mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 13:02:28 +01:00
1bf3964fbe
- Merge into 5.3-main
3329 lines
103 KiB
C++
3329 lines
103 KiB
C++
/* Copyright (C) 2000-2006 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/**
|
|
@file
|
|
|
|
@brief
|
|
join cache optimizations
|
|
|
|
@defgroup Query_Optimizer Query Optimizer
|
|
@{
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
#include "sql_select.h"
|
|
#include "opt_subselect.h"
|
|
|
|
#define NO_MORE_RECORDS_IN_BUFFER (uint)(-1)
|
|
|
|
/*****************************************************************************
|
|
* Join cache module
|
|
******************************************************************************/
|
|
|
|
/*
|
|
Fill in the descriptor of a flag field associated with a join cache
|
|
|
|
SYNOPSIS
|
|
add_field_flag_to_join_cache()
|
|
str position in a record buffer to copy the field from/to
|
|
length length of the field
|
|
field IN/OUT pointer to the field descriptor to fill in
|
|
|
|
DESCRIPTION
|
|
The function fill in the descriptor of a cache flag field to which
|
|
the parameter 'field' points to. The function uses the first two
|
|
parameters to set the position in the record buffer from/to which
|
|
the field value is to be copied and the length of the copied fragment.
|
|
Before returning the result the function increments the value of
|
|
*field by 1.
|
|
The function ignores the fields 'blob_length' and 'ofset' of the
|
|
descriptor.
|
|
|
|
RETURN
|
|
the length of the field
|
|
*/
|
|
|
|
static
|
|
uint add_flag_field_to_join_cache(uchar *str, uint length, CACHE_FIELD **field)
|
|
{
|
|
CACHE_FIELD *copy= *field;
|
|
copy->str= str;
|
|
copy->length= length;
|
|
copy->type= 0;
|
|
copy->field= 0;
|
|
copy->referenced_field_no= 0;
|
|
(*field)++;
|
|
return length;
|
|
}
|
|
|
|
|
|
/*
|
|
Fill in the descriptors of table data fields associated with a join cache
|
|
|
|
SYNOPSIS
|
|
add_table_data_fields_to_join_cache()
|
|
tab descriptors of fields from this table are to be filled
|
|
field_set descriptors for only these fields are to be created
|
|
field_cnt IN/OUT counter of data fields
|
|
descr IN/OUT pointer to the first descriptor to be filled
|
|
field_ptr_cnt IN/OUT counter of pointers to the data fields
|
|
descr_ptr IN/OUT pointer to the first pointer to blob descriptors
|
|
|
|
DESCRIPTION
|
|
The function fills in the descriptors of cache data fields from the table
|
|
'tab'. The descriptors are filled only for the fields marked in the
|
|
bitmap 'field_set'.
|
|
The function fills the descriptors starting from the position pointed
|
|
by 'descr'. If an added field is of a BLOB type then a pointer to the
|
|
its descriptor is added to the array descr_ptr.
|
|
At the return 'descr' points to the position after the last added
|
|
descriptor while 'descr_ptr' points to the position right after the
|
|
last added pointer.
|
|
|
|
RETURN
|
|
the total length of the added fields
|
|
*/
|
|
|
|
static
|
|
uint add_table_data_fields_to_join_cache(JOIN_TAB *tab,
|
|
MY_BITMAP *field_set,
|
|
uint *field_cnt,
|
|
CACHE_FIELD **descr,
|
|
uint *field_ptr_cnt,
|
|
CACHE_FIELD ***descr_ptr)
|
|
{
|
|
Field **fld_ptr;
|
|
uint len= 0;
|
|
CACHE_FIELD *copy= *descr;
|
|
CACHE_FIELD **copy_ptr= *descr_ptr;
|
|
uint used_fields= bitmap_bits_set(field_set);
|
|
for (fld_ptr= tab->table->field; used_fields; fld_ptr++)
|
|
{
|
|
if (bitmap_is_set(field_set, (*fld_ptr)->field_index))
|
|
{
|
|
len+= (*fld_ptr)->fill_cache_field(copy);
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
*copy_ptr= copy;
|
|
copy_ptr++;
|
|
(*field_ptr_cnt)++;
|
|
}
|
|
copy->field= *fld_ptr;
|
|
copy->referenced_field_no= 0;
|
|
copy++;
|
|
(*field_cnt)++;
|
|
used_fields--;
|
|
}
|
|
}
|
|
*descr= copy;
|
|
*descr_ptr= copy_ptr;
|
|
return len;
|
|
}
|
|
|
|
JOIN_TAB *next_linear_tab(JOIN* join, JOIN_TAB* tab, bool include_bush_roots);
|
|
|
|
/*
|
|
Determine different counters of fields associated with a record in the cache
|
|
|
|
SYNOPSIS
|
|
calc_record_fields()
|
|
|
|
DESCRIPTION
|
|
The function counts the number of total fields stored in a record
|
|
of the cache and saves this number in the 'fields' member. It also
|
|
determines the number of flag fields and the number of blobs.
|
|
The function sets 'with_match_flag' on if 'join_tab' needs a match flag
|
|
i.e. if it is the first inner table of an outer join or a semi-join.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::calc_record_fields()
|
|
{
|
|
JOIN_TAB *tab;
|
|
if (prev_cache)
|
|
tab= prev_cache->join_tab;
|
|
else
|
|
{
|
|
if (join_tab->bush_root_tab)
|
|
{
|
|
/*
|
|
If the tab we're attached to is inside an SJM-nest, start from the
|
|
first tab in that SJM nest
|
|
*/
|
|
tab= join_tab->bush_root_tab->bush_children->start;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The tab we're attached to is not inside an SJM-nest. Start from the
|
|
first non-const table.
|
|
*/
|
|
tab= join->join_tab + join->const_tables;
|
|
}
|
|
}
|
|
start_tab= tab;
|
|
//tables= join_tab-tab;
|
|
//tables= 0;
|
|
fields= 0;
|
|
blobs= 0;
|
|
flag_fields= 0;
|
|
data_field_count= 0;
|
|
data_field_ptr_count= 0;
|
|
referenced_fields= 0;
|
|
|
|
for ( ; tab != join_tab ; tab= next_linear_tab(join, tab, TRUE))
|
|
{
|
|
calc_used_field_length(join->thd, tab);
|
|
flag_fields+= test(tab->used_null_fields || tab->used_uneven_bit_fields);
|
|
flag_fields+= test(tab->table->maybe_null);
|
|
fields+= tab->used_fields;
|
|
blobs+= tab->used_blobs;
|
|
|
|
fields+= tab->check_rowid_field();
|
|
//tables++;
|
|
}
|
|
if ((with_match_flag= join_tab->use_match_flag()))
|
|
flag_fields++;
|
|
fields+= flag_fields;
|
|
}
|
|
|
|
/*
|
|
Allocate memory for descriptors and pointers to them associated with the cache
|
|
|
|
SYNOPSIS
|
|
alloc_fields()
|
|
|
|
DESCRIPTION
|
|
The function allocates memory for the array of fields descriptors
|
|
and the array of pointers to the field descriptors used to copy
|
|
join record data from record buffers into the join buffer and
|
|
backward. Some pointers refer to the field descriptor associated
|
|
with previous caches. They are placed at the beginning of the
|
|
array of pointers and its total number is specified by the parameter
|
|
'external fields'.
|
|
The pointer of the first array is assigned to field_descr and the
|
|
number of elements is precalculated by the function calc_record_fields.
|
|
The allocated arrays are adjacent.
|
|
|
|
NOTES
|
|
The memory is allocated in join->thd->memroot
|
|
|
|
RETURN
|
|
pointer to the first array
|
|
*/
|
|
|
|
int JOIN_CACHE::alloc_fields(uint external_fields)
|
|
{
|
|
uint ptr_cnt= external_fields+blobs+1;
|
|
uint fields_size= sizeof(CACHE_FIELD)*fields;
|
|
field_descr= (CACHE_FIELD*) sql_alloc(fields_size +
|
|
sizeof(CACHE_FIELD*)*ptr_cnt);
|
|
blob_ptr= (CACHE_FIELD **) ((uchar *) field_descr + fields_size);
|
|
return (field_descr == NULL);
|
|
}
|
|
|
|
/*
|
|
Create descriptors of the record flag fields stored in the join buffer
|
|
|
|
SYNOPSIS
|
|
create_flag_fields()
|
|
|
|
DESCRIPTION
|
|
The function creates descriptors of the record flag fields stored
|
|
in the join buffer. These are descriptors for:
|
|
- an optional match flag field,
|
|
- table null bitmap fields,
|
|
- table null row fields.
|
|
The match flag field is created when 'join_tab' is the first inner
|
|
table of an outer join our a semi-join. A null bitmap field is
|
|
created for any table whose fields are to be stored in the join
|
|
buffer if at least one of these fields is nullable or is a BIT field
|
|
whose bits are partially stored with null bits. A null row flag
|
|
is created for any table assigned to the cache if it is an inner
|
|
table of an outer join.
|
|
The descriptor for flag fields are placed one after another at the
|
|
beginning of the array of field descriptors 'field_descr' that
|
|
contains 'fields' elements. If there is a match flag field the
|
|
descriptor for it is always first in the sequence of flag fields.
|
|
The descriptors for other flag fields can follow in an arbitrary
|
|
order.
|
|
The flag field values follow in a record stored in the join buffer
|
|
in the same order as field descriptors, with the match flag always
|
|
following first.
|
|
The function sets the value of 'flag_fields' to the total number
|
|
of the descriptors created for the flag fields.
|
|
The function sets the value of 'length' to the total length of the
|
|
flag fields.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::create_flag_fields()
|
|
{
|
|
CACHE_FIELD *copy;
|
|
JOIN_TAB *tab;
|
|
|
|
copy= field_descr;
|
|
|
|
length=0;
|
|
|
|
/* If there is a match flag the first field is always used for this flag */
|
|
if (with_match_flag)
|
|
length+= add_flag_field_to_join_cache((uchar*) &join_tab->found,
|
|
sizeof(join_tab->found),
|
|
©);
|
|
|
|
/* Create fields for all null bitmaps and null row flags that are needed */
|
|
//for (tab= join_tab-tables; tab < join_tab; tab++)
|
|
for (tab= start_tab; tab != join_tab; tab= next_linear_tab(join, tab, TRUE))
|
|
{
|
|
TABLE *table= tab->table;
|
|
|
|
/* Create a field for the null bitmap from table if needed */
|
|
if (tab->used_null_fields || tab->used_uneven_bit_fields)
|
|
length+= add_flag_field_to_join_cache(table->null_flags,
|
|
table->s->null_bytes,
|
|
©);
|
|
|
|
/* Create table for the null row flag if needed */
|
|
if (table->maybe_null)
|
|
length+= add_flag_field_to_join_cache((uchar*) &table->null_row,
|
|
sizeof(table->null_row),
|
|
©);
|
|
}
|
|
|
|
/* Theoretically the new value of flag_fields can be less than the old one */
|
|
flag_fields= copy-field_descr;
|
|
}
|
|
|
|
|
|
/*
|
|
Create descriptors of all remaining data fields stored in the join buffer
|
|
|
|
SYNOPSIS
|
|
create_remaining_fields()
|
|
all_read_fields indicates that descriptors for all read data fields
|
|
are to be created
|
|
|
|
DESCRIPTION
|
|
The function creates descriptors for all remaining data fields of a
|
|
record from the join buffer. If the parameter 'all_read_fields' is
|
|
true the function creates fields for all read record fields that
|
|
comprise the partial join record joined with join_tab. Otherwise,
|
|
for each table tab, the set of the read fields for which the descriptors
|
|
have to be added is determined as the difference between all read fields
|
|
and and those for which the descriptors have been already created.
|
|
The latter are supposed to be marked in the bitmap tab->table->tmp_set.
|
|
The function increases the value of 'length' to the the total length of
|
|
the added fields.
|
|
|
|
NOTES
|
|
If 'all_read_fields' is false the function modifies the value of
|
|
tab->table->tmp_set for a each table whose fields are stored in the cache.
|
|
The function calls the method Field::fill_cache_field to figure out
|
|
the type of the cache field and the maximal length of its representation
|
|
in the join buffer. If this is a blob field then additionally a pointer
|
|
to this field is added as an element of the array blob_ptr. For a blob
|
|
field only the size of the length of the blob data is taken into account.
