mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 20:12:31 +01:00
062a1b8b4e
'#pragma interface' (that comes with the #include'd header file)
2997 lines
79 KiB
C++
2997 lines
79 KiB
C++
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
TODO:
|
|
Fix that MAYBE_KEY are stored in the tree so that we can detect use
|
|
of full hash keys for queries like:
|
|
|
|
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
|
|
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
#include <m_ctype.h>
|
|
#include <nisam.h>
|
|
#include "sql_select.h"
|
|
|
|
#ifndef EXTRA_DEBUG
|
|
#define test_rb_tree(A,B) {}
|
|
#define test_use_count(A) {}
|
|
#endif
|
|
|
|
|
|
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
|
|
|
|
static char is_null_string[2]= {1,0};
|
|
|
|
class SEL_ARG :public Sql_alloc
|
|
{
|
|
public:
|
|
uint8 min_flag,max_flag,maybe_flag;
|
|
uint8 part; // Which key part
|
|
uint8 maybe_null;
|
|
uint16 elements; // Elements in tree
|
|
ulong use_count; // use of this sub_tree
|
|
Field *field;
|
|
char *min_value,*max_value; // Pointer to range
|
|
|
|
SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
|
|
enum leaf_color { BLACK,RED } color;
|
|
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
|
|
|
|
SEL_ARG() {}
|
|
SEL_ARG(SEL_ARG &);
|
|
SEL_ARG(Field *,const char *,const char *);
|
|
SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
|
|
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
|
|
SEL_ARG(enum Type type_arg)
|
|
:elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
|
|
type(type_arg)
|
|
{}
|
|
inline bool is_same(SEL_ARG *arg)
|
|
{
|
|
if (type != arg->type || part != arg->part)
|
|
return 0;
|
|
if (type != KEY_RANGE)
|
|
return 1;
|
|
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
|
|
}
|
|
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
|
|
inline void maybe_smaller() { maybe_flag=1; }
|
|
inline int cmp_min_to_min(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
|
|
}
|
|
inline int cmp_min_to_max(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_max(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
|
|
}
|
|
inline int cmp_max_to_min(SEL_ARG* arg)
|
|
{
|
|
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
|
|
}
|
|
SEL_ARG *clone_and(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
char *new_min,*new_max;
|
|
uint8 flag_min,flag_max;
|
|
if (cmp_min_to_min(arg) >= 0)
|
|
{
|
|
new_min=min_value; flag_min=min_flag;
|
|
}
|
|
else
|
|
{
|
|
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
|
|
}
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
new_max=max_value; flag_max=max_flag;
|
|
}
|
|
else
|
|
{
|
|
new_max=arg->max_value; flag_max=arg->max_flag;
|
|
}
|
|
return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
|
|
test(maybe_flag && arg->maybe_flag));
|
|
}
|
|
SEL_ARG *clone_first(SEL_ARG *arg)
|
|
{ // min <= X < arg->min
|
|
return new SEL_ARG(field,part, min_value, arg->min_value,
|
|
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
|
|
maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone_last(SEL_ARG *arg)
|
|
{ // min <= X <= key_max
|
|
return new SEL_ARG(field, part, min_value, arg->max_value,
|
|
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
|
|
}
|
|
SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);
|
|
|
|
bool copy_min(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_min_to_min(arg) > 0)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
bool copy_max(SEL_ARG* arg)
|
|
{ // Get overlapping range
|
|
if (cmp_max_to_max(arg) <= 0)
|
|
{
|
|
max_value=arg->max_value; max_flag=arg->max_flag;
|
|
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
|
|
(NO_MAX_RANGE | NO_MIN_RANGE))
|
|
return 1; // Full range
|
|
}
|
|
maybe_flag|=arg->maybe_flag;
|
|
return 0;
|
|
}
|
|
|
|
void copy_min_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->min_value; min_flag=arg->min_flag;
|
|
}
|
|
void copy_min_to_max(SEL_ARG *arg)
|
|
{
|
|
max_value=arg->min_value;
|
|
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
|
|
}
|
|
void copy_max_to_min(SEL_ARG *arg)
|
|
{
|
|
min_value=arg->max_value;
|
|
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
|
|
}
|
|
void store(uint length,char **min_key,uint min_key_flag,
|
|
char **max_key, uint max_key_flag)
|
|
{
|
|
if ((min_flag & GEOM_FLAG) ||
|
|
(!(min_flag & NO_MIN_RANGE) &&
|
|
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
|
|
{
|
|
if (maybe_null && *min_value)
|
|
{
|
|
**min_key=1;
|
|
bzero(*min_key+1,length-1);
|
|
}
|
|
else
|
|
memcpy(*min_key,min_value,length);
|
|
(*min_key)+= length;
|
|
}
|
|
if (!(max_flag & NO_MAX_RANGE) &&
|
|
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
|
|
{
|
|
if (maybe_null && *max_value)
|
|
{
|
|
**max_key=1;
|
|
bzero(*max_key+1,length-1);
|
|
}
|
|
else
|
|
memcpy(*max_key,max_value,length);
|
|
(*max_key)+= length;
|
|
}
|
|
}
|
|
|
|
void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
|
|
{
|
|
SEL_ARG *key_tree= first();
|
|
key_tree->store(key[key_tree->part].store_length,
|
|
range_key,*range_key_flag,range_key,NO_MAX_RANGE);
|
|
*range_key_flag|= key_tree->min_flag;
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
|
|
}
|
|
|
|
void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
|
|
{
|
|
SEL_ARG *key_tree= last();
|
|
key_tree->store(key[key_tree->part].store_length,
|
|
range_key, NO_MIN_RANGE, range_key,*range_key_flag);
|
|
(*range_key_flag)|= key_tree->max_flag;
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
|
|
}
|
|
|
|
SEL_ARG *insert(SEL_ARG *key);
|
|
SEL_ARG *tree_delete(SEL_ARG *key);
|
|
SEL_ARG *find_range(SEL_ARG *key);
|
|
SEL_ARG *rb_insert(SEL_ARG *leaf);
|
|
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
|
|
#ifdef EXTRA_DEBUG
|
|
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
|
|
void test_use_count(SEL_ARG *root);
|
|
#endif
|
|
SEL_ARG *first();
|
|
SEL_ARG *last();
|
|
void make_root();
|
|
inline bool simple_key()
|
|
{
|
|
return !next_key_part && elements == 1;
|
|
}
|
|
void increment_use_count(long count)
|
|
{
|
|
if (next_key_part)
|
|
{
|
|
next_key_part->use_count+=count;
|
|
count*= (next_key_part->use_count-count);
|
|
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
pos->increment_use_count(count);
|
|
}
|
|
}
|
|
void free_tree()
|
|
{
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
if (pos->next_key_part)
|
|
{
|
|
pos->next_key_part->use_count--;
|
|
pos->next_key_part->free_tree();
|
|
}
|
|
}
|
|
|
|
inline SEL_ARG **parent_ptr()
|
|
{
|
|
return parent->left == this ? &parent->left : &parent->right;
|
|
}
|
|
SEL_ARG *clone_tree();
|
|
};
|
|
|
|
|
|
class SEL_TREE :public Sql_alloc
|
|
{
|
|
public:
|
|
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
|
|
SEL_TREE(enum Type type_arg) :type(type_arg) {}
|
|
SEL_TREE() :type(KEY) { bzero((char*) keys,sizeof(keys));}
|
|
SEL_ARG *keys[MAX_KEY];
|
|
};
|
|
|
|
|
|
typedef struct st_qsel_param {
|
|
THD *thd;
|
|
TABLE *table;
|
|
KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
|
|
MEM_ROOT *mem_root;
|
|
table_map prev_tables,read_tables,current_table;
|
|
uint baseflag, keys, max_key_part, range_count;
|
|
uint real_keynr[MAX_KEY];
|
|
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
|
|
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
|
|
bool quick; // Don't calulate possible keys
|
|
COND *cond;
|
|
} PARAM;
|
|
|
|
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
|
|
Item_func::Functype type,Item *value,
|
|
Item_result cmp_type);
|
|
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
|
|
KEY_PART *key_part,
|
|
Item_func::Functype type,Item *value);
|
|
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
|
|
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
|
|
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
|
|
char *min_key,uint min_key_flag,
|
|
char *max_key, uint max_key_flag);
|
|
|
|
static QUICK_SELECT *get_quick_select(PARAM *param,uint index,
|
|
SEL_ARG *key_tree);
|
|
#ifndef DBUG_OFF
|
|
static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg);
|
|
#endif
|
|
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
|
|
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
|
|
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
|
|
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
|
|
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
|
|
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
|
|
static bool get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
|
|
char *max_key,uint max_key_flag);
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
|
|
|
|
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
|
|
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length);
|
|
|
|
/***************************************************************************
|
|
** Basic functions for SQL_SELECT and QUICK_SELECT
|
|
***************************************************************************/
|
|
|
|
/* make a select from mysql info
|
|
Error is set as following:
|
|
0 = ok
|
|
1 = Got some error (out of memory?)
