mariadb/newbrt/tests/brt-serialize-test.c
Leif Walsh 7a958ca78d [t:4741] fix more tests that need to call toku_brtnode_pe_callback with a valid header
git-svn-id: file:///svn/toku/tokudb@43557 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:00:31 -04:00

1363 lines
49 KiB
C

/* -*- mode: C; c-basic-offset: 4; indent-tabs-mode: nil -*- */
#ident "$Id$"
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
#include "test.h"
#include "includes.h"
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
static int omt_int_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
assert(al == 4 && bl == 4);
int ai = *(int *) ak;
int bi = *(int *) bk;
int c = ai - bi;
if (c < 0) { return -1; }
if (c > 0) { return +1; }
else { return 0; }
}
static int omt_cmp(OMTVALUE p, void *q)
{
LEAFENTRY a = p, b = q;
void *ak, *bk;
u_int32_t al, bl;
ak = le_key_and_len(a, &al);
bk = le_key_and_len(b, &bl);
int l = MIN(al, bl);
int c = memcmp(ak, bk, l);
if (c < 0) { return -1; }
if (c > 0) { return +1; }
int d = al - bl;
if (d < 0) { return -1; }
if (d > 0) { return +1; }
else { return 0; }
}
static size_t
calc_le_size(int keylen, int vallen) {
size_t rval;
LEAFENTRY le;
rval = sizeof(le->type) + sizeof(le->keylen) + sizeof(le->u.clean.vallen) + keylen + vallen;
return rval;
}
static LEAFENTRY
le_fastmalloc(struct mempool * mp, char *key, int keylen, char *val, int vallen)
{
LEAFENTRY le;
size_t le_size = calc_le_size(keylen, vallen);
le = toku_mempool_malloc(mp, le_size, 1);
resource_assert(le);
le->type = LE_CLEAN;
le->keylen = keylen;
le->u.clean.vallen = vallen;
memcpy(&le->u.clean.key_val[0], key, keylen);
memcpy(&le->u.clean.key_val[keylen], val, vallen);
return le;
}
static LEAFENTRY
le_malloc(struct mempool * mp, char *key, char *val)
{
int keylen = strlen(key) + 1;
int vallen = strlen(val) + 1;
return le_fastmalloc(mp, key, keylen, val, vallen);
}
struct check_leafentries_struct {
int nelts;
LEAFENTRY *elts;
int i;
int (*cmp)(OMTVALUE, void *);
};
static int check_leafentries(OMTVALUE v, u_int32_t UU(i), void *extra) {
struct check_leafentries_struct *e = extra;
assert(e->i < e->nelts);
assert(e->cmp(v, e->elts[e->i]) == 0);
e->i++;
return 0;
}
enum brtnode_verify_type {
read_all=1,
read_compressed,
read_none
};
static int
string_key_cmp(DB *UU(e), const DBT *a, const DBT *b)
{
char *s = a->data, *t = b->data;
return strcmp(s, t);
}
static void
setup_dn(enum brtnode_verify_type bft, int fd, struct brt_header *brt_h, BRTNODE *dn, BRTNODE_DISK_DATA* ndd) {
int r;
brt_h->compare_fun = string_key_cmp;
if (bft == read_all) {
struct brtnode_fetch_extra bfe;
fill_bfe_for_full_read(&bfe, brt_h);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe);
assert(r==0);
}
else if (bft == read_compressed || bft == read_none) {
struct brtnode_fetch_extra bfe;
fill_bfe_for_min_read(&bfe, brt_h);
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, ndd, &bfe);
assert(r==0);
// assert all bp's are compressed or on disk.
