */
dict_table_t* table) /* in: table */
{
ib_longlong value;
mutex_enter(&(table->autoinc_mutex));
if (!table->autoinc_inited) {
value = 0;
} else {
value = table->autoinc;
}
mutex_exit(&(table->autoinc_mutex));
return(value);
}
/************************************************************************
Peeks the autoinc counter value, 0 if not yet initialized. Does not
increment the counter. The read not protected by any mutex! */
ib_longlong
dict_table_autoinc_peek(
/*====================*/
/* out: value of the counter */
dict_table_t* table) /* in: table */
{
ib_longlong value;
if (!table->autoinc_inited) {
value = 0;
} else {
value = table->autoinc;
}
return(value);
}
/************************************************************************
Updates the autoinc counter if the value supplied is equal or bigger than the
current value. If not inited, does nothing. */
void
dict_table_autoinc_update(
/*======================*/
dict_table_t* table, /* in: table */
ib_longlong value) /* in: value which was assigned to a row */
{
mutex_enter(&(table->autoinc_mutex));
if (table->autoinc_inited) {
if (value >= table->autoinc) {
table->autoinc = value + 1;
}
}
mutex_exit(&(table->autoinc_mutex));
}
/************************************************************************
Looks for column n in an index. */
ulint
dict_index_get_nth_col_pos(
/*=======================*/
/* out: position in internal representation
of the index; if not contained, returns
ULINT_UNDEFINED */
dict_index_t* index, /* in: index */
ulint n) /* in: column number */
{
dict_field_t* field;
dict_col_t* col;
ulint pos;
ulint n_fields;
ut_ad(index);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
if (index->type & DICT_CLUSTERED) {
col = dict_table_get_nth_col(index->table, n);
return(col->clust_pos);
}
n_fields = dict_index_get_n_fields(index);
for (pos = 0; pos < n_fields; pos++) {
field = dict_index_get_nth_field(index, pos);
col = field->col;
if (dict_col_get_no(col) == n) {
return(pos);
}
}
return(ULINT_UNDEFINED);
}
/**************************************************************************
Returns a table object, based on table id, and memoryfixes it. */
dict_table_t*
dict_table_get_on_id(
/*=================*/
/* out: table, NULL if does not exist */
dulint table_id, /* in: table id */
trx_t* trx) /* in: transaction handle */
{
dict_table_t* table;
if (ut_dulint_cmp(table_id, DICT_FIELDS_ID) <= 0
|| trx->dict_operation) {
/* It is a system table which will always exist in the table
cache: we avoid acquiring the dictionary mutex, because
if we are doing a rollback to handle an error in TABLE
CREATE, for example, we already have the mutex! */
ut_ad(mutex_own(&(dict_sys->mutex)));
return(dict_table_get_on_id_low(table_id, trx));
}
mutex_enter(&(dict_sys->mutex));
table = dict_table_get_on_id_low(table_id, trx);
mutex_exit(&(dict_sys->mutex));
return(table);
}
/************************************************************************
Looks for column n postion in the clustered index. */
ulint
dict_table_get_nth_col_pos(
/*=======================*/
/* out: position in internal representation
of the clustered index */
dict_table_t* table, /* in: table */
ulint n) /* in: column number */
{
return(dict_index_get_nth_col_pos(dict_table_get_first_index(table),
n));
}
/**************************************************************************
Inits the data dictionary module. */
void
dict_init(void)
/*===========*/
{
dict_sys = mem_alloc(sizeof(dict_sys_t));
mutex_create(&(dict_sys->mutex));
mutex_set_level(&(dict_sys->mutex), SYNC_DICT);
dict_sys->table_hash = hash_create(buf_pool_get_max_size() /
(DICT_POOL_PER_TABLE_HASH *
UNIV_WORD_SIZE));
dict_sys->table_id_hash = hash_create(buf_pool_get_max_size() /
(DICT_POOL_PER_TABLE_HASH *
UNIV_WORD_SIZE));
dict_sys->col_hash = hash_create(buf_pool_get_max_size() /
(DICT_POOL_PER_COL_HASH *
UNIV_WORD_SIZE));
dict_sys->procedure_hash = hash_create(buf_pool_get_max_size() /
(DICT_POOL_PER_PROCEDURE_HASH *
UNIV_WORD_SIZE));
dict_sys->size = 0;
UT_LIST_INIT(dict_sys->table_LRU);
rw_lock_create(&dict_operation_lock);
rw_lock_set_level(&dict_operation_lock, SYNC_DICT_OPERATION);
}
/**************************************************************************
Returns a table object and memoryfixes it. NOTE! This is a high-level
function to be used mainly from outside the 'dict' directory. Inside this
directory dict_table_get_low is usually the appropriate function. */
dict_table_t*
dict_table_get(
/*===========*/
/* out: table, NULL if does not exist */
char* table_name, /* in: table name */
trx_t* trx) /* in: transaction handle or NULL */
{
dict_table_t* table;
UT_NOT_USED(trx);
mutex_enter(&(dict_sys->mutex));
table = dict_table_get_low(table_name);
mutex_exit(&(dict_sys->mutex));
if (table != NULL) {
if (!table->stat_initialized) {
dict_update_statistics(table);
}
}
return(table);
}
/**************************************************************************
Returns a table object and increments MySQL open handle count on the table.
*/
dict_table_t*
dict_table_get_and_increment_handle_count(
/*======================================*/
/* out: table, NULL if does not exist */
char* table_name, /* in: table name */
trx_t* trx) /* in: transaction handle or NULL */
{
dict_table_t* table;
UT_NOT_USED(trx);
mutex_enter(&(dict_sys->mutex));
table = dict_table_get_low(table_name);
if (table != NULL) {
table->n_mysql_handles_opened++;
}
mutex_exit(&(dict_sys->mutex));
if (table != NULL) {
if (!table->stat_initialized) {
dict_update_statistics(table);
}
}
return(table);
}
/**************************************************************************
Adds a table object to the dictionary cache. */
void
dict_table_add_to_cache(
/*====================*/
dict_table_t* table) /* in: table */
{
ulint fold;
ulint id_fold;
ulint i;
ut_ad(table);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->n_def == table->n_cols - DATA_N_SYS_COLS);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(table->cached == FALSE);
fold = ut_fold_string(table->name);
id_fold = ut_fold_dulint(table->id);
table->cached = TRUE;
/* NOTE: the system columns MUST be added in the following order
(so that they can be indexed by the numerical value of DATA_ROW_ID,
etc.) and as the last columns of the table memory object.
The clustered index will not always physically contain all
system columns. */
dict_mem_table_add_col(table, (char *) "DB_ROW_ID", DATA_SYS,
DATA_ROW_ID, 0, 0);
ut_ad(DATA_ROW_ID == 0);
dict_mem_table_add_col(table, (char *) "DB_TRX_ID", DATA_SYS,
DATA_TRX_ID, 0, 0);
ut_ad(DATA_TRX_ID == 1);
dict_mem_table_add_col(table, (char *) "DB_ROLL_PTR", DATA_SYS,
DATA_ROLL_PTR,
0, 0);
ut_ad(DATA_ROLL_PTR == 2);
dict_mem_table_add_col(table, (char *) "DB_MIX_ID", DATA_SYS,
DATA_MIX_ID, 0, 0);
ut_ad(DATA_MIX_ID == 3);
ut_ad(DATA_N_SYS_COLS == 4); /* This assert reminds that if a new
system column is added to the program,
it should be dealt with here */
/* Look for a table with the same name: error if such exists */
{
dict_table_t* table2;
HASH_SEARCH(name_hash, dict_sys->table_hash, fold, table2,
(ut_strcmp(table2->name, table->name) == 0));
ut_a(table2 == NULL);
}
/* Look for a table with the same id: error if such exists */
{
dict_table_t* table2;
HASH_SEARCH(id_hash, dict_sys->table_id_hash, id_fold, table2,
(ut_dulint_cmp(table2->id, table->id) == 0));
ut_a(table2 == NULL);
}
if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
table->mix_id_len = mach_dulint_get_compressed_size(
table->mix_id);
mach_dulint_write_compressed(table->mix_id_buf, table->mix_id);
}
/* Add the columns to the column hash table */
for (i = 0; i < table->n_cols; i++) {
dict_col_add_to_cache(table, dict_table_get_nth_col(table, i));
}
/* Add table to hash table of tables */
HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table);
/* Add table to hash table of tables based on table id */
HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, id_fold,
table);
/* Add table to LRU list of tables */
UT_LIST_ADD_FIRST(table_LRU, dict_sys->table_LRU, table);
/* If the dictionary cache grows too big, trim the table LRU list */
dict_sys->size += mem_heap_get_size(table->heap);
/* dict_table_LRU_trim(); */
}
/**************************************************************************
Looks for an index with the given id. NOTE that we do not reserve
the dictionary mutex: this function is for emergency purposes like
printing info of a corrupt database page! */
dict_index_t*
dict_index_find_on_id_low(
/*======================*/
/* out: index or NULL if not found from cache */
dulint id) /* in: index id */
{
dict_table_t* table;
dict_index_t* index;
table = UT_LIST_GET_FIRST(dict_sys->table_LRU);
while (table) {
index = dict_table_get_first_index(table);
while (index) {
if (0 == ut_dulint_cmp(id, index->tree->id)) {
/* Found */
return(index);
}
index = dict_table_get_next_index(index);
}
table = UT_LIST_GET_NEXT(table_LRU, table);
}
return(NULL);
}
/**************************************************************************
Renames a table object. */
ibool
dict_table_rename_in_cache(
/*=======================*/
/* out: TRUE if success */
dict_table_t* table, /* in: table */
char* new_name, /* in: new name */
ibool rename_also_foreigns)/* in: in ALTER TABLE we want
to preserve the original table name
in constraints which reference it */
{
dict_foreign_t* foreign;
dict_index_t* index;
ulint fold;
ulint old_size;
char* name_buf;
ulint i;
ut_ad(table);
ut_ad(mutex_own(&(dict_sys->mutex)));
old_size = mem_heap_get_size(table->heap);
fold = ut_fold_string(new_name);
/* Look for a table with the same name: error if such exists */
{
dict_table_t* table2;
HASH_SEARCH(name_hash, dict_sys->table_hash, fold, table2,
(ut_strcmp(table2->name, new_name) == 0));
if (table2) {
return(FALSE);
}
}
/* Reposition the columns in the column hash table; they are hashed
according to the pair (table name, column name) */
for (i = 0; i < table->n_cols; i++) {
dict_col_reposition_in_cache(table,
dict_table_get_nth_col(table, i), new_name);
}
/* Remove table from the hash tables of tables */
HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash,
ut_fold_string(table->name), table);
name_buf = mem_heap_alloc(table->heap, ut_strlen(new_name) + 1);
ut_memcpy(name_buf, new_name, ut_strlen(new_name) + 1);
table->name = name_buf;
/* Add table to hash table of tables */
HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table);
dict_sys->size += (mem_heap_get_size(table->heap) - old_size);
/* Update the table_name field in indexes */
index = dict_table_get_first_index(table);
while (index != NULL) {
index->table_name = table->name;
index = dict_table_get_next_index(index);
}
if (!rename_also_foreigns) {
/* In ALTER TABLE we think of the rename table operation
in the direction table -> temporary table (#sql...)