|
|
*/
|
|
|
|
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
|
|
table_map read_tables, COND *conds, int *error)
|
|
{
|
|
SQL_SELECT *select;
|
|
DBUG_ENTER("make_select");
|
|
|
|
*error=0;
|
|
if (!conds)
|
|
DBUG_RETURN(0);
|
|
if (!(select= new SQL_SELECT))
|
|
{
|
|
*error= 1; // out of memory
|
|
DBUG_RETURN(0); /* purecov: inspected */
|
|
}
|
|
select->read_tables=read_tables;
|
|
select->const_tables=const_tables;
|
|
select->head=head;
|
|
select->cond=conds;
|
|
|
|
if (head->sort.io_cache)
|
|
{
|
|
select->file= *head->sort.io_cache;
|
|
select->records=(ha_rows) (select->file.end_of_file/
|
|
head->file->ref_length);
|
|
my_free((gptr) (head->sort.io_cache),MYF(0));
|
|
head->sort.io_cache=0;
|
|
}
|
|
DBUG_RETURN(select);
|
|
}
|
|
|
|
|
|
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
|
|
{
|
|
quick_keys.clear_all(); needed_reg.clear_all();
|
|
my_b_clear(&file);
|
|
}
|
|
|
|
|
|
void SQL_SELECT::cleanup()
|
|
{
|
|
delete quick;
|
|
quick= 0;
|
|
if (free_cond)
|
|
{
|
|
free_cond=0;
|
|
delete cond;
|
|
cond= 0;
|
|
}
|
|
close_cached_file(&file);
|
|
}
|
|
|
|
|
|
SQL_SELECT::~SQL_SELECT()
|
|
{
|
|
cleanup();
|
|
}
|
|
|
|
#undef index // Fix for Unixware 7
|
|
|
|
QUICK_SELECT::QUICK_SELECT(THD *thd, TABLE *table, uint key_nr, bool no_alloc)
|
|
:dont_free(0),sorted(0),error(0),index(key_nr),max_used_key_length(0),
|
|
used_key_parts(0), head(table), it(ranges),range(0)
|
|
{
|
|
if (!no_alloc)
|
|
{
|
|
// Allocates everything through the internal memroot
|
|
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
|
|
thd->mem_root= &alloc;
|
|
}
|
|
else
|
|
bzero((char*) &alloc,sizeof(alloc));
|
|
file=head->file;
|
|
record=head->record[0];
|
|
init();
|
|
}
|
|
|
|
QUICK_SELECT::~QUICK_SELECT()
|
|
{
|
|
if (!dont_free)
|
|
{
|
|
if (file->inited)
|
|
file->ha_index_end();
|
|
free_root(&alloc,MYF(0));
|
|
}
|
|
}
|
|
|
|
QUICK_RANGE::QUICK_RANGE()
|
|
:min_key(0),max_key(0),min_length(0),max_length(0),
|
|
flag(NO_MIN_RANGE | NO_MAX_RANGE)
|
|
{}
|
|
|
|
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
|
|
{
|
|
type=arg.type;
|
|
min_flag=arg.min_flag;
|
|
max_flag=arg.max_flag;
|
|
maybe_flag=arg.maybe_flag;
|
|
maybe_null=arg.maybe_null;
|
|
part=arg.part;
|
|
field=arg.field;
|
|
min_value=arg.min_value;
|
|
max_value=arg.max_value;
|
|
next_key_part=arg.next_key_part;
|
|
use_count=1; elements=1;
|
|
}
|
|
|
|
|
|
inline void SEL_ARG::make_root()
|
|
{
|
|
left=right= &null_element;
|
|
color=BLACK;
|
|
next=prev=0;
|
|
use_count=0; elements=1;
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
|
|
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
|
|
elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
|
|
max_value((char*) max_value_arg), next(0),prev(0),
|
|
next_key_part(0),color(BLACK),type(KEY_RANGE)
|
|
{
|
|
left=right= &null_element;
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
|
|
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
|
|
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
|
|
part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
|
|
field(field_), min_value(min_value_), max_value(max_value_),
|
|
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
|
|
{
|
|
left=right= &null_element;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
|
|
{
|
|
SEL_ARG *tmp;
|
|
if (type != KEY_RANGE)
|
|
{
|
|
if (!(tmp= new SEL_ARG(type)))
|
|
return 0; // out of memory
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
}
|
|
else
|
|
{
|
|
if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
|
|
min_flag, max_flag, maybe_flag)))
|
|
return 0; // OOM
|
|
tmp->parent=new_parent;
|
|
tmp->next_key_part=next_key_part;
|
|
if (left != &null_element)
|
|
tmp->left=left->clone(tmp,next_arg);
|
|
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
|
|
if (right != &null_element)
|
|
if (!(tmp->right= right->clone(tmp,next_arg)))
|
|
return 0; // OOM
|
|
}
|
|
increment_use_count(1);
|
|
tmp->color= color;
|
|
return tmp;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::first()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->left)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->left != &null_element)
|
|
next_arg=next_arg->left;
|
|
return next_arg;
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::last()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->right)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->right != &null_element)
|
|
next_arg=next_arg->right;
|
|
return next_arg;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if a compare is ok, when one takes ranges in account
|
|
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
|
|
*/
|
|
|
|
static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
|
|
{
|
|
int cmp;
|
|
/* First check if there was a compare to a min or max element */
|
|
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
{
|
|
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
|
|
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
|
|
return 0;
|
|
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
|
|
}
|
|
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
|
|
|
|
if (field->real_maybe_null()) // If null is part of key
|
|
{
|
|
if (*a != *b)
|
|
{
|
|
return *a ? -1 : 1;
|
|
}
|
|
if (*a)
|
|
goto end; // NULL where equal
|
|
a++; b++; // Skip NULL marker
|
|
}
|
|
cmp=field->key_cmp((byte*) a,(byte*) b);
|
|
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
|
|
|
|
// Check if the compared equal arguments was defined with open/closed range
|
|
end:
|
|
if (a_flag & (NEAR_MIN | NEAR_MAX))
|
|
{
|
|
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return 0;
|
|
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return (a_flag & NEAR_MIN) ? 2 : -2;
|
|
return (a_flag & NEAR_MIN) ? 1 : -1;
|
|
}
|
|
if (b_flag & (NEAR_MIN | NEAR_MAX))
|
|
return (b_flag & NEAR_MIN) ? -2 : 2;
|
|
return 0; // The elements where equal
|
|
}
|
|
|
|
|
|
SEL_ARG *SEL_ARG::clone_tree()
|
|
{
|
|
SEL_ARG tmp_link,*next_arg,*root;
|
|
next_arg= &tmp_link;
|
|
root= clone((SEL_ARG *) 0, &next_arg);
|
|
next_arg->next=0; // Fix last link
|
|
tmp_link.next->prev=0; // Fix first link
|
|
if (root) // If not OOM
|
|
root->use_count= 0;
|
|
return root;
|
|
}
|
|
|
|
/*
|
|
Test if a key can be used in different ranges
|
|
|
|
SYNOPSIS
|
|
SQL_SELECT::test_quick_select(thd,keys_to_use, prev_tables,
|
|
limit, force_quick_range)
|
|
|
|
Updates the following in the select parameter:
|
|
needed_reg - Bits for keys with may be used if all prev regs are read
|
|
quick - Parameter to use when reading records.
|
|
In the table struct the following information is updated:
|
|
quick_keys - Which keys can be used
|
|
quick_rows - How many rows the key matches
|
|
|
|
RETURN VALUES
|
|
-1 if impossible select
|
|
0 if can't use quick_select
|
|
1 if found usable range
|
|
|
|
TODO
|
|
check if the function really needs to modify keys_to_use, and change the
|
|
code to pass it by reference if not
|
|
*/
|
|
|
|
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
|
table_map prev_tables,
|
|
ha_rows limit, bool force_quick_range)
|
|
{
|
|
uint idx;
|
|
double scan_time;
|
|
DBUG_ENTER("test_quick_select");
|
|
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
|
|
keys_to_use.to_ulonglong(), (ulong) prev_tables,
|
|
(ulong) const_tables));
|
|
|
|
delete quick;
|
|
quick=0;
|
|
needed_reg.clear_all(); quick_keys.clear_all();
|
|
if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
|
|
!limit)
|
|
DBUG_RETURN(0); /* purecov: inspected */
|
|
if (keys_to_use.is_clear_all())
|
|
DBUG_RETURN(0);
|
|
records=head->file->records;
|
|
if (!records)
|
|
records++; /* purecov: inspected */
|
|
scan_time=(double) records / TIME_FOR_COMPARE+1;
|
|
read_time=(double) head->file->scan_time()+ scan_time + 1.1;
|
|
if (head->force_index)
|
|
scan_time= read_time= DBL_MAX;
|
|
if (limit < records)
|
|
read_time=(double) records+scan_time+1; // Force to use index
|
|
else if (read_time <= 2.0 && !force_quick_range)
|
|
DBUG_RETURN(0); /* No need for quick select */
|
|
|
|
DBUG_PRINT("info",("Time to scan table: %g", read_time));
|
|
|
|
keys_to_use.intersect(head->keys_in_use_for_query);
|
|
if (!keys_to_use.is_clear_all())
|
|
{
|
|
MEM_ROOT *old_root,alloc;
|
|
SEL_TREE *tree;
|
|
KEY_PART *key_parts;
|
|
KEY *key_info;
|
|
PARAM param;
|
|
|
|
/* set up parameter that is passed to all functions */
|
|
param.thd= thd;
|
|
param.baseflag=head->file->table_flags();
|
|
param.prev_tables=prev_tables | const_tables;
|
|
param.read_tables=read_tables;
|
|
param.current_table= head->map;
|
|
param.table=head;
|
|
param.keys=0;
|
|
param.mem_root= &alloc;
|
|
thd->no_errors=1; // Don't warn about NULL
|
|
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
|
|
if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
|
|
sizeof(KEY_PART)*
|
|
head->key_parts)))
|
|
{
|
|
thd->no_errors=0;
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
DBUG_RETURN(0); // Can't use range
|
|
}
|
|
key_parts= param.key_parts;
|
|
old_root= thd->mem_root;
|
|
thd->mem_root= &alloc;
|
|
|
|
key_info= head->key_info;
|
|
for (idx=0 ; idx < head->keys ; idx++, key_info++)
|
|
{
|
|
KEY_PART_INFO *key_part_info;
|
|
if (!keys_to_use.is_set(idx))
|
|
continue;
|
|
if (key_info->flags & HA_FULLTEXT)
|
|
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
|
|
|
|
param.key[param.keys]=key_parts;
|
|
key_part_info= key_info->key_part;
|
|
for (uint part=0 ; part < key_info->key_parts ;
|
|
part++, key_parts++, key_part_info++)
|
|
{
|
|
key_parts->key= param.keys;
|
|
key_parts->part= part;
|
|
key_parts->length= key_part_info->length;
|
|
key_parts->store_length= key_part_info->store_length;
|
|
key_parts->field= key_part_info->field;
|
|
key_parts->null_bit= key_part_info->null_bit;
|
|
key_parts->image_type =
|
|
(key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
|
|
}
|
|
param.real_keynr[param.keys++]=idx;
|
|
}
|
|
param.key_parts_end=key_parts;
|
|
|
|
if ((tree=get_mm_tree(¶m,cond)))
|
|
{
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
records=0L; // Return -1 from this function
|
|
read_time= (double) HA_POS_ERROR;
|
|
}
|
|
else if (tree->type == SEL_TREE::KEY ||
|
|
tree->type == SEL_TREE::KEY_SMALLER)
|
|
{
|
|
SEL_ARG **key,**end,**best_key=0;
|
|
|
|
|
|
for (idx=0,key=tree->keys, end=key+param.keys ;
|
|
key != end ;
|
|
key++,idx++)
|
|
{
|
|
ha_rows found_records;
|
|
double found_read_time;
|
|
if (*key)
|
|
{
|
|
uint keynr= param.real_keynr[idx];
|
|
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
|
|
(*key)->maybe_flag)
|
|
needed_reg.set_bit(keynr);
|
|
|
|
found_records=check_quick_select(¶m, idx, *key);
|
|
if (found_records != HA_POS_ERROR && found_records > 2 &&
|
|
head->used_keys.is_set(keynr) &&
|
|
(head->file->index_flags(keynr, param.max_key_part, 1) &
|
|
HA_KEYREAD_ONLY))
|
|
{
|
|
/*
|
|
We can resolve this by only reading through this key.