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_COMPRESSED || BP_STATE(*dn, i) == PT_ON_DISK);
}
// if read_none, get rid of the compressed bp's
if (bft == read_none) {
if ((*dn)->height == 0) {
PAIR_ATTR attr;
toku_brtnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
// assert all bp's are on disk
for (int i = 0; i < (*dn)->n_children; i++) {
if ((*dn)->height == 0) {
assert(BP_STATE(*dn,i) == PT_ON_DISK);
assert(is_BNULL(*dn, i));
}
else {
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
}
}
}
else {
// first decompress everything, and make sure
// that it is available
// then run partial eviction to get it compressed
PAIR_ATTR attr;
fill_bfe_for_full_read(&bfe, brt_h);
assert(toku_brtnode_pf_req_callback(*dn, &bfe));
r = toku_brtnode_pf_callback(*dn, *ndd, &bfe, fd, &attr);
assert(r==0);
// assert all bp's are available
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
toku_brtnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
// assert all bp's are still available, because we touched the clock
assert(BP_STATE(*dn,i) == PT_AVAIL);
// now assert all should be evicted
assert(BP_SHOULD_EVICT(*dn, i));
}
toku_brtnode_pe_callback(*dn, make_pair_attr(0xffffffff), &attr, brt_h);
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
}
}
}
// now decompress them
fill_bfe_for_full_read(&bfe, brt_h);
assert(toku_brtnode_pf_req_callback(*dn, &bfe));
PAIR_ATTR attr;
r = toku_brtnode_pf_callback(*dn, *ndd, &bfe, fd, &attr);
assert(r==0);
// assert all bp's are available
for (int i = 0; i < (*dn)->n_children; i++) {
assert(BP_STATE(*dn,i) == PT_AVAIL);
}
// continue on with test
}
else {
// if we get here, this is a test bug, NOT a bug in development code
assert(FALSE);
}
}
static void write_sn_to_disk(int fd, BRT brt, BRTNODE sn, BRTNODE_DISK_DATA* src_ndd, BOOL do_clone) {
int r;
if (do_clone) {
void* cloned_node_v = NULL;
PAIR_ATTR attr;
toku_brtnode_clone_callback(sn, &cloned_node_v, &attr, FALSE, brt->h);
BRTNODE cloned_node = cloned_node_v;
r = toku_serialize_brtnode_to(fd, make_blocknum(20), cloned_node, src_ndd, FALSE, brt->h, 1, 1, FALSE);
assert(r==0);
toku_brtnode_free(&cloned_node);
}
else {
r = toku_serialize_brtnode_to(fd, make_blocknum(20), sn, src_ndd, TRUE, brt->h, 1, 1, FALSE);
assert(r==0);
}
}
static void
test_serialize_leaf_check_msn(enum brtnode_verify_type bft, BOOL do_clone) {
// struct brt source_brt;
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
#define PRESERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 42 })
#define POSTSERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 84 })
sn.max_msn_applied_to_node_on_disk = PRESERIALIZE_MSN_ON_DISK;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 2;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2);
sn.totalchildkeylens = 2;
BP_STATE(&sn,0) = PT_AVAIL;
BP_STATE(&sn,1) = PT_AVAIL;
set_BLB(&sn, 0, toku_create_empty_bn());
set_BLB(&sn, 1, toku_create_empty_bn());
LEAFENTRY elts[3];
{
BASEMENTNODE bn = BLB(&sn,0);
struct mempool * mp0 = &bn->buffer_mempool;
bn = BLB(&sn,1);
struct mempool * mp1 = &bn->buffer_mempool;
toku_mempool_construct(mp0, 1024);
toku_mempool_construct(mp1, 1024);
elts[0] = le_malloc(mp0, "a", "aval");
elts[1] = le_malloc(mp0, "b", "bval");
elts[2] = le_malloc(mp1, "x", "xval");
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
}
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
BLB_MAX_MSN_APPLIED(&sn, 0) = ((MSN) { MIN_MSN.msn + 73 });
BLB_MAX_MSN_APPLIED(&sn, 1) = POSTSERIALIZE_MSN_ON_DISK;
