mirror of
https://github.com/MariaDB/server.git
synced 2025-01-27 09:14:17 +01:00
d9d0e78039
This solves the current problem in the optimizer - SELECT FROM big_table - SELECT from small_table where small_table.eq_ref_key=big_table.id The old code assumed that each eq_ref access will cause an IO. As the cost of IO is high, this dominated the cost for the later table which caused the optimizer to prefer table scans + join cache over index reads. This patch fixes this issue by limit the number of expected IO calls, for rows and index separately, to the size of the table or index or the number of accesses that we except in a range for the index. The major changes are: - Adding a new structure ALL_READ_COST that is mainly used in best_access_path() to hold the costs parts of the cost we are calculating. This allows us to limit the number of IO when multiplying the cost with the previous row combinations. - All storage engine cost functions are changed to return IO_AND_CPU_COST. The virtual cost functions should now return in IO_AND_CPU_COST.io the number of disk blocks that will be accessed instead of the cost of the access. - We are not limiting the io_blocks for table or index scans as we assume that engines may not store these in the 'hot' part of the cache. Table and index scan also uses much less IO blocks than key accesses, so the original issue is not as critical with scans. Other things: OPT_RANGE now holds a 'Cost_estimate cost' instead a lot of different costs. All the old costs, like index_only_read, can be extracted from 'cost'. - Added to the start of some functions 'handler *file= table->file' to shorten the code that is using the handler. - handler->cost() is used to change a ALL_READ_COST or IO_AND_CPU_COST to 'cost in milliseconds' - New functions: handler::index_blocks() and handler::row_blocks() which are used to limit the IO. - Added index_cost and row_cost to Cost_estimate and removed all not needed members. - Removed cost coefficients from Cost_estimate as these don't make sense when costs (except IO_BLOCKS) are in milliseconds. - Removed handler::avg_io_cost() and replaced it with DISK_READ_COST. - Renamed best_range_rowid_filter_for_partial_join() to best_range_rowid_filter() as using the old name made rows too long. - Changed all SJ_MATERIALIZATION_INFO 'Cost_estimate' variables to 'double' as Cost_estimate power was not used for these and thus just caused storage and performance overhead. - Changed cost_for_index_read() to use 'worst_seeks' to only limit IO, not number of table accesses. With this patch worst_seeks is probably not needed anymore, but I kept it around just in case. - Applying cost for filter got to be much shorter and easier thanks to the API changes. - Adjusted cost for fulltext keys in collaboration with Sergei Golubchik. - Most test changes caused by this patch is that table scans are changed to use indexes. - Added ha_seq::keyread_time() and ha_seq::key_scan_time() to get make checking number of potential IO blocks easier during debugging.
475 lines
15 KiB
C++
475 lines
15 KiB
C++
/* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
|
|
Copyright (c) 2012, 2020, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
#include "mariadb.h"
|
|
#include "filesort_utils.h"
|
|
#include "sql_const.h"
|
|
#include "sql_sort.h"
|
|
#include "table.h"
|
|
#include "optimizer_defaults.h"
|
|
|
|
PSI_memory_key key_memory_Filesort_buffer_sort_keys;
|
|
|
|
const LEX_CSTRING filesort_names[]=
|
|
{
|
|
{ STRING_WITH_LEN("priority_queue with addon fields")},
|
|
{ STRING_WITH_LEN("priority_queue with row lookup")},
|
|
{ STRING_WITH_LEN("merge_sort with addon fields")},
|
|
{ STRING_WITH_LEN("merge_sort with row lookup)")},
|
|
{ STRING_WITH_LEN("Error while computing filesort cost")}
|
|
};
|
|
|
|
/*
|
|
Different ways to do sorting:
|
|
Merge Sort -> Without addon Fields, with fixed length
|
|
Merge Sort -> Without addon Fields, with dynamic length
|
|
Merge Sort -> With addon Fields, with fixed length
|
|
Merge Sort -> With addon Fields, with dynamic length
|
|
|
|
Priority queue -> Without addon fields
|
|
Priority queue -> With addon fields
|
|
|
|
With PQ (Priority queue) we could have a simple key (memcmp) or a
|
|
complex key (double & varchar for example). This cost difference
|
|
is currently not considered.
|
|
*/
|
|
|
|
|
|
/**
|
|
Compute the cost of running qsort over a set of rows.
|
|
@param num_rows How many rows will be sorted.
|
|
@param with_addon_fields Set to true if the sorted rows include the whole
|
|
row (with addon fields) or just the keys themselves.