|
|
Assume that we will read trough the whole key range
|
|
and that all key blocks are half full (normally things are
|
|
much better).
|
|
*/
|
|
uint keys_per_block= (head->file->block_size/2/
|
|
(head->key_info[keynr].key_length+
|
|
head->file->ref_length) + 1);
|
|
found_read_time=((double) (found_records+keys_per_block-1)/
|
|
(double) keys_per_block);
|
|
}
|
|
else
|
|
found_read_time= (head->file->read_time(keynr,
|
|
param.range_count,
|
|
found_records)+
|
|
(double) found_records / TIME_FOR_COMPARE);
|
|
DBUG_PRINT("info",("read_time: %g found_read_time: %g",
|
|
read_time, found_read_time));
|
|
if (read_time > found_read_time && found_records != HA_POS_ERROR)
|
|
{
|
|
read_time=found_read_time;
|
|
records=found_records;
|
|
best_key=key;
|
|
}
|
|
}
|
|
}
|
|
if (best_key && records)
|
|
{
|
|
if ((quick=get_quick_select(¶m,(uint) (best_key-tree->keys),
|
|
*best_key)))
|
|
{
|
|
quick->records=records;
|
|
quick->read_time=read_time;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
thd->mem_root= old_root;
|
|
thd->no_errors=0;
|
|
}
|
|
DBUG_EXECUTE("info",print_quick(quick,&needed_reg););
|
|
/*
|
|
Assume that if the user is using 'limit' we will only need to scan
|
|
limit rows if we are using a key
|
|
*/
|
|
DBUG_RETURN(records ? test(quick) : -1);
|
|
}
|
|
|
|
/* make a select tree of all keys in condition */
|
|
|
|
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
|
|
{
|
|
SEL_TREE *tree=0;
|
|
DBUG_ENTER("get_mm_tree");
|
|
|
|
if (cond->type() == Item::COND_ITEM)
|
|
{
|
|
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
|
|
|
|
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
|
|
{
|
|
tree=0;
|
|
Item *item;
|
|
while ((item=li++))
|
|
{
|
|
SEL_TREE *new_tree=get_mm_tree(param,item);
|
|
if (param->thd->is_fatal_error)
|
|
DBUG_RETURN(0); // out of memory
|
|
tree=tree_and(param,tree,new_tree);
|
|
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{ // COND OR
|
|
tree=get_mm_tree(param,li++);
|
|
if (tree)
|
|
{
|
|
Item *item;
|
|
while ((item=li++))
|
|
{
|
|
SEL_TREE *new_tree=get_mm_tree(param,item);
|
|
if (!new_tree)
|
|
DBUG_RETURN(0); // out of memory
|
|
tree=tree_or(param,tree,new_tree);
|
|
if (!tree || tree->type == SEL_TREE::ALWAYS)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
/* Here when simple cond */
|
|
if (cond->const_item())
|
|
{
|
|
if (cond->val_int())
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
|
|
}
|
|
|
|
table_map ref_tables=cond->used_tables();
|
|
if (cond->type() != Item::FUNC_ITEM)
|
|
{ // Should be a field
|
|
if ((ref_tables & param->current_table) ||
|
|
(ref_tables & ~(param->prev_tables | param->read_tables)))
|
|
DBUG_RETURN(0);
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
|
|
}
|
|
|
|
Item_func *cond_func= (Item_func*) cond;
|
|
if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
|
|
DBUG_RETURN(0); // Can't be calculated
|
|
|
|
param->cond= cond;
|
|
|
|
if (cond_func->functype() == Item_func::BETWEEN)
|
|
{
|
|
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
|
|
Item_result cmp_type=field->cmp_type();
|
|
DBUG_RETURN(tree_and(param,
|
|
get_mm_parts(param, cond_func, field,
|
|
Item_func::GE_FUNC,
|
|
cond_func->arguments()[1], cmp_type),
|
|
get_mm_parts(param, cond_func, field,
|
|
Item_func::LE_FUNC,
|
|
cond_func->arguments()[2], cmp_type)));
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
if (cond_func->functype() == Item_func::IN_FUNC)
|
|
{ // COND OR
|
|
Item_func_in *func=(Item_func_in*) cond_func;
|
|
if (func->key_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
Field *field=((Item_field*) (func->key_item()))->field;
|
|
Item_result cmp_type=field->cmp_type();
|
|
tree= get_mm_parts(param,cond_func,field,Item_func::EQ_FUNC,
|
|
func->arguments()[1],cmp_type);
|
|
if (!tree)
|
|
DBUG_RETURN(tree); // Not key field
|
|
for (uint i=2 ; i < func->argument_count(); i++)
|
|
{
|
|
SEL_TREE *new_tree=get_mm_parts(param,cond_func,field,
|
|
Item_func::EQ_FUNC,
|
|
func->arguments()[i],cmp_type);
|
|
tree=tree_or(param,tree,new_tree);
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
DBUG_RETURN(0); // Can't optimize this IN
|
|
}
|
|
|
|
if (ref_tables & ~(param->prev_tables | param->read_tables |
|
|
param->current_table))
|
|
DBUG_RETURN(0); // Can't be calculated yet
|
|
if (!(ref_tables & param->current_table))
|
|
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
|
|
|
|
/* check field op const */
|
|
/* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
|
|
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
|
|
{
|
|
tree= get_mm_parts(param, cond_func,
|
|
((Item_field*) (cond_func->arguments()[0]))->field,
|
|
cond_func->functype(),
|
|
cond_func->arg_count > 1 ? cond_func->arguments()[1] :
|
|
0,
|
|
((Item_field*) (cond_func->arguments()[0]))->field->
|
|
cmp_type());
|
|
}
|
|
/* check const op field */
|
|
if (!tree &&
|
|
cond_func->have_rev_func() &&
|
|
cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
|
|
{
|
|
DBUG_RETURN(get_mm_parts(param, cond_func,
|
|
((Item_field*)
|
|
(cond_func->arguments()[1]))->field,
|
|
((Item_bool_func2*) cond_func)->rev_functype(),
|
|
cond_func->arguments()[0],
|
|
((Item_field*)
|
|
(cond_func->arguments()[1]))->field->cmp_type()
|
|
));
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
static SEL_TREE *
|
|
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
|
|
Item_func::Functype type,
|
|
Item *value, Item_result cmp_type)
|
|
{
|
|
bool ne_func= FALSE;
|
|
DBUG_ENTER("get_mm_parts");
|
|
if (field->table != param->table)
|
|
DBUG_RETURN(0);
|
|
|
|
if (type == Item_func::NE_FUNC)
|
|
{
|
|
ne_func= TRUE;
|
|
type= Item_func::LT_FUNC;
|
|
}
|
|
|
|
KEY_PART *key_part = param->key_parts;
|
|
KEY_PART *end = param->key_parts_end;
|
|
SEL_TREE *tree=0;
|
|
if (value &&
|
|
value->used_tables() & ~(param->prev_tables | param->read_tables))
|
|
DBUG_RETURN(0);
|
|
for (; key_part != end ; key_part++)
|
|
{
|
|
if (field->eq(key_part->field))
|
|
{
|
|
SEL_ARG *sel_arg=0;
|
|
if (!tree && !(tree=new SEL_TREE()))
|
|
DBUG_RETURN(0); // OOM
|
|
if (!value || !(value->used_tables() & ~param->read_tables))
|
|
{
|
|
sel_arg=get_mm_leaf(param,cond_func,
|
|
key_part->field,key_part,type,value);
|
|
if (!sel_arg)
|
|
continue;
|
|
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
tree->type=SEL_TREE::IMPOSSIBLE;
|
|
DBUG_RETURN(tree);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// This key may be used later
|
|
if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
|
|
DBUG_RETURN(0); // OOM
|
|
}
|
|
sel_arg->part=(uchar) key_part->part;
|
|
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
|
|
}
|
|
}
|
|
|
|
if (ne_func)
|
|
{
|
|
SEL_TREE *tree2= get_mm_parts(param, cond_func,
|
|
field, Item_func::GT_FUNC,
|
|
value, cmp_type);
|
|
if (tree2)
|
|
tree= tree_or(param,tree,tree2);
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
static SEL_ARG *
|
|
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
|
|
Item_func::Functype type,Item *value)
|
|
{
|
|
uint maybe_null=(uint) field->real_maybe_null(), copies;
|
|
uint field_length=field->pack_length()+maybe_null;
|
|
SEL_ARG *tree;
|
|
char *str, *str2;
|
|
DBUG_ENTER("get_mm_leaf");
|
|
|
|
if (!value) // IS NULL or IS NOT NULL
|
|
{
|
|
if (field->table->outer_join) // Can't use a key on this
|
|
DBUG_RETURN(0);
|
|
if (!maybe_null) // Not null field
|
|
DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
|
|
if (!(tree=new SEL_ARG(field,is_null_string,is_null_string)))
|
|
DBUG_RETURN(0); // out of memory
|
|
if (type == Item_func::ISNOTNULL_FUNC)
|
|
{
|
|
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
/*
|
|
1. Usually we can't use an index if the column collation
|
|
differ from the operation collation.