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children>=1);
assert(dn->max_msn_applied_to_node_on_disk.msn == POSTSERIALIZE_MSN_ON_DISK.msn);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
toku_mempool_construct(&dummy_mp, 1024);
elts[0] = le_malloc(&dummy_mp, "a", "aval");
elts[1] = le_malloc(&dummy_mp, "b", "bval");
elts[2] = le_malloc(&dummy_mp, "x", "xval");
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(BLB_MAX_MSN_APPLIED(dn, i).msn == POSTSERIALIZE_MSN_ON_DISK.msn);
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
u_int32_t keylen;
if (i < npartitions-1) {
assert(strcmp(dn->childkeys[i].data, le_key_and_len(elts[extra.i-1], &keylen))==0);
}
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == 3);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_large_pivots(enum brtnode_verify_type bft, BOOL do_clone) {
int r;
struct brtnode sn, *dn;
const int keylens = 256*1024, vallens = 0, nrows = 8;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = nrows;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
for (int i = 0; i < sn.n_children; ++i) {
BP_STATE(&sn,i) = PT_AVAIL;
set_BLB(&sn, i, toku_create_empty_bn());
}
for (int i = 0; i < nrows; ++i) { // one basement per row
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
size_t le_size = calc_le_size(keylens, vallens);
size_t mpsize = le_size; // one basement per row implies one row per basement
toku_mempool_construct(mp, mpsize);
char key[keylens], val[vallens];
key[keylens-1] = '\0';
char c = 'a' + i;
memset(key, c, keylens-1);
LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
r = toku_omt_insert(BLB_BUFFER(&sn, i), le, omt_cmp, le, NULL); assert(r==0);
BLB_NBYTESINBUF(&sn, i) = leafentry_disksize(le);
if (i < nrows-1) {
u_int32_t keylen;
char *keyp = le_key_and_len(le, &keylen);
toku_fill_dbt(&sn.childkeys[i], toku_xmemdup(keyp, keylen), keylen);
}
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
size_t le_size = calc_le_size(keylens, vallens);
size_t mpsize = nrows * le_size;
toku_mempool_construct(&dummy_mp, mpsize);
LEAFENTRY les[nrows];
{
char key[keylens], val[vallens];
key[keylens-1] = '\0';
for (int i = 0; i < nrows; ++i) {
char c = 'a' + i;
memset(key, c, keylens-1);
les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
}
}
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(keylens*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == nrows);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
toku_free(sn.childkeys);
for (int i = 0; i < sn.n_children; i++) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_many_rows(enum brtnode_verify_type bft, BOOL do_clone) {
int r;
struct brtnode sn, *dn;
const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 1;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
for (int i = 0; i < sn.n_children; ++i) {
BP_STATE(&sn,i) = PT_AVAIL;
set_BLB(&sn, i, toku_create_empty_bn());
}
BLB_NBYTESINBUF(&sn, 0) = 0;
BASEMENTNODE bn = BLB(&sn,0);
struct mempool * mp = &bn->buffer_mempool;
{
size_t le_size = calc_le_size(keylens, vallens);
size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool
toku_mempool_construct(mp, mpsize);
}
for (int i = 0; i < nrows; ++i) {
int key = i;
int val = i;
LEAFENTRY le = le_fastmalloc(mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_int_cmp, le, NULL); assert(r==0);
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le);
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