as dropping the table with the old name and creating
a new with the new name. Thus we kind of drop the
constraints from the dictionary cache here. The foreign key
constraints will be inherited to the new table from the
system tables through a call of dict_load_foreigns. */
/* Remove the foreign constraints from the cache */
foreign = UT_LIST_GET_LAST(table->foreign_list);
while (foreign != NULL) {
dict_foreign_remove_from_cache(foreign);
foreign = UT_LIST_GET_LAST(table->foreign_list);
}
/* Reset table field in referencing constraints */
foreign = UT_LIST_GET_FIRST(table->referenced_list);
while (foreign != NULL) {
foreign->referenced_table = NULL;
foreign->referenced_index = NULL;
foreign = UT_LIST_GET_NEXT(referenced_list, foreign);
}
/* Make the list of referencing constraints empty */
UT_LIST_INIT(table->referenced_list);
return(TRUE);
}
/* Update the table name fields in foreign constraints */
foreign = UT_LIST_GET_FIRST(table->foreign_list);
while (foreign != NULL) {
if (ut_strlen(foreign->foreign_table_name) <
ut_strlen(table->name)) {
/* Allocate a longer name buffer;
TODO: store buf len to save memory */
foreign->foreign_table_name = mem_heap_alloc(
foreign->heap,
ut_strlen(table->name) + 1);
}
ut_memcpy(foreign->foreign_table_name, table->name,
ut_strlen(table->name) + 1);
foreign->foreign_table_name[ut_strlen(table->name)] = '\0';
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
foreign = UT_LIST_GET_FIRST(table->referenced_list);
while (foreign != NULL) {
if (ut_strlen(foreign->referenced_table_name) <
ut_strlen(table->name)) {
/* Allocate a longer name buffer;
TODO: store buf len to save memory */
foreign->referenced_table_name = mem_heap_alloc(
foreign->heap,
ut_strlen(table->name) + 1);
}
ut_memcpy(foreign->referenced_table_name, table->name,
ut_strlen(table->name) + 1);
foreign->referenced_table_name[ut_strlen(table->name)] = '\0';
foreign = UT_LIST_GET_NEXT(referenced_list, foreign);
}
return(TRUE);
}
/**************************************************************************
Removes a table object from the dictionary cache. */
void
dict_table_remove_from_cache(
/*=========================*/
dict_table_t* table) /* in, own: table */
{
dict_foreign_t* foreign;
dict_index_t* index;
ulint size;
ulint i;
ut_ad(table);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
/* printf("Removing table %s from dictionary cache\n", table->name); */
/* Remove the foreign constraints from the cache */
foreign = UT_LIST_GET_LAST(table->foreign_list);
while (foreign != NULL) {
dict_foreign_remove_from_cache(foreign);
foreign = UT_LIST_GET_LAST(table->foreign_list);
}
/* Reset table field in referencing constraints */
foreign = UT_LIST_GET_FIRST(table->referenced_list);
while (foreign != NULL) {
foreign->referenced_table = NULL;
foreign->referenced_index = NULL;
foreign = UT_LIST_GET_NEXT(referenced_list, foreign);
}
/* Remove the indexes from the cache */
index = UT_LIST_GET_LAST(table->indexes);
while (index != NULL) {
dict_index_remove_from_cache(table, index);
index = UT_LIST_GET_LAST(table->indexes);
}
/* Remove the columns of the table from the cache */
for (i = 0; i < table->n_cols; i++) {
dict_col_remove_from_cache(table,
dict_table_get_nth_col(table, i));
}
/* Remove table from the hash tables of tables */
HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash,
ut_fold_string(table->name), table);
HASH_DELETE(dict_table_t, id_hash, dict_sys->table_id_hash,
ut_fold_dulint(table->id), table);
/* Remove table from LRU list of tables */
UT_LIST_REMOVE(table_LRU, dict_sys->table_LRU, table);
mutex_free(&(table->autoinc_mutex));
size = mem_heap_get_size(table->heap);
ut_ad(dict_sys->size >= size);
dict_sys->size -= size;
mem_heap_free(table->heap);
}
/**************************************************************************
Frees tables from the end of table_LRU if the dictionary cache occupies
too much space. Currently not used! */
void
dict_table_LRU_trim(void)
/*=====================*/
{
dict_table_t* table;
dict_table_t* prev_table;
ut_a(0);
ut_ad(mutex_own(&(dict_sys->mutex)));
table = UT_LIST_GET_LAST(dict_sys->table_LRU);
while (table && (dict_sys->size >
buf_pool_get_max_size() / DICT_POOL_PER_VARYING)) {
prev_table = UT_LIST_GET_PREV(table_LRU, table);
if (table->mem_fix == 0) {
dict_table_remove_from_cache(table);
}
table = prev_table;
}
}
/**************************************************************************
Adds a column to the data dictionary hash table. */
static
void
dict_col_add_to_cache(
/*==================*/
dict_table_t* table, /* in: table */
dict_col_t* col) /* in: column */
{
ulint fold;
ut_ad(table && col);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
fold = ut_fold_ulint_pair(ut_fold_string(table->name),
ut_fold_string(col->name));
/* Look for a column with same table name and column name: error */
{
dict_col_t* col2;
HASH_SEARCH(hash, dict_sys->col_hash, fold, col2,
(ut_strcmp(col->name, col2->name) == 0)
&& (ut_strcmp((col2->table)->name, table->name)
== 0));
ut_a(col2 == NULL);
}
HASH_INSERT(dict_col_t, hash, dict_sys->col_hash, fold, col);
}
/**************************************************************************
Removes a column from the data dictionary hash table. */
static
void
dict_col_remove_from_cache(
/*=======================*/
dict_table_t* table, /* in: table */
dict_col_t* col) /* in: column */
{
ulint fold;
ut_ad(table && col);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
fold = ut_fold_ulint_pair(ut_fold_string(table->name),
ut_fold_string(col->name));
HASH_DELETE(dict_col_t, hash, dict_sys->col_hash, fold, col);
}
/**************************************************************************
Repositions a column in the data dictionary hash table when the table name
changes. */
static
void
dict_col_reposition_in_cache(
/*=========================*/
dict_table_t* table, /* in: table */
dict_col_t* col, /* in: column */
char* new_name) /* in: new table name */
{
ulint fold;
ut_ad(table && col);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
fold = ut_fold_ulint_pair(ut_fold_string(table->name),
ut_fold_string(col->name));
HASH_DELETE(dict_col_t, hash, dict_sys->col_hash, fold, col);
fold = ut_fold_ulint_pair(ut_fold_string(new_name),
ut_fold_string(col->name));
HASH_INSERT(dict_col_t, hash, dict_sys->col_hash, fold, col);
}
/**************************************************************************
Adds an index to the dictionary cache. */
ibool
dict_index_add_to_cache(
/*====================*/
/* out: TRUE if success */
dict_table_t* table, /* in: table on which the index is */
dict_index_t* index) /* in, own: index; NOTE! The index memory
object is freed in this function! */
{
dict_index_t* new_index;
dict_tree_t* tree;
dict_table_t* cluster;
dict_field_t* field;
ulint n_ord;
ibool success;
ulint i;
ut_ad(index);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(index->n_def == index->n_fields);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(mem_heap_validate(index->heap));
{
dict_index_t* index2;
index2 = UT_LIST_GET_FIRST(table->indexes);
while (index2 != NULL) {
ut_ad(ut_strcmp(index->name, index2->name) != 0);
index2 = UT_LIST_GET_NEXT(indexes, index2);
}
ut_a(UT_LIST_GET_LEN(table->indexes) == 0
|| (index->type & DICT_CLUSTERED) == 0);
}
success = dict_index_find_cols(table, index);
if (!success) {
dict_mem_index_free(index);
return(FALSE);
}
/* Build the cache internal representation of the index,
containing also the added system fields */
if (index->type & DICT_CLUSTERED) {
new_index = dict_index_build_internal_clust(table, index);