|
|
|
|
2. However, we can reuse a case insensitive index for
|
|
the binary searches:
|
|
|
|
WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;
|
|
|
|
WHERE latin1_swedish_ci_colimn = BINARY 'a '
|
|
|
|
*/
|
|
if (field->result_type() == STRING_RESULT &&
|
|
value->result_type() == STRING_RESULT &&
|
|
key_part->image_type == Field::itRAW &&
|
|
((Field_str*)field)->charset() != conf_func->compare_collation() &&
|
|
!(conf_func->compare_collation()->state & MY_CS_BINSORT))
|
|
DBUG_RETURN(0);
|
|
|
|
if (type == Item_func::LIKE_FUNC)
|
|
{
|
|
bool like_error;
|
|
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
|
|
String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
|
|
uint length,offset,min_length,max_length;
|
|
|
|
if (!field->optimize_range(param->real_keynr[key_part->key],
|
|
key_part->part))
|
|
DBUG_RETURN(0); // Can't optimize this
|
|
if (!(res= value->val_str(&tmp)))
|
|
DBUG_RETURN(&null_element);
|
|
|
|
/*
|
|
TODO:
|
|
Check if this was a function. This should have be optimized away
|
|
in the sql_select.cc
|
|
*/
|
|
if (res != &tmp)
|
|
{
|
|
tmp.copy(*res); // Get own copy
|
|
res= &tmp;
|
|
}
|
|
if (field->cmp_type() != STRING_RESULT)
|
|
DBUG_RETURN(0); // Can only optimize strings
|
|
|
|
offset=maybe_null;
|
|
length=key_part->store_length;
|
|
|
|
if (length != key_part->length + maybe_null)
|
|
{
|
|
/* key packed with length prefix */
|
|
offset+= HA_KEY_BLOB_LENGTH;
|
|
field_length= length - HA_KEY_BLOB_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(length < field_length))
|
|
{
|
|
/*
|
|
This can only happen in a table created with UNIREG where one key
|
|
overlaps many fields
|
|
*/
|
|
length= field_length;
|
|
}
|
|
else
|
|
field_length= length;
|
|
}
|
|
length+=offset;
|
|
if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
|
|
DBUG_RETURN(0);
|
|
max_str=min_str+length;
|
|
if (maybe_null)
|
|
max_str[0]= min_str[0]=0;
|
|
|
|
like_error= my_like_range(field->charset(),
|
|
res->ptr(), res->length(),
|
|
((Item_func_like*)(param->cond))->escape,
|
|
wild_one, wild_many,
|
|
field_length-maybe_null,
|
|
min_str+offset, max_str+offset,
|
|
&min_length, &max_length);
|
|
if (like_error) // Can't optimize with LIKE
|
|
DBUG_RETURN(0);
|
|
|
|
if (offset != maybe_null) // Blob
|
|
{
|
|
int2store(min_str+maybe_null,min_length);
|
|
int2store(max_str+maybe_null,max_length);
|
|
}
|
|
DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
|
|
}
|
|
|
|
if (!field->optimize_range(param->real_keynr[key_part->key],
|
|
key_part->part) &&
|
|
type != Item_func::EQ_FUNC &&
|
|
type != Item_func::EQUAL_FUNC)
|
|
DBUG_RETURN(0); // Can't optimize this
|
|
|
|
/*
|
|
We can't always use indexes when comparing a string index to a number
|
|
cmp_type() is checked to allow compare of dates to numbers
|
|
*/
|
|
if (field->result_type() == STRING_RESULT &&
|
|
value->result_type() != STRING_RESULT &&
|
|
field->cmp_type() != value->result_type())
|
|
DBUG_RETURN(0);
|
|
|
|
if (value->save_in_field(field, 1) < 0)
|
|
{
|
|
/* This happens when we try to insert a NULL field in a not null column */
|
|
DBUG_RETURN(&null_element); // cmp with NULL is never true
|
|
}
|
|
/* Get local copy of key */
|
|
copies= 1;
|
|
if (field->key_type() == HA_KEYTYPE_VARTEXT)
|
|
copies= 2;
|
|
str= str2= (char*) alloc_root(param->mem_root,
|
|
(key_part->store_length)*copies+1);
|
|
if (!str)
|
|
DBUG_RETURN(0);
|
|
if (maybe_null)
|
|
*str= (char) field->is_real_null(); // Set to 1 if null
|
|
field->get_key_image(str+maybe_null, key_part->length,
|
|
field->charset(), key_part->image_type);
|
|
if (copies == 2)
|
|
{
|
|
/*
|
|
The key is stored as 2 byte length + key
|
|
key doesn't match end space. In other words, a key 'X ' should match
|
|
all rows between 'X' and 'X ...'
|
|
*/
|
|
uint length= uint2korr(str+maybe_null);
|
|
str2= str+ key_part->store_length;
|
|
/* remove end space */
|
|
while (length > 0 && str[length+HA_KEY_BLOB_LENGTH+maybe_null-1] == ' ')
|
|
length--;
|
|
int2store(str+maybe_null, length);
|
|
/* Create key that is space filled */
|
|
memcpy(str2, str, length + HA_KEY_BLOB_LENGTH + maybe_null);
|
|
my_fill_8bit(field->charset(),
|
|
str2+ length+ HA_KEY_BLOB_LENGTH +maybe_null,
|
|
key_part->length-length, ' ');
|
|
int2store(str2+maybe_null, key_part->length);
|
|
}
|
|
if (!(tree=new SEL_ARG(field,str,str2)))
|
|
DBUG_RETURN(0); // out of memory
|
|
|
|
switch (type) {
|
|
case Item_func::LT_FUNC:
|
|
if (field_is_equal_to_item(field,value))
|
|
tree->max_flag=NEAR_MAX;
|
|
/* fall through */
|
|
case Item_func::LE_FUNC:
|
|
if (!maybe_null)
|
|
tree->min_flag=NO_MIN_RANGE; /* From start */
|
|
else
|
|
{ // > NULL
|
|
tree->min_value=is_null_string;
|
|
tree->min_flag=NEAR_MIN;
|
|
}
|
|
break;
|
|
case Item_func::GT_FUNC:
|
|
if (field_is_equal_to_item(field,value))
|
|
tree->min_flag=NEAR_MIN;
|
|
/* fall through */
|
|
case Item_func::GE_FUNC:
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_EQUALS_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_DISJOINT_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_INTERSECTS_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_TOUCHES_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
|
|
case Item_func::SP_CROSSES_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_WITHIN_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
|
|
case Item_func::SP_CONTAINS_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
case Item_func::SP_OVERLAPS_FUNC:
|
|
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
** Tree manipulation functions
|
|
** If tree is 0 it means that the condition can't be tested. It refers
|
|
** to a non existent table or to a field in current table with isn't a key.
|
|
** The different tree flags:
|
|
** IMPOSSIBLE: Condition is never true
|
|
** ALWAYS: Condition is always true
|
|
** MAYBE: Condition may exists when tables are read
|
|
** MAYBE_KEY: Condition refers to a key that may be used in join loop
|
|
** KEY_RANGE: Condition uses a key
|
|
******************************************************************************/
|
|
|
|
/*
|
|
Add a new key test to a key when scanning through all keys
|
|
This will never be called for same key parts.
|
|
*/
|
|
|
|
static SEL_ARG *
|
|
sel_add(SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
SEL_ARG *root,**key_link;
|
|
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
|
|
key_link= &root;
|
|
while (key1 && key2)
|
|
{
|
|
if (key1->part < key2->part)
|
|
{
|
|
*key_link= key1;
|
|
key_link= &key1->next_key_part;
|
|
key1=key1->next_key_part;
|
|
}
|
|
else
|
|
{
|
|
*key_link= key2;
|
|
key_link= &key2->next_key_part;
|
|
key2=key2->next_key_part;
|
|
}
|
|
}
|
|
*key_link=key1 ? key1 : key2;
|
|
return root;
|
|
}
|
|
|
|
#define CLONE_KEY1_MAYBE 1
|
|
#define CLONE_KEY2_MAYBE 2
|
|
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
|
|
|
|
|
|
static SEL_TREE *
|
|
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_and");
|
|
if (!tree1)
|
|
DBUG_RETURN(tree2);
|
|
if (!tree2)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
{
|
|
if (tree2->type == SEL_TREE::KEY)
|
|
tree2->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree2);
|
|
}
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
{
|
|
tree1->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
/* Join the trees key per key */
|
|
SEL_ARG **key1,**key2,**end;
|
|
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
|
|
key1 != end ; key1++,key2++)
|
|
{
|
|
uint flag=0;
|
|
if (*key1 || *key2)
|
|
{
|
|
if (*key1 && !(*key1)->simple_key())
|
|
flag|=CLONE_KEY1_MAYBE;
|
|
if (*key2 && !(*key2)->simple_key())
|
|
flag|=CLONE_KEY2_MAYBE;
|
|
*key1=key_and(*key1,*key2,flag);
|
|
if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
tree1->type= SEL_TREE::IMPOSSIBLE;
|
|
#ifdef EXTRA_DEBUG
|
|
(*key1)->test_use_count(*key1);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
|
|
|
|
static SEL_TREE *
|
|
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_or");
|
|
if (!tree1 || !tree2)
|
|
DBUG_RETURN(0);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree1); // Can't use this
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree2);
|
|
|
|
/* Join the trees key per key */
|
|
SEL_ARG **key1,**key2,**end;
|
|
SEL_TREE *result=0;
|
|
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
|
|
key1 != end ; key1++,key2++)
|
|
{
|
|
*key1=key_or(*key1,*key2);
|
|
if (*key1)
|
|
{
|
|
result=tree1; // Added to tree1
|
|
#ifdef EXTRA_DEBUG
|
|
(*key1)->test_use_count(*key1);
|
|
#endif
|
|
}
|
|
}
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/* And key trees where key1->part < key2 -> part */
|
|
|
|
static SEL_ARG *
|
|
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
|
|
{
|
|
SEL_ARG *next;
|
|
ulong use_count=key1->use_count;
|
|
|
|
if (key1->elements != 1)
|
|
{
|
|
key2->use_count+=key1->elements-1;
|
|
key2->increment_use_count((int) key1->elements-1);
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key1->right= key1->left= &null_element;
|
|
key1->next= key1->prev= 0;
|
|
}
|
|
for (next=key1->first(); next ; next=next->next)
|
|
{
|
|
if (next->next_key_part)
|
|
{
|
|
SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
|
|
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
key1=key1->tree_delete(next);
|
|
continue;
|
|
}
|
|
next->next_key_part=tmp;
|
|
if (use_count)
|
|
next->increment_use_count(use_count);
|
|
}
|
|
else
|
|
next->next_key_part=key2;
|
|
}
|
|
if (!key1)
|
|
return &null_element; // Impossible ranges
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
|
|
|
|
|
|
static SEL_ARG *
|
|
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
|
|
{
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
if (key1->part != key2->part)
|
|
{
|
|
if (key1->part > key2->part)
|
|
{
|
|
swap_variables(SEL_ARG *, key1, key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
// key1->part < key2->part
|
|
key1->use_count--;
|
|
if (key1->use_count > 0)
|
|
if (!(key1= key1->clone_tree()))
|
|
return 0; // OOM
|
|
return and_all_keys(key1,key2,clone_flag);
|
|
}
|
|
|
|
if (((clone_flag & CLONE_KEY2_MAYBE) &&
|
|
!(clone_flag & CLONE_KEY1_MAYBE) &&
|
|
key2->type != SEL_ARG::MAYBE_KEY) ||
|
|
key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Put simple key in key2
|
|
swap_variables(SEL_ARG *, key1, key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
|
|
// If one of the key is MAYBE_KEY then the found region may be smaller
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
if (key1->use_count > 1)
|
|
{
|
|
key1->use_count--;
|
|
if (!(key1=key1->clone_tree()))
|
|
return 0; // OOM
|
|
key1->use_count++;
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Both are maybe key
|
|
key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
|
|
clone_flag);
|
|
if (key1->next_key_part &&
|
|
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
|