|
|
It is assumed that 'data_field_count' contains the number of descriptors
|
|
for data fields that have been already created and 'data_field_ptr_count'
|
|
contains the number of the pointers to such descriptors having been
|
|
stored up to the moment.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE:: create_remaining_fields(bool all_read_fields)
|
|
{
|
|
JOIN_TAB *tab;
|
|
CACHE_FIELD *copy= field_descr+flag_fields+data_field_count;
|
|
CACHE_FIELD **copy_ptr= blob_ptr+data_field_ptr_count;
|
|
|
|
for (tab= start_tab; tab != join_tab; tab= next_linear_tab(join, tab, TRUE))
|
|
//for (tab= join_tab-tables; tab < join_tab; tab++)
|
|
{
|
|
MY_BITMAP *rem_field_set;
|
|
TABLE *table= tab->table;
|
|
|
|
if (all_read_fields)
|
|
rem_field_set= table->read_set;
|
|
else
|
|
{
|
|
bitmap_invert(&table->tmp_set);
|
|
bitmap_intersect(&table->tmp_set, table->read_set);
|
|
rem_field_set= &table->tmp_set;
|
|
}
|
|
|
|
length+= add_table_data_fields_to_join_cache(tab, rem_field_set,
|
|
&data_field_count, ©,
|
|
&data_field_ptr_count,
|
|
©_ptr);
|
|
|
|
/* SemiJoinDuplicateElimination: allocate space for rowid if needed */
|
|
if (tab->keep_current_rowid)
|
|
{
|
|
copy->str= table->file->ref;
|
|
copy->length= table->file->ref_length;
|
|
copy->type= 0;
|
|
copy->field= 0;
|
|
copy->referenced_field_no= 0;
|
|
length+= copy->length;
|
|
data_field_count++;
|
|
copy++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate and set all cache constants
|
|
|
|
SYNOPSIS
|
|
set_constants()
|
|
|
|
DESCRIPTION
|
|
The function calculates and set all precomputed constants that are used
|
|
when writing records into the join buffer and reading them from it.
|
|
It calculates the size of offsets of a record within the join buffer
|
|
and of a field within a record. It also calculates the number of bytes
|
|
used to store record lengths.
|
|
The function also calculates the maximal length of the representation
|
|
of record in the cache excluding blob_data. This value is used when
|
|
making a dicision whether more records should be added into the join
|
|
buffer or not.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::set_constants()
|
|
{
|
|
/*
|
|
Any record from a BKA cache is prepended with the record length.
|
|
We use the record length when reading the buffer and building key values
|
|
for each record. The length allows us not to read the fields that are
|
|
not needed for keys.
|
|
If a record has match flag it also may be skipped when the match flag
|
|
is on. It happens if the cache is used for a semi-join operation or
|
|
for outer join when the 'not exist' optimization can be applied.
|
|
If some of the fields are referenced from other caches then
|
|
the record length allows us to easily reach the saved offsets for
|
|
these fields since the offsets are stored at the very end of the record.
|
|
However at this moment we don't know whether we have referenced fields for
|
|
the cache or not. Later when a referenced field is registered for the cache
|
|
we adjust the value of the flag 'with_length'.
|
|
*/
|
|
with_length= is_key_access() ||
|
|
join_tab->is_inner_table_of_semi_join_with_first_match() ||
|
|
join_tab->is_inner_table_of_outer_join();
|
|
/*
|
|
At this moment we don't know yet the value of 'referenced_fields',
|
|
but in any case it can't be greater than the value of 'fields'.
|
|
*/
|
|
uint len= length + fields*sizeof(uint)+blobs*sizeof(uchar *) +
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
|
|
sizeof(ulong);
|
|
buff_size= max(join->thd->variables.join_buff_size, 2*len);
|
|
size_of_rec_ofs= offset_size(buff_size);
|
|
size_of_rec_len= blobs ? size_of_rec_ofs : offset_size(len);
|
|
size_of_fld_ofs= size_of_rec_len;
|
|
/*
|
|
The size of the offsets for referenced fields will be added later.
|
|
The values of 'pack_length' and 'pack_length_with_blob_ptrs' are adjusted
|
|
every time when the first reference to the referenced field is registered.
|
|
*/
|
|
pack_length= (with_length ? size_of_rec_len : 0) +
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0) +
|
|
length;
|
|
pack_length_with_blob_ptrs= pack_length + blobs*sizeof(uchar *);
|
|
}
|
|
|
|
|
|
/*
|
|
Allocate memory for a join buffer
|
|
|
|
SYNOPSIS
|
|
alloc_buffer()
|
|
|
|
DESCRIPTION
|
|
The function allocates a lump of memory for the cache join buffer. The
|
|
size of the allocated memory is 'buff_size' bytes.
|
|
|
|
RETURN
|
|
0 - if the memory has been successfully allocated
|
|
1 - otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE::alloc_buffer()
|
|
{
|
|
buff= (uchar*) my_malloc(buff_size, MYF(0));
|
|
return buff == NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BNL cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BNL.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BNL would
|
|
never fail while memory allocation for the join buffer is not absolutely
|
|
unlikely to fail. That's why this memory allocation has to be placed in a
|
|
separate function that is called in a couple with a cache constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BNL::init()
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE::init");
|
|
|
|
calc_record_fields();
|
|
|
|
if (alloc_fields(0))
|
|
DBUG_RETURN(1);
|
|
|
|
create_flag_fields();
|
|
|
|
create_remaining_fields(TRUE);
|
|
|
|
set_constants();
|
|
|
|
if (alloc_buffer())
|
|
DBUG_RETURN(1);
|
|
|
|
reset(TRUE);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BKA cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BKA.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BKA would
|
|
never fail while memory allocation for the join buffer is not absolutely
|
|
unlikely to fail. That's why this memory allocation has to be placed in a
|
|
separate function that is called in a couple with a cache constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BKA::init()
|
|
{
|
|
JOIN_TAB *tab;
|
|
JOIN_CACHE *cache;
|
|
local_key_arg_fields= 0;
|
|
external_key_arg_fields= 0;
|
|
DBUG_ENTER("JOIN_CACHE_BKA::init");
|
|
|
|
calc_record_fields();
|
|
|
|
/* Mark all fields that can be used as arguments for this key access */
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
cache= this;
|
|
do
|
|
{
|
|
/*
|
|
Traverse the ref expressions and find the occurrences of fields in them for
|
|
each table 'tab' whose fields are to be stored in the 'cache' join buffer.
|
|
Mark these fields in the bitmap tab->table->tmp_set.
|
|
For these fields count the number of them stored in this cache and the
|
|
total number of them stored in the previous caches. Save the result
|
|
of the counting 'in local_key_arg_fields' and 'external_key_arg_fields'
|
|
respectively.
|
|
*/
|
|
// for (tab= cache->join_tab-cache->tables; tab < cache->join_tab ; tab++)
|
|
for (tab= cache->start_tab; tab != cache->join_tab; tab=
|
|
next_linear_tab(cache->join, tab, TRUE))
|
|
{
|
|
uint key_args;
|
|
bitmap_clear_all(&tab->table->tmp_set);
|
|
for (uint i= 0; i < ref->key_parts; i++)
|
|
{
|
|
Item *ref_item= ref->items[i];
|
|
if (!(tab->table->map & ref_item->used_tables()))
|
|
continue;
|
|
ref_item->walk(&Item::add_field_to_set_processor, 1,
|
|
(uchar *) tab->table);
|
|
}
|
|
if ((key_args= bitmap_bits_set(&tab->table->tmp_set)))
|
|
{
|
|
if (cache == this)
|
|
local_key_arg_fields+= key_args;
|
|
else
|
|
external_key_arg_fields+= key_args;
|
|
}
|
|
}
|
|
cache= cache->prev_cache;
|
|
}
|
|
while (cache);
|
|
|
|
if (alloc_fields(external_key_arg_fields))
|
|
DBUG_RETURN(1);
|
|
|
|
create_flag_fields();
|
|
|
|
/*
|
|
Save pointers to the cache fields in previous caches
|
|
that are used to build keys for this key access.
|
|
*/
|
|
cache= this;
|
|
uint ext_key_arg_cnt= external_key_arg_fields;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD **copy_ptr= blob_ptr;
|
|
while (ext_key_arg_cnt)
|
|
{
|
|
cache= cache->prev_cache;
|
|
for (tab= cache->start_tab; tab != cache->join_tab; tab=
|
|
next_linear_tab(cache->join, tab, TRUE))
|
|
//for (tab= cache->join_tab-cache->tables; tab < cache->join_tab ; tab++)
|
|
{
|
|
CACHE_FIELD *copy_end;
|
|
MY_BITMAP *key_read_set= &tab->table->tmp_set;
|
|
/* key_read_set contains the bitmap of tab's fields referenced by ref */
|
|
if (bitmap_is_clear_all(key_read_set))
|
|
continue;
|
|
copy_end= cache->field_descr+cache->fields;
|
|
for (copy= cache->field_descr+cache->flag_fields; copy < copy_end; copy++)
|
|
{
|
|
/*
|
|
(1) - when we store rowids for DuplicateWeedout, they have
|
|
copy->field==NULL
|
|
*/
|
|
if (copy->field && // (1)
|
|
copy->field->table == tab->table &&
|
|
bitmap_is_set(key_read_set, copy->field->field_index))
|
|
{
|
|
*copy_ptr++= copy;
|
|
ext_key_arg_cnt--;
|
|
if (!copy->referenced_field_no)
|
|
{
|
|
/*
|
|
Register the referenced field 'copy':
|
|
- set the offset number in copy->referenced_field_no,
|
|
- adjust the value of the flag 'with_length',
|
|
- adjust the values of 'pack_length' and
|
|
of 'pack_length_with_blob_ptrs'.
|
|
*/
|
|
copy->referenced_field_no= ++cache->referenced_fields;
|
|
cache->with_length= TRUE;
|
|
cache->pack_length+= cache->get_size_of_fld_offset();
|
|
cache->pack_length_with_blob_ptrs+= cache->get_size_of_fld_offset();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* After this 'blob_ptr' shall not be be changed */
|
|
blob_ptr= copy_ptr;
|
|
|
|
/* Now create local fields that are used to build ref for this key access */
|
|
copy= field_descr+flag_fields;
|
|
//for (tab= join_tab-tables; tab < join_tab ; tab++)
|
|
for (tab= start_tab; tab != join_tab; tab= next_linear_tab(join, tab, TRUE))
|
|
{
|
|
length+= add_table_data_fields_to_join_cache(tab, &tab->table->tmp_set,
|
|
&data_field_count, ©,
|
|
&data_field_ptr_count,
|
|
©_ptr);
|
|
}
|
|
|
|
use_emb_key= check_emb_key_usage();
|
|
|
|
create_remaining_fields(FALSE);
|
|
|
|
set_constants();
|
|
|
|
if (alloc_buffer())
|
|
DBUG_RETURN(1);
|
|
|
|
reset(TRUE);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Check the possibility to read the access keys directly from the join buffer
|
|
|
|
SYNOPSIS
|
|
check_emb_key_usage()
|
|
|
|
DESCRIPTION
|
|
The function checks some conditions at which the key values can be read
|
|
directly from the join buffer. This is possible when the key values can be
|
|
composed by concatenation of the record fields stored in the join buffer.
|
|
Sometimes when the access key is multi-component the function has to re-order
|
|
the fields written into the join buffer to make keys embedded. If key
|
|
values for the key access are detected as embedded then 'use_emb_key'
|
|
is set to TRUE.
|
|
|
|
EXAMPLE
|
|
Let table t2 has an index defined on the columns a,b . Let's assume also
|
|
that the columns t2.a, t2.b as well as the columns t1.a, t1.b are all
|
|
of the integer type. Then if the query
|
|
SELECT COUNT(*) FROM t1, t2 WHERE t1.a=t2.a and t1.b=t2.b
|
|
is executed with a join cache in such a way that t1 is the driving
|
|
table then the key values to access table t2 can be read directly
|
|
from the join buffer.
|
|
|
|
NOTES
|
|
In some cases key values could be read directly from the join buffer but
|
|
we still do not consider them embedded. In the future we'll expand the
|
|
the class of keys which we identify as embedded.
|
|
|
|
RETURN
|
|
TRUE - key values will be considered as embedded,
|
|
FALSE - otherwise.