} else {
new_index = dict_index_build_internal_non_clust(table, index);
}
new_index->search_info = btr_search_info_create(new_index->heap);
/* Set the n_fields value in new_index to the actual defined
number of fields in the cache internal representation */
new_index->n_fields = new_index->n_def;
/* Add the new index as the last index for the table */
UT_LIST_ADD_LAST(indexes, table->indexes, new_index);
new_index->table = table;
new_index->table_name = table->name;
/* Increment the ord_part counts in columns which are ordering */
if (index->type & DICT_UNIVERSAL) {
n_ord = new_index->n_fields;
} else {
n_ord = dict_index_get_n_unique(new_index);
}
for (i = 0; i < n_ord; i++) {
field = dict_index_get_nth_field(new_index, i);
dict_field_get_col(field)->ord_part++;
}
if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
/* The index tree is found from the cluster object */
cluster = dict_table_get_low(table->cluster_name);
tree = dict_index_get_tree(UT_LIST_GET_FIRST(cluster->indexes));
new_index->tree = tree;
new_index->page_no = tree->page;
} else {
/* Create an index tree memory object for the index */
tree = dict_tree_create(new_index);
ut_ad(tree);
new_index->tree = tree;
}
if (!(new_index->type & DICT_UNIVERSAL)) {
new_index->stat_n_diff_key_vals =
mem_heap_alloc(new_index->heap,
(1 + dict_index_get_n_unique(new_index))
* sizeof(ib_longlong));
/* Give some sensible values to stat_n_... in case we do
not calculate statistics quickly enough */
for (i = 0; i <= dict_index_get_n_unique(new_index); i++) {
new_index->stat_n_diff_key_vals[i] = 100;
}
}
/* Add the index to the list of indexes stored in the tree */
UT_LIST_ADD_LAST(tree_indexes, tree->tree_indexes, new_index);
/* If the dictionary cache grows too big, trim the table LRU list */
dict_sys->size += mem_heap_get_size(new_index->heap);
/* dict_table_LRU_trim(); */
dict_mem_index_free(index);
return(TRUE);
}
/**************************************************************************
Removes an index from the dictionary cache. */
static
void
dict_index_remove_from_cache(
/*=========================*/
dict_table_t* table, /* in: table */
dict_index_t* index) /* in, own: index */
{
dict_field_t* field;
ulint size;
ulint i;
ut_ad(table && index);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(index->magic_n == DICT_INDEX_MAGIC_N);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(UT_LIST_GET_LEN((index->tree)->tree_indexes) == 1);
dict_tree_free(index->tree);
/* Decrement the ord_part counts in columns which are ordering */
for (i = 0; i < dict_index_get_n_unique(index); i++) {
field = dict_index_get_nth_field(index, i);
ut_ad(dict_field_get_col(field)->ord_part > 0);
(dict_field_get_col(field)->ord_part)--;
}
/* Remove the index from the list of indexes of the table */
UT_LIST_REMOVE(indexes, table->indexes, index);
size = mem_heap_get_size(index->heap);
ut_ad(dict_sys->size >= size);
dict_sys->size -= size;
mem_heap_free(index->heap);
}
/***********************************************************************
Tries to find column names for the index in the column hash table and
sets the col field of the index. */
static
ibool
dict_index_find_cols(
/*=================*/
/* out: TRUE if success */
dict_table_t* table, /* in: table */
dict_index_t* index) /* in: index */
{
dict_col_t* col;
dict_field_t* field;
ulint fold;
ulint i;
ut_ad(table && index);
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
ut_ad(mutex_own(&(dict_sys->mutex)));
for (i = 0; i < index->n_fields; i++) {
field = dict_index_get_nth_field(index, i);
fold = ut_fold_ulint_pair(ut_fold_string(table->name),
ut_fold_string(field->name));
HASH_SEARCH(hash, dict_sys->col_hash, fold, col,
(ut_strcmp(col->name, field->name) == 0)
&& (ut_strcmp((col->table)->name, table->name)
== 0));
if (col == NULL) {
return(FALSE);
} else {
field->col = col;
}
}
return(TRUE);
}
/***********************************************************************
Adds a column to index. */
UNIV_INLINE
void
dict_index_add_col(
/*===============*/
dict_index_t* index, /* in: index */
dict_col_t* col, /* in: column */
ulint order) /* in: order criterion */
{
dict_field_t* field;
dict_mem_index_add_field(index, col->name, order);
field = dict_index_get_nth_field(index, index->n_def - 1);
field->col = col;
}
/***********************************************************************
Copies fields contained in index2 to index1. */
static
void
dict_index_copy(
/*============*/
dict_index_t* index1, /* in: index to copy to */
dict_index_t* index2, /* in: index to copy from */
ulint start, /* in: first position to copy */
ulint end) /* in: last position to copy */
{
dict_field_t* field;
ulint i;
/* Copy fields contained in index2 */
for (i = start; i < end; i++) {
field = dict_index_get_nth_field(index2, i);
dict_index_add_col(index1, field->col, field->order);
}
}
/***********************************************************************
Copies types of fields contained in index to tuple. */
void
dict_index_copy_types(
/*==================*/
dtuple_t* tuple, /* in: data tuple */
dict_index_t* index, /* in: index */
ulint n_fields) /* in: number of field types to copy */
{
dtype_t* dfield_type;
dtype_t* type;
ulint i;
if (index->type & DICT_UNIVERSAL) {
dtuple_set_types_binary(tuple, n_fields);
return;
}
for (i = 0; i < n_fields; i++) {
dfield_type = dfield_get_type(dtuple_get_nth_field(tuple, i));
type = dict_col_get_type(dict_field_get_col(
dict_index_get_nth_field(index, i)));
*dfield_type = *type;
}
}
/***********************************************************************
Copies types of columns contained in table to tuple. */
void
dict_table_copy_types(
/*==================*/
dtuple_t* tuple, /* in: data tuple */
dict_table_t* table) /* in: index */
{
dtype_t* dfield_type;
dtype_t* type;
ulint i;
ut_ad(!(table->type & DICT_UNIVERSAL));
for (i = 0; i < dtuple_get_n_fields(tuple); i++) {
dfield_type = dfield_get_type(dtuple_get_nth_field(tuple, i));
type = dict_col_get_type(dict_table_get_nth_col(table, i));
*dfield_type = *type;
}
}
/***********************************************************************
Builds the internal dictionary cache representation for a clustered
index, containing also system fields not defined by the user. */
static
dict_index_t*
dict_index_build_internal_clust(
/*============================*/
/* out, own: the internal representation
of the clustered index */
dict_table_t* table, /* in: table */
dict_index_t* index) /* in: user representation of a clustered
index */
{
dict_index_t* new_index;
dict_field_t* field;
dict_col_t* col;
ulint fixed_size;
ulint trx_id_pos;
ulint i;
ut_ad(table && index);
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
/* Create a new index object with certainly enough fields */
new_index = dict_mem_index_create(table->name,
index->name,
table->space,
index->type,
index->n_fields + table->n_cols);
/* Copy other relevant data from the old index struct to the new
struct: it inherits the values */
new_index->n_user_defined_cols = index->n_fields;
new_index->id = index->id;
new_index->page_no = index->page_no;
if (table->type != DICT_TABLE_ORDINARY) {
/* The index is mixed: copy common key prefix fields */
dict_index_copy(new_index, index, 0, table->mix_len);
/* Add the mix id column */
dict_index_add_col(new_index,
dict_table_get_sys_col(table, DATA_MIX_ID), 0);
/* Copy the rest of fields */
dict_index_copy(new_index, index, table->mix_len,
index->n_fields);
} else {
/* Copy the fields of index */
dict_index_copy(new_index, index, 0, index->n_fields);