|
return key1;
|
|
}
|
|
else
|
|
{
|
|
key1->maybe_smaller();
|
|
if (key2->next_key_part)
|
|
{
|
|
key1->use_count--; // Incremented in and_all_keys
|
|
return and_all_keys(key1,key2,clone_flag);
|
|
}
|
|
key2->use_count--; // Key2 doesn't have a tree
|
|
}
|
|
return key1;
|
|
}
|
|
|
|
if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
|
|
{
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
return 0; // Can't optimize this
|
|
}
|
|
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
|
|
|
|
while (e1 && e2)
|
|
{
|
|
int cmp=e1->cmp_min_to_min(e2);
|
|
if (cmp < 0)
|
|
{
|
|
if (get_range(&e1,&e2,key1))
|
|
continue;
|
|
}
|
|
else if (get_range(&e2,&e1,key2))
|
|
continue;
|
|
SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
|
|
e1->increment_use_count(1);
|
|
e2->increment_use_count(1);
|
|
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
SEL_ARG *new_arg= e1->clone_and(e2);
|
|
if (!new_arg)
|
|
return &null_element; // End of memory
|
|
new_arg->next_key_part=next;
|
|
if (!new_tree)
|
|
{
|
|
new_tree=new_arg;
|
|
}
|
|
else
|
|
new_tree=new_tree->insert(new_arg);
|
|
}
|
|
if (e1->cmp_max_to_max(e2) < 0)
|
|
e1=e1->next; // e1 can't overlapp next e2
|
|
else
|
|
e2=e2->next;
|
|
}
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
if (!new_tree)
|
|
return &null_element; // Impossible range
|
|
return new_tree;
|
|
}
|
|
|
|
|
|
static bool
|
|
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
|
|
{
|
|
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
|
|
if ((*e1)->cmp_max_to_min(*e2) < 0)
|
|
{
|
|
if (!((*e1)=(*e1)->next))
|
|
return 1;
|
|
if ((*e1)->cmp_min_to_max(*e2) > 0)
|
|
{
|
|
(*e2)=(*e2)->next;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static SEL_ARG *
|
|
key_or(SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
if (!key1)
|
|
{
|
|
if (key2)
|
|
{
|
|
key2->use_count--;
|
|
key2->free_tree();
|
|
}
|
|
return 0;
|
|
}
|
|
if (!key2)
|
|
{
|
|
key1->use_count--;
|
|
key1->free_tree();
|
|
return 0;
|
|
}
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
|
|
if (key1->part != key2->part ||
|
|
(key1->min_flag | key2->min_flag) & GEOM_FLAG)
|
|
{
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
return 0; // Can't optimize this
|
|
}
|
|
|
|
// If one of the key is MAYBE_KEY then the found region may be bigger
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key2->free_tree();
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key1->free_tree();
|
|
key2->use_count++;
|
|
return key2;
|
|
}
|
|
|
|
if (key1->use_count > 0)
|
|
{
|
|
if (key2->use_count == 0 || key1->elements > key2->elements)
|
|
{
|
|
swap_variables(SEL_ARG *,key1,key2);
|
|
}
|
|
if (key1->use_count > 0 || !(key1=key1->clone_tree()))
|
|
return 0; // OOM
|
|
}
|
|
|
|
// Add tree at key2 to tree at key1
|
|
bool key2_shared=key2->use_count != 0;
|
|
key1->maybe_flag|=key2->maybe_flag;
|
|
|
|
for (key2=key2->first(); key2; )
|
|
{
|
|
SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min
|
|
int cmp;
|
|
|
|
if (!tmp)
|
|
{
|
|
tmp=key1->first(); // tmp.min > key2.min
|
|
cmp= -1;
|
|
}
|
|
else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
|
|
{ // Found tmp.max < key2.min
|
|
SEL_ARG *next=tmp->next;
|
|
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
// Join near ranges like tmp.max < 0 and key2.min >= 0
|
|
SEL_ARG *key2_next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
if (!(key2=new SEL_ARG(*key2)))
|
|
return 0; // out of memory
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key2->next=key2_next; // New copy of key2
|
|
}
|
|
key2->copy_min(tmp);
|
|
if (!(key1=key1->tree_delete(tmp)))
|
|
{ // Only one key in tree
|
|
key1=key2;
|
|
key1->make_root();
|
|
key2=key2_next;
|
|
break;
|
|
}
|
|
}
|
|
if (!(tmp=next)) // tmp.min > key2.min
|
|
break; // Copy rest of key2
|
|
}
|
|
if (cmp < 0)
|
|
{ // tmp.min > key2.min
|
|
int tmp_cmp;
|
|
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
|
|
{
|
|
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{ // ranges are connected
|
|
tmp->copy_min_to_min(key2);
|
|
key1->merge_flags(key2);
|
|
if (tmp->min_flag & NO_MIN_RANGE &&
|
|
tmp->max_flag & NO_MAX_RANGE)
|
|
{
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
key2=key2->next;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *next=key2->next; // Keys are not overlapping
|
|
if (key2_shared)
|
|
{
|
|
SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy
|
|
if (!cpy)
|
|
return 0; // OOM
|
|
key1=key1->insert(cpy);
|
|
key2->increment_use_count(key1->use_count+1);
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges)
|
|
if (eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
if (tmp->is_same(key2))
|
|
{
|
|
tmp->merge_flags(key2); // Copy maybe flags
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *last=tmp;
|
|
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
|
|
eq_tree(last->next->next_key_part,key2->next_key_part))
|
|
{
|
|
SEL_ARG *save=last;
|
|
last=last->next;
|
|
key1=key1->tree_delete(save);
|
|
}
|
|
last->copy_min(tmp);
|
|
if (last->copy_min(key2) || last->copy_max(key2))
|
|
{ // Full range
|
|
key1->free_tree();
|
|
for (; key2 ; key2=key2->next)
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
}
|
|
key2=key2->next;
|
|
continue;
|
|
}
|
|
|
|
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
|
|
{ // tmp.min <= x < key2.min
|
|
SEL_ARG *new_arg=tmp->clone_first(key2);
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
if ((new_arg->next_key_part= key1->next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
tmp->copy_min_to_min(key2);
|
|
key1=key1->insert(new_arg);
|
|
}
|
|
|
|
// tmp.min >= key2.min && tmp.min <= key2.max
|
|
SEL_ARG key(*key2); // Get copy we can modify
|
|
for (;;)
|
|
{
|
|
if (tmp->cmp_min_to_min(&key) > 0)
|
|
{ // key.min <= x < tmp.min
|
|
SEL_ARG *new_arg=key.clone_first(tmp);
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
if ((new_arg->next_key_part=key.next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(new_arg);
|
|
}
|
|
if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
|
|
{ // tmp.min. <= x <= tmp.max
|
|
tmp->maybe_flag|= key.maybe_flag;
|
|
key.increment_use_count(key1->use_count+1);
|
|
tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
|
|
if (!cmp) // Key2 is ready
|
|
break;
|
|
key.copy_max_to_min(tmp);
|
|
if (!(tmp=tmp->next))
|
|
{
|
|
SEL_ARG *tmp2= new SEL_ARG(key);
|
|
if (!tmp2)
|
|
return 0; // OOM
|
|
key1=key1->insert(tmp2);
|
|
key2=key2->next;
|
|
goto end;
|
|
}
|
|
if (tmp->cmp_min_to_max(&key) > 0)
|
|
{
|
|
SEL_ARG *tmp2= new SEL_ARG(key);
|
|
if (!tmp2)
|
|
return 0; // OOM
|
|
key1=key1->insert(tmp2);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
tmp->copy_max_to_min(&key);
|
|
tmp->increment_use_count(key1->use_count+1);
|
|
/* Increment key count as it may be used for next loop */
|
|
key.increment_use_count(1);
|
|
new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
|
|
key1=key1->insert(new_arg);
|
|
break;
|
|
}
|
|
}
|
|
key2=key2->next;
|
|
}
|
|
|
|
end:
|
|
while (key2)
|
|
{
|
|
SEL_ARG *next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy
|
|
if (!tmp)
|
|
return 0;
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(tmp);
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
}
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
|
|
|
|
/* Compare if two trees are equal */
|
|
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
|
|
{
|
|
if (a == b)
|
|
return 1;
|
|
if (!a || !b || !a->is_same(b))
|
|
return 0;
|
|
if (a->left != &null_element && b->left != &null_element)
|
|
{
|
|
if (!eq_tree(a->left,b->left))
|
|
return 0;
|
|
}
|
|
else if (a->left != &null_element || b->left != &null_element)
|
|
return 0;
|
|
if (a->right != &null_element && b->right != &null_element)
|
|
{
|
|
if (!eq_tree(a->right,b->right))
|
|
return 0;
|
|
}
|
|
else if (a->right != &null_element || b->right != &null_element)
|
|
return 0;
|
|
if (a->next_key_part != b->next_key_part)
|
|
{ // Sub range
|
|
if (!a->next_key_part != !b->next_key_part ||
|
|
!eq_tree(a->next_key_part, b->next_key_part))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::insert(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element,**par,*last_element;
|
|
LINT_INIT(par); LINT_INIT(last_element);
|
|
|
|
for (element= this; element != &null_element ; )
|
|
{
|
|
last_element=element;
|
|
if (key->cmp_min_to_min(element) > 0)
|
|
{
|
|
par= &element->right; element= element->right;
|
|
}
|
|
else
|
|
{
|
|
par = &element->left; element= element->left;
|
|
}
|
|
}
|
|
*par=key;
|
|
key->parent=last_element;
|
|
/* Link in list */
|
|
if (par == &last_element->left)
|
|
{
|
|
key->next=last_element;
|
|
if ((key->prev=last_element->prev))
|
|
key->prev->next=key;
|
|
last_element->prev=key;
|
|
}
|
|
else
|
|
{
|
|
if ((key->next=last_element->next))
|
|
key->next->prev=key;
|
|
key->prev=last_element;
|
|
last_element->next=key;
|
|
}
|
|
key->left=key->right= &null_element;
|
|
SEL_ARG *root=rb_insert(key); // rebalance tree
|
|
root->use_count=this->use_count; // copy root info
|
|
root->elements= this->elements+1;
|
|
root->maybe_flag=this->maybe_flag;
|
|
return root;
|
|
}
|
|
|
|
|
|
/*
|
|
** Find best key with min <= given key
|
|
** Because the call context this should never return 0 to get_range
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::find_range(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element=this,*found=0;
|
|
|
|
for (;;)
|
|
{
|
|
if (element == &null_element)
|
|
return found;
|
|
int cmp=element->cmp_min_to_min(key);
|
|
if (cmp == 0)
|
|
return element;
|
|
if (cmp < 0)
|
|
{
|
|
found=element;
|
|
element=element->right;
|
|
}
|
|
else
|
|
element=element->left;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Remove a element from the tree
|
|
|
|
SYNOPSIS
|
|
tree_delete()
|
|
key Key that is to be deleted from tree (this)
|
|
|
|
NOTE
|
|
This also frees all sub trees that is used by the element
|
|
|
|
RETURN
|
|
root of new tree (with key deleted)
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::tree_delete(SEL_ARG *key)
|
|
{
|
|
enum leaf_color remove_color;
|
|
SEL_ARG *root,*nod,**par,*fix_par;
|
|
DBUG_ENTER("tree_delete");
|
|
|
|
root=this;
|
|
this->parent= 0;
|
|
|
|
/* Unlink from list */
|
|
if (key->prev)
|
|
key->prev->next=key->next;
|
|
if (key->next)
|
|
key->next->prev=key->prev;
|
|
key->increment_use_count(-1);
|
|
if (!key->parent)
|
|
par= &root;
|
|
else
|
|
par=key->parent_ptr();
|
|
|
|
if (key->left == &null_element)
|
|
{
|
|
*par=nod=key->right;
|
|
fix_par=key->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= key->color;
|
|
}
|
|
else if (key->right == &null_element)
|
|
{
|
|
*par= nod=key->left;
|
|
nod->parent=fix_par=key->parent;
|
|
remove_color= key->color;
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *tmp=key->next; // next bigger key (exist!)