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA::check_emb_key_usage()
|
|
{
|
|
uint i;
|
|
Item *item;
|
|
KEY_PART_INFO *key_part;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD *copy_end;
|
|
uint len= 0;
|
|
TABLE *table= join_tab->table;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
KEY *keyinfo= table->key_info+ref->key;
|
|
|
|
/*
|
|
If some of the key arguments are not from the local cache the key
|
|
is not considered as embedded.
|
|
TODO:
|
|
Expand it to the case when ref->key_parts=1 and local_key_arg_fields=0.
|
|
*/
|
|
if (external_key_arg_fields != 0)
|
|
return FALSE;
|
|
/*
|
|
If the number of the local key arguments is not equal to the number
|
|
of key parts the key value cannot be read directly from the join buffer.
|
|
*/
|
|
if (local_key_arg_fields != ref->key_parts)
|
|
return FALSE;
|
|
|
|
/*
|
|
A key is not considered embedded if one of the following is true:
|
|
- one of its key parts is not equal to a field
|
|
- it is a partial key
|
|
- definition of the argument field does not coincide with the
|
|
definition of the corresponding key component
|
|
- some of the key components are nullable
|
|
*/
|
|
for (i=0; i < ref->key_parts; i++)
|
|
{
|
|
item= ref->items[i]->real_item();
|
|
if (item->type() != Item::FIELD_ITEM)
|
|
return FALSE;
|
|
key_part= keyinfo->key_part+i;
|
|
if (key_part->key_part_flag & HA_PART_KEY_SEG)
|
|
return FALSE;
|
|
if (!key_part->field->eq_def(((Item_field *) item)->field))
|
|
return FALSE;
|
|
if (key_part->field->maybe_null())
|
|
return FALSE;
|
|
}
|
|
|
|
copy= field_descr+flag_fields;
|
|
copy_end= copy+local_key_arg_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
/*
|
|
If some of the key arguments are of variable length the key
|
|
is not considered as embedded.
|
|
*/
|
|
if (copy->type != 0)
|
|
return FALSE;
|
|
/*
|
|
If some of the key arguments are bit fields whose bits are partially
|
|
stored with null bits the key is not considered as embedded.
|
|
*/
|
|
if (copy->field->type() == MYSQL_TYPE_BIT &&
|
|
((Field_bit*) (copy->field))->bit_len)
|
|
return FALSE;
|
|
len+= copy->length;
|
|
}
|
|
|
|
emb_key_length= len;
|
|
|
|
/*
|
|
Make sure that key fields follow the order of the corresponding
|
|
key components these fields are equal to. For this the descriptors
|
|
of the fields that comprise the key might be re-ordered.
|
|
*/
|
|
for (i= 0; i < ref->key_parts; i++)
|
|
{
|
|
uint j;
|
|
Item *item= ref->items[i]->real_item();
|
|
Field *fld= ((Item_field *) item)->field;
|
|
CACHE_FIELD *init_copy= field_descr+flag_fields+i;
|
|
for (j= i, copy= init_copy; i < local_key_arg_fields; i++, copy++)
|
|
{
|
|
if (fld->eq(copy->field))
|
|
{
|
|
if (j != i)
|
|
{
|
|
CACHE_FIELD key_part_copy= *copy;
|
|
*copy= *init_copy;
|
|
*init_copy= key_part_copy;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate the increment of the MRR buffer for a record write
|
|
|
|
SYNOPSIS
|
|
aux_buffer_incr()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function aux_buffer_incr determines
|
|
for how much the size of the MRR buffer should be increased when another
|
|
record is added to the cache.
|
|
|
|
RETURN
|
|
the increment of the size of the MRR buffer for the next record
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA::aux_buffer_incr()
|
|
{
|
|
uint incr= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
TABLE *tab= join_tab->table;
|
|
uint rec_per_key= tab->key_info[ref->key].rec_per_key[ref->key_parts-1];
|
|
set_if_bigger(rec_per_key, 1);
|
|
if (records == 1)
|
|
incr= ref->key_length + tab->file->ref_length;
|
|
incr+= tab->file->stats.mrr_length_per_rec * rec_per_key;
|
|
return incr;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
JOIN_CACHE_BKA::skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This function is invoked from MRR implementation to check if an index
|
|
tuple matches the index condition. It is used in the case where the index
|
|
condition actually depends on both columns of the used index and columns
|
|
from previous tables.
|
|
|
|
Accessing columns of the previous tables requires special handling with
|
|
BKA. The idea of BKA is to collect record combinations in a buffer and
|
|
then do a batch of ref access lookups, i.e. by the time we're doing a
|
|
lookup its previous-records-combination is not in prev_table->record[0]
|
|
but somewhere in the join buffer.
|
|
|
|
We need to get it from there back into prev_table(s)->record[0] before we
|
|
can evaluate the index condition, and that's why we need this function
|
|
instead of regular IndexConditionPushdown.
|
|
|
|
NOTE
|
|
Possible optimization:
|
|
Before we unpack the record from a previous table
|
|
check if this table is used in the condition.
|
|
If so then unpack the record otherwise skip the unpacking.
|
|
This should be done by a special virtual method
|
|
get_partial_record_by_pos().
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA::skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE_BKA::skip_index_tuple");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
cache->get_record_by_pos((uchar*)range_info);
|
|
DBUG_RETURN(!join_tab->cache_idx_cond->val_int());
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
bka_skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This is wrapper for JOIN_CACHE_BKA::skip_index_tuple method,
|
|
see comments there.
|
|
|
|
NOTE
|
|
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
static
|
|
bool bka_skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("bka_skip_index_tuple");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
DBUG_RETURN(cache->skip_index_tuple(rseq, range_info));
|
|
}
|
|
|
|
|
|
/*
|
|
Write record fields and their required offsets into the join cache buffer
|
|
|
|
SYNOPSIS
|
|
write_record_data()
|
|
link a reference to the associated info in the previous cache
|
|
is_full OUT true if it has been decided that no more records will be
|
|
added to the join buffer
|
|
|
|
DESCRIPTION
|
|
This function put into the cache buffer the following info that it reads
|
|
from the join record buffers or computes somehow:
|
|
(1) the length of all fields written for the record (optional)
|
|
(2) an offset to the associated info in the previous cache (if there is any)
|
|
determined by the link parameter
|
|
(3) all flag fields of the tables whose data field are put into the cache:
|
|
- match flag (optional),
|
|
- null bitmaps for all tables,
|
|
- null row flags for all tables
|
|
(4) values of all data fields including
|
|
- full images of those fixed legth data fields that cannot have
|
|
trailing spaces
|
|
- significant part of fixed length fields that can have trailing spaces
|
|
with the prepanded length
|
|
- data of non-blob variable length fields with the prepanded data length
|
|
- blob data from blob fields with the prepanded data length
|
|
(5) record offset values for the data fields that are referred to from
|
|
other caches
|
|
|
|
The record is written at the current position stored in the field 'pos'.
|
|
At the end of the function 'pos' points at the position right after the
|
|
written record data.
|
|
The function increments the number of records in the cache that is stored
|
|
in the 'records' field by 1. The function also modifies the values of
|
|
'curr_rec_pos' and 'last_rec_pos' to point to the written record.
|
|
The 'end_pos' cursor is modified accordingly.
|
|
The 'last_rec_blob_data_is_in_rec_buff' is set on if the blob data
|
|
remains in the record buffers and not copied to the join buffer. It may
|
|
happen only to the blob data from the last record added into the cache.
|
|
|
|
|
|
RETURN
|
|
length of the written record data
|
|
*/
|
|
|
|
uint JOIN_CACHE::write_record_data(uchar * link, bool *is_full)
|
|
{
|
|
uint len;
|
|
bool last_record;
|
|
CACHE_FIELD *copy;
|
|
CACHE_FIELD *copy_end;
|
|
uchar *cp= pos;
|
|
uchar *init_pos= cp;
|
|
uchar *rec_len_ptr= 0;
|
|
|
|
records++; /* Increment the counter of records in the cache */
|
|
|
|
len= pack_length;
|
|
|
|
/* Make an adjustment for the size of the auxiliary buffer if there is any */
|
|
uint incr= aux_buffer_incr();
|
|
ulong rem= rem_space();
|
|
aux_buff_size+= len+incr < rem ? incr : rem;
|
|
|
|
/*
|
|
For each blob to be put into cache save its length and a pointer
|
|
to the value in the corresponding element of the blob_ptr array.
|
|
Blobs with null values are skipped.
|
|
Increment 'len' by the total length of all these blobs.
|
|
*/
|
|
if (blobs)
|
|
{
|
|
CACHE_FIELD **copy_ptr= blob_ptr;
|
|
CACHE_FIELD **copy_ptr_end= copy_ptr+blobs;
|
|
for ( ; copy_ptr < copy_ptr_end; copy_ptr++)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) (*copy_ptr)->field;
|
|
if (!blob_field->is_null())
|
|
{
|
|
uint blob_len= blob_field->get_length();
|
|
(*copy_ptr)->blob_length= blob_len;
|
|
len+= blob_len;
|
|
blob_field->get_ptr(&(*copy_ptr)->str);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Check whether we won't be able to add any new record into the cache after
|
|
this one because the cache will be full. Set last_record to TRUE if it's so.
|
|
The assume that the cache will be full after the record has been written
|
|
into it if either the remaining space of the cache is not big enough for the
|
|
record's blob values or if there is a chance that not all non-blob fields
|
|
of the next record can be placed there.
|
|
This function is called only in the case when there is enough space left in
|
|
the cache to store at least non-blob parts of the current record.
|
|
*/
|
|
last_record= (len+pack_length_with_blob_ptrs) > rem_space();
|
|
|
|
/*
|
|
Save the position for the length of the record in the cache if it's needed.
|
|
The length of the record will be inserted here when all fields of the record
|
|
are put into the cache.
|
|
*/
|
|
if (with_length)
|
|
{
|
|
rec_len_ptr= cp;
|
|
cp+= size_of_rec_len;
|
|
}
|
|
|
|
/*
|
|
Put a reference to the fields of the record that are stored in the previous
|
|
cache if there is any. This reference is passed by the 'link' parameter.
|
|
*/
|
|
if (prev_cache)
|
|
{
|
|
cp+= prev_cache->get_size_of_rec_offset();
|
|
prev_cache->store_rec_ref(cp, link);
|
|
}
|
|
|
|
curr_rec_pos= cp;
|
|
|
|
/* If the there is a match flag set its value to 0 */
|
|
copy= field_descr;
|
|
if (with_match_flag)
|
|
*copy[0].str= 0;
|
|
|
|
/* First put into the cache the values of all flag fields */
|
|
copy_end= field_descr+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
memcpy(cp, copy->str, copy->length);
|
|
cp+= copy->length;
|
|
}
|
|
|
|
/* Now put the values of the remaining fields as soon as they are not nulls */
|
|
copy_end= field_descr+fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
Field *field= copy->field;
|
|
if (field && field->maybe_null() && field->is_null())
|
|
{
|
|
/* Do not copy a field if its value is null */
|
|
if (copy->referenced_field_no)
|
|
copy->offset= 0;
|
|
continue;
|
|
}
|
|
/* Save the offset of the field to put it later at the end of the record */
|
|
if (copy->referenced_field_no)
|
|
copy->offset= cp-curr_rec_pos;
|
|
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) copy->field;
|
|
if (last_record)
|
|
{
|
|
last_rec_blob_data_is_in_rec_buff= 1;
|
|
/* Put down the length of the blob and the pointer to the data */
|
|
blob_field->get_image(cp, copy->length+sizeof(char*),
|
|
blob_field->charset());
|
|
cp+= copy->length+sizeof(char*);
|
|
}
|
|
else
|
|
{
|
|
/* First put down the length of the blob and then copy the data */
|
|
blob_field->get_image(cp, copy->length,
|
|
blob_field->charset());
|
|
memcpy(cp+copy->length, copy->str, copy->blob_length);
|
|
cp+= copy->length+copy->blob_length;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (copy->type) {
|
|
case CACHE_VARSTR1:
|
|
/* Copy the significant part of the short varstring field */
|
|
len= (uint) copy->str[0] + 1;
|
|
memcpy(cp, copy->str, len);
|
|
cp+= len;
|
|
break;
|
|
case CACHE_VARSTR2:
|
|
/* Copy the significant part of the long varstring field */
|
|
len= uint2korr(copy->str) + 2;
|
|
memcpy(cp, copy->str, len);
|
|
cp+= len;
|
|
break;
|
|
case CACHE_STRIPPED:
|
|
{
|
|
/*
|
|
Put down the field value stripping all trailing spaces off.
|
|
After this insert the length of the written sequence of bytes.
|
|
*/
|
|
uchar *str, *end;
|
|
for (str= copy->str, end= str+copy->length;
|
|
end > str && end[-1] == ' ';
|
|
end--) ;
|
|
len=(uint) (end-str);
|
|
int2store(cp, len);
|
|
memcpy(cp+2, str, len);
|
|
cp+= len+2;
|
|
break;
|
|
}
|
|
default:
|
|
/* Copy the entire image of the field from the record buffer */
|
|
memcpy(cp, copy->str, copy->length);
|
|
cp+= copy->length;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Add the offsets of the fields that are referenced from other caches */
|
|
if (referenced_fields)
|
|
{
|
|
uint cnt= 0;
|
|
for (copy= field_descr+flag_fields; copy < copy_end ; copy++)
|
|
{
|
|
if (copy->referenced_field_no)
|
|
{
|
|
store_fld_offset(cp+size_of_fld_ofs*(copy->referenced_field_no-1),
|
|
copy->offset);
|
|
cnt++;
|
|
}
|
|
}
|
|
cp+= size_of_fld_ofs*cnt;
|
|
}
|
|
|
|
if (rec_len_ptr)
|
|
store_rec_length(rec_len_ptr, (ulong) (cp-rec_len_ptr-size_of_rec_len));
|
|
last_rec_pos= curr_rec_pos;
|
|
end_pos= pos= cp;
|
|
*is_full= last_record;
|
|
return (uint) (cp-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Reset the join buffer for reading/writing: default implementation
|
|
|
|
SYNOPSIS
|
|
reset()
|
|
for_writing if it's TRUE the function reset the buffer for writing
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function reset() resets
|
|
the join buffer for reading or writing.
|
|
If the buffer is reset for reading only the 'pos' value is reset
|
|
to point to the very beginning of the join buffer. If the buffer is
|
|
reset for writing additionally:
|
|
- the counter of the records in the buffer is set to 0,
|
|
- the the value of 'last_rec_pos' gets pointing at the position just
|
|
before the buffer,
|
|
- 'end_pos' is set to point to the beginning of the join buffer,
|
|
- the size of the auxiliary buffer is reset to 0,
|
|
- the flag 'last_rec_blob_data_is_in_rec_buff' is set to 0.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::reset(bool for_writing)
|
|
{
|
|
pos= buff;
|
|
curr_rec_link= 0;
|
|
if (for_writing)
|
|
{
|
|
records= 0;
|
|
last_rec_pos= buff;
|
|
aux_buff_size= 0;
|
|
end_pos= pos;
|
|
last_rec_blob_data_is_in_rec_buff= 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Add a record into the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
put_record()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function put_record writes
|
|
the next matching record into the join buffer.