}
if (index->type & DICT_UNIVERSAL) {
/* No fixed number of fields determines an entry uniquely */
new_index->n_uniq = ULINT_MAX;
} else if (index->type & DICT_UNIQUE) {
/* Only the fields defined so far are needed to identify
the index entry uniquely */
new_index->n_uniq = new_index->n_def;
} else {
/* Also the row id is needed to identify the entry */
new_index->n_uniq = 1 + new_index->n_def;
}
new_index->trx_id_offset = 0;
if (!(index->type & DICT_IBUF)) {
/* Add system columns, trx id first */
trx_id_pos = new_index->n_def;
ut_ad(DATA_ROW_ID == 0);
ut_ad(DATA_TRX_ID == 1);
ut_ad(DATA_ROLL_PTR == 2);
if (!(index->type & DICT_UNIQUE)) {
dict_index_add_col(new_index,
dict_table_get_sys_col(table, DATA_ROW_ID), 0);
trx_id_pos++;
}
dict_index_add_col(new_index,
dict_table_get_sys_col(table, DATA_TRX_ID), 0);
dict_index_add_col(new_index,
dict_table_get_sys_col(table, DATA_ROLL_PTR), 0);
for (i = 0; i < trx_id_pos; i++) {
fixed_size = dtype_get_fixed_size(
dict_index_get_nth_type(new_index, i));
if (fixed_size == 0) {
new_index->trx_id_offset = 0;
break;
}
new_index->trx_id_offset += fixed_size;
}
}
/* Set auxiliary variables in table columns as undefined */
for (i = 0; i < table->n_cols; i++) {
col = dict_table_get_nth_col(table, i);
col->aux = ULINT_UNDEFINED;
}
/* Mark with 0 the table columns already contained in new_index */
for (i = 0; i < new_index->n_def; i++) {
field = dict_index_get_nth_field(new_index, i);
(field->col)->aux = 0;
}
/* Add to new_index non-system columns of table not yet included
there */
for (i = 0; i < table->n_cols - DATA_N_SYS_COLS; i++) {
col = dict_table_get_nth_col(table, i);
ut_ad(col->type.mtype != DATA_SYS);
if (col->aux == ULINT_UNDEFINED) {
dict_index_add_col(new_index, col, 0);
}
}
ut_ad((index->type & DICT_IBUF)
|| (UT_LIST_GET_LEN(table->indexes) == 0));
/* Store to the column structs the position of the table columns
in the clustered index */
for (i = 0; i < new_index->n_def; i++) {
field = dict_index_get_nth_field(new_index, i);
(field->col)->clust_pos = i;
}
new_index->cached = TRUE;
return(new_index);
}
/***********************************************************************
Builds the internal dictionary cache representation for a non-clustered
index, containing also system fields not defined by the user. */
static
dict_index_t*
dict_index_build_internal_non_clust(
/*================================*/
/* out, own: the internal representation
of the non-clustered index */
dict_table_t* table, /* in: table */
dict_index_t* index) /* in: user representation of a non-clustered
index */
{
dict_field_t* field;
dict_index_t* new_index;
dict_index_t* clust_index;
ulint i;
ut_ad(table && index);
ut_ad(0 == (index->type & DICT_CLUSTERED));
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_ad(table->magic_n == DICT_TABLE_MAGIC_N);
/* The clustered index should be the first in the list of indexes */
clust_index = UT_LIST_GET_FIRST(table->indexes);
ut_ad(clust_index);
ut_ad(clust_index->type & DICT_CLUSTERED);
ut_ad(!(clust_index->type & DICT_UNIVERSAL));
/* Create a new index */
new_index = dict_mem_index_create(table->name,
index->name,
index->space,
index->type,
index->n_fields
+ 1 + clust_index->n_uniq);
/* Copy other relevant data from the old index
struct to the new struct: it inherits the values */
new_index->n_user_defined_cols = index->n_fields;
new_index->id = index->id;
new_index->page_no = index->page_no;
/* Copy fields from index to new_index */
dict_index_copy(new_index, index, 0, index->n_fields);
/* Set the auxiliary variables in the clust_index unique columns
as undefined */
for (i = 0; i < clust_index->n_uniq; i++) {
field = dict_index_get_nth_field(clust_index, i);
(field->col)->aux = ULINT_UNDEFINED;
}
/* Mark with 0 table columns already contained in new_index */
for (i = 0; i < new_index->n_def; i++) {
field = dict_index_get_nth_field(new_index, i);
(field->col)->aux = 0;
}
/* Add to new_index columns necessary to determine the clustered
index entry uniquely */
for (i = 0; i < clust_index->n_uniq; i++) {
field = dict_index_get_nth_field(clust_index, i);
if ((field->col)->aux == ULINT_UNDEFINED) {
dict_index_add_col(new_index, field->col, 0);
}
}
if ((index->type) & DICT_UNIQUE) {
new_index->n_uniq = index->n_fields;
} else {
new_index->n_uniq = new_index->n_def;
}
/* Set the n_fields value in new_index to the actual defined
number of fields */
new_index->n_fields = new_index->n_def;
new_index->cached = TRUE;
return(new_index);
}
/*====================== FOREIGN KEY PROCESSING ========================*/
/*************************************************************************
Frees a foreign key struct. */
static
void
dict_foreign_free(
/*==============*/
dict_foreign_t* foreign) /* in, own: foreign key struct */
{
mem_heap_free(foreign->heap);
}
/**************************************************************************
Removes a foreign constraint struct from the dictionary cache. */
static
void
dict_foreign_remove_from_cache(
/*===========================*/
dict_foreign_t* foreign) /* in, own: foreign constraint */
{
ut_ad(mutex_own(&(dict_sys->mutex)));
ut_a(foreign);
if (foreign->referenced_table) {
UT_LIST_REMOVE(referenced_list,
foreign->referenced_table->referenced_list, foreign);
}
if (foreign->foreign_table) {
UT_LIST_REMOVE(foreign_list,
foreign->foreign_table->foreign_list, foreign);
}
dict_foreign_free(foreign);
}
/**************************************************************************
Looks for the foreign constraint from the foreign and referenced lists
of a table. */
static
dict_foreign_t*
dict_foreign_find(
/*==============*/
/* out: foreign constraint */
dict_table_t* table, /* in: table object */
char* id) /* in: foreign constraint id */
{
dict_foreign_t* foreign;
ut_ad(mutex_own(&(dict_sys->mutex)));
foreign = UT_LIST_GET_FIRST(table->foreign_list);
while (foreign) {
if (ut_strcmp(id, foreign->id) == 0) {
return(foreign);
}
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
foreign = UT_LIST_GET_FIRST(table->referenced_list);
while (foreign) {
if (ut_strcmp(id, foreign->id) == 0) {
return(foreign);
}
foreign = UT_LIST_GET_NEXT(referenced_list, foreign);
}
return(NULL);
}
/*************************************************************************
Tries to find an index whose first fields are the columns in the array,
in the same order. */
static
dict_index_t*
dict_foreign_find_index(
/*====================*/
/* out: matching index, NULL if not found */
dict_table_t* table, /* in: table */
char** columns,/* in: array of column names */
ulint n_cols, /* in: number of columns */
dict_index_t* types_idx)/* in: NULL or an index to whose types the
column types must match */
{
dict_index_t* index;
char* col_name;
ulint i;
index = dict_table_get_first_index(table);
while (index != NULL) {
if (dict_index_get_n_fields(index) >= n_cols) {
for (i = 0; i < n_cols; i++) {
col_name = dict_index_get_nth_field(index, i)
->col->name;
if (ut_strlen(columns[i]) !=
ut_strlen(col_name)
|| 0 != ut_cmp_in_lower_case(columns[i],
col_name,
ut_strlen(col_name))) {
break;
}
if (types_idx && !cmp_types_are_equal(
dict_index_get_nth_type(index, i),
dict_index_get_nth_type(types_idx, i))) {
break;
}
}
if (i == n_cols) {
/* We found a matching index */
return(index);
}
}
index = dict_table_get_next_index(index);
}
return(NULL);
}
/**************************************************************************
Adds a foreign key constraint object to the dictionary cache. May free
the object if there already is an object with the same identifier in.