size_t le_size = calc_le_size(keylens, vallens);
size_t mpsize = nrows * le_size;
toku_mempool_construct(&dummy_mp, mpsize);
LEAFENTRY les[nrows];
{
int key = 0, val = 0;
for (int i = 0; i < nrows; ++i, key++, val++) {
les[i] = le_fastmalloc(&dummy_mp, (char *) &key, sizeof(key), (char *) &val, sizeof(val));
}
}
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == nrows);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
bn = BLB(&sn, i);
mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_large_rows(enum brtnode_verify_type bft, BOOL do_clone) {
int r;
struct brtnode sn, *dn;
const uint32_t nrows = 7;
const size_t key_size = 8;
const size_t val_size = 512*1024;
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = 4*(1<<20);
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 1;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children-1, sn.childkeys);
sn.totalchildkeylens = (sn.n_children-1)*8;
for (int i = 0; i < sn.n_children; ++i) {
BP_STATE(&sn,i) = PT_AVAIL;
set_BLB(&sn, i, toku_create_empty_bn());
}
BASEMENTNODE bn = BLB(&sn,0);
struct mempool * mp = &bn->buffer_mempool;
{
size_t le_size = calc_le_size(key_size, val_size);
size_t mpsize = nrows * le_size; // one basement, so all rows must fit in this one mempool
toku_mempool_construct(mp, mpsize);
}
BLB_NBYTESINBUF(&sn, 0) = 0;
for (uint32_t i = 0; i < nrows; ++i) {
char key[key_size], val[val_size];
key[key_size-1] = '\0';
val[val_size-1] = '\0';
char c = 'a' + i;
memset(key, c, key_size-1);
memset(val, c, val_size-1);
LEAFENTRY le = le_fastmalloc(mp, key, 8, val, val_size);
r = toku_omt_insert(BLB_BUFFER(&sn, 0), le, omt_cmp, le, NULL); assert(r==0);
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(le);
}
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
size_t le_size = calc_le_size(key_size, val_size);
size_t mpsize = nrows * le_size;
toku_mempool_construct(&dummy_mp, mpsize);
LEAFENTRY les[nrows];
{
char key[key_size], val[val_size];
key[key_size-1] = '\0';
val[val_size-1] = '\0';
for (uint32_t i = 0; i < nrows; ++i) {
char c = 'a' + i;
memset(key, c, key_size-1);
memset(val, c, val_size-1);
les[i] = le_fastmalloc(&dummy_mp, key, key_size, val, val_size);
}
}
const u_int32_t npartitions = dn->n_children;
assert(npartitions == nrows);
assert(dn->totalchildkeylens==(key_size*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == 7);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
bn = BLB(&sn, i);
mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_empty_basement_nodes(enum brtnode_verify_type bft, BOOL do_clone) {
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 7;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children-1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2);
toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("a", 2), 2);
toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("a", 2), 2);
toku_fill_dbt(&sn.childkeys[3], toku_xmemdup("b", 2), 2);
toku_fill_dbt(&sn.childkeys[4], toku_xmemdup("b", 2), 2);
toku_fill_dbt(&sn.childkeys[5], toku_xmemdup("x", 2), 2);
sn.totalchildkeylens = (sn.n_children-1)*2;
for (int i = 0; i < sn.n_children; ++i) {
BP_STATE(&sn,i) = PT_AVAIL;
set_BLB(&sn, i, toku_create_empty_bn());
BLB_SEQINSERT(&sn, i) = 0;
}
LEAFENTRY elts[3];
{
BASEMENTNODE bn = BLB(&sn,1);
struct mempool * mp1 = &bn->buffer_mempool;
bn = BLB(&sn,3);
struct mempool * mp3 = &bn->buffer_mempool;
bn = BLB(&sn,5);
struct mempool * mp5 = &bn->buffer_mempool;
toku_mempool_construct(mp1, 1024);