|
|
It also links the record having been written into the join buffer with
|
|
the matched record in the previous cache if there is any.
|
|
The implementation assumes that the function get_curr_link()
|
|
will return exactly the pointer to this matched record.
|
|
|
|
RETURN
|
|
TRUE if it has been decided that it should be the last record
|
|
in the join buffer,
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::put_record()
|
|
{
|
|
bool is_full;
|
|
uchar *link= 0;
|
|
if (prev_cache)
|
|
link= prev_cache->get_curr_rec_link();
|
|
write_record_data(link, &is_full);
|
|
return is_full;
|
|
}
|
|
|
|
|
|
/*
|
|
Read the next record from the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_record()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_record
|
|
reads fields of the next record from the join buffer of this cache.
|
|
The function also reads all other fields associated with this record
|
|
from the the join buffers of the previous caches. The fields are read
|
|
into the corresponding record buffers.
|
|
It is supposed that 'pos' points to the position in the buffer
|
|
right after the previous record when the function is called.
|
|
When the function returns the 'pos' values is updated to point
|
|
to the position after the read record.
|
|
The value of 'curr_rec_pos' is also updated by the function to
|
|
point to the beginning of the first field of the record in the
|
|
join buffer.
|
|
|
|
RETURN
|
|
TRUE - there are no more records to read from the join buffer
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::get_record()
|
|
{
|
|
bool res;
|
|
uchar *prev_rec_ptr= 0;
|
|
if (with_length)
|
|
pos+= size_of_rec_len;
|
|
if (prev_cache)
|
|
{
|
|
pos+= prev_cache->get_size_of_rec_offset();
|
|
prev_rec_ptr= prev_cache->get_rec_ref(pos);
|
|
}
|
|
curr_rec_pos= pos;
|
|
if (!(res= read_all_record_fields() == NO_MORE_RECORDS_IN_BUFFER))
|
|
{
|
|
pos+= referenced_fields*size_of_fld_ofs;
|
|
if (prev_cache)
|
|
prev_cache->get_record_by_pos(prev_rec_ptr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
Read a positioned record from the join buffer: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_record_by_pos()
|
|
rec_ptr position of the first field of the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_record_pos
|
|
reads the fields of the record positioned at 'rec_ptr' from the join buffer.
|
|
The function also reads all other fields associated with this record
|
|
from the the join buffers of the previous caches. The fields are read
|
|
into the corresponding record buffers.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::get_record_by_pos(uchar *rec_ptr)
|
|
{
|
|
uchar *save_pos= pos;
|
|
pos= rec_ptr;
|
|
read_all_record_fields();
|
|
pos= save_pos;
|
|
if (prev_cache)
|
|
{
|
|
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
|
|
prev_cache->get_record_by_pos(prev_rec_ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Test the match flag from the referenced record: the default implementation
|
|
|
|
SYNOPSIS
|
|
get_match_flag_by_pos()
|
|
rec_ptr position of the first field of the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function get_match_flag_by_pos
|
|
test the match flag for the record pointed by the reference at the position
|
|
rec_ptr. If the match flag in placed one of the previous buffers the function
|
|
first reaches the linked record fields in this buffer.
|
|
|
|
RETURN
|
|
TRUE if the match flag is set on
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::get_match_flag_by_pos(uchar *rec_ptr)
|
|
{
|
|
if (with_match_flag)
|
|
return test(*rec_ptr);
|
|
if (prev_cache)
|
|
{
|
|
uchar *prev_rec_ptr= prev_cache->get_rec_ref(rec_ptr);
|
|
return prev_cache->get_match_flag_by_pos(prev_rec_ptr);
|
|
}
|
|
DBUG_ASSERT(0);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Read all flag and data fields of a record from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_all_record_fields()
|
|
|
|
DESCRIPTION
|
|
The function reads all flag and data fields of a record from the join
|
|
buffer into the corresponding record buffers.
|
|
The fields are read starting from the position 'pos' which is
|
|
supposed to point to the beginning og the first record field.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
(-1) - if there is no more records in the join buffer
|
|
length of the data read from the join buffer - otherwise
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_all_record_fields()
|
|
{
|
|
uchar *init_pos= pos;
|
|
|
|
if (pos > last_rec_pos || !records)
|
|
return NO_MORE_RECORDS_IN_BUFFER;
|
|
|
|
/* First match flag, read null bitmaps and null_row flag for each table */
|
|
read_flag_fields();
|
|
|
|
/* Now read the remaining table fields if needed */
|
|
CACHE_FIELD *copy= field_descr+flag_fields;
|
|
CACHE_FIELD *copy_end= field_descr+fields;
|
|
bool blob_in_rec_buff= blob_data_is_in_rec_buff(init_pos);
|
|
for ( ; copy < copy_end; copy++)
|
|
read_record_field(copy, blob_in_rec_buff);
|
|
|
|
return (uint) (pos-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Read all flag fields of a record from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_flag_fields()
|
|
|
|
DESCRIPTION
|
|
The function reads all flag fields of a record from the join
|
|
buffer into the corresponding record buffers.
|
|
The fields are read starting from the position 'pos'.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
length of the data read from the join buffer
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_flag_fields()
|
|
{
|
|
uchar *init_pos= pos;
|
|
CACHE_FIELD *copy= field_descr;
|
|
CACHE_FIELD *copy_end= copy+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
{
|
|
memcpy(copy->str, pos, copy->length);
|
|
pos+= copy->length;
|
|
}
|
|
return (pos-init_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Read a data record field from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_record_field()
|
|
copy the descriptor of the data field to be read
|
|
blob_in_rec_buff indicates whether this is the field from the record
|
|
whose blob data are in record buffers
|
|
|
|
DESCRIPTION
|
|
The function reads the data field specified by the parameter copy
|
|
from the join buffer into the corresponding record buffer.
|
|
The field is read starting from the position 'pos'.
|
|
The data of blob values is not copied from the join buffer.
|
|
The function increments the value of 'pos' by the length of the
|
|
read data.
|
|
|
|
RETURN
|
|
length of the data read from the join buffer
|
|
*/
|
|
|
|
uint JOIN_CACHE::read_record_field(CACHE_FIELD *copy, bool blob_in_rec_buff)
|
|
{
|
|
uint len;
|
|
/* Do not copy the field if its value is null */
|
|
if (copy->field && copy->field->maybe_null() && copy->field->is_null())
|
|
return 0;
|
|
if (copy->type == CACHE_BLOB)
|
|
{
|
|
Field_blob *blob_field= (Field_blob *) copy->field;
|
|
/*
|
|
Copy the length and the pointer to data but not the blob data
|
|
itself to the record buffer
|
|
*/
|
|
if (blob_in_rec_buff)
|
|
{
|
|
blob_field->set_image(pos, copy->length+sizeof(char*),
|
|
blob_field->charset());
|
|
len= copy->length+sizeof(char*);
|
|
}
|
|
else
|
|
{
|
|
blob_field->set_ptr(pos, pos+copy->length);
|
|
len= copy->length+blob_field->get_length();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (copy->type) {
|
|
case CACHE_VARSTR1:
|
|
/* Copy the significant part of the short varstring field */
|
|
len= (uint) pos[0] + 1;
|
|
memcpy(copy->str, pos, len);
|
|
break;
|
|
case CACHE_VARSTR2:
|
|
/* Copy the significant part of the long varstring field */
|
|
len= uint2korr(pos) + 2;
|
|
memcpy(copy->str, pos, len);
|
|
break;
|
|
case CACHE_STRIPPED:
|
|
/* Pad the value by spaces that has been stripped off */
|
|
len= uint2korr(pos);
|
|
memcpy(copy->str, pos+2, len);
|
|
memset(copy->str+len, ' ', copy->length-len);
|
|
len+= 2;
|
|
break;
|
|
default:
|
|
/* Copy the entire image of the field from the record buffer */
|
|
len= copy->length;
|
|
memcpy(copy->str, pos, len);
|
|
}
|
|
}
|
|
pos+= len;
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
Read a referenced field from the join buffer
|
|
|
|
SYNOPSIS
|
|
read_referenced_field()
|
|
copy pointer to the descriptor of the referenced field
|
|
rec_ptr pointer to the record that may contain this field
|
|
len IN/OUT total length of the record fields
|
|
|
|
DESCRIPTION
|
|
The function checks whether copy points to a data field descriptor
|
|
for this cache object. If it does not then the function returns
|
|
FALSE. Otherwise the function reads the field of the record in
|
|
the join buffer pointed by 'rec_ptr' into the corresponding record
|
|
buffer and returns TRUE.
|
|
If the value of *len is 0 then the function sets it to the total
|
|
length of the record fields including possible trailing offset
|
|
values. Otherwise *len is supposed to provide this value that
|
|
has been obtained earlier.
|
|
|
|
RETURN
|
|
TRUE 'copy' points to a data descriptor of this join cache
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE::read_referenced_field(CACHE_FIELD *copy,
|
|
uchar *rec_ptr,
|
|
uint *len)
|
|
{
|
|
uchar *ptr;
|
|
uint offset;
|
|
if (copy < field_descr || copy >= field_descr+fields)
|
|
return FALSE;
|
|
if (!*len)
|
|
{
|
|
/* Get the total length of the record fields */
|
|
uchar *len_ptr= rec_ptr;
|
|
if (prev_cache)
|
|
len_ptr-= prev_cache->get_size_of_rec_offset();
|
|
*len= get_rec_length(len_ptr-size_of_rec_len);
|
|
}
|
|
|
|
ptr= rec_ptr-(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
|
|
offset= get_fld_offset(ptr+ *len -
|
|
size_of_fld_ofs*
|
|
(referenced_fields+1-copy->referenced_field_no));
|
|
bool is_null= FALSE;
|
|
if (offset == 0 && flag_fields)
|
|
is_null= TRUE;
|
|
if (is_null)
|
|
copy->field->set_null();
|
|
else
|
|
{
|
|
uchar *save_pos= pos;
|
|
copy->field->set_notnull();
|
|
pos= rec_ptr+offset;
|
|
read_record_field(copy, blob_data_is_in_rec_buff(rec_ptr));
|
|
pos= save_pos;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Skip record from join buffer if its match flag is on: default implementation
|
|
|
|
SYNOPSIS
|
|
skip_record_if_match()
|
|
|
|
DESCRIPTION
|
|
This default implementation of the virtual function skip_record_if_match
|
|
skips the next record from the join buffer if its match flag is set on.
|
|
If the record is skipped the value of 'pos' is set to points to the position
|
|
right after the record.
|
|
|
|
RETURN
|
|
TRUE - the match flag is on and the record has been skipped
|
|
FALSE - the match flag is off
|
|
*/
|
|
|
|
bool JOIN_CACHE::skip_record_if_match()
|
|
{
|
|
DBUG_ASSERT(with_length);
|
|
uint offset= size_of_rec_len;
|
|
if (prev_cache)
|
|
offset+= prev_cache->get_size_of_rec_offset();
|
|
/* Check whether the match flag is on */
|
|
if (get_match_flag_by_pos(pos+offset))
|
|
{
|
|
pos+= size_of_rec_len + get_rec_length(pos);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Restore the fields of the last record from the join buffer
|
|
|
|
SYNOPSIS
|
|
restore_last_record()
|
|
|
|
DESCRIPTION
|
|
This function restore the values of the fields of the last record put
|
|
into join buffer in record buffers. The values most probably have been
|
|
overwritten by the field values from other records when they were read
|
|
from the join buffer into the record buffer in order to check pushdown
|
|
predicates.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE::restore_last_record()
|
|
{
|
|
if (records)
|
|
get_record_by_pos(last_rec_pos);
|
|
}
|
|
|
|
|
|
/*
|
|
Join records from the join buffer with records from the next join table
|
|
|
|
SYNOPSIS
|
|
join_records()
|
|
skip_last do not find matches for the last record from the buffer
|
|
|
|
DESCRIPTION
|
|
The functions extends all records from the join buffer by the matched
|
|
records from join_tab. In the case of outer join operation it also
|
|
adds null complementing extensions for the records from the join buffer
|
|
that have no match.
|
|
No extensions are generated for the last record from the buffer if
|
|
skip_last is true.
|
|
|
|
NOTES
|
|
The function must make sure that if linked join buffers are used then
|
|
a join buffer cannot be refilled again until all extensions in the
|
|
buffers chained to this one are generated.
|
|
Currently an outer join operation with several inner tables always uses
|
|
at least two linked buffers with the match join flags placed in the
|
|
first buffer. Any record composed of rows of the inner tables that
|
|
matches a record in this buffer must refer to the position of the
|
|
corresponding match flag.