At least one of the foreign table and the referenced table must already
be in the dictionary cache! */
ulint
dict_foreign_add_to_cache(
/*======================*/
/* out: DB_SUCCESS or error code */
dict_foreign_t* foreign) /* in, own: foreign key constraint */
{
dict_table_t* for_table;
dict_table_t* ref_table;
dict_foreign_t* for_in_cache = NULL;
dict_index_t* index;
ibool added_to_referenced_list = FALSE;
ut_ad(mutex_own(&(dict_sys->mutex)));
for_table = dict_table_check_if_in_cache_low(
foreign->foreign_table_name);
ref_table = dict_table_check_if_in_cache_low(
foreign->referenced_table_name);
ut_a(for_table || ref_table);
if (for_table) {
for_in_cache = dict_foreign_find(for_table, foreign->id);
}
if (!for_in_cache && ref_table) {
for_in_cache = dict_foreign_find(ref_table, foreign->id);
}
if (for_in_cache) {
/* Free the foreign object */
mem_heap_free(foreign->heap);
} else {
for_in_cache = foreign;
}
if (for_in_cache->referenced_table == NULL && ref_table) {
index = dict_foreign_find_index(ref_table,
for_in_cache->referenced_col_names,
for_in_cache->n_fields,
for_in_cache->foreign_index);
if (index == NULL) {
if (for_in_cache == foreign) {
mem_heap_free(foreign->heap);
}
return(DB_CANNOT_ADD_CONSTRAINT);
}
for_in_cache->referenced_table = ref_table;
for_in_cache->referenced_index = index;
UT_LIST_ADD_LAST(referenced_list,
ref_table->referenced_list,
for_in_cache);
added_to_referenced_list = TRUE;
}
if (for_in_cache->foreign_table == NULL && for_table) {
index = dict_foreign_find_index(for_table,
for_in_cache->foreign_col_names,
for_in_cache->n_fields,
for_in_cache->referenced_index);
if (index == NULL) {
if (for_in_cache == foreign) {
if (added_to_referenced_list) {
UT_LIST_REMOVE(referenced_list,
ref_table->referenced_list,
for_in_cache);
}
mem_heap_free(foreign->heap);
}
return(DB_CANNOT_ADD_CONSTRAINT);
}
for_in_cache->foreign_table = for_table;
for_in_cache->foreign_index = index;
UT_LIST_ADD_LAST(foreign_list,
for_table->foreign_list,
for_in_cache);
}
return(DB_SUCCESS);
}
/*************************************************************************
Scans from pointer onwards. Stops if is at the start of a copy of
'string' where characters are compared without case sensitivity. Stops
also at '\0'. */
static
char*
dict_scan_to(
/*=========*/
char* ptr, /* in: scan from */
const char *string) /* in: look for this */
{
ibool success;
ulint i;
loop:
if (*ptr == '\0') {
return(ptr);
}
success = TRUE;
for (i = 0; i < ut_strlen(string); i++) {
if (toupper((ulint)(ptr[i])) != toupper((ulint)(string[i]))) {
success = FALSE;
break;
}
}
if (success) {
return(ptr);
}
ptr++;
goto loop;
}
/*************************************************************************
Accepts a specified string. Comparisons are case-insensitive. */
char*
dict_accept(
/*========*/
/* out: if string was accepted, the pointer
is moved after that, else ptr is returned */
char* ptr, /* in: scan from this */
const char* string,/* in: accept only this string as the next
non-whitespace string */
ibool* success)/* out: TRUE if accepted */
{
char* old_ptr = ptr;
char* old_ptr2;
*success = FALSE;
while (isspace(*ptr)) {
ptr++;
}
old_ptr2 = ptr;
ptr = dict_scan_to(ptr, string);
if (*ptr == '\0' || old_ptr2 != ptr) {
return(old_ptr);
}
*success = TRUE;
return(ptr + ut_strlen(string));
}
/*************************************************************************
Tries to scan a column name. */
static
char*
dict_scan_col(
/*==========*/
/* out: scanned to */
char* ptr, /* in: scanned to */
ibool* success,/* out: TRUE if success */
dict_table_t* table, /* in: table in which the column is */
dict_col_t** column, /* out: pointer to column if success */
char** column_name,/* out: pointer to column->name if
success */
ulint* column_name_len)/* out: column name length */
{
dict_col_t* col;
char* old_ptr;
ulint i;
*success = FALSE;
while (isspace(*ptr)) {
ptr++;
}
if (*ptr == '\0') {
return(ptr);
}
if (*ptr == '`') {
ptr++;
}
old_ptr = ptr;
while (!isspace(*ptr) && *ptr != ',' && *ptr != ')' && *ptr != '`'
&& *ptr != '\0') {
ptr++;
}
*column_name_len = (ulint)(ptr - old_ptr);
if (table == NULL) {
*success = TRUE;
*column = NULL;
*column_name = old_ptr;
} else {
for (i = 0; i < dict_table_get_n_cols(table); i++) {
col = dict_table_get_nth_col(table, i);
if (ut_strlen(col->name) == (ulint)(ptr - old_ptr)
&& 0 == ut_cmp_in_lower_case(col->name, old_ptr,
(ulint)(ptr - old_ptr))) {
/* Found */
*success = TRUE;
*column = col;
*column_name = col->name;
break;
}
}
}
if (*ptr == '`') {
ptr++;
}
return(ptr);
}
/*************************************************************************
Scans the referenced table name from an SQL string. */
static
char*
dict_scan_table_name(
/*=================*/
/* out: scanned to */
char* ptr, /* in: scanned to */
dict_table_t** table, /* out: table object or NULL */
char* name, /* in: foreign key table name */
ibool* success,/* out: TRUE if ok name found */
char* second_table_name)/* in/out: buffer where to store
the referenced table name; must be at least
2500 bytes */
{
char* dot_ptr = NULL;
char* old_ptr;
ulint i;
*success = FALSE;
*table = NULL;
while (isspace(*ptr)) {
ptr++;
}
if (*ptr == '\0') {
return(ptr);
}
if (*ptr == '`') {
ptr++;
}
old_ptr = ptr;
while (!isspace(*ptr) && *ptr != '(' && *ptr != '`' && *ptr != '\0') {
if (*ptr == '.') {
dot_ptr = ptr;
}
ptr++;
}
if (ptr - old_ptr > 2000) {
return(old_ptr);
}
if (dot_ptr == NULL) {
/* Copy the database name from 'name' to the start */
for (i = 0;; i++) {
second_table_name[i] = name[i];
if (name[i] == '/') {
i++;
break;
}
}
#ifdef __WIN__
ut_cpy_in_lower_case(second_table_name + i, old_ptr,
ptr - old_ptr);
#else
if (srv_lower_case_table_names) {
ut_cpy_in_lower_case(second_table_name + i, old_ptr,
ptr - old_ptr);
} else {
ut_memcpy(second_table_name + i, old_ptr,
ptr - old_ptr);
}
#endif
second_table_name[i + (ptr - old_ptr)] = '\0';
} else {
#ifdef __WIN__
ut_cpy_in_lower_case(second_table_name, old_ptr,
ptr - old_ptr);
#else
if (srv_lower_case_table_names) {
ut_cpy_in_lower_case(second_table_name, old_ptr,
ptr - old_ptr);
} else {
ut_memcpy(second_table_name, old_ptr, ptr - old_ptr);
}
#endif
second_table_name[dot_ptr - old_ptr] = '/';
second_table_name[ptr - old_ptr] = '\0';
}
*success = TRUE;
*table = dict_table_get_low(second_table_name);
if (*ptr == '`') {
ptr++;
}
return(ptr);
}
/*************************************************************************
Skips one 'word', like an id. For the lexical definition of 'word', see the
code below. */
static
char*
dict_skip_word(
/*===========*/
/* out: scanned to */
char* ptr, /* in: scanned to */
ibool* success)/* out: TRUE if success, FALSE if just spaces left in
string */
{
*success = FALSE;
while (isspace(*ptr)) {
ptr++;
}
if (*ptr == '\0') {
return(ptr);
}
if (*ptr == '`') {
ptr++;
}
while (!isspace(*ptr) && *ptr != ',' && *ptr != '(' && *ptr != '`'
&& *ptr != '\0') {
ptr++;
}
*success = TRUE;
return(ptr);
}
/*************************************************************************
Returns the number of opening brackets '(' subtracted by the number
of closing brackets ')' between string and ptr. */
static
int
dict_bracket_count(
/*===============*/
/* out: bracket count */
char* string, /* in: start of string */
char* ptr) /* in: end of string */
{
int count = 0;
while (string != ptr) {
if (*string == '(') {
count++;
}
if (*string == ')') {
count--;
}
string++;
}
return(count);
}
/*************************************************************************
Scans a table create SQL string and adds to the data dictionary the foreign
key constraints declared in the string. This function should be called after
the indexes for a table have been created. Each foreign key constraint must
be accompanied with indexes in both participating tables. The indexes are
allowed to contain more fields than mentioned in the constraint. */
ulint
dict_create_foreign_constraints(
/*============================*/
/* out: error code or DB_SUCCESS */
trx_t* trx, /* in: transaction */
char* sql_string, /* in: table create or ALTER TABLE
statement where foreign keys are declared like:
FOREIGN KEY (a, b) REFERENCES table2(c, d),
table2 can be written also with the database
name before it: test.table2; the default
database id the database of parameter name */
char* name) /* in: table full name in the normalized form
database_name/table_name */
{
dict_table_t* table;
dict_table_t* referenced_table;
dict_index_t* index;
dict_foreign_t* foreign;
char* ptr = sql_string;
ibool success;
ulint error;
ulint i;
ulint j;
dict_col_t* columns[500];
char* column_names[500];
ulint column_name_lens[500];
char referenced_table_name[2500];
ut_ad(mutex_own(&(dict_sys->mutex)));
table = dict_table_get_low(name);
if (table == NULL) {
return(DB_ERROR);
}
loop:
ptr = dict_scan_to(ptr, (char *) "FOREIGN");
if (*ptr == '\0') {
/* The following call adds the foreign key constraints
to the data dictionary system tables on disk */
error = dict_create_add_foreigns_to_dictionary(table, trx);
return(error);
}
ptr = dict_accept(ptr, (char *) "FOREIGN", &success);
if (!isspace(*ptr)) {
goto loop;
}
ptr = dict_accept(ptr, (char *) "KEY", &success);
if (!success) {
goto loop;
}
ptr = dict_accept(ptr, (char *) "(", &success);
if (!success) {
/* MySQL allows also an index id before the '('; we
skip it */
ptr = dict_skip_word(ptr, &success);
if (!success) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, (char *) "(", &success);
if (!success) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
}
i = 0;
/* Scan the columns in the first list */
col_loop1:
ptr = dict_scan_col(ptr, &success, table, columns + i,
column_names + i, column_name_lens + i);
if (!success) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
i++;
ptr = dict_accept(ptr, (char *) ",", &success);
if (success) {
goto col_loop1;
}
ptr = dict_accept(ptr, (char *) ")", &success);
if (!success) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
/* Try to find an index which contains the columns
as the first fields and in the right order */
index = dict_foreign_find_index(table, column_names, i, NULL);
if (!index) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, (char *) "REFERENCES", &success);
if (!success || !isspace(*ptr)) {
return(DB_CANNOT_ADD_CONSTRAINT);
}
/* Let us create a constraint struct */
foreign = dict_mem_foreign_create();
foreign->foreign_table = table;
foreign->foreign_table_name = table->name;
foreign->foreign_index = index;
foreign->n_fields = i;
foreign->foreign_col_names = mem_heap_alloc(foreign->heap,
i * sizeof(void*));
for (i = 0; i < foreign->n_fields; i++) {
foreign->foreign_col_names[i] = mem_heap_alloc(foreign->heap,
1 + ut_strlen(columns[i]->name));
ut_memcpy(foreign->foreign_col_names[i], columns[i]->name,
1 + ut_strlen(columns[i]->name));
}
ptr = dict_scan_table_name(ptr, &referenced_table, name,
&success, referenced_table_name);
/* Note that referenced_table can be NULL if the user has suppressed
checking of foreign key constraints! */
if (!success || (!referenced_table && trx->check_foreigns)) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, (char *) "(", &success);
if (!success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
/* Scan the columns in the second list */
i = 0;
col_loop2:
ptr = dict_scan_col(ptr, &success, referenced_table, columns + i,
column_names + i, column_name_lens + i);
i++;
if (!success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, (char *) ",", &success);
if (success) {
goto col_loop2;
}
ptr = dict_accept(ptr, (char *) ")", &success);
if (!success || foreign->n_fields != i) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, "ON", &success);
if (!success) {
goto try_find_index;
}
ptr = dict_accept(ptr, "DELETE", &success);
if (!success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, "RESTRICT", &success);
if (success) {
goto try_find_index;
}
ptr = dict_accept(ptr, "CASCADE", &success);
if (success) {
foreign->type = DICT_FOREIGN_ON_DELETE_CASCADE;
goto try_find_index;
}
ptr = dict_accept(ptr, "SET", &success);
if (!success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
ptr = dict_accept(ptr, "NULL", &success);
if (!success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
for (j = 0; j < foreign->n_fields; j++) {
if ((dict_index_get_nth_type(
foreign->foreign_index, j)->prtype)
& DATA_NOT_NULL) {
/* It is not sensible to define SET NULL
if the column is not allowed to be NULL! */
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
}
foreign->type = DICT_FOREIGN_ON_DELETE_SET_NULL;
try_find_index:
/* We check that there are no superfluous words like 'ON UPDATE ...'