|
|
|
|
@retval
|
|
Cost of the operation.
|
|
*/
|
|
|
|
double get_qsort_sort_cost(ha_rows num_rows, bool with_addon_fields)
|
|
{
|
|
const double row_copy_cost= with_addon_fields ? DEFAULT_ROW_COPY_COST :
|
|
DEFAULT_KEY_COPY_COST;
|
|
const double key_cmp_cost= DEFAULT_KEY_COMPARE_COST;
|
|
const double qsort_constant_factor= QSORT_SORT_SLOWNESS_CORRECTION_FACTOR *
|
|
(row_copy_cost + key_cmp_cost);
|
|
|
|
return qsort_constant_factor * num_rows * log2(1.0 + num_rows);
|
|
}
|
|
|
|
|
|
/**
|
|
Compute the cost of sorting num_rows and only retrieving queue_size rows.
|
|
@param num_rows How many rows will be sorted.
|
|
@param queue_size How many rows will be returned by the priority
|
|
queue.
|
|
@param with_addon_fields Set to true if the sorted rows include the whole
|
|
row (with addon fields) or just the keys themselves.
|
|
|
|
@retval
|
|
Cost of the operation.
|
|
*/
|
|
|
|
double get_pq_sort_cost(size_t num_rows, size_t queue_size,
|
|
bool with_addon_fields)
|
|
{
|
|
const double row_copy_cost= with_addon_fields ? DEFAULT_ROW_COPY_COST :
|
|
DEFAULT_KEY_COPY_COST;
|
|
const double key_cmp_cost= DEFAULT_KEY_COMPARE_COST;
|
|
/* 2 -> 1 insert, 1 pop from the queue*/
|
|
const double pq_sort_constant_factor= PQ_SORT_SLOWNESS_CORRECTION_FACTOR *
|
|
2.0 * (row_copy_cost + key_cmp_cost);
|
|
|
|
return pq_sort_constant_factor * num_rows * log2(1.0 + queue_size);
|
|
}
|
|
|
|
|
|
/**
|
|
Compute the cost of merging "num_buffers" sorted buffers using a priority
|
|
queue.
|
|
|
|
See comments for get_merge_buffers_cost().
|
|
*/
|
|
|
|
static
|
|
double get_merge_cost(ha_rows num_elements, ha_rows num_buffers,
|
|
size_t elem_size, double compare_cost,
|
|
double disk_read_cost)
|
|
{
|
|
/* 2 -> 1 read + 1 write */
|
|
const double io_cost= (2.0 * (num_elements * elem_size +
|
|
DISK_CHUNK_SIZE - 1) /
|
|
DISK_CHUNK_SIZE) * disk_read_cost;
|
|
/* 2 -> 1 insert, 1 pop for the priority queue used to merge the buffers. */
|
|
const double cpu_cost= (2.0 * num_elements * log2(1.0 + num_buffers) *
|
|
compare_cost) * PQ_SORT_SLOWNESS_CORRECTION_FACTOR;
|
|
return io_cost + cpu_cost;
|
|
}
|
|
|
|
|
|
/**
|
|
This is a simplified, and faster version of @see get_merge_many_buffs_cost().
|
|
We calculate the cost of merging buffers, by simulating the actions
|
|
of @see merge_many_buff. For explanations of formulas below,
|
|
see comments for get_merge_buffers_cost().
|
|
TODO: Use this function for Unique::get_use_cost().
|
|
*/
|
|
|
|
double get_merge_many_buffs_cost_fast(ha_rows num_rows,
|
|
ha_rows num_keys_per_buffer,
|
|
size_t elem_size,
|
|
double key_compare_cost,
|
|
double disk_read_cost,
|
|
bool with_addon_fields)
|
|
{
|
|
DBUG_ASSERT(num_keys_per_buffer != 0);
|
|
|
|
ha_rows num_buffers= num_rows / num_keys_per_buffer;
|
|
ha_rows last_n_elems= num_rows % num_keys_per_buffer;
|
|
double total_cost;
|
|
double full_buffer_sort_cost;
|
|
|
|
/* Calculate cost for sorting all merge buffers + the last one. */
|
|
full_buffer_sort_cost= get_qsort_sort_cost(num_keys_per_buffer,
|
|
with_addon_fields);
|
|
total_cost= (num_buffers * full_buffer_sort_cost +
|
|
get_qsort_sort_cost(last_n_elems, with_addon_fields));
|
|
|
|
if (num_buffers >= MERGEBUFF2)
|
|
total_cost+= TMPFILE_CREATE_COST * 2; // We are creating 2 files.