|
|
|
|
IMPLEMENTATION
|
|
When generating extensions for outer tables of an outer join operation
|
|
first we generate all extensions for those records from the join buffer
|
|
that have matches, after which null complementing extension for all
|
|
unmatched records from the join buffer are generated.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state, except NESTED_LOOP_NO_MORE_ROWS.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::join_records(bool skip_last)
|
|
{
|
|
JOIN_TAB *tab;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool outer_join_first_inner= join_tab->is_first_inner_for_outer_join();
|
|
|
|
if (outer_join_first_inner && !join_tab->first_unmatched)
|
|
join_tab->not_null_compl= TRUE;
|
|
|
|
if (!join_tab->first_unmatched)
|
|
{
|
|
/* Find all records from join_tab that match records from join buffer */
|
|
rc= join_matching_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
if (outer_join_first_inner)
|
|
{
|
|
if (next_cache)
|
|
{
|
|
/*
|
|
Ensure that all matches for outer records from join buffer are to be
|
|
found. Now we ensure that all full records are found for records from
|
|
join buffer. Generally this is an overkill.
|
|
TODO: Ensure that only matches of the inner table records have to be
|
|
found for the records from join buffer.
|
|
*/
|
|
rc= next_cache->join_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
join_tab->not_null_compl= FALSE;
|
|
/* Prepare for generation of null complementing extensions */
|
|
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
|
|
tab->first_unmatched= join_tab->first_inner;
|
|
}
|
|
}
|
|
if (join_tab->first_unmatched)
|
|
{
|
|
if (is_key_access())
|
|
restore_last_record();
|
|
|
|
/*
|
|
Generate all null complementing extensions for the records from
|
|
join buffer that don't have any matching rows from the inner tables.
|
|
*/
|
|
reset(FALSE);
|
|
rc= join_null_complements(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
if(next_cache)
|
|
{
|
|
/*
|
|
When using linked caches we must ensure the records in the next caches
|
|
that refer to the records in the join buffer are fully extended.
|
|
Otherwise we could have references to the records that have been
|
|
already erased from the join buffer and replaced for new records.
|
|
*/
|
|
rc= next_cache->join_records(skip_last);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
if (outer_join_first_inner)
|
|
{
|
|
/*
|
|
All null complemented rows have been already generated for all
|
|
outer records from join buffer. Restore the state of the
|
|
first_unmatched values to 0 to avoid another null complementing.
|
|
*/
|
|
for (tab= join_tab->first_inner; tab <= join_tab->last_inner; tab++)
|
|
tab->first_unmatched= 0;
|
|
}
|
|
|
|
if (skip_last)
|
|
{
|
|
DBUG_ASSERT(!is_key_access());
|
|
/*
|
|
Restore the last record from the join buffer to generate
|
|
all extentions for it.
|
|
*/
|
|
get_record();
|
|
}
|
|
|
|
finish:
|
|
restore_last_record();
|
|
reset(TRUE);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Using BNL find matches from the next table for records from the join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
The function retrieves all rows of the join_tab table and check whether
|
|
they match partial join records from the join buffer. If a match is found
|
|
the function will call the sub_select function trying to look for matches
|
|
for the remaining join operations.
|
|
This function currently is called only from the function join_records.
|
|
If the value of skip_last is true the function writes the partial join
|
|
record from the record buffer into the join buffer to save its value for
|
|
the future processing in the caller function.
|
|
|
|
NOTES
|
|
The function produces all matching extensions for the records in the
|
|
join buffer following the path of the Blocked Nested Loops algorithm.
|
|
When an outer join operation is performed all unmatched records from
|
|
the join buffer must be extended by null values. The function
|
|
'join_null_complements' serves this purpose.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE_BNL::join_matching_records(bool skip_last)
|
|
{
|
|
uint cnt;
|
|
int error;
|
|
JOIN_TAB *tab;
|
|
READ_RECORD *info;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
SQL_SELECT *select= join_tab->cache_select;
|
|
|
|
join_tab->table->null_row= 0;
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
/*
|
|
When joining we read records from the join buffer back into record buffers.
|
|
If matches for the last partial join record are found through a call to
|
|
the sub_select function then this partial join record must be saved in the
|
|
join buffer in order to be restored just before the sub_select call.
|
|
*/
|
|
if (skip_last)
|
|
put_record();
|
|
|
|
if (join_tab->use_quick == 2 && join_tab->select->quick)
|
|
{
|
|
/* A dynamic range access was used last. Clean up after it */
|
|
delete join_tab->select->quick;
|
|
join_tab->select->quick= 0;
|
|
}
|
|
|
|
//for (tab= join->join_tab; tab != join_tab ; tab++)
|
|
for (tab= start_tab ; tab != join_tab ; tab= next_linear_tab(join, tab, TRUE))
|
|
{
|
|
tab->status= tab->table->status;
|
|
tab->table->status= 0;
|
|
}
|
|
|
|
/* Start retrieving all records of the joined table */
|
|
|
|
if ((rc= join_tab_execution_startup(join_tab)) < 0)
|
|
goto finish;
|
|
|
|
if ((error= join_init_read_record(join_tab)))
|
|
{
|
|
rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
|
|
goto finish;
|
|
}
|
|
|
|
info= &join_tab->read_record;
|
|
do
|
|
{
|
|
if (join_tab->keep_current_rowid)
|
|
join_tab->table->file->position(join_tab->table->record[0]);
|
|
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
int err= 0;
|
|
|
|
if (rc == NESTED_LOOP_OK)
|
|
update_virtual_fields(join->thd, join_tab->table);
|
|
|
|
/*
|
|
Do not look for matches if the last read record of the joined table
|
|
does not meet the conditions that have been pushed to this table
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!select || (err= select->skip_record(join->thd)) != 0))
|
|
{
|
|
if (err < 0)
|
|
return NESTED_LOOP_ERROR;
|
|
rc= NESTED_LOOP_OK;
|
|
|
|
/* Prepare to read records from the join buffer */
|
|
reset(FALSE);
|
|
|
|
/* Read each record from the join buffer and look for matches */
|
|
for (cnt= records - test(skip_last) ; cnt; cnt--)
|
|
{
|
|
/*
|
|
If only the first match is needed and it has been already found for
|
|
the next record read from the join buffer then the record is skipped.
|
|
*/
|
|
if (!check_only_first_match || !skip_record_if_match())
|
|
{
|
|
get_record();
|
|
rc= generate_full_extensions(get_curr_rec());
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
}
|
|
} while (!(error= info->read_record(info)));
|
|
|
|
if (error > 0) // Fatal error
|
|
rc= NESTED_LOOP_ERROR;
|
|
finish:
|
|
//for (tab= join->join_tab; tab != join_tab ; tab++)
|
|
for (tab= start_tab ; tab != join_tab ; tab= next_linear_tab(join, tab, TRUE))
|
|
tab->table->status= tab->status;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Set match flag for a record in join buffer if it has not been set yet
|
|
|
|
SYNOPSIS
|
|
set_match_flag_if_none()
|
|
first_inner the join table to which this flag is attached to
|
|
rec_ptr pointer to the record in the join buffer
|
|
|
|
DESCRIPTION
|
|
If the records of the table are accumulated in a join buffer the function
|
|
sets the match flag for the record in the buffer that is referred to by
|
|
the record from this cache positioned at 'rec_ptr'.
|
|
The function also sets the match flag 'found' of the table first inner
|
|
if it has not been set before.
|
|
|
|
NOTES
|
|
The function assumes that the match flag for any record in any cache
|
|
is placed in the first byte occupied by the record fields.
|
|
|
|
RETURN
|
|
TRUE the match flag is set by this call for the first time
|
|
FALSE the match flag has been set before this call
|
|
*/
|
|
|
|
bool JOIN_CACHE::set_match_flag_if_none(JOIN_TAB *first_inner,
|
|
uchar *rec_ptr)
|
|
{
|
|
if (!first_inner->cache)
|
|
{
|
|
/*
|
|
Records of the first inner table to which the flag is attached to
|
|
are not accumulated in a join buffer.
|
|
*/
|
|
if (first_inner->found)
|
|
return FALSE;
|
|
else
|
|
{
|
|
first_inner->found= 1;
|
|
return TRUE;
|
|
}
|
|
}
|
|
JOIN_CACHE *cache= this;
|
|
while (cache->join_tab != first_inner)
|
|
{
|
|
cache= cache->prev_cache;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
}
|
|
if (rec_ptr[0] == 0)
|
|
{
|
|
rec_ptr[0]= 1;
|
|
first_inner->found= 1;
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Generate all full extensions for a partial join record in the buffer
|
|
|
|
SYNOPSIS
|
|
generate_full_extensions()
|
|
rec_ptr pointer to the record from join buffer to generate extensions
|
|
|
|
DESCRIPTION
|
|
The function first checks whether the current record of 'join_tab' matches
|
|
the partial join record from join buffer located at 'rec_ptr'. If it is the
|
|
case the function calls the join_tab->next_select method to generate
|
|
all full extension for this partial join match.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::generate_full_extensions(uchar *rec_ptr)
|
|
{
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
|
|
/*
|
|
Check whether the extended partial join record meets
|
|
the pushdown conditions.
|
|
*/
|
|
if (check_match(rec_ptr))
|
|
{
|
|
int res= 0;
|
|
|
|
if (!join_tab->check_weed_out_table ||
|
|
!(res= do_sj_dups_weedout(join->thd, join_tab->check_weed_out_table)))
|
|
{
|
|
set_curr_rec_link(rec_ptr);
|
|
rc= (join_tab->next_select)(join, join_tab+1, 0);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
{
|
|
reset(TRUE);
|
|
return rc;
|
|
}
|
|
}
|
|
if (res == -1)
|
|
{
|
|
rc= NESTED_LOOP_ERROR;
|
|
return rc;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Check matching to a partial join record from the join buffer
|
|
|
|
SYNOPSIS
|
|
check_match()
|
|
rec_ptr pointer to the record from join buffer to check matching to
|
|
|
|
DESCRIPTION
|
|
The function checks whether the current record of 'join_tab' matches
|
|
the partial join record from join buffer located at 'rec_ptr'. If this is
|
|
the case and 'join_tab' is the last inner table of a semi-join or an outer
|
|
join the function turns on the match flag for the 'rec_ptr' record unless
|
|
it has been already set.
|
|
|
|
NOTES
|
|
Setting the match flag on can trigger re-evaluation of pushdown conditions
|
|
for the record when join_tab is the last inner table of an outer join.
|
|
|
|
RETURN
|
|
TRUE there is a match
|
|
FALSE there is no match
|
|
*/
|
|
|
|
inline bool JOIN_CACHE::check_match(uchar *rec_ptr)
|
|
{
|
|
/* Check whether pushdown conditions are satisfied */
|
|
if (join_tab->select && join_tab->select->skip_record(join->thd) < 1)
|
|
return FALSE;
|
|
|
|
if (!join_tab->is_last_inner_table())
|
|
return TRUE;
|
|
|
|
/*
|
|
This is the last inner table of an outer join,
|
|
and maybe of other embedding outer joins, or
|
|
this is the last inner table of a semi-join.
|
|
*/
|
|
JOIN_TAB *first_inner= join_tab->get_first_inner_table();
|
|
do
|
|
{
|
|
set_match_flag_if_none(first_inner, rec_ptr);
|
|
if (first_inner->check_only_first_match() &&
|
|
!join_tab->first_inner)
|
|
return TRUE;
|
|
/*
|
|
This is the first match for the outer table row.
|
|
The function set_match_flag_if_none has turned the flag
|
|
first_inner->found on. The pushdown predicates for
|
|
inner tables must be re-evaluated with this flag on.
|
|
Note that, if first_inner is the first inner table
|
|
of a semi-join, but is not an inner table of an outer join
|
|
such that 'not exists' optimization can be applied to it,
|
|
the re-evaluation of the pushdown predicates is not needed.
|
|
*/
|
|
for (JOIN_TAB *tab= first_inner; tab <= join_tab; tab++)
|
|
{
|
|
if (tab->select && tab->select->skip_record(join->thd) < 1)
|
|
return FALSE;
|
|
}
|
|
}
|
|
while ((first_inner= first_inner->first_upper) &&
|
|
first_inner->last_inner == join_tab);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Add null complements for unmatched outer records from join buffer
|
|
|
|
SYNOPSIS
|
|
join_null_complements()
|
|
skip_last do not add null complements for the last record
|
|
|
|
DESCRIPTION
|
|
This function is called only for inner tables of outer joins.
|
|
The function retrieves all rows from the join buffer and adds null
|
|
complements for those of them that do not have matches for outer
|
|
table records.
|
|
If the 'join_tab' is the last inner table of the embedding outer
|
|
join and the null complemented record satisfies the outer join
|
|
condition then the the corresponding match flag is turned on
|
|
unless it has been set earlier. This setting may trigger
|
|
re-evaluation of pushdown conditions for the record.
|
|
|
|
NOTES
|
|
The same implementation of the virtual method join_null_complements
|
|
is used for JOIN_CACHE_BNL and JOIN_CACHE_BKA.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state.