which we do not support yet. */
ptr = dict_accept(ptr, (char *) "ON", &success);
if (success) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
/* Try to find an index which contains the columns as the first fields
and in the right order, and the types are the same as in
foreign->foreign_index */
if (referenced_table) {
index = dict_foreign_find_index(referenced_table,
column_names, i,
foreign->foreign_index);
if (!index) {
dict_foreign_free(foreign);
return(DB_CANNOT_ADD_CONSTRAINT);
}
} else {
ut_a(trx->check_foreigns == FALSE);
index = NULL;
}
foreign->referenced_index = index;
foreign->referenced_table = referenced_table;
foreign->referenced_table_name = mem_heap_alloc(foreign->heap,
1 + ut_strlen(referenced_table_name));
ut_memcpy(foreign->referenced_table_name, referenced_table_name,
1 + ut_strlen(referenced_table_name));
foreign->referenced_col_names = mem_heap_alloc(foreign->heap,
i * sizeof(void*));
for (i = 0; i < foreign->n_fields; i++) {
foreign->referenced_col_names[i]
= mem_heap_alloc(foreign->heap,
1 + column_name_lens[i]);
ut_memcpy(foreign->referenced_col_names[i], column_names[i],
column_name_lens[i]);
(foreign->referenced_col_names[i])[column_name_lens[i]] = '\0';
}
/* We found an ok constraint definition: add to the lists */
UT_LIST_ADD_LAST(foreign_list, table->foreign_list, foreign);
if (referenced_table) {
UT_LIST_ADD_LAST(referenced_list,
referenced_table->referenced_list,
foreign);
}
goto loop;
}
/*==================== END OF FOREIGN KEY PROCESSING ====================*/
/**************************************************************************
Adds a stored procedure object to the dictionary cache. */
void
dict_procedure_add_to_cache(
/*========================*/
dict_proc_t* proc) /* in: procedure */
{
ulint fold;
mutex_enter(&(dict_sys->mutex));
fold = ut_fold_string(proc->name);
/* Look for a procedure with the same name: error if such exists */
{
dict_proc_t* proc2;
HASH_SEARCH(name_hash, dict_sys->procedure_hash, fold, proc2,
(ut_strcmp(proc2->name, proc->name) == 0));
ut_a(proc2 == NULL);
}
/* Add the procedure to the hash table */
HASH_INSERT(dict_proc_t, name_hash, dict_sys->procedure_hash, fold,
proc);
mutex_exit(&(dict_sys->mutex));
}
/**************************************************************************
Reserves a parsed copy of a stored procedure to execute. If there are no
free parsed copies left at the moment, parses a new copy. Takes the copy off
the list of copies: the copy must be returned there with
dict_procedure_release_parsed_copy. */
que_t*
dict_procedure_reserve_parsed_copy(
/*===============================*/
/* out: the query graph */
dict_proc_t* proc) /* in: dictionary procedure node */
{
que_t* graph;
proc_node_t* proc_node;
ut_ad(!mutex_own(&kernel_mutex));
mutex_enter(&(dict_sys->mutex));
#ifdef UNIV_DEBUG
UT_LIST_VALIDATE(graphs, que_t, proc->graphs);
#endif
graph = UT_LIST_GET_FIRST(proc->graphs);
if (graph) {
UT_LIST_REMOVE(graphs, proc->graphs, graph);
/* printf("Graph removed, list length %lu\n",
UT_LIST_GET_LEN(proc->graphs)); */
#ifdef UNIV_DEBUG
UT_LIST_VALIDATE(graphs, que_t, proc->graphs);
#endif
}
mutex_exit(&(dict_sys->mutex));
if (graph == NULL) {
graph = pars_sql(proc->sql_string);
proc_node = que_fork_get_child(graph);
proc_node->dict_proc = proc;
printf("Parsed a new copy of graph %s\n",
proc_node->proc_id->name);
}
/* printf("Returning graph %lu\n", (ulint)graph); */
return(graph);
}
/**************************************************************************
Releases a parsed copy of an executed stored procedure. Puts the copy to the
list of copies. */
void
dict_procedure_release_parsed_copy(
/*===============================*/
que_t* graph) /* in: query graph of a stored procedure */
{
proc_node_t* proc_node;
ut_ad(!mutex_own(&kernel_mutex));
mutex_enter(&(dict_sys->mutex));
proc_node = que_fork_get_child(graph);
UT_LIST_ADD_FIRST(graphs, (proc_node->dict_proc)->graphs, graph);
mutex_exit(&(dict_sys->mutex));
}
/**************************************************************************
Returns an index object if it is found in the dictionary cache. */
dict_index_t*
dict_index_get_if_in_cache(
/*=======================*/
/* out: index, NULL if not found */
dulint index_id) /* in: index id */
{
dict_table_t* table;
dict_index_t* index;
if (dict_sys == NULL) {
return(NULL);
}
mutex_enter(&(dict_sys->mutex));
table = UT_LIST_GET_FIRST(dict_sys->table_LRU);
while (table) {
index = UT_LIST_GET_FIRST(table->indexes);
while (index) {
if (0 == ut_dulint_cmp(index->id, index_id)) {
goto found;
}
index = UT_LIST_GET_NEXT(indexes, index);
}
table = UT_LIST_GET_NEXT(table_LRU, table);
}
index = NULL;
found:
mutex_exit(&(dict_sys->mutex));
return(index);
}
/**************************************************************************
Creates an index tree struct. */
dict_tree_t*
dict_tree_create(
/*=============*/
/* out, own: created tree */
dict_index_t* index) /* in: the index for which to create: in the
case of a mixed tree, this should be the
index of the cluster object */
{
dict_tree_t* tree;
tree = mem_alloc(sizeof(dict_tree_t));
/* Inherit info from the index */
tree->type = index->type;
tree->space = index->space;
tree->page = index->page_no;
tree->id = index->id;
UT_LIST_INIT(tree->tree_indexes);
tree->magic_n = DICT_TREE_MAGIC_N;
rw_lock_create(&(tree->lock));
rw_lock_set_level(&(tree->lock), SYNC_INDEX_TREE);
return(tree);
}
/**************************************************************************
Frees an index tree struct. */
void
dict_tree_free(
/*===========*/
dict_tree_t* tree) /* in, own: index tree */
{
ut_ad(tree);
ut_ad(tree->magic_n == DICT_TREE_MAGIC_N);
rw_lock_free(&(tree->lock));
mem_free(tree);
}
/**************************************************************************
In an index tree, finds the index corresponding to a record in the tree. */
UNIV_INLINE
dict_index_t*
dict_tree_find_index_low(
/*=====================*/
/* out: index */
dict_tree_t* tree, /* in: index tree */
rec_t* rec) /* in: record for which to find correct index */
{
dict_index_t* index;
dict_table_t* table;
dulint mix_id;
ulint len;
index = UT_LIST_GET_FIRST(tree->tree_indexes);
ut_ad(index);
table = index->table;
if ((index->type & DICT_CLUSTERED)
&& (table->type != DICT_TABLE_ORDINARY)) {
/* Get the mix id of the record */
mix_id = mach_dulint_read_compressed(
rec_get_nth_field(rec, table->mix_len, &len));
while (ut_dulint_cmp(table->mix_id, mix_id) != 0) {
index = UT_LIST_GET_NEXT(tree_indexes, index);
table = index->table;
ut_ad(index);
}
}
return(index);
}
/**************************************************************************
In an index tree, finds the index corresponding to a record in the tree. */
dict_index_t*
dict_tree_find_index(
/*=================*/
/* out: index */
dict_tree_t* tree, /* in: index tree */
rec_t* rec) /* in: record for which to find correct index */
{
dict_index_t* index;
index = dict_tree_find_index_low(tree, rec);
return(index);
}
/**************************************************************************
In an index tree, finds the index corresponding to a dtuple which is used
in a search to a tree. */
dict_index_t*
dict_tree_find_index_for_tuple(
/*===========================*/
/* out: index; NULL if the tuple does not
contain the mix id field in a mixed tree */
dict_tree_t* tree, /* in: index tree */
dtuple_t* tuple) /* in: tuple for which to find index */
{
dict_index_t* index;