|
|
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
|
|
fix_par=tmp->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= tmp->color;
|
|
|
|
tmp->parent=key->parent; // Move node in place of key
|
|
(tmp->left=key->left)->parent=tmp;
|
|
if ((tmp->right=key->right) != &null_element)
|
|
tmp->right->parent=tmp;
|
|
tmp->color=key->color;
|
|
*par=tmp;
|
|
if (fix_par == key) // key->right == key->next
|
|
fix_par=tmp; // new parent of nod
|
|
}
|
|
|
|
if (root == &null_element)
|
|
DBUG_RETURN(0); // Maybe root later
|
|
if (remove_color == BLACK)
|
|
root=rb_delete_fixup(root,nod,fix_par);
|
|
test_rb_tree(root,root->parent);
|
|
|
|
root->use_count=this->use_count; // Fix root counters
|
|
root->elements=this->elements-1;
|
|
root->maybe_flag=this->maybe_flag;
|
|
DBUG_RETURN(root);
|
|
}
|
|
|
|
|
|
/* Functions to fix up the tree after insert and delete */
|
|
|
|
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->right;
|
|
leaf->right=y->left;
|
|
if (y->left != &null_element)
|
|
y->left->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->left=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->left;
|
|
leaf->left=y->right;
|
|
if (y->right != &null_element)
|
|
y->right->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->right=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::rb_insert(SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y,*par,*par2,*root;
|
|
root= this; root->parent= 0;
|
|
|
|
leaf->color=RED;
|
|
while (leaf != root && (par= leaf->parent)->color == RED)
|
|
{ // This can't be root or 1 level under
|
|
if (par == (par2= leaf->parent->parent)->left)
|
|
{
|
|
y= par2->right;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->right)
|
|
{
|
|
left_rotate(&root,leaf->parent);
|
|
par=leaf; /* leaf is now parent to old leaf */
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
right_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
y= par2->left;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->left)
|
|
{
|
|
right_rotate(&root,par);
|
|
par=leaf;
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
left_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
root->color=BLACK;
|
|
test_rb_tree(root,root->parent);
|
|
return root;
|
|
}
|
|
|
|
|
|
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
|
|
{
|
|
SEL_ARG *x,*w;
|
|
root->parent=0;
|
|
|
|
x= key;
|
|
while (x != root && x->color == SEL_ARG::BLACK)
|
|
{
|
|
if (x == par->left)
|
|
{
|
|
w=par->right;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
left_rotate(&root,par);
|
|
w=par->right;
|
|
}
|
|
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->left->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
right_rotate(&root,w);
|
|
w=par->right;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->right->color=SEL_ARG::BLACK;
|
|
left_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
w=par->left;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
right_rotate(&root,par);
|
|
w=par->left;
|
|
}
|
|
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->right->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
left_rotate(&root,w);
|
|
w=par->left;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->left->color=SEL_ARG::BLACK;
|
|
right_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
par=x->parent;
|
|
}
|
|
x->color=SEL_ARG::BLACK;
|
|
return root;
|
|
}
|
|
|
|
|
|
/* Test that the proporties for a red-black tree holds */
|
|
|
|
#ifdef EXTRA_DEBUG
|
|
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
|
|
{
|
|
int count_l,count_r;
|
|
|
|
if (element == &null_element)
|
|
return 0; // Found end of tree
|
|
if (element->parent != parent)
|
|
{
|
|
sql_print_error("Wrong tree: Parent doesn't point at parent");
|
|
return -1;
|
|
}
|
|
if (element->color == SEL_ARG::RED &&
|
|
(element->left->color == SEL_ARG::RED ||
|
|
element->right->color == SEL_ARG::RED))
|
|
{
|
|
sql_print_error("Wrong tree: Found two red in a row");
|
|
return -1;
|
|
}
|
|
if (element->left == element->right && element->left != &null_element)
|
|
{ // Dummy test
|
|
sql_print_error("Wrong tree: Found right == left");
|
|
return -1;
|
|
}
|
|
count_l=test_rb_tree(element->left,element);
|
|
count_r=test_rb_tree(element->right,element);
|
|
if (count_l >= 0 && count_r >= 0)
|
|
{
|
|
if (count_l == count_r)
|
|
return count_l+(element->color == SEL_ARG::BLACK);
|
|
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
|
|
count_l,count_r);
|
|
}
|
|
return -1; // Error, no more warnings
|
|
}
|
|
|
|
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
|
|
{
|
|
ulong count= 0;
|
|
for (root=root->first(); root ; root=root->next)
|
|
{
|
|
if (root->next_key_part)
|
|
{
|
|
if (root->next_key_part == key)
|
|
count++;
|
|
if (root->next_key_part->part < key->part)
|
|
count+=count_key_part_usage(root->next_key_part,key);
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
void SEL_ARG::test_use_count(SEL_ARG *root)
|
|
{
|
|
uint e_count=0;
|
|
if (this == root && use_count != 1)
|
|
{
|
|
sql_print_information("Use_count: Wrong count %lu for root",use_count);
|
|
return;
|
|
}
|
|
if (this->type != SEL_ARG::KEY_RANGE)
|
|
return;
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
{
|
|
e_count++;
|
|
if (pos->next_key_part)
|
|
{
|
|
ulong count=count_key_part_usage(root,pos->next_key_part);
|
|
if (count > pos->next_key_part->use_count)
|
|
{
|
|
sql_print_information("Use_count: Wrong count for key at %lx, %lu should be %lu",
|
|
pos,pos->next_key_part->use_count,count);
|
|
return;
|
|
}
|
|
pos->next_key_part->test_use_count(root);
|
|
}
|
|
}
|
|
if (e_count != elements)
|
|
sql_print_warning("Wrong use count: %u (should be %u) for tree at %lx",
|
|
e_count, elements, (gptr) this);
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
** Check how many records we will find by using the found tree
|
|
*****************************************************************************/
|
|
|
|
static ha_rows
|
|
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
|
|
{
|
|
ha_rows records;
|
|
DBUG_ENTER("check_quick_select");
|
|
|
|
if (!tree)
|
|
DBUG_RETURN(HA_POS_ERROR); // Can't use it
|
|
param->max_key_part=0;
|
|
param->range_count=0;
|
|
if (tree->type == SEL_ARG::IMPOSSIBLE)
|
|
DBUG_RETURN(0L); // Impossible select. return
|
|
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
|
|
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
|
|
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
|
|
if (records != HA_POS_ERROR)
|
|
{
|
|
uint key=param->real_keynr[idx];
|
|
param->table->quick_keys.set_bit(key);
|
|
param->table->quick_rows[key]=records;
|
|
param->table->quick_key_parts[key]=param->max_key_part+1;
|
|
}
|
|
DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
|
|
DBUG_RETURN(records);
|
|
}
|
|
|
|
|
|
static ha_rows
|
|
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
|
|
char *min_key,uint min_key_flag, char *max_key,
|
|
uint max_key_flag)
|
|
{
|
|
ha_rows records=0,tmp;
|
|
|
|
param->max_key_part=max(param->max_key_part,key_tree->part);
|
|
if (key_tree->left != &null_element)
|
|
{
|
|
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
if (records == HA_POS_ERROR) // Impossible
|
|
return records;
|
|
}
|
|
|
|
uint tmp_min_flag,tmp_max_flag,keynr;
|
|
char *tmp_min_key=min_key,*tmp_max_key=max_key;
|
|
|
|
key_tree->store(param->key[idx][key_tree->part].store_length,
|
|
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
|
|
uint min_key_length= (uint) (tmp_min_key- param->min_key);
|
|
uint max_key_length= (uint) (tmp_max_key- param->max_key);
|
|
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{ // const key as prefix
|
|
if (min_key_length == max_key_length &&
|
|
!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
|
|
!key_tree->min_flag && !key_tree->max_flag)
|
|
{
|
|
tmp=check_quick_keys(param,idx,key_tree->next_key_part,
|
|
tmp_min_key, min_key_flag | key_tree->min_flag,
|
|
tmp_max_key, max_key_flag | key_tree->max_flag);
|
|
goto end; // Ugly, but efficient
|
|
}
|
|
tmp_min_flag=key_tree->min_flag;
|
|
tmp_max_flag=key_tree->max_flag;
|
|
if (!tmp_min_flag)
|
|
key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
|
|
&tmp_min_flag);
|
|
if (!tmp_max_flag)
|
|
key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
|
|
&tmp_max_flag);
|
|
min_key_length= (uint) (tmp_min_key- param->min_key);
|
|
max_key_length= (uint) (tmp_max_key- param->max_key);
|
|
}
|
|
else
|
|
{
|
|
tmp_min_flag=min_key_flag | key_tree->min_flag;
|
|
tmp_max_flag=max_key_flag | key_tree->max_flag;
|
|
}
|
|
|
|
keynr=param->real_keynr[idx];
|
|
param->range_count++;
|
|
if (!tmp_min_flag && ! tmp_max_flag &&
|
|
(uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
|
|
(param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
|
|
HA_NOSAME &&
|
|
min_key_length == max_key_length &&
|
|
!memcmp(param->min_key,param->max_key,min_key_length))
|
|
tmp=1; // Max one record
|
|
else
|
|
{
|
|
if (tmp_min_flag & GEOM_FLAG)
|
|
{
|
|
key_range min_range;
|
|
min_range.key= (byte*) param->min_key;
|
|
min_range.length= min_key_length;
|
|
/* In this case tmp_min_flag contains the handler-read-function */
|
|
min_range.flag= (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);
|
|
|
|
tmp= param->table->file->records_in_range(keynr, &min_range,
|
|
(key_range*) 0);
|
|
}
|
|
else
|
|
{
|
|
key_range min_range, max_range;
|
|
|
|
min_range.key= (byte*) param->min_key;
|
|
min_range.length= min_key_length;
|
|
min_range.flag= (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
|
|
HA_READ_KEY_EXACT);
|
|
max_range.key= (byte*) param->max_key;
|
|
max_range.length= max_key_length;
|
|
max_range.flag= (tmp_max_flag & NEAR_MAX ?