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE::join_null_complements(bool skip_last)
|
|
{
|
|
uint cnt;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool is_first_inner= join_tab == join_tab->first_unmatched;
|
|
bool is_last_inner= join_tab == join_tab->first_unmatched->last_inner;
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
cnt= records - (is_key_access() ? 0 : test(skip_last));
|
|
|
|
/* This function may be called only for inner tables of outer joins */
|
|
DBUG_ASSERT(join_tab->first_inner);
|
|
|
|
for ( ; cnt; cnt--)
|
|
{
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
/* Just skip the whole record if a match for it has been already found */
|
|
if (!is_first_inner || !skip_record_if_match())
|
|
{
|
|
get_record();
|
|
/* The outer row is complemented by nulls for each inner table */
|
|
restore_record(join_tab->table, s->default_values);
|
|
mark_as_null_row(join_tab->table);
|
|
/* Check all pushdown conditions attached to the inner table */
|
|
join_tab->first_unmatched->found= 1;
|
|
if (join_tab->select && join_tab->select->skip_record(join->thd) < 1)
|
|
continue;
|
|
if (is_last_inner)
|
|
{
|
|
JOIN_TAB *first_upper= join_tab->first_unmatched->first_upper;
|
|
while (first_upper && first_upper->last_inner == join_tab)
|
|
{
|
|
set_match_flag_if_none(first_upper, get_curr_rec());
|
|
for (JOIN_TAB* tab= first_upper; tab <= join_tab; tab++)
|
|
{
|
|
if (tab->select && tab->select->skip_record(join->thd) < 1)
|
|
goto next;
|
|
}
|
|
first_upper= first_upper->first_upper;
|
|
}
|
|
}
|
|
/* Find all matches for the remaining join tables */
|
|
rc= (*join_tab->next_select)(join, join_tab+1, 0);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
{
|
|
reset(TRUE);
|
|
goto finish;
|
|
}
|
|
}
|
|
next:
|
|
;
|
|
}
|
|
|
|
finish:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize retrieval of range sequence for BKA algorithm
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_init()
|
|
init_params pointer to the BKA join cache object
|
|
n_ranges the number of ranges obtained
|
|
flags combination of HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
|
|
|
|
DESCRIPTION
|
|
The function interprets init_param as a pointer to a JOIN_CACHE_BKA
|
|
object. The function prepares for an iteration over the join keys
|
|
built for all records from the cache join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
init_param value that is to be used as a parameter of bka_range_seq_next()
|
|
*/
|
|
|
|
static
|
|
range_seq_t bka_range_seq_init(void *init_param, uint n_ranges, uint flags)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_init");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) init_param;
|
|
cache->reset(0);
|
|
DBUG_RETURN((range_seq_t) init_param);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key over the next record from the join buffer used by BKA
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_next()
|
|
seq the value returned by bka_range_seq_init
|
|
range OUT reference to the next range
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to a JOIN_CACHE_BKA
|
|
object. The function returns a pointer to the range descriptor
|
|
for the key built over the next record from the join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
0 ok, the range structure filled with info about the next key
|
|
1 no more ranges
|
|
*/
|
|
|
|
static
|
|
uint bka_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_next");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
TABLE_REF *ref= &cache->join_tab->ref;
|
|
key_range *start_key= &range->start_key;
|
|
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
|
|
{
|
|
start_key->keypart_map= (1 << ref->key_parts) - 1;
|
|
start_key->flag= HA_READ_KEY_EXACT;
|
|
range->end_key= *start_key;
|
|
range->end_key.flag= HA_READ_AFTER_KEY;
|
|
range->ptr= (char *) cache->get_curr_rec();
|
|
range->range_flag= EQ_RANGE;
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range_info orders to skip the next record from BKA buffer
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_skip_record()
|
|
seq value returned by bka_range_seq_init()
|
|
range_info information about the next range
|
|
rowid [NOT USED] rowid of the record to be checked
|
|
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to a JOIN_CACHE_BKA object.
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns TRUE if the record with this range_info
|
|
is to be filtered out from the stream of records returned by
|
|
multi_range_read_next().
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
1 record with this range_info is to be filtered out from the stream
|
|
of records returned by multi_range_read_next()
|
|
0 the record is to be left in the stream
|
|
*/
|
|
|
|
static
|
|
bool bka_range_seq_skip_record(range_seq_t rseq, char *range_info, uchar *rowid)
|
|
{
|
|
DBUG_ENTER("bka_range_seq_skip_record");
|
|
JOIN_CACHE_BKA *cache= (JOIN_CACHE_BKA *) rseq;
|
|
bool res= cache->get_match_flag_by_pos((uchar *) range_info);
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
/*
|
|
Using BKA find matches from the next table for records from the join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
This function can be used only when the table join_tab can be accessed
|
|
by keys built over the fields of previous join tables.
|
|
The function retrieves all partial join records from the join buffer and
|
|
for each of them builds the key value to access join_tab, performs index
|
|
look-up with this key and selects matching records yielded by this look-up
|
|
If a match is found the function will call the sub_select function trying
|
|
to look for matches for the remaining join operations.
|
|
This function currently is called only from the function join_records.
|
|
It's assumed that this function is always called with the skip_last
|
|
parameter equal to false.
|
|
|
|
NOTES
|
|
The function produces all matching extensions for the records in the
|
|
join buffer following the path of the Batched Key Access algorithm.
|
|
When an outer join operation is performed all unmatched records from
|
|
the join buffer must be extended by null values. The function
|
|
join_null_complements serves this purpose.
|
|
The Batched Key Access algorithm assumes that key accesses are batched.
|
|
In other words it assumes that, first, either keys themselves or the
|
|
corresponding rowids (primary keys) are accumulated in a buffer, then
|
|
data rows from join_tab are fetched for all of them. When a row is
|
|
fetched it is always returned with a reference to the key by which it
|
|
has been accessed.
|
|
When key values are batched we can save on the number of the server
|
|
requests for index lookups. For the remote engines, like NDB cluster, it
|
|
essentially reduces the number of round trips between the server and
|
|
the engine when performing a join operation.
|
|
When the rowids for the keys are batched we can optimize the order
|
|
in what we fetch the data for this rowids. The performance benefits of
|
|
this optimization can be significant for such engines as MyISAM, InnoDB.
|
|
What is exactly batched are hidden behind implementations of
|
|
MRR handler interface that is supposed to be appropriately chosen
|
|
for each engine. If for a engine no specific implementation of the MRR
|
|
interface is supllied then the default implementation is used. This
|
|
implementation actually follows the path of Nested Loops Join algorithm.
|
|
In this case BKA join surely will demonstrate a worse performance than
|
|
NL join.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state JOIN_CACHE_BKA::join_matching_records(bool skip_last)
|
|
{
|
|
int error;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
uchar *rec_ptr= 0;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
|
|
/* Set functions to iterate over keys in the join buffer */
|
|
|
|
RANGE_SEQ_IF seq_funcs= { bka_range_seq_init,
|
|
bka_range_seq_next,
|
|
check_only_first_match ?
|
|
bka_range_seq_skip_record : 0,
|
|
join_tab->cache_idx_cond ?
|
|
bka_skip_index_tuple : 0 };
|
|
|
|
/* The value of skip_last must be always FALSE when this function is called */
|
|
DBUG_ASSERT(!skip_last);
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
rc= init_join_matching_records(&seq_funcs, records);
|
|
if (rc != NESTED_LOOP_OK)
|
|
goto finish;
|
|
|
|
while (!(error= file->multi_range_read_next((char **) &rec_ptr)))
|
|
{
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
if (join_tab->keep_current_rowid)
|
|
join_tab->table->file->position(join_tab->table->record[0]);
|
|
/*
|
|
If only the first match is needed and it has been already found
|
|
for the associated partial join record then the returned candidate
|
|
is discarded.
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!check_only_first_match || !get_match_flag_by_pos(rec_ptr)))
|
|
{
|
|
get_record_by_pos(rec_ptr);
|
|
update_virtual_fields(join->thd, join_tab->table);
|
|
rc= generate_full_extensions(rec_ptr);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
if (error > 0 && error != HA_ERR_END_OF_FILE)
|
|
return NESTED_LOOP_ERROR;
|
|
finish:
|
|
return end_join_matching_records(rc);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Prepare to search for records that match records from the join buffer
|
|
|
|
SYNOPSIS
|
|
init_join_matching_records()
|
|
seq_funcs structure of range sequence interface
|
|
ranges number of keys/ranges in the sequence
|
|
|
|
DESCRIPTION
|
|
This function calls the multi_range_read_init function to set up
|
|
the BKA process of generating the keys from the records in the join
|
|
buffer and looking for matching records from the table to be joined.
|
|
The function passes as a parameter a structure of functions that
|
|
implement the range sequence interface. This interface is used to
|
|
enumerate all generated keys and optionally to filter the matching
|
|
records returned by the multi_range_read_next calls from the
|
|
intended invocation of the join_matching_records method. The
|
|
multi_range_read_init function also receives the parameters for
|
|
MRR buffer to be used and flags specifying the mode in which
|
|
this buffer will be functioning.
|
|
The number of keys in the sequence expected by multi_range_read_init
|
|
is passed through the parameter ranges.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA::init_join_matching_records(RANGE_SEQ_IF *seq_funcs, uint ranges)
|
|
{
|
|
int error;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
|
|
join_tab->table->null_row= 0;
|
|
|
|
|
|
/* Dynamic range access is never used with BKA */
|
|
DBUG_ASSERT(join_tab->use_quick != 2);
|
|
|
|
for (JOIN_TAB *tab =join->join_tab; tab != join_tab ; tab++)
|
|
{
|
|
tab->status= tab->table->status;
|
|
tab->table->status= 0;
|
|
}
|
|
|
|
init_mrr_buff();
|
|
|
|
/*
|
|
Prepare to iterate over keys from the join buffer and to get
|
|
matching candidates obtained with MMR handler functions.
|
|
*/
|
|
if (!file->inited)
|
|
file->ha_index_init(join_tab->ref.key, 1);
|
|
if ((error= file->multi_range_read_init(seq_funcs, (void*) this, ranges,
|
|
mrr_mode, &mrr_buff)))
|
|
rc= error < 0 ? NESTED_LOOP_NO_MORE_ROWS: NESTED_LOOP_ERROR;
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Finish searching for records that match records from the join buffer
|
|
|
|
SYNOPSIS
|
|
end_join_matching_records()
|
|
rc return code passed by the join_matching_records function
|
|
|
|
DESCRIPTION
|
|
This function perform final actions on searching for all matches for
|
|
the records from the join buffer and building all full join extensions
|
|
of the records with these matches.
|
|
|
|
RETURN
|
|
return code rc passed to the function as a parameter
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA::end_join_matching_records(enum_nested_loop_state rc)
|
|
{
|
|
for (JOIN_TAB *tab=join->join_tab; tab != join_tab ; tab++)
|
|
tab->table->status= tab->status;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key built over the next record from BKA join buffer
|
|
|
|
SYNOPSIS
|
|
get_next_key()
|
|
key pointer to the buffer where the key value is to be placed
|
|
|
|
DESCRIPTION
|
|
The function reads key fields from the current record in the join buffer.
|
|
and builds the key value out of these fields that will be used to access
|
|
the 'join_tab' table. Some of key fields may belong to previous caches.
|
|
They are accessed via record references to the record parts stored in the
|
|
previous join buffers. The other key fields always are placed right after
|
|
the flag fields of the record.
|
|
If the key is embedded, which means that its value can be read directly
|
|
from the join buffer, then *key is set to the beginning of the key in
|
|
this buffer. Otherwise the key is built in the join_tab->ref->key_buff.
|
|
The function returns the length of the key if it succeeds ro read it.
|
|
If is assumed that the functions starts reading at the position of
|
|
the record length which is provided for each records in a BKA cache.
|
|
After the key is built the 'pos' value points to the first position after
|
|
the current record.
|
|
The function returns 0 if the initial position is after the beginning
|
|
of the record fields for last record from the join buffer.
|
|
|
|
RETURN
|
|
length of the key value - if the starting value of 'pos' points to
|
|
the position before the fields for the last record,
|
|
0 - otherwise.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA::get_next_key(uchar ** key)
|
|
{
|
|
uint len;
|
|
uint32 rec_len;
|
|
uchar *init_pos;
|
|
JOIN_CACHE *cache;
|
|
|
|
if (pos > last_rec_pos || !records)
|
|
return 0;
|
|
|
|
/* Any record in a BKA cache is prepended with its length */
|
|
DBUG_ASSERT(with_length);
|
|
|
|
/* Read the length of the record */
|
|
rec_len= get_rec_length(pos);
|
|
pos+= size_of_rec_len;
|
|
init_pos= pos;
|
|
|
|
/* Read a reference to the previous cache if any */
|
|
if (prev_cache)
|
|
pos+= prev_cache->get_size_of_rec_offset();
|
|
|
|
curr_rec_pos= pos;
|
|
|
|
/* Read all flag fields of the record */
|
|
read_flag_fields();
|
|
|
|
if (use_emb_key)
|
|
{
|
|
/* An embedded key is taken directly from the join buffer */
|
|
*key= pos;
|
|
len= emb_key_length;
|
|
}
|
|
else
|
|
{
|
|
/* Read key arguments from previous caches if there are any such fields */
|
|
if (external_key_arg_fields)
|
|
{
|
|
uchar *rec_ptr= curr_rec_pos;
|
|
uint key_arg_count= external_key_arg_fields;
|
|
CACHE_FIELD **copy_ptr= blob_ptr-key_arg_count;
|
|
for (cache= prev_cache; key_arg_count; cache= cache->prev_cache)
|
|
{
|
|
uint len= 0;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
while (!cache->referenced_fields)
|
|
{
|
|
cache= cache->prev_cache;
|
|
DBUG_ASSERT(cache);
|
|
rec_ptr= cache->get_rec_ref(rec_ptr);
|
|
}
|
|
while (key_arg_count &&
|
|
cache->read_referenced_field(*copy_ptr, rec_ptr, &len))
|
|
{
|
|
copy_ptr++;
|
|
--key_arg_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Read the other key arguments from the current record. The fields for
|
|
these arguments are always first in the sequence of the record's fields.