dict_table_t* table;
dulint mix_id;
ut_ad(dtuple_check_typed(tuple));
if (UT_LIST_GET_LEN(tree->tree_indexes) == 1) {
return(UT_LIST_GET_FIRST(tree->tree_indexes));
}
index = UT_LIST_GET_FIRST(tree->tree_indexes);
ut_ad(index);
table = index->table;
if (dtuple_get_n_fields(tuple) <= table->mix_len) {
return(NULL);
}
/* Get the mix id of the record */
mix_id = mach_dulint_read_compressed(
dfield_get_data(
dtuple_get_nth_field(tuple, table->mix_len)));
while (ut_dulint_cmp(table->mix_id, mix_id) != 0) {
index = UT_LIST_GET_NEXT(tree_indexes, index);
table = index->table;
ut_ad(index);
}
return(index);
}
/**************************************************************************
Checks that a tuple has n_fields_cmp value in a sensible range, so that
no comparison can occur with the page number field in a node pointer. */
ibool
dict_tree_check_search_tuple(
/*=========================*/
/* out: TRUE if ok */
dict_tree_t* tree, /* in: index tree */
dtuple_t* tuple) /* in: tuple used in a search */
{
dict_index_t* index;
index = dict_tree_find_index_for_tuple(tree, tuple);
if (index == NULL) {
return(TRUE);
}
ut_a(dtuple_get_n_fields_cmp(tuple)
<= dict_index_get_n_unique_in_tree(index));
return(TRUE);
}
/**************************************************************************
Builds a node pointer out of a physical record and a page number. */
dtuple_t*
dict_tree_build_node_ptr(
/*=====================*/
/* out, own: node pointer */
dict_tree_t* tree, /* in: index tree */
rec_t* rec, /* in: record for which to build node pointer */
ulint page_no,/* in: page number to put in node pointer */
mem_heap_t* heap, /* in: memory heap where pointer created */
ulint level) /* in: level of rec in tree: 0 means leaf
level */
{
dtuple_t* tuple;
dict_index_t* ind;
dfield_t* field;
byte* buf;
ulint n_unique;
ind = dict_tree_find_index_low(tree, rec);
if (tree->type & DICT_UNIVERSAL) {
/* In a universal index tree, we take the whole record as
the node pointer if the reord is on the leaf level,
on non-leaf levels we remove the last field, which
contains the page number of the child page */
n_unique = rec_get_n_fields(rec);
if (level > 0) {
ut_a(n_unique > 1);
n_unique--;
}
} else {
n_unique = dict_index_get_n_unique_in_tree(ind);
}
tuple = dtuple_create(heap, n_unique + 1);
/* When searching in the tree for the node pointer, we must not do
comparison on the last field, the page number field, as on upper
levels in the tree there may be identical node pointers with a
different page number; therefore, we set the n_fields_cmp to one
less: */
dtuple_set_n_fields_cmp(tuple, n_unique);
dict_index_copy_types(tuple, ind, n_unique);
buf = mem_heap_alloc(heap, 4);
mach_write_to_4(buf, page_no);
field = dtuple_get_nth_field(tuple, n_unique);
dfield_set_data(field, buf, 4);
dtype_set(dfield_get_type(field), DATA_SYS_CHILD, 0, 0, 0);
rec_copy_prefix_to_dtuple(tuple, rec, n_unique, heap);
ut_ad(dtuple_check_typed(tuple));
return(tuple);
}
/**************************************************************************
Copies an initial segment of a physical record, long enough to specify an
index entry uniquely. */
rec_t*
dict_tree_copy_rec_order_prefix(
/*============================*/
/* out: pointer to the prefix record */
dict_tree_t* tree, /* in: index tree */
rec_t* rec, /* in: record for which to copy prefix */
byte** buf, /* in/out: memory buffer for the copied prefix,
or NULL */
ulint* buf_size)/* in/out: buffer size */
{
dict_index_t* ind;
rec_t* order_rec;
ulint n_fields;
ind = dict_tree_find_index_low(tree, rec);
n_fields = dict_index_get_n_unique_in_tree(ind);
if (tree->type & DICT_UNIVERSAL) {
n_fields = rec_get_n_fields(rec);
}
order_rec = rec_copy_prefix_to_buf(rec, n_fields, buf, buf_size);
return(order_rec);
}
/**************************************************************************
Builds a typed data tuple out of a physical record. */
dtuple_t*
dict_tree_build_data_tuple(
/*=======================*/
/* out, own: data tuple */
dict_tree_t* tree, /* in: index tree */
rec_t* rec, /* in: record for which to build data tuple */
mem_heap_t* heap) /* in: memory heap where tuple created */
{
dtuple_t* tuple;
dict_index_t* ind;
ulint n_fields;
ind = dict_tree_find_index_low(tree, rec);
n_fields = rec_get_n_fields(rec);
tuple = dtuple_create(heap, n_fields);
dict_index_copy_types(tuple, ind, n_fields);
rec_copy_prefix_to_dtuple(tuple, rec, n_fields, heap);
ut_ad(dtuple_check_typed(tuple));
return(tuple);
}
/*************************************************************************
Calculates the minimum record length in an index. */
ulint
dict_index_calc_min_rec_len(
/*========================*/
dict_index_t* index) /* in: index */
{
ulint sum = 0;
ulint i;
for (i = 0; i < dict_index_get_n_fields(index); i++) {
sum += dtype_get_fixed_size(dict_index_get_nth_type(index, i));
}
if (sum > 127) {
sum += 2 * dict_index_get_n_fields(index);
} else {
sum += dict_index_get_n_fields(index);
}
sum += REC_N_EXTRA_BYTES;
return(sum);
}
/*************************************************************************
Calculates new estimates for table and index statistics. The statistics
are used in query optimization. */
void
dict_update_statistics_low(
/*=======================*/
dict_table_t* table, /* in: table */
ibool has_dict_mutex __attribute__((unused)))
/* in: TRUE if the caller has the
dictionary mutex */
{
dict_index_t* index;
ulint size;
ulint sum_of_index_sizes = 0;
/* If we have set a high innodb_force_recovery level, do not calculate
statistics, as a badly corrupted index can cause a crash in it. */
if (srv_force_recovery >= SRV_FORCE_NO_IBUF_MERGE) {
return;
}
/* Find out the sizes of the indexes and how many different values
for the key they approximately have */
index = dict_table_get_first_index(table);
if (index == NULL) {
/* Table definition is corrupt */
return;
}
while (index) {
size = btr_get_size(index, BTR_TOTAL_SIZE);
index->stat_index_size = size;
sum_of_index_sizes += size;
size = btr_get_size(index, BTR_N_LEAF_PAGES);
if (size == 0) {
/* The root node of the tree is a leaf */
size = 1;
}
index->stat_n_leaf_pages = size;
btr_estimate_number_of_different_key_vals(index);
index = dict_table_get_next_index(index);
}
index = dict_table_get_first_index(table);
table->stat_n_rows = index->stat_n_diff_key_vals[
dict_index_get_n_unique(index)];
table->stat_clustered_index_size = index->stat_index_size;
table->stat_sum_of_other_index_sizes = sum_of_index_sizes
- index->stat_index_size;
table->stat_initialized = TRUE;
table->stat_modified_counter = 0;
}
/*************************************************************************
Calculates new estimates for table and index statistics. The statistics
are used in query optimization. */
void
dict_update_statistics(
/*===================*/
dict_table_t* table) /* in: table */
{
dict_update_statistics_low(table, FALSE);
}
/**************************************************************************
Prints info of a foreign key constraint. */
static
void
dict_foreign_print_low(
/*===================*/
dict_foreign_t* foreign) /* in: foreign key constraint */
{
ulint i;
ut_ad(mutex_own(&(dict_sys->mutex)));
printf(" FOREIGN KEY CONSTRAINT %s: %s (", foreign->id,
foreign->foreign_table_name);
for (i = 0; i < foreign->n_fields; i++) {
printf(" %s", foreign->foreign_col_names[i]);
}
printf(" )\n");
printf(" REFERENCES %s (", foreign->referenced_table_name);
for (i = 0; i < foreign->n_fields; i++) {