|
|
HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
|
|
tmp=param->table->file->records_in_range(keynr,
|
|
(min_key_length ? &min_range :
|
|
(key_range*) 0),
|
|
(max_key_length ? &max_range :
|
|
(key_range*) 0));
|
|
}
|
|
}
|
|
end:
|
|
if (tmp == HA_POS_ERROR) // Impossible range
|
|
return tmp;
|
|
records+=tmp;
|
|
if (key_tree->right != &null_element)
|
|
{
|
|
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
if (tmp == HA_POS_ERROR)
|
|
return tmp;
|
|
records+=tmp;
|
|
}
|
|
return records;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
** change a tree to a structure to be used by quick_select
|
|
** This uses it's own malloc tree
|
|
****************************************************************************/
|
|
|
|
static QUICK_SELECT *
|
|
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree)
|
|
{
|
|
QUICK_SELECT *quick;
|
|
DBUG_ENTER("get_quick_select");
|
|
|
|
if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
|
|
quick=new QUICK_SELECT_GEOM(param->thd, param->table, param->real_keynr[idx],
|
|
0);
|
|
else
|
|
quick=new QUICK_SELECT(param->thd, param->table, param->real_keynr[idx]);
|
|
|
|
if (quick)
|
|
{
|
|
if (quick->error ||
|
|
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
|
|
param->max_key,0))
|
|
{
|
|
delete quick;
|
|
quick=0;
|
|
}
|
|
else
|
|
{
|
|
quick->key_parts=(KEY_PART*)
|
|
memdup_root(&quick->alloc,(char*) param->key[idx],
|
|
sizeof(KEY_PART)*
|
|
param->table->key_info[param->real_keynr[idx]].key_parts);
|
|
}
|
|
}
|
|
DBUG_RETURN(quick);
|
|
}
|
|
|
|
|
|
/*
|
|
** Fix this to get all possible sub_ranges
|
|
*/
|
|
|
|
static bool
|
|
get_quick_keys(PARAM *param,QUICK_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
|
|
char *max_key, uint max_key_flag)
|
|
{
|
|
QUICK_RANGE *range;
|
|
uint flag;
|
|
|
|
if (key_tree->left != &null_element)
|
|
{
|
|
if (get_quick_keys(param,quick,key,key_tree->left,
|
|
min_key,min_key_flag, max_key, max_key_flag))
|
|
return 1;
|
|
}
|
|
char *tmp_min_key=min_key,*tmp_max_key=max_key;
|
|
key_tree->store(key[key_tree->part].store_length,
|
|
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
|
|
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{ // const key as prefix
|
|
if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
|
|
memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
|
|
key_tree->min_flag || key_tree->max_flag))
|
|
{
|
|
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
|
|
tmp_min_key, min_key_flag | key_tree->min_flag,
|
|
tmp_max_key, max_key_flag | key_tree->max_flag))
|
|
return 1;
|
|
goto end; // Ugly, but efficient
|
|
}
|
|
{
|
|
uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
|
|
if (!tmp_min_flag)
|
|
key_tree->next_key_part->store_min_key(key, &tmp_min_key,
|
|
&tmp_min_flag);
|
|
if (!tmp_max_flag)
|
|
key_tree->next_key_part->store_max_key(key, &tmp_max_key,
|
|
&tmp_max_flag);
|
|
flag=tmp_min_flag | tmp_max_flag;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
flag = (key_tree->min_flag & GEOM_FLAG) ?
|
|
key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
|
|
}
|
|
|
|
/*
|
|
Ensure that some part of min_key and max_key are used. If not,
|
|
regard this as no lower/upper range
|
|
*/
|
|
if ((flag & GEOM_FLAG) == 0)
|
|
{
|
|
if (tmp_min_key != param->min_key)
|
|
flag&= ~NO_MIN_RANGE;
|
|
else
|
|
flag|= NO_MIN_RANGE;
|
|
if (tmp_max_key != param->max_key)
|
|
flag&= ~NO_MAX_RANGE;
|
|
else
|
|
flag|= NO_MAX_RANGE;
|
|
}
|
|
if (flag == 0)
|
|
{
|
|
uint length= (uint) (tmp_min_key - param->min_key);
|
|
if (length == (uint) (tmp_max_key - param->max_key) &&
|
|
!memcmp(param->min_key,param->max_key,length))
|
|
{
|
|
KEY *table_key=quick->head->key_info+quick->index;
|
|
flag=EQ_RANGE;
|
|
if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
|
|
key->part == table_key->key_parts-1)
|
|
{
|
|
if (!(table_key->flags & HA_NULL_PART_KEY) ||
|
|
!null_part_in_key(key,
|
|
param->min_key,
|
|
(uint) (tmp_min_key - param->min_key)))
|
|
flag|= UNIQUE_RANGE;
|
|
else
|
|
flag|= NULL_RANGE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get range for retrieving rows in QUICK_SELECT::get_next */
|
|
if (!(range= new QUICK_RANGE((const char *) param->min_key,
|
|
(uint) (tmp_min_key - param->min_key),
|
|
(const char *) param->max_key,
|
|
(uint) (tmp_max_key - param->max_key),
|
|
flag)))
|
|
return 1; // out of memory
|
|
|
|
set_if_bigger(quick->max_used_key_length,range->min_length);
|
|
set_if_bigger(quick->max_used_key_length,range->max_length);
|
|
set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
|
|
quick->ranges.push_back(range);
|
|
|
|
end:
|
|
if (key_tree->right != &null_element)
|
|
return get_quick_keys(param,quick,key,key_tree->right,
|
|
min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Return 1 if there is only one range and this uses the whole primary key
|
|
*/
|
|
|
|
bool QUICK_SELECT::unique_key_range()
|
|
{
|
|
if (ranges.elements == 1)
|
|
{
|
|
QUICK_RANGE *tmp;
|
|
if (((tmp=ranges.head())->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
|
|
{
|
|
KEY *key=head->key_info+index;
|
|
return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
|
|
key->key_length == tmp->min_length);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Returns true if any part of the key is NULL */
|
|
|
|
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
|
|
{
|
|
for (const char *end=key+length ;
|
|
key < end;
|
|
key+= key_part++->store_length)
|
|
{
|
|
if (key_part->null_bit && *key)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************************************************************
|
|
Create a QUICK RANGE based on a key
|
|
****************************************************************************/
|
|
|
|
QUICK_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, TABLE_REF *ref)
|
|
{
|
|
MEM_ROOT *old_root= thd->mem_root;
|
|
/* The following call may change thd->mem_root */
|
|
QUICK_SELECT *quick= new QUICK_SELECT(thd, table, ref->key);
|
|
KEY *key_info = &table->key_info[ref->key];
|
|
KEY_PART *key_part;
|
|
QUICK_RANGE *range;
|
|
uint part;
|
|
|
|
if (!quick)
|
|
return 0; /* no ranges found */
|
|
if (cp_buffer_from_ref(thd, ref))
|
|
{
|
|
if (thd->is_fatal_error)
|
|
goto err; // out of memory
|
|
goto ok; // empty range
|
|
}
|
|
|
|
if (!(range= new QUICK_RANGE()))
|
|
goto err; // out of memory
|
|
|
|
range->min_key=range->max_key=(char*) ref->key_buff;
|
|
range->min_length=range->max_length=ref->key_length;
|
|
range->flag= ((ref->key_length == key_info->key_length &&
|
|
(key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
|
|
HA_NOSAME) ? EQ_RANGE : 0);
|
|
|
|
if (!(quick->key_parts=key_part=(KEY_PART *)
|
|
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
|
|
goto err;
|
|
|
|
for (part=0 ; part < ref->key_parts ;part++,key_part++)
|
|
{
|
|
key_part->part=part;
|
|
key_part->field= key_info->key_part[part].field;
|
|
key_part->length= key_info->key_part[part].length;
|
|
key_part->store_length= key_info->key_part[part].store_length;
|
|
key_part->null_bit= key_info->key_part[part].null_bit;
|
|
}
|
|
if (quick->ranges.push_back(range))
|
|
goto err;
|
|
|
|
/*
|
|
Add a NULL range if REF_OR_NULL optimization is used.
|
|
For example:
|
|
if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
|
|
and have ref->null_ref_key set. Will create a new NULL range here.
|
|
*/
|
|
if (ref->null_ref_key)
|
|
{
|
|
QUICK_RANGE *null_range;
|
|
|
|
*ref->null_ref_key= 1; // Set null byte then create a range
|
|
if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length,
|
|
(char*)ref->key_buff, ref->key_length,
|
|
EQ_RANGE)))
|
|
goto err;
|
|
*ref->null_ref_key= 0; // Clear null byte
|
|
if (quick->ranges.push_back(null_range))
|
|
goto err;
|
|
}
|
|
|
|
ok:
|
|
thd->mem_root= old_root;
|
|
return quick;
|
|
|
|
err:
|
|
thd->mem_root= old_root;
|
|
delete quick;
|
|
return 0;
|
|
}
|
|
|
|
/* get next possible record using quick-struct */
|
|
|
|
int QUICK_SELECT::get_next()
|
|
{
|
|
DBUG_ENTER("get_next");
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
key_range start_key, end_key;
|
|
if (range)
|
|
{
|
|
// Already read through key
|
|
result= file->read_range_next();
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(range= it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
|
|
start_key.key= (const byte*) range->min_key;
|
|
start_key.length= range->min_length;
|
|
start_key.flag= ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
|
(range->flag & EQ_RANGE) ?
