mariadb/bdb/btree/bt_verify.c
unknown 155e78f014 BDB 4.1.24
BitKeeper/deleted/.del-ex_access.wpj~3df6ae8c99bf7c5f:
  Delete: bdb/build_vxworks/ex_access/ex_access.wpj
BitKeeper/deleted/.del-ex_btrec.wpj~a7622f1c6f432dc6:
  Delete: bdb/build_vxworks/ex_btrec/ex_btrec.wpj
BitKeeper/deleted/.del-ex_dbclient.wpj~7345440f3b204cdd:
  Delete: bdb/build_vxworks/ex_dbclient/ex_dbclient.wpj
BitKeeper/deleted/.del-ex_env.wpj~fbe1ab10b04e8b74:
  Delete: bdb/build_vxworks/ex_env/ex_env.wpj
BitKeeper/deleted/.del-ex_mpool.wpj~4479cfd5c45f327d:
  Delete: bdb/build_vxworks/ex_mpool/ex_mpool.wpj
BitKeeper/deleted/.del-ex_tpcb.wpj~f78093006e14bf41:
  Delete: bdb/build_vxworks/ex_tpcb/ex_tpcb.wpj
BitKeeper/deleted/.del-db_buildall.dsp~bd749ff6da11682:
  Delete: bdb/build_win32/db_buildall.dsp
BitKeeper/deleted/.del-cxx_app.cpp~ad8df8e0791011ed:
  Delete: bdb/cxx/cxx_app.cpp
BitKeeper/deleted/.del-cxx_log.cpp~a50ff3118fe06952:
  Delete: bdb/cxx/cxx_log.cpp
BitKeeper/deleted/.del-cxx_table.cpp~ecd751e79b055556:
  Delete: bdb/cxx/cxx_table.cpp
BitKeeper/deleted/.del-namemap.txt~796a3acd3885d8fd:
  Delete: bdb/cxx/namemap.txt
BitKeeper/deleted/.del-Design.fileop~3ca4da68f1727373:
  Delete: bdb/db/Design.fileop
BitKeeper/deleted/.del-db185_int.h~61bee3736e7959ef:
  Delete: bdb/db185/db185_int.h
BitKeeper/deleted/.del-acconfig.h~411e8854d67ad8b5:
  Delete: bdb/dist/acconfig.h
BitKeeper/deleted/.del-mutex.m4~a13383cde18a64e1:
  Delete: bdb/dist/aclocal/mutex.m4
BitKeeper/deleted/.del-options.m4~b9d0ca637213750a:
  Delete: bdb/dist/aclocal/options.m4
BitKeeper/deleted/.del-programs.m4~3ce7890b47732b30:
  Delete: bdb/dist/aclocal/programs.m4
BitKeeper/deleted/.del-tcl.m4~f944e2db93c3b6db:
  Delete: bdb/dist/aclocal/tcl.m4
BitKeeper/deleted/.del-types.m4~59cae158c9a32cff:
  Delete: bdb/dist/aclocal/types.m4
BitKeeper/deleted/.del-script~d38f6d3a4f159cb4:
  Delete: bdb/dist/build/script
BitKeeper/deleted/.del-configure.in~ac795a92c8fe049c:
  Delete: bdb/dist/configure.in
BitKeeper/deleted/.del-ltconfig~66bbd007d8024af:
  Delete: bdb/dist/ltconfig
BitKeeper/deleted/.del-rec_ctemp~a28554362534f00a:
  Delete: bdb/dist/rec_ctemp
BitKeeper/deleted/.del-s_tcl~2ffe4326459fcd9f:
  Delete: bdb/dist/s_tcl
BitKeeper/deleted/.del-.IGNORE_ME~d8148b08fa7d5d15:
  Delete: bdb/dist/template/.IGNORE_ME
BitKeeper/deleted/.del-btree.h~179f2aefec1753d:
  Delete: bdb/include/btree.h
BitKeeper/deleted/.del-cxx_int.h~6b649c04766508f8:
  Delete: bdb/include/cxx_int.h
BitKeeper/deleted/.del-db.src~6b433ae615b16a8d:
  Delete: bdb/include/db.src
BitKeeper/deleted/.del-db_185.h~ad8b373d9391d35c:
  Delete: bdb/include/db_185.h
BitKeeper/deleted/.del-db_am.h~a714912b6b75932f:
  Delete: bdb/include/db_am.h
BitKeeper/deleted/.del-db_cxx.h~fcafadf45f5d19e9:
  Delete: bdb/include/db_cxx.h
BitKeeper/deleted/.del-db_dispatch.h~6844f20f7eb46904:
  Delete: bdb/include/db_dispatch.h
BitKeeper/deleted/.del-db_int.src~419a3f48b6a01da7:
  Delete: bdb/include/db_int.src
BitKeeper/deleted/.del-db_join.h~76f9747a42c3399a:
  Delete: bdb/include/db_join.h
BitKeeper/deleted/.del-db_page.h~e302ca3a4db3abdc:
  Delete: bdb/include/db_page.h
BitKeeper/deleted/.del-db_server_int.h~e1d20b6ba3bca1ab:
  Delete: bdb/include/db_server_int.h
BitKeeper/deleted/.del-db_shash.h~5fbf2d696fac90f3:
  Delete: bdb/include/db_shash.h
BitKeeper/deleted/.del-db_swap.h~1e60887550864a59:
  Delete: bdb/include/db_swap.h
BitKeeper/deleted/.del-db_upgrade.h~c644eee73701fc8d:
  Delete: bdb/include/db_upgrade.h
BitKeeper/deleted/.del-db_verify.h~b8d6c297c61f342e:
  Delete: bdb/include/db_verify.h