|
|
*/
|
|
CACHE_FIELD *copy= field_descr+flag_fields;
|
|
CACHE_FIELD *copy_end= copy+local_key_arg_fields;
|
|
bool blob_in_rec_buff= blob_data_is_in_rec_buff(curr_rec_pos);
|
|
for ( ; copy < copy_end; copy++)
|
|
read_record_field(copy, blob_in_rec_buff);
|
|
|
|
/* Build the key over the fields read into the record buffers */
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
cp_buffer_from_ref(join->thd, join_tab->table, ref);
|
|
*key= ref->key_buff;
|
|
len= ref->key_length;
|
|
}
|
|
|
|
pos= init_pos+rec_len;
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a BKA_UNIQUE cache
|
|
|
|
SYNOPSIS
|
|
init()
|
|
|
|
DESCRIPTION
|
|
The function initializes the cache structure. It supposed to be called
|
|
right after a constructor for the JOIN_CACHE_BKA_UNIQUE.
|
|
The function allocates memory for the join buffer and for descriptors of
|
|
the record fields stored in the buffer.
|
|
The function also estimates the number of hash table entries in the hash
|
|
table to be used and initializes this hash table.
|
|
|
|
NOTES
|
|
The code of this function should have been included into the constructor
|
|
code itself. However the new operator for the class JOIN_CACHE_BKA_UNIQUE
|
|
would never fail while memory allocation for the join buffer is not
|
|
absolutely unlikely to fail. That's why this memory allocation has to be
|
|
placed in a separate function that is called in a couple with a cache
|
|
constructor.
|
|
It is quite natural to put almost all other constructor actions into
|
|
this function.
|
|
|
|
RETURN
|
|
0 initialization with buffer allocations has been succeeded
|
|
1 otherwise
|
|
*/
|
|
|
|
int JOIN_CACHE_BKA_UNIQUE::init()
|
|
{
|
|
int rc= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
|
|
DBUG_ENTER("JOIN_CACHE_BKA_UNIQUE::init");
|
|
|
|
hash_table= 0;
|
|
key_entries= 0;
|
|
|
|
if ((rc= JOIN_CACHE_BKA::init()))
|
|
DBUG_RETURN (rc);
|
|
|
|
key_length= ref->key_length;
|
|
|
|
/* Take into account a reference to the next record in the key chain */
|
|
pack_length+= get_size_of_rec_offset();
|
|
|
|
/* Calculate the minimal possible value of size_of_key_ofs greater than 1 */
|
|
uint max_size_of_key_ofs= max(2, get_size_of_rec_offset());
|
|
for (size_of_key_ofs= 2;
|
|
size_of_key_ofs <= max_size_of_key_ofs;
|
|
size_of_key_ofs+= 2)
|
|
{
|
|
key_entry_length= get_size_of_rec_offset() + // key chain header
|
|
size_of_key_ofs + // reference to the next key
|
|
(use_emb_key ? get_size_of_rec_offset() : key_length);
|
|
|
|
uint n= buff_size / (pack_length+key_entry_length+size_of_key_ofs);
|
|
|
|
/*
|
|
TODO: Make a better estimate for this upper bound of
|
|
the number of records in in the join buffer.
|
|
*/
|
|
uint max_n= buff_size / (pack_length-length+
|
|
key_entry_length+size_of_key_ofs);
|
|
|
|
hash_entries= (uint) (n / 0.7);
|
|
|
|
if (offset_size(max_n*key_entry_length) <=
|
|
size_of_key_ofs)
|
|
break;
|
|
}
|
|
|
|
/* Initialize the hash table */
|
|
hash_table= buff + (buff_size-hash_entries*size_of_key_ofs);
|
|
cleanup_hash_table();
|
|
curr_key_entry= hash_table;
|
|
|
|
pack_length+= key_entry_length;
|
|
pack_length_with_blob_ptrs+= get_size_of_rec_offset() + key_entry_length;
|
|
|
|
rec_fields_offset= get_size_of_rec_offset()+get_size_of_rec_length()+
|
|
(prev_cache ? prev_cache->get_size_of_rec_offset() : 0);
|
|
|
|
data_fields_offset= 0;
|
|
if (use_emb_key)
|
|
{
|
|
CACHE_FIELD *copy= field_descr;
|
|
CACHE_FIELD *copy_end= copy+flag_fields;
|
|
for ( ; copy < copy_end; copy++)
|
|
data_fields_offset+= copy->length;
|
|
}
|
|
|
|
DBUG_RETURN(rc);
|
|
}
|
|
|
|
|
|
/*
|
|
Reset the JOIN_CACHE_BKA_UNIQUE buffer for reading/writing
|
|
|
|
SYNOPSIS
|
|
reset()
|
|
for_writing if it's TRUE the function reset the buffer for writing
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function reset() resets the join buffer
|
|
of the JOIN_CACHE_BKA_UNIQUE class for reading or writing.
|
|
Additionally to what the default implementation does this function
|
|
cleans up the hash table allocated within the buffer.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE_BKA_UNIQUE::reset(bool for_writing)
|
|
{
|
|
this->JOIN_CACHE::reset(for_writing);
|
|
if (for_writing && hash_table)
|
|
cleanup_hash_table();
|
|
curr_key_entry= hash_table;
|
|
}
|
|
|
|
/*
|
|
Add a record into the JOIN_CACHE_BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
put_record()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function put_record writes the next
|
|
matching record into the join buffer of the JOIN_CACHE_BKA_UNIQUE class.
|
|
Additionally to what the default implementation does this function
|
|
performs the following.
|
|
It extracts from the record the key value used in lookups for matching
|
|
records and searches for this key in the hash tables from the join cache.
|
|
If it finds the key in the hash table it joins the record to the chain
|
|
of records with this key. If the key is not found in the hash table the
|
|
key is placed into it and a chain containing only the newly added record
|
|
is attached to the key entry. The key value is either placed in the hash
|
|
element added for the key or, if the use_emb_key flag is set, remains in
|
|
the record from the partial join.
|
|
|
|
RETURN
|
|
TRUE if it has been decided that it should be the last record
|
|
in the join buffer,
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::put_record()
|
|
{
|
|
bool is_full;
|
|
uchar *key;
|
|
uint key_len= key_length;
|
|
uchar *key_ref_ptr;
|
|
uchar *link= 0;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
uchar *next_ref_ptr= pos;
|
|
|
|
pos+= get_size_of_rec_offset();
|
|
/* Write the record into the join buffer */
|
|
if (prev_cache)
|
|
link= prev_cache->get_curr_rec_link();
|
|
write_record_data(link, &is_full);
|
|
|
|
if (use_emb_key)
|
|
key= get_curr_emb_key();
|
|
else
|
|
{
|
|
/* Build the key over the fields read into the record buffers */
|
|
cp_buffer_from_ref(join->thd, join_tab->table, ref);
|
|
key= ref->key_buff;
|
|
}
|
|
|
|
/* Look for the key in the hash table */
|
|
if (key_search(key, key_len, &key_ref_ptr))
|
|
{
|
|
uchar *last_next_ref_ptr;
|
|
/*
|
|
The key is found in the hash table.
|
|
Add the record to the circular list of the records attached to this key.
|
|
Below 'rec' is the record to be added into the record chain for the found
|
|
key, 'key_ref' points to a flatten representation of the st_key_entry
|
|
structure that contains the key and the head of the record chain.
|
|
*/
|
|
last_next_ref_ptr= get_next_rec_ref(key_ref_ptr+get_size_of_key_offset());
|
|
/* rec->next_rec= key_entry->last_rec->next_rec */
|
|
memcpy(next_ref_ptr, last_next_ref_ptr, get_size_of_rec_offset());
|
|
/* key_entry->last_rec->next_rec= rec */
|
|
store_next_rec_ref(last_next_ref_ptr, next_ref_ptr);
|
|
/* key_entry->last_rec= rec */
|
|
store_next_rec_ref(key_ref_ptr+get_size_of_key_offset(), next_ref_ptr);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
The key is not found in the hash table.
|
|
Put the key into the join buffer linking it with the keys for the
|
|
corresponding hash entry. Create a circular list with one element
|
|
referencing the record and attach the list to the key in the buffer.
|
|
*/
|
|
uchar *cp= last_key_entry;
|
|
cp-= get_size_of_rec_offset()+get_size_of_key_offset();
|
|
store_next_key_ref(key_ref_ptr, cp);
|
|
store_null_key_ref(cp);
|
|
store_next_rec_ref(next_ref_ptr, next_ref_ptr);
|
|
store_next_rec_ref(cp+get_size_of_key_offset(), next_ref_ptr);
|
|
if (use_emb_key)
|
|
{
|
|
cp-= get_size_of_rec_offset();
|
|
store_emb_key_ref(cp, key);
|
|
}
|
|
else
|
|
{
|
|
cp-= key_len;
|
|
memcpy(cp, key, key_len);
|
|
}
|
|
last_key_entry= cp;
|
|
/* Increment the counter of key_entries in the hash table */
|
|
key_entries++;
|
|
}
|
|
return is_full;
|
|
}
|
|
|
|
|
|
/*
|
|
Read the next record from the JOIN_CACHE_BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
get_record()
|
|
|
|
DESCRIPTION
|
|
Additionally to what the default implementation of the virtual
|
|
function get_record does this implementation skips the link element
|
|
used to connect the records with the same key into a chain.
|
|
|
|
RETURN
|
|
TRUE - there are no more records to read from the join buffer
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::get_record()
|
|
{
|
|
pos+= get_size_of_rec_offset();
|
|
return this->JOIN_CACHE::get_record();
|
|
}
|
|
|
|
|
|
/*
|
|
Skip record from the JOIN_CACHE_BKA_UNIQUE join buffer if its match flag is on
|
|
|
|
SYNOPSIS
|
|
skip_record_if_match()
|
|
|
|
DESCRIPTION
|
|
This implementation of the virtual function skip_record_if_match does
|
|
the same as the default implementation does, but it takes into account
|
|
the link element used to connect the records with the same key into a chain.
|
|
|
|
RETURN
|
|
TRUE - the match flag is on and the record has been skipped
|
|
FALSE - the match flag is off
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::skip_record_if_match()
|
|
{
|
|
uchar *save_pos= pos;
|
|
pos+= get_size_of_rec_offset();
|
|
if (!this->JOIN_CACHE::skip_record_if_match())
|
|
{
|
|
pos= save_pos;
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Search for a key in the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
key_search()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
key_ref_ptr OUT position of the reference to the next key from
|
|
the hash element for the found key , or
|
|
a position where the reference to the the hash
|
|
element for the key is to be added in the
|
|
case when the key has not been found
|
|
|
|
DESCRIPTION
|
|
The function looks for a key in the hash table of the join buffer.
|
|
If the key is found the functionreturns the position of the reference
|
|
to the next key from to the hash element for the given key.
|
|
Otherwise the function returns the position where the reference to the
|
|
newly created hash element for the given key is to be added.
|
|
|
|
RETURN
|
|
TRUE - the key is found in the hash table
|
|
FALSE - otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::key_search(uchar *key, uint key_len,
|
|
uchar **key_ref_ptr)
|
|
{
|
|
bool is_found= FALSE;
|
|
uint idx= get_hash_idx(key, key_length);
|
|
uchar *ref_ptr= hash_table+size_of_key_ofs*idx;
|
|
while (!is_null_key_ref(ref_ptr))
|
|
{
|
|
uchar *next_key;
|
|
ref_ptr= get_next_key_ref(ref_ptr);
|
|
next_key= use_emb_key ? get_emb_key(ref_ptr-get_size_of_rec_offset()) :
|
|
ref_ptr-key_length;
|
|
|
|
if (memcmp(next_key, key, key_len) == 0)
|
|
{
|
|
is_found= TRUE;
|
|
break;
|
|
}
|
|
}
|
|
*key_ref_ptr= ref_ptr;
|
|
return is_found;
|
|
}
|
|
|
|
|
|
/*
|
|
Calclulate hash value for a key in the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
get_hash_idx()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
|
|
DESCRIPTION
|
|
The function calculates an index of the hash entry in the hash table
|
|
of the join buffer for the given key
|
|
|
|
RETURN
|
|
the calculated index of the hash entry for the given key.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA_UNIQUE::get_hash_idx(uchar* key, uint key_len)
|
|
{
|
|
ulong nr= 1;
|
|
ulong nr2= 4;
|
|
uchar *pos= key;
|
|
uchar *end= key+key_len;
|
|
for (; pos < end ; pos++)
|
|
{
|
|
nr^= (ulong) ((((uint) nr & 63)+nr2)*((uint) *pos))+ (nr << 8);
|
|
nr2+= 3;
|
|
}
|
|
return nr % hash_entries;
|
|
}
|
|
|
|
|
|
/*
|
|
Clean up the hash table of the join buffer
|
|
|
|
SYNOPSIS
|
|
cleanup_hash_table()
|
|
key pointer to the key value
|
|
key_len key value length
|
|
|
|
DESCRIPTION
|
|
The function cleans up the hash table in the join buffer removing all
|
|
hash elements from the table.
|
|
|
|
RETURN
|
|
none
|
|
*/
|
|
|
|
void JOIN_CACHE_BKA_UNIQUE:: cleanup_hash_table()
|
|
{
|
|
last_key_entry= hash_table;
|
|
bzero(hash_table, (buff+buff_size)-hash_table);
|
|
key_entries= 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize retrieval of range sequence for BKA_UNIQUE algorithm
|
|
|
|
SYNOPSIS
|
|
bka_range_seq_init()
|
|
init_params pointer to the BKA_INIQUE join cache object
|
|
n_ranges the number of ranges obtained
|
|
flags combination of HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
|
|
|
|
DESCRIPTION
|
|
The function interprets init_param as a pointer to a JOIN_CACHE_BKA_UNIQUE
|
|
object. The function prepares for an iteration over the unique join keys
|
|
built over the records from the cache join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
init_param value that is to be used as a parameter of
|
|
bka_unique_range_seq_next()
|
|
*/
|
|
|
|
static
|
|
range_seq_t bka_unique_range_seq_init(void *init_param, uint n_ranges,
|
|
uint flags)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_init");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) init_param;
|
|
cache->reset(0);
|
|
DBUG_RETURN((range_seq_t) init_param);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the key over the next record from the join buffer used by BKA_UNIQUE
|
|
|
|
SYNOPSIS
|
|
bka_unique_range_seq_next()
|
|
seq value returned by bka_unique_range_seq_init()
|
|
range OUT reference to the next range
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns a pointer to the range descriptor
|
|
for the next unique key built over records from the join buffer.