|
|
|
|
/* Simulate behavior of merge_many_buff(). */
|
|
while (num_buffers >= MERGEBUFF2)
|
|
{
|
|
/* Calculate # of calls to merge_buffers(). */
|
|
const ha_rows loop_limit= num_buffers - MERGEBUFF * 3 / 2;
|
|
const ha_rows num_merge_calls= 1 + loop_limit / MERGEBUFF;
|
|
const ha_rows num_remaining_buffs=
|
|
num_buffers - num_merge_calls * MERGEBUFF;
|
|
|
|
/* Cost of merge sort 'num_merge_calls'. */
|
|
total_cost+=
|
|
num_merge_calls *
|
|
get_merge_cost(num_keys_per_buffer * MERGEBUFF, MERGEBUFF, elem_size,
|
|
key_compare_cost, disk_read_cost);
|
|
|
|
// # of records in remaining buffers.
|
|
last_n_elems+= num_remaining_buffs * num_keys_per_buffer;
|
|
|
|
// Cost of merge sort of remaining buffers.
|
|
total_cost+=
|
|
get_merge_cost(last_n_elems, 1 + num_remaining_buffs, elem_size,
|
|
key_compare_cost, disk_read_cost);
|
|
|
|
num_buffers= num_merge_calls;
|
|
num_keys_per_buffer*= MERGEBUFF;
|
|
}
|
|
|
|
// Simulate final merge_buff call.
|
|
last_n_elems+= num_keys_per_buffer * num_buffers;
|
|
total_cost+= get_merge_cost(last_n_elems, 1 + num_buffers, elem_size,
|
|
key_compare_cost, disk_read_cost);
|
|
return total_cost;
|
|
}
|
|
|
|
|
|
void Sort_costs::compute_fastest_sort()
|
|
{
|
|
lowest_cost= DBL_MAX;
|
|
uint min_idx= NO_SORT_POSSIBLE_OUT_OF_MEM;
|
|
for (uint i= 0; i < FINAL_SORT_TYPE; i++)
|
|
{
|
|
if (lowest_cost > costs[i])
|
|
{
|
|
min_idx= i;
|
|
lowest_cost= costs[i];
|
|
}
|
|
}
|
|
fastest_sort= static_cast<enum sort_type>(min_idx);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate cost of using priority queue for filesort.
|
|
There are two options: using addon fields or not
|
|
*/
|
|
|
|
void Sort_costs::compute_pq_sort_costs(Sort_param *param, ha_rows num_rows,
|
|
size_t memory_available,
|
|
bool with_addon_fields)
|
|
{
|
|
/*
|
|
Implementation detail of PQ. To be able to keep a PQ of size N we need
|
|
N+1 elements allocated so we can use the last element as "swap" space
|
|
for the "insert" operation.
|
|
TODO(cvicentiu): This should be left as an implementation detail inside
|
|
the PQ, not have the optimizer take it into account.
|
|
*/
|
|
size_t queue_size= param->limit_rows + 1;
|
|
size_t row_length, num_available_keys;
|
|
|
|
costs[PQ_SORT_ALL_FIELDS]= DBL_MAX;
|
|
costs[PQ_SORT_ORDER_BY_FIELDS]= DBL_MAX;
|
|
|
|
/*
|
|
We can't use priority queue if there's no limit or the limit is
|
|
too big.
|
|
*/
|
|
if (param->limit_rows == HA_POS_ERROR ||
|
|
param->limit_rows >= UINT_MAX - 2)
|
|
return;
|
|
|
|
/* Calculate cost without addon keys (probably using less memory) */
|
|
row_length= param->sort_length + param->ref_length + sizeof(char*);
|
|
num_available_keys= memory_available / row_length;
|
|
|
|
if (queue_size < num_available_keys)
|
|
{
|
|
handler *file= param->sort_form->file;
|
|
costs[PQ_SORT_ORDER_BY_FIELDS]=
|
|
get_pq_sort_cost(num_rows, queue_size, false) +
|
|
file->cost(file->ha_rnd_pos_call_time(MY_MIN(queue_size - 1, num_rows)));
|
|
}
|
|
|
|
/* Calculate cost with addon fields */
|
|
if (with_addon_fields)
|
|
{
|
|
row_length= param->rec_length + sizeof(char *);
|
|
num_available_keys= memory_available / row_length;
|
|
|
|
if (queue_size < num_available_keys)
|
|
costs[PQ_SORT_ALL_FIELDS]= get_pq_sort_cost(num_rows, queue_size, true);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Calculate cost of using qsort optional merge sort for resolving filesort.