toku_mempool_construct(mp3, 1024);
toku_mempool_construct(mp5, 1024);
elts[0] = le_malloc(mp1, "a", "aval");
elts[1] = le_malloc(mp3, "b", "bval");
elts[2] = le_malloc(mp5, "x", "xval");
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
}
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4));
BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5));
BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6));
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children>0);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
toku_mempool_construct(&dummy_mp, 1024);
elts[0] = le_malloc(&dummy_mp, "a", "aval");
elts[1] = le_malloc(&dummy_mp, "b", "bval");
elts[2] = le_malloc(&dummy_mp, "x", "xval");
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == 3);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf_with_multiple_empty_basement_nodes(enum brtnode_verify_type bft, BOOL do_clone) {
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 4;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(sn.n_children-1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("A", 2), 2);
toku_fill_dbt(&sn.childkeys[1], toku_xmemdup("A", 2), 2);
toku_fill_dbt(&sn.childkeys[2], toku_xmemdup("A", 2), 2);
sn.totalchildkeylens = (sn.n_children-1)*2;
for (int i = 0; i < sn.n_children; ++i) {
BP_STATE(&sn,i) = PT_AVAIL;
set_BLB(&sn, i, toku_create_empty_bn());
}
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
BLB_NBYTESINBUF(&sn, 1) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
BLB_NBYTESINBUF(&sn, 3) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children == 1);
{
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 0, .elts = NULL, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
assert(toku_omt_size(BLB_BUFFER(dn, i)) == 0);
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
assert(extra.i == 0);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_leaf(enum brtnode_verify_type bft, BOOL do_clone) {
// struct brt source_brt;
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
sn.max_msn_applied_to_node_on_disk.msn = 0;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 0;
sn.n_children = 2;
sn.dirty = 1;
MALLOC_N(sn.n_children, sn.bp);
MALLOC_N(1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], toku_xmemdup("b", 2), 2);
sn.totalchildkeylens = 2;
BP_STATE(&sn,0) = PT_AVAIL;
BP_STATE(&sn,1) = PT_AVAIL;
set_BLB(&sn, 0, toku_create_empty_bn());
set_BLB(&sn, 1, toku_create_empty_bn());
LEAFENTRY elts[3];
{
BASEMENTNODE bn = BLB(&sn,0);
struct mempool * mp0 = &bn->buffer_mempool;
bn = BLB(&sn,1);
struct mempool * mp1 = &bn->buffer_mempool;
toku_mempool_construct(mp0, 1024);
toku_mempool_construct(mp1, 1024);
elts[0] = le_malloc(mp0, "a", "aval");
elts[1] = le_malloc(mp0, "b", "bval");
elts[2] = le_malloc(mp1, "x", "xval");
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
}
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 0);
assert(dn->n_children>=1);
{
// Man, this is way too ugly. This entire test suite needs to be refactored.
// Create a dummy mempool and put the leaves there. Ugh.
struct mempool dummy_mp;
toku_mempool_construct(&dummy_mp, 1024);
elts[0] = le_malloc(&dummy_mp, "a", "aval");
elts[1] = le_malloc(&dummy_mp, "b", "bval");
elts[2] = le_malloc(&dummy_mp, "x", "xval");
const u_int32_t npartitions = dn->n_children;
assert(dn->totalchildkeylens==(2*(npartitions-1)));
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
u_int32_t last_i = 0;