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
0 ok, the range structure filled with info about the next key
|
|
1 no more ranges
|
|
*/
|
|
|
|
static
|
|
uint bka_unique_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_next");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
TABLE_REF *ref= &cache->join_tab->ref;
|
|
key_range *start_key= &range->start_key;
|
|
if ((start_key->length= cache->get_next_key((uchar **) &start_key->key)))
|
|
{
|
|
start_key->keypart_map= (1 << ref->key_parts) - 1;
|
|
start_key->flag= HA_READ_KEY_EXACT;
|
|
range->end_key= *start_key;
|
|
range->end_key.flag= HA_READ_AFTER_KEY;
|
|
range->ptr= (char *) cache->get_curr_key_chain();
|
|
range->range_flag= EQ_RANGE;
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range_info orders to skip the next record from BKA_UNIQUE buffer
|
|
|
|
SYNOPSIS
|
|
bka_unique_range_seq_skip_record()
|
|
seq value returned by bka_unique_range_seq_init()
|
|
range_info information about the next range
|
|
rowid [NOT USED] rowid of the record to be checked (not used)
|
|
|
|
DESCRIPTION
|
|
The function interprets seq as a pointer to the JOIN_CACHE_BKA_UNIQUE
|
|
object. The function returns TRUE if the record with this range_info
|
|
is to be filtered out from the stream of records returned by
|
|
multi_range_read_next().
|
|
|
|
NOTE
|
|
This function are used only as a callback function.
|
|
|
|
RETURN
|
|
1 record with this range_info is to be filtered out from the stream
|
|
of records returned by multi_range_read_next()
|
|
0 the record is to be left in the stream
|
|
*/
|
|
|
|
static
|
|
bool bka_unique_range_seq_skip_record(range_seq_t rseq, char *range_info,
|
|
uchar *rowid)
|
|
{
|
|
DBUG_ENTER("bka_unique_range_seq_skip_record");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
bool res= cache->check_all_match_flags_for_key((uchar *) range_info);
|
|
DBUG_RETURN(res);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
JOIN_CACHE_BKA_UNIQUE::skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
See JOIN_CACHE_BKA::skip_index_tuple().
|
|
This function is the variant for use with
|
|
JOIN_CACHE_BKA_UNIQUE. The difference from JOIN_CACHE_BKA case is that
|
|
there may be multiple previous table record combinations that share the
|
|
same key, i.e. they map to the same MRR range.
|
|
As a consequence, we need to loop through all previous table record
|
|
combinations that match the given MRR range key range_info until we find
|
|
one that satisfies the index condition.
|
|
|
|
NOTE
|
|
Possible optimization:
|
|
Before we unpack the record from a previous table
|
|
check if this table is used in the condition.
|
|
If so then unpack the record otherwise skip the unpacking.
|
|
This should be done by a special virtual method
|
|
get_partial_record_by_pos().
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
|
|
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("JOIN_CACHE_BKA_UNIQUE::skip_index_tuple");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
uchar *last_rec_ref_ptr= cache->get_next_rec_ref((uchar*) range_info);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= cache->get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr + cache->rec_fields_offset;
|
|
cache->get_record_by_pos(rec_ptr);
|
|
if (join_tab->cache_idx_cond->val_int())
|
|
DBUG_RETURN(FALSE);
|
|
} while(next_rec_ref_ptr != last_rec_ref_ptr);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if the record combination matches the index condition
|
|
|
|
SYNOPSIS
|
|
bka_unique_skip_index_tuple()
|
|
rseq Value returned by bka_range_seq_init()
|
|
range_info MRR range association data
|
|
|
|
DESCRIPTION
|
|
This is wrapper for JOIN_CACHE_BKA_UNIQUE::skip_index_tuple method,
|
|
see comments there.
|
|
|
|
NOTE
|
|
This function is used as a RANGE_SEQ_IF::skip_index_tuple callback.
|
|
|
|
RETURN
|
|
0 The record combination satisfies the index condition
|
|
1 Otherwise
|
|
*/
|
|
|
|
static
|
|
bool bka_unique_skip_index_tuple(range_seq_t rseq, char *range_info)
|
|
{
|
|
DBUG_ENTER("bka_unique_skip_index_tuple");
|
|
JOIN_CACHE_BKA_UNIQUE *cache= (JOIN_CACHE_BKA_UNIQUE *) rseq;
|
|
DBUG_RETURN(cache->skip_index_tuple(rseq, range_info));
|
|
}
|
|
|
|
|
|
/*
|
|
Using BKA_UNIQUE find matches from the next table for records from join buffer
|
|
|
|
SYNOPSIS
|
|
join_matching_records()
|
|
skip_last do not look for matches for the last partial join record
|
|
|
|
DESCRIPTION
|
|
This function can be used only when the table join_tab can be accessed
|
|
by keys built over the fields of previous join tables.
|
|
The function retrieves all keys from the hash table of the join buffer
|
|
built for partial join records from the buffer. For each of these keys
|
|
the function performs an index lookup and tries to match records yielded
|
|
by this lookup with records from the join buffer attached to the key.
|
|
If a match is found the function will call the sub_select function trying
|
|
to look for matches for the remaining join operations.
|
|
This function does not assume that matching records are necessarily
|
|
returned with references to the keys by which they were found. If the call
|
|
of the function multi_range_read_init returns flags with
|
|
HA_MRR_NO_ASSOCIATION then a search for the key built from the returned
|
|
record is carried on. The search is performed by probing in in the hash
|
|
table of the join buffer.
|
|
This function currently is called only from the function join_records.
|
|
It's assumed that this function is always called with the skip_last
|
|
parameter equal to false.
|
|
|
|
RETURN
|
|
return one of enum_nested_loop_state
|
|
*/
|
|
|
|
enum_nested_loop_state
|
|
JOIN_CACHE_BKA_UNIQUE::join_matching_records(bool skip_last)
|
|
{
|
|
int error;
|
|
uchar *key_chain_ptr;
|
|
handler *file= join_tab->table->file;
|
|
enum_nested_loop_state rc= NESTED_LOOP_OK;
|
|
bool check_only_first_match= join_tab->check_only_first_match();
|
|
bool no_association= test(mrr_mode & HA_MRR_NO_ASSOCIATION);
|
|
|
|
/* Set functions to iterate over keys in the join buffer */
|
|
RANGE_SEQ_IF seq_funcs= { bka_unique_range_seq_init,
|
|
bka_unique_range_seq_next,
|
|
check_only_first_match && !no_association ?
|
|
bka_unique_range_seq_skip_record : 0,
|
|
join_tab->cache_idx_cond ?
|
|
bka_unique_skip_index_tuple : 0 };
|
|
|
|
/* The value of skip_last must be always FALSE when this function is called */
|
|
DBUG_ASSERT(!skip_last);
|
|
|
|
/* Return at once if there are no records in the join buffer */
|
|
if (!records)
|
|
return NESTED_LOOP_OK;
|
|
|
|
rc= init_join_matching_records(&seq_funcs, key_entries);
|
|
if (rc != NESTED_LOOP_OK)
|
|
goto finish;
|
|
|
|
while (!(error= file->multi_range_read_next((char **) &key_chain_ptr)))
|
|
{
|
|
if (no_association)
|
|
{
|
|
uchar *key_ref_ptr;
|
|
TABLE *table= join_tab->table;
|
|
TABLE_REF *ref= &join_tab->ref;
|
|
KEY *keyinfo= table->key_info+ref->key;
|
|
/*
|
|
Build the key value out of the record returned by the call of
|
|
multi_range_read_next in the record buffer
|
|
*/
|
|
key_copy(ref->key_buff, table->record[0], keyinfo, ref->key_length);
|
|
/* Look for this key in the join buffer */
|
|
if (!key_search(ref->key_buff, ref->key_length, &key_ref_ptr))
|
|
continue;
|
|
key_chain_ptr= key_ref_ptr+get_size_of_key_offset();
|
|
}
|
|
|
|
uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
|
|
|
|
if (join->thd->killed)
|
|
{
|
|
/* The user has aborted the execution of the query */
|
|
join->thd->send_kill_message();
|
|
rc= NESTED_LOOP_KILLED;
|
|
goto finish;
|
|
}
|
|
/*
|
|
If only the first match is needed and it has been already found
|
|
for the associated partial join record then the returned candidate
|
|
is discarded.
|
|
*/
|
|
if (rc == NESTED_LOOP_OK &&
|
|
(!check_only_first_match || !get_match_flag_by_pos(rec_ptr)))
|
|
{
|
|
get_record_by_pos(rec_ptr);
|
|
update_virtual_fields(join->thd, join_tab->table);
|
|
rc= generate_full_extensions(rec_ptr);
|
|
if (rc != NESTED_LOOP_OK && rc != NESTED_LOOP_NO_MORE_ROWS)
|
|
goto finish;
|
|
}
|
|
}
|
|
while (next_rec_ref_ptr != last_rec_ref_ptr);
|
|
}
|
|
|
|
if (error > 0 && error != HA_ERR_END_OF_FILE)
|
|
return NESTED_LOOP_ERROR;
|
|
finish:
|
|
return end_join_matching_records(rc);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether all records in a key chain have their match flags set on
|
|
|
|
SYNOPSIS
|
|
check_all_match_flags_for_key()
|
|
key_chain_ptr
|
|
|
|
DESCRIPTION
|
|
This function retrieves records in the given circular chain and checks
|
|
whether their match flags are set on. The parameter key_chain_ptr shall
|
|
point to the position in the join buffer storing the reference to the
|
|
last element of this chain.
|
|
|
|
RETURN
|
|
TRUE if each retrieved record has its match flag set on
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool JOIN_CACHE_BKA_UNIQUE::check_all_match_flags_for_key(uchar *key_chain_ptr)
|
|
{
|
|
uchar *last_rec_ref_ptr= get_next_rec_ref(key_chain_ptr);
|
|
uchar *next_rec_ref_ptr= last_rec_ref_ptr;
|
|
do
|
|
{
|
|
next_rec_ref_ptr= get_next_rec_ref(next_rec_ref_ptr);
|
|
uchar *rec_ptr= next_rec_ref_ptr+rec_fields_offset;
|
|
if (!get_match_flag_by_pos(rec_ptr))
|
|
return FALSE;
|
|
}
|
|
while (next_rec_ref_ptr != last_rec_ref_ptr);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Get the next key built for the records from BKA_UNIQUE join buffer
|
|
|
|
SYNOPSIS
|
|
get_next_key()
|
|
key pointer to the buffer where the key value is to be placed
|
|
|
|
DESCRIPTION
|
|
The function reads the next key value stored in the hash table of the
|
|
join buffer. Depending on the value of the use_emb_key flag of the
|
|
join cache the value is read either from the table itself or from
|
|
the record field where it occurs.
|
|
|
|
RETURN
|
|
length of the key value - if the starting value of 'cur_key_entry' refers
|
|
to the position after that referred by the the value of 'last_key_entry'
|
|
0 - otherwise.
|
|
*/
|
|
|
|
uint JOIN_CACHE_BKA_UNIQUE::get_next_key(uchar ** key)
|
|
{
|
|
if (curr_key_entry == last_key_entry)
|
|
return 0;
|
|
|
|
curr_key_entry-= key_entry_length;
|
|
|
|
*key = use_emb_key ? get_emb_key(curr_key_entry) : curr_key_entry;
|
|
|
|
DBUG_ASSERT(*key >= buff && *key < hash_table);
|
|
|
|
return key_length;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
* Join cache module end
|
|
****************************************************************************/
|