printf(" %s", foreign->referenced_col_names[i]);
}
printf(" )\n");
}
/**************************************************************************
Prints a table data. */
void
dict_table_print(
/*=============*/
dict_table_t* table) /* in: table */
{
mutex_enter(&(dict_sys->mutex));
dict_table_print_low(table);
mutex_exit(&(dict_sys->mutex));
}
/**************************************************************************
Prints a table data when we know the table name. */
void
dict_table_print_by_name(
/*=====================*/
char* name)
{
dict_table_t* table;
mutex_enter(&(dict_sys->mutex));
table = dict_table_get_low(name);
ut_a(table);
dict_table_print_low(table);
mutex_exit(&(dict_sys->mutex));
}
/**************************************************************************
Prints a table data. */
void
dict_table_print_low(
/*=================*/
dict_table_t* table) /* in: table */
{
dict_index_t* index;
dict_foreign_t* foreign;
ulint i;
ut_ad(mutex_own(&(dict_sys->mutex)));
dict_update_statistics_low(table, TRUE);
printf("--------------------------------------\n");
printf(
"TABLE: name %s, id %lu %lu, columns %lu, indexes %lu, appr.rows %lu\n",
table->name,
ut_dulint_get_high(table->id),
ut_dulint_get_low(table->id),
table->n_cols, UT_LIST_GET_LEN(table->indexes),
(ulint)table->stat_n_rows);
printf(" COLUMNS: ");
for (i = 0; i < table->n_cols - 1; i++) {
dict_col_print_low(dict_table_get_nth_col(table, i));
printf("; ");
}
printf("\n");
index = UT_LIST_GET_FIRST(table->indexes);
while (index != NULL) {
dict_index_print_low(index);
index = UT_LIST_GET_NEXT(indexes, index);
}
foreign = UT_LIST_GET_FIRST(table->foreign_list);
while (foreign != NULL) {
dict_foreign_print_low(foreign);
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
foreign = UT_LIST_GET_FIRST(table->referenced_list);
while (foreign != NULL) {
dict_foreign_print_low(foreign);
foreign = UT_LIST_GET_NEXT(referenced_list, foreign);
}
}
/**************************************************************************
Prints a column data. */
static
void
dict_col_print_low(
/*===============*/
dict_col_t* col) /* in: column */
{
dtype_t* type;
ut_ad(mutex_own(&(dict_sys->mutex)));
type = dict_col_get_type(col);
printf("%s: ", col->name);
dtype_print(type);
}
/**************************************************************************
Prints an index data. */
static
void
dict_index_print_low(
/*=================*/
dict_index_t* index) /* in: index */
{
dict_tree_t* tree;
ib_longlong n_vals;
ulint i;
ut_ad(mutex_own(&(dict_sys->mutex)));
tree = index->tree;
if (index->n_user_defined_cols > 0) {
n_vals = index->stat_n_diff_key_vals[
index->n_user_defined_cols];
} else {
n_vals = index->stat_n_diff_key_vals[1];
}
printf(
" INDEX: name %s, table name %s, id %lu %lu, fields %lu/%lu, type %lu\n",
index->name, index->table_name,
ut_dulint_get_high(tree->id),
ut_dulint_get_low(tree->id),
index->n_user_defined_cols,
index->n_fields, index->type);
printf(
" root page %lu, appr.key vals %lu, leaf pages %lu, size pages %lu\n",
tree->page,
(ulint)n_vals,
index->stat_n_leaf_pages,
index->stat_index_size);
printf(" FIELDS: ");
for (i = 0; i < index->n_fields; i++) {
dict_field_print_low(dict_index_get_nth_field(index, i));
}
printf("\n");
/* btr_print_size(tree); */
/* btr_print_tree(tree, 7); */
}
/**************************************************************************
Prints a field data. */
static
void
dict_field_print_low(
/*=================*/
dict_field_t* field) /* in: field */
{
ut_ad(mutex_own(&(dict_sys->mutex)));
printf(" %s", field->name);
}
/**************************************************************************
Sprintfs to a string info on foreign keys of a table in a format suitable
for CREATE TABLE. */
static
void
dict_print_info_on_foreign_keys_in_create_format(
/*=============================================*/
char* buf, /* in: auxiliary buffer */
char* str, /* in/out: pointer to a string */
ulint len, /* in: space in str available for info */
dict_table_t* table) /* in: table */
{
dict_foreign_t* foreign;
ulint i;
char* buf2;
buf2 = buf;
mutex_enter(&(dict_sys->mutex));
foreign = UT_LIST_GET_FIRST(table->foreign_list);
if (foreign == NULL) {
mutex_exit(&(dict_sys->mutex));
return;
}
while (foreign != NULL) {
buf2 += sprintf(buf2, ",\n FOREIGN KEY (");
for (i = 0; i < foreign->n_fields; i++) {
if ((ulint)(buf2 - buf) >= len) {
goto no_space;
}
buf2 += sprintf(buf2, "`%s`",
foreign->foreign_col_names[i]);
if (i + 1 < foreign->n_fields) {
buf2 += sprintf(buf2, ", ");
}
}
if (dict_tables_have_same_db(table->name,
foreign->referenced_table_name)) {
/* Do not print the database name of the referenced
table */
buf2 += sprintf(buf2, ") REFERENCES `%s` (",
dict_remove_db_name(
foreign->referenced_table_name));
} else {
buf2 += sprintf(buf2, ") REFERENCES `%s` (",
foreign->referenced_table_name);
/* Change the '/' in the table name to '.' */
for (i = ut_strlen(buf); i > 0; i--) {
if (buf[i] == '/') {
buf[i] = '.';
break;
}
}
}
for (i = 0; i < foreign->n_fields; i++) {
if ((ulint)(buf2 - buf) >= len) {
goto no_space;
}
buf2 += sprintf(buf2, "`%s`",
foreign->referenced_col_names[i]);
if (i + 1 < foreign->n_fields) {
buf2 += sprintf(buf2, ", ");
}
}
buf2 += sprintf(buf2, ")");
if (foreign->type == DICT_FOREIGN_ON_DELETE_CASCADE) {
buf2 += sprintf(buf2, " ON DELETE CASCADE");
}
if (foreign->type == DICT_FOREIGN_ON_DELETE_SET_NULL) {
buf2 += sprintf(buf2, " ON DELETE SET NULL");
}
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
no_space:
mutex_exit(&(dict_sys->mutex));
buf[len - 1] = '\0';
ut_memcpy(str, buf, len);
}
/**************************************************************************
Sprintfs to a string info on foreign keys of a table. */
void
dict_print_info_on_foreign_keys(
/*============================*/
ibool create_table_format, /* in: if TRUE then print in
a format suitable to be inserted into
a CREATE TABLE, otherwise in the format
of SHOW TABLE STATUS */
char* str, /* in/out: pointer to a string */
ulint len, /* in: space in str available for info */
dict_table_t* table) /* in: table */
{
dict_foreign_t* foreign;
ulint i;
char* buf2;
char* buf;
buf = mem_alloc(len + 5000);
if (create_table_format) {
dict_print_info_on_foreign_keys_in_create_format(
buf, str, len, table);
mem_free(buf);
return;
}
mutex_enter(&(dict_sys->mutex));
foreign = UT_LIST_GET_FIRST(table->foreign_list);
if (foreign == NULL) {
mutex_exit(&(dict_sys->mutex));
mem_free(buf);
return;
}
buf2 = buf;
while (foreign != NULL) {
buf2 += sprintf(buf2, "; (");
for (i = 0; i < foreign->n_fields; i++) {
if ((ulint)(buf2 - buf) >= len) {
goto no_space;
}
buf2 += sprintf(buf2, "%s",
foreign->foreign_col_names[i]);
if (i + 1 < foreign->n_fields) {
buf2 += sprintf(buf2, " ");
}
}
buf2 += sprintf(buf2, ") REFER %s(",
foreign->referenced_table_name);
for (i = 0; i < foreign->n_fields; i++) {
if ((ulint)(buf2 - buf) >= len) {
goto no_space;
}
buf2 += sprintf(buf2, "%s",
foreign->referenced_col_names[i]);
if (i + 1 < foreign->n_fields) {
buf2 += sprintf(buf2, " ");
}
}
buf2 += sprintf(buf2, ")");
if (foreign->type == DICT_FOREIGN_ON_DELETE_CASCADE) {
buf2 += sprintf(buf2, " ON DELETE CASCADE");
}
if (foreign->type == DICT_FOREIGN_ON_DELETE_SET_NULL) {
buf2 += sprintf(buf2, " ON DELETE SET NULL");
}
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
no_space:
mutex_exit(&(dict_sys->mutex));
buf[len - 1] = '\0';
ut_memcpy(str, buf, len);
mem_free(buf);
}