|
|
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
|
end_key.key= (const byte*) range->max_key;
|
|
end_key.length= range->max_length;
|
|
/*
|
|
We use READ_AFTER_KEY here because if we are reading on a key
|
|
prefix we want to find all keys with this prefix
|
|
*/
|
|
end_key.flag= (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
|
|
HA_READ_AFTER_KEY);
|
|
|
|
result= file->read_range_first(range->min_length ? &start_key : 0,
|
|
range->max_length ? &end_key : 0,
|
|
test(range->flag & EQ_RANGE),
|
|
sorted);
|
|
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
range=0; // Stop searching
|
|
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
range=0; // No matching rows; go to next range
|
|
}
|
|
}
|
|
|
|
|
|
/* Get next for geometrical indexes */
|
|
|
|
int QUICK_SELECT_GEOM::get_next()
|
|
{
|
|
DBUG_ENTER(" QUICK_SELECT_GEOM::get_next");
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (range)
|
|
{
|
|
// Already read through key
|
|
result= file->index_next_same(record, (byte*) range->min_key,
|
|
range->min_length);
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(range= it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
|
|
result= file->index_read(record,
|
|
(byte*) range->min_key,
|
|
range->min_length,
|
|
(ha_rkey_function)(range->flag ^ GEOM_FLAG));
|
|
if (result != HA_ERR_KEY_NOT_FOUND)
|
|
DBUG_RETURN(result);
|
|
range=0; // Not found, to next range
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
This is a hack: we inherit from QUICK_SELECT so that we can use the
|
|
get_next() interface, but we have to hold a pointer to the original
|
|
QUICK_SELECT because its data are used all over the place. What
|
|
should be done is to factor out the data that is needed into a base
|
|
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
|
|
which handle the ranges and implement the get_next() function. But
|
|
for now, this seems to work right at least.
|
|
*/
|
|
|
|
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_SELECT *q, uint used_key_parts)
|
|
: QUICK_SELECT(*q), rev_it(rev_ranges)
|
|
{
|
|
QUICK_RANGE *r;
|
|
|
|
it.rewind();
|
|
for (r = it++; r; r = it++)
|
|
{
|
|
rev_ranges.push_front(r);
|
|
}
|
|
/* Remove EQ_RANGE flag for keys that are not using the full key */
|
|
for (r = rev_it++; r; r = rev_it++)
|
|
{
|
|
if ((r->flag & EQ_RANGE) &&
|
|
head->key_info[index].key_length != r->max_length)
|
|
r->flag&= ~EQ_RANGE;
|
|
}
|
|
rev_it.rewind();
|
|
q->dont_free=1; // Don't free shared mem
|
|
delete q;
|
|
}
|
|
|
|
|
|
int QUICK_SELECT_DESC::get_next()
|
|
{
|
|
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
|
|
|
|
/* The max key is handled as follows:
|
|
* - if there is NO_MAX_RANGE, start at the end and move backwards
|
|
* - if it is an EQ_RANGE, which means that max key covers the entire
|
|
* key, go directly to the key and read through it (sorting backwards is
|
|
* same as sorting forwards)
|
|
* - if it is NEAR_MAX, go to the key or next, step back once, and
|
|
* move backwards
|
|
* - otherwise (not NEAR_MAX == include the key), go after the key,
|
|
* step back once, and move backwards
|
|
*/
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (range)
|
|
{ // Already read through key
|
|
result = ((range->flag & EQ_RANGE)
|
|
? file->index_next_same(record, (byte*) range->min_key,
|
|
range->min_length) :
|
|
file->index_prev(record));
|
|
if (!result)
|
|
{
|
|
if (cmp_prev(*rev_it.ref()) == 0)
|
|
DBUG_RETURN(0);
|
|
}
|
|
else if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(range=rev_it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
|
|
if (range->flag & NO_MAX_RANGE) // Read last record
|
|
{
|
|
int local_error;
|
|
if ((local_error=file->index_last(record)))
|
|
DBUG_RETURN(local_error); // Empty table
|
|
if (cmp_prev(range) == 0)
|
|
DBUG_RETURN(0);
|
|
range=0; // No matching records; go to next range
|
|
continue;
|
|
}
|
|
|
|
if (range->flag & EQ_RANGE)
|
|
{
|
|
result = file->index_read(record, (byte*) range->max_key,
|
|
range->max_length, HA_READ_KEY_EXACT);
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
|
|
result=file->index_read(record, (byte*) range->max_key,
|
|
range->max_length,
|
|
((range->flag & NEAR_MAX) ?
|
|
HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
|
|
}
|
|
if (result)
|
|
{
|
|
if (result != HA_ERR_KEY_NOT_FOUND)
|
|
DBUG_RETURN(result);
|
|
range=0; // Not found, to next range
|
|
continue;
|
|
}
|
|
if (cmp_prev(range) == 0)
|
|
{
|
|
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
range = 0; // Stop searching
|
|
DBUG_RETURN(0); // Found key is in range
|
|
}
|
|
range = 0; // To next range
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Returns 0 if found key is inside range (found key >= range->min_key).
|
|
*/
|
|
|
|
int QUICK_SELECT_DESC::cmp_prev(QUICK_RANGE *range_arg)
|
|
{
|
|
int cmp;
|
|
if (range_arg->flag & NO_MIN_RANGE)
|
|
return 0; /* key can't be to small */
|
|
|
|
cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
|
|
range_arg->min_length);
|
|
if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
|
|
return 0;
|
|
return 1; // outside of range
|
|
}
|
|
|
|
|
|
/*
|
|
* True if this range will require using HA_READ_AFTER_KEY
|
|
See comment in get_next() about this
|
|
*/
|
|
|
|
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
|
|
{
|
|
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
|
|
!(range_arg->flag & EQ_RANGE) ||
|
|
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
|
|
}
|
|
|
|
|
|
/* True if we are reading over a key that may have a NULL value */
|
|
|
|
#ifdef NOT_USED
|
|
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
|
|
uint used_key_parts)
|
|
{
|
|
uint offset, end;
|
|
KEY_PART *key_part = key_parts,
|
|
*key_part_end= key_part+used_key_parts;
|
|
|
|
for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ;
|
|
offset < end && key_part != key_part_end ;
|
|
offset+= key_part++->store_length)
|
|
{
|
|
if (!memcmp((char*) range_arg->min_key+offset,
|
|
(char*) range_arg->max_key+offset,
|
|
key_part->store_length))
|
|
continue;
|
|
|
|
if (key_part->null_bit && range_arg->min_key[offset])
|
|
return 1; // min_key is null and max_key isn't
|
|
// Range doesn't cover NULL. This is ok if there is no more null parts
|
|
break;
|
|
}
|
|
/*
|
|
If the next min_range is > NULL, then we can use this, even if
|
|
it's a NULL key
|
|
Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;
|
|
|
|
*/
|
|
if (key_part != key_part_end && key_part->null_bit)
|
|
{
|
|
if (offset >= range_arg->min_length || range_arg->min_key[offset])
|
|
return 1; // Could be null
|
|
key_part++;
|
|
}
|
|
/*
|
|
If any of the key parts used in the ORDER BY could be NULL, we can't
|
|
use the key to sort the data.
|
|
*/
|
|
for (; key_part != key_part_end ; key_part++)
|
|
if (key_part->null_bit)
|
|
return 1; // Covers null part
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*****************************************************************************
|
|
** Print a quick range for debugging
|
|
** TODO:
|
|
** This should be changed to use a String to store each row instead
|
|
** of locking the DEBUG stream !
|
|
*****************************************************************************/
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
static void
|
|
print_key(KEY_PART *key_part,const char *key,uint used_length)
|
|
{
|
|
char buff[1024];
|
|
const char *key_end= key+used_length;
|
|
String tmp(buff,sizeof(buff),&my_charset_bin);
|
|
uint store_length;
|
|
|
|
for (; key < key_end; key+=store_length, key_part++)
|
|
{
|
|
Field *field= key_part->field;
|
|
store_length= key_part->store_length;
|
|
|
|
if (field->real_maybe_null())
|
|
{
|
|
if (*key)
|
|
{
|
|
fwrite("NULL",sizeof(char),4,DBUG_FILE);
|
|
continue;
|
|
}
|
|
key++; // Skip null byte
|
|
store_length--;
|
|
}
|
|
field->set_key_image((char*) key, key_part->length, field->charset());
|
|
field->val_str(&tmp);
|
|
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
|
|
if (key+store_length < key_end)
|
|
fputc('/',DBUG_FILE);
|
|
}
|
|
}
|
|
|
|
|
|
static void print_quick(QUICK_SELECT *quick,const key_map* needed_reg)
|
|
{
|
|
QUICK_RANGE *range;
|
|
char buf[MAX_KEY/8+1];
|
|
DBUG_ENTER("print_param");
|
|
if (! _db_on_ || !quick)
|
|
DBUG_VOID_RETURN;
|
|
|
|
List_iterator<QUICK_RANGE> li(quick->ranges);
|
|
DBUG_LOCK_FILE;
|
|
fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: 0x%s):\n",
|
|
quick->index, needed_reg->print(buf));
|
|
while ((range=li++))
|
|
{
|
|
if (!(range->flag & NO_MIN_RANGE))
|
|
{
|
|
print_key(quick->key_parts,range->min_key,range->min_length);
|
|
if (range->flag & NEAR_MIN)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
}
|
|
fputs("X",DBUG_FILE);
|
|
|
|
if (!(range->flag & NO_MAX_RANGE))
|
|
{
|
|
if (range->flag & NEAR_MAX)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
print_key(quick->key_parts,range->max_key,range->max_length);
|
|
}
|
|
fputs("\n",DBUG_FILE);
|
|
}
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*****************************************************************************
|
|
** Instansiate templates
|
|
*****************************************************************************/
|
|
|
|
#ifdef __GNUC__
|
|
template class List<QUICK_RANGE>;
|
|
template class List_iterator<QUICK_RANGE>;
|
|
#endif
|