|
|
There are two options: using addon fields or not
|
|
*/
|
|
|
|
void Sort_costs::compute_merge_sort_costs(Sort_param *param,
|
|
ha_rows num_rows,
|
|
size_t memory_available,
|
|
bool with_addon_fields)
|
|
{
|
|
size_t row_length= param->sort_length + param->ref_length + sizeof(char *);
|
|
size_t num_available_keys= memory_available / row_length;
|
|
|
|
costs[MERGE_SORT_ALL_FIELDS]= DBL_MAX;
|
|
costs[MERGE_SORT_ORDER_BY_FIELDS]= DBL_MAX;
|
|
|
|
if (num_available_keys)
|
|
{
|
|
handler *file= param->sort_form->file;
|
|
costs[MERGE_SORT_ORDER_BY_FIELDS]=
|
|
get_merge_many_buffs_cost_fast(num_rows, num_available_keys,
|
|
row_length, DEFAULT_KEY_COMPARE_COST,
|
|
default_optimizer_costs.disk_read_cost,
|
|
false) +
|
|
file->cost(file->ha_rnd_pos_call_time(MY_MIN(param->limit_rows, num_rows)));
|
|
}
|
|
if (with_addon_fields)
|
|
{
|
|
/* Compute cost of merge sort *if* we strip addon fields. */
|
|
row_length= param->rec_length + sizeof(char *);
|
|
num_available_keys= memory_available / row_length;
|
|
|
|
if (num_available_keys)
|
|
costs[MERGE_SORT_ALL_FIELDS]=
|
|
get_merge_many_buffs_cost_fast(num_rows, num_available_keys,
|
|
row_length, DEFAULT_KEY_COMPARE_COST,
|
|
DISK_READ_COST_THD(thd),
|
|
true);
|
|
}
|
|
|
|
/*
|
|
TODO(cvicentiu) we do not handle dynamic length fields yet.
|
|
The code should decide here if the format is FIXED length or DYNAMIC
|
|
and fill in the appropriate costs.
|
|
*/
|
|
}
|
|
|
|
void Sort_costs::compute_sort_costs(Sort_param *param, ha_rows num_rows,
|
|
size_t memory_available,
|
|
bool with_addon_fields)
|
|
{
|
|
compute_pq_sort_costs(param, num_rows, memory_available,
|
|
with_addon_fields);
|
|
compute_merge_sort_costs(param, num_rows, memory_available,
|
|
with_addon_fields);
|
|
compute_fastest_sort();
|
|
}
|
|
|
|
/*
|
|
alloc_sort_buffer()
|
|
|
|
Allocate buffer for sorting keys.
|
|
Try to reuse old buffer if possible.
|
|
|
|
@return
|
|
0 Error
|
|
# Pointer to allocated buffer
|
|
*/
|
|
|
|
uchar *Filesort_buffer::alloc_sort_buffer(uint num_records,
|
|
uint record_length)
|
|
{
|
|
size_t buff_size;
|
|
DBUG_ENTER("alloc_sort_buffer");
|
|
DBUG_EXECUTE_IF("alloc_sort_buffer_fail",
|
|
DBUG_SET("+d,simulate_out_of_memory"););
|
|
|
|
buff_size= ALIGN_SIZE(num_records * (record_length + sizeof(uchar*)));
|
|
|
|
if (m_rawmem)
|
|
{
|
|
/*
|
|
Reuse old buffer if exists and is large enough
|
|
Note that we don't make the buffer smaller, as we want to be
|
|
prepared for next subquery iteration.