for (u_int32_t i = 0; i < npartitions; ++i) {
assert(dest_ndd[i].start > 0);
assert(dest_ndd[i].size > 0);
if (i > 0) {
assert(dest_ndd[i].start >= dest_ndd[i-1].start + dest_ndd[i-1].size);
}
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
u_int32_t keylen;
if (i < npartitions-1) {
assert(strcmp(dn->childkeys[i].data, le_key_and_len(elts[extra.i-1], &keylen))==0);
}
// don't check soft_copy_is_up_to_date or seqinsert
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
last_i = extra.i;
}
toku_mempool_destroy(&dummy_mp);
assert(extra.i == 3);
}
toku_brtnode_free(&dn);
for (int i = 0; i < sn.n_children-1; ++i) {
toku_free(sn.childkeys[i].data);
}
for (int i = 0; i < sn.n_children; i++) {
BASEMENTNODE bn = BLB(&sn, i);
struct mempool * mp = &bn->buffer_mempool;
toku_mempool_destroy(mp);
destroy_basement_node(BLB(&sn, i));
}
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
static void
test_serialize_nonleaf(enum brtnode_verify_type bft, BOOL do_clone) {
// struct brt source_brt;
const int nodesize = 1024;
struct brtnode sn, *dn;
int fd = open(__SRCFILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
int r;
// source_brt.fd=fd;
sn.max_msn_applied_to_node_on_disk.msn = 0;
char *hello_string;
sn.nodesize = nodesize;
sn.flags = 0x11223344;
sn.thisnodename.b = 20;
sn.layout_version = BRT_LAYOUT_VERSION;
sn.layout_version_original = BRT_LAYOUT_VERSION;
sn.height = 1;
sn.n_children = 2;
sn.dirty = 1;
hello_string = toku_strdup("hello");
MALLOC_N(2, sn.bp);
MALLOC_N(1, sn.childkeys);
toku_fill_dbt(&sn.childkeys[0], hello_string, 6);
sn.totalchildkeylens = 6;
BP_BLOCKNUM(&sn, 0).b = 30;
BP_BLOCKNUM(&sn, 1).b = 35;
BP_STATE(&sn,0) = PT_AVAIL;
BP_STATE(&sn,1) = PT_AVAIL;
set_BNC(&sn, 0, toku_create_empty_nl());
set_BNC(&sn, 1, toku_create_empty_nl());
//Create XIDS
XIDS xids_0 = xids_get_root_xids();
XIDS xids_123;
XIDS xids_234;
r = xids_create_child(xids_0, &xids_123, (TXNID)123);
CKERR(r);
r = xids_create_child(xids_123, &xids_234, (TXNID)234);
CKERR(r);
r = toku_bnc_insert_msg(BNC(&sn, 0), "a", 2, "aval", 5, BRT_NONE, next_dummymsn(), xids_0, true, NULL, string_key_cmp); assert_zero(r);
r = toku_bnc_insert_msg(BNC(&sn, 0), "b", 2, "bval", 5, BRT_NONE, next_dummymsn(), xids_123, false, NULL, string_key_cmp); assert_zero(r);
r = toku_bnc_insert_msg(BNC(&sn, 1), "x", 2, "xval", 5, BRT_NONE, next_dummymsn(), xids_234, true, NULL, string_key_cmp); assert_zero(r);
//Cleanup:
xids_destroy(&xids_0);
xids_destroy(&xids_123);
xids_destroy(&xids_234);
struct brt *XMALLOC(brt);
struct brt_header *XCALLOC(brt_h);
brt->h = brt_h;
brt_h->type = BRTHEADER_CURRENT;
brt_h->panic = 0; brt_h->panic_string = 0;
brt_h->basementnodesize = 128*1024;
brt_h->compression_method = TOKU_DEFAULT_COMPRESSION_METHOD;
toku_brtheader_init_treelock(brt_h);
toku_blocktable_create_new(&brt_h->blocktable);
//Want to use block #20
BLOCKNUM b = make_blocknum(0);
while (b.b < 20) {
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
}
assert(b.b == 20);
{
DISKOFF offset;
DISKOFF size;
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
assert(size == 100);
}
BRTNODE_DISK_DATA src_ndd = NULL;
BRTNODE_DISK_DATA dest_ndd = NULL;
write_sn_to_disk(fd, brt, &sn, &src_ndd, do_clone);
setup_dn(bft, fd, brt_h, &dn, &dest_ndd);
assert(dn->thisnodename.b==20);
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
assert(dn->height == 1);
assert(dn->n_children==2);
assert(strcmp(dn->childkeys[0].data, "hello")==0);
assert(dn->childkeys[0].size==6);