|
|
*/
|
|
if (buff_size > m_size_in_bytes)
|
|
{
|
|
/*
|
|
Better to free and alloc than realloc as we don't have to remember
|
|
the old values
|
|
*/
|
|
my_free(m_rawmem);
|
|
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
|
|
buff_size, MYF(MY_THREAD_SPECIFIC))))
|
|
{
|
|
m_size_in_bytes= 0;
|
|
DBUG_RETURN(0);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!(m_rawmem= (uchar*) my_malloc(key_memory_Filesort_buffer_sort_keys,
|
|
buff_size, MYF(MY_THREAD_SPECIFIC))))
|
|
{
|
|
m_size_in_bytes= 0;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
}
|
|
|
|
m_size_in_bytes= buff_size;
|
|
m_record_pointers= reinterpret_cast<uchar**>(m_rawmem) +
|
|
((m_size_in_bytes / sizeof(uchar*)) - 1);
|
|
m_num_records= num_records;
|
|
m_record_length= record_length;
|
|
m_idx= 0;
|
|
DBUG_RETURN(m_rawmem);
|
|
}
|
|
|
|
|
|
void Filesort_buffer::free_sort_buffer()
|
|
{
|
|
my_free(m_rawmem);
|
|
*this= Filesort_buffer();
|
|
}
|
|
|
|
|
|
void Filesort_buffer::sort_buffer(const Sort_param *param, uint count)
|
|
{
|
|
size_t size= param->sort_length;
|
|
m_sort_keys= get_sort_keys();
|
|
|
|
if (count <= 1 || size == 0)
|
|
return;
|
|
|
|
// don't reverse for PQ, it is already done
|
|
if (!param->using_pq)
|
|
reverse_record_pointers();
|
|
|
|
uchar **buffer= NULL;
|
|
if (!param->using_packed_sortkeys() &&
|
|
radixsort_is_applicable(count, param->sort_length) &&
|
|
(buffer= (uchar**) my_malloc(PSI_INSTRUMENT_ME, count*sizeof(char*),
|
|
MYF(MY_THREAD_SPECIFIC))))
|
|
{
|
|
radixsort_for_str_ptr(m_sort_keys, count, param->sort_length, buffer);
|
|
my_free(buffer);
|
|
return;
|
|
}
|
|
|
|
my_qsort2(m_sort_keys, count, sizeof(uchar*),
|
|
param->get_compare_function(),
|
|
param->get_compare_argument(&size));
|
|
}
|
|
|
|
|
|
static
|
|
size_t get_sort_length(THD *thd, Item_field *item)
|
|
{
|
|
SORT_FIELD_ATTR sort_attr;
|
|
sort_attr.type= ((item->field)->is_packable() ?
|
|
SORT_FIELD_ATTR::VARIABLE_SIZE :
|
|
SORT_FIELD_ATTR::FIXED_SIZE);
|
|
item->type_handler()->sort_length(thd, item, &sort_attr);
|
|
|
|
return sort_attr.length + (item->maybe_null() ? 1 : 0);
|
|
}
|
|
|
|
|
|
/**
|
|
Calculate the cost of doing a filesort
|
|
|
|
@param table Table to sort
|
|
@param Order_by Fields to sort
|
|
@param rows_to_read Number of rows to be sorted
|
|
@param limit_rows Number of rows in result (when using limit)
|
|
@param used_sort_type Set to the sort algorithm used
|
|
|
|
@result cost of sorting
|
|
*/
|
|
|
|
|
|
double cost_of_filesort(TABLE *table, ORDER *order_by, ha_rows rows_to_read,
|
|
ha_rows limit_rows, enum sort_type *used_sort_type)
|
|
{
|
|
THD *thd= table->in_use;
|
|
Sort_costs costs;
|
|
Sort_param param;
|
|
size_t memory_available= (size_t) thd->variables.sortbuff_size;
|
|
uint sort_len= 0;
|
|
uint addon_field_length, num_addon_fields, num_nullable_fields;
|
|
uint packable_length;
|
|
bool with_addon_fields;
|
|
|
|
for (ORDER *ptr= order_by; ptr ; ptr= ptr->next)
|
|
{
|
|
Item_field *field= (Item_field*) (*ptr->item)->real_item();
|
|
size_t length= get_sort_length(thd, field);
|
|
set_if_smaller(length, thd->variables.max_sort_length);
|
|
sort_len+= (uint) length;
|
|
}
|
|
|
|
with_addon_fields=
|
|
filesort_use_addons(table, sort_len, &addon_field_length,
|
|
&num_addon_fields, &num_nullable_fields,
|
|
&packable_length);
|
|
|
|
/* Fill in the Sort_param structure so we can compute the sort costs */
|
|
param.setup_lengths_and_limit(table, sort_len, addon_field_length,
|
|
limit_rows);
|
|
|
|
costs.compute_sort_costs(¶m, rows_to_read, memory_available,
|
|
with_addon_fields);
|
|
|
|
*used_sort_type= costs.fastest_sort;
|
|
return costs.lowest_cost;
|
|
}
|