assert(dn->totalchildkeylens==6);
assert(BP_BLOCKNUM(dn,0).b==30);
assert(BP_BLOCKNUM(dn,1).b==35);
FIFO src_fifo_1 = BNC(&sn, 0)->buffer;
FIFO src_fifo_2 = BNC(&sn, 1)->buffer;
FIFO dest_fifo_1 = BNC(dn, 0)->buffer;
FIFO dest_fifo_2 = BNC(dn, 1)->buffer;
assert(toku_are_fifos_same(src_fifo_1, dest_fifo_1));
assert(toku_are_fifos_same(src_fifo_2, dest_fifo_2));
toku_brtnode_free(&dn);
toku_free(sn.childkeys[0].data);
destroy_nonleaf_childinfo(BNC(&sn, 0));
destroy_nonleaf_childinfo(BNC(&sn, 1));
toku_free(sn.bp);
toku_free(sn.childkeys);
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
toku_blocktable_destroy(&brt_h->blocktable);
toku_brtheader_destroy_treelock(brt_h);
toku_free(brt_h);
toku_free(brt);
toku_free(src_ndd);
toku_free(dest_ndd);
r = close(fd); assert(r != -1);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
initialize_dummymsn();
test_serialize_leaf(read_none, FALSE);
test_serialize_leaf(read_all, FALSE);
test_serialize_leaf(read_compressed, FALSE);
test_serialize_leaf(read_none, TRUE);
test_serialize_leaf(read_all, TRUE);
test_serialize_leaf(read_compressed, TRUE);
test_serialize_leaf_with_empty_basement_nodes(read_none, FALSE);
test_serialize_leaf_with_empty_basement_nodes(read_all, FALSE);
test_serialize_leaf_with_empty_basement_nodes(read_compressed, FALSE);
test_serialize_leaf_with_empty_basement_nodes(read_none, TRUE);
test_serialize_leaf_with_empty_basement_nodes(read_all, TRUE);
test_serialize_leaf_with_empty_basement_nodes(read_compressed, TRUE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, FALSE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, FALSE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, FALSE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_none, TRUE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_all, TRUE);
test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed, TRUE);
test_serialize_leaf_with_large_rows(read_none, FALSE);
test_serialize_leaf_with_large_rows(read_all, FALSE);
test_serialize_leaf_with_large_rows(read_compressed, FALSE);
test_serialize_leaf_with_large_rows(read_none, TRUE);
test_serialize_leaf_with_large_rows(read_all, TRUE);
test_serialize_leaf_with_large_rows(read_compressed, TRUE);
test_serialize_leaf_with_many_rows(read_none, FALSE);
test_serialize_leaf_with_many_rows(read_all, FALSE);
test_serialize_leaf_with_many_rows(read_compressed, FALSE);
test_serialize_leaf_with_many_rows(read_none, TRUE);
test_serialize_leaf_with_many_rows(read_all, TRUE);
test_serialize_leaf_with_many_rows(read_compressed, TRUE);
test_serialize_leaf_with_large_pivots(read_none, FALSE);
test_serialize_leaf_with_large_pivots(read_all, FALSE);
test_serialize_leaf_with_large_pivots(read_compressed, FALSE);
test_serialize_leaf_with_large_pivots(read_none, TRUE);
test_serialize_leaf_with_large_pivots(read_all, TRUE);
test_serialize_leaf_with_large_pivots(read_compressed, TRUE);
test_serialize_leaf_check_msn(read_none, FALSE);
test_serialize_leaf_check_msn(read_all, FALSE);
test_serialize_leaf_check_msn(read_compressed, FALSE);
test_serialize_leaf_check_msn(read_none, TRUE);
test_serialize_leaf_check_msn(read_all, TRUE);
test_serialize_leaf_check_msn(read_compressed, TRUE);
test_serialize_nonleaf(read_none, FALSE);
test_serialize_nonleaf(read_all, FALSE);
test_serialize_nonleaf(read_compressed, FALSE);
test_serialize_nonleaf(read_none, TRUE);
test_serialize_nonleaf(read_all, TRUE);
test_serialize_nonleaf(read_compressed, TRUE);
return 0;
}