BitKeeper/deleted/.del-debug.h~dc2b4f2cf27ccebc:
  Delete: bdb/include/debug.h
BitKeeper/deleted/.del-hash.h~2aaa548b28882dfb:
  Delete: bdb/include/hash.h
BitKeeper/deleted/.del-lock.h~a761c1b7de57b77f:
  Delete: bdb/include/lock.h
BitKeeper/deleted/.del-log.h~ff20184238e35e4d:
  Delete: bdb/include/log.h
BitKeeper/deleted/.del-mp.h~7e317597622f3411:
  Delete: bdb/include/mp.h
BitKeeper/deleted/.del-mutex.h~d3ae7a2977a68137:
  Delete: bdb/include/mutex.h
BitKeeper/deleted/.del-os.h~91867cc8757cd0e3:
  Delete: bdb/include/os.h
BitKeeper/deleted/.del-os_jump.h~e1b939fa5151d4be:
  Delete: bdb/include/os_jump.h
BitKeeper/deleted/.del-qam.h~6fad0c1b5723d597:
  Delete: bdb/include/qam.h
BitKeeper/deleted/.del-queue.h~4c72c0826c123d5:
  Delete: bdb/include/queue.h
BitKeeper/deleted/.del-region.h~513fe04d977ca0fc:
  Delete: bdb/include/region.h
BitKeeper/deleted/.del-shqueue.h~525fc3e6c2025c36:
  Delete: bdb/include/shqueue.h
BitKeeper/deleted/.del-tcl_db.h~c536fd61a844f23f:
  Delete: bdb/include/tcl_db.h
BitKeeper/deleted/.del-txn.h~c8d94b221ec147e4:
  Delete: bdb/include/txn.h
BitKeeper/deleted/.del-xa.h~ecc466493aae9d9a:
  Delete: bdb/include/xa.h
BitKeeper/deleted/.del-DbRecoveryInit.java~756b52601a0b9023:
  Delete: bdb/java/src/com/sleepycat/db/DbRecoveryInit.java
BitKeeper/deleted/.del-DbTxnRecover.java~74607cba7ab89d6d:
  Delete: bdb/java/src/com/sleepycat/db/DbTxnRecover.java
BitKeeper/deleted/.del-lock_conflict.c~fc5e0f14cf597a2b:
  Delete: bdb/lock/lock_conflict.c
BitKeeper/deleted/.del-log.src~53ac9e7b5cb023f2:
  Delete: bdb/log/log.src
BitKeeper/deleted/.del-log_findckp.c~24287f008916e81f:
  Delete: bdb/log/log_findckp.c
BitKeeper/deleted/.del-log_rec.c~d51711f2cac09297:
  Delete: bdb/log/log_rec.c
BitKeeper/deleted/.del-log_register.c~b40bb4efac75ca15:
  Delete: bdb/log/log_register.c
BitKeeper/deleted/.del-Design~b3d0f179f2767b:
  Delete: bdb/mp/Design
BitKeeper/deleted/.del-os_finit.c~95dbefc6fe79b26c:
  Delete: bdb/os/os_finit.c
BitKeeper/deleted/.del-os_abs.c~df95d1e7db81924:
  Delete: bdb/os_vxworks/os_abs.c
BitKeeper/deleted/.del-os_finit.c~803b484bdb9d0122:
  Delete: bdb/os_vxworks/os_finit.c
BitKeeper/deleted/.del-os_map.c~3a6d7926398b76d3:
  Delete: bdb/os_vxworks/os_map.c
BitKeeper/deleted/.del-os_finit.c~19a227c6d3c78ad:
  Delete: bdb/os_win32/os_finit.c
BitKeeper/deleted/.del-log-corruption.patch~1cf2ecc7c6408d5d:
  Delete: bdb/patches/log-corruption.patch
BitKeeper/deleted/.del-Btree.pm~af6d0c5eaed4a98e:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB/Btree.pm
BitKeeper/deleted/.del-BerkeleyDB.pm~7244036d4482643:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pm
BitKeeper/deleted/.del-BerkeleyDB.pod~e7b18fd6132448e3:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pod
BitKeeper/deleted/.del-Hash.pm~10292a26c06a5c95:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB/Hash.pm
BitKeeper/deleted/.del-BerkeleyDB.pod.P~79f76a1495eda203:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.pod.P
BitKeeper/deleted/.del-BerkeleyDB.xs~80c99afbd98e392c:
  Delete: bdb/perl.BerkeleyDB/BerkeleyDB.xs
BitKeeper/deleted/.del-Changes~729c1891efa60de9:
  Delete: bdb/perl.BerkeleyDB/Changes
BitKeeper/deleted/.del-MANIFEST~63a1e34aecf157a0:
  Delete: bdb/perl.BerkeleyDB/MANIFEST
BitKeeper/deleted/.del-Makefile.PL~c68797707d8df87a:
  Delete: bdb/perl.BerkeleyDB/Makefile.PL
BitKeeper/deleted/.del-README~5f2f579b1a241407:
  Delete: bdb/perl.BerkeleyDB/README
BitKeeper/deleted/.del-Todo~dca3c66c193adda9:
  Delete: bdb/perl.BerkeleyDB/Todo
BitKeeper/deleted/.del-config.in~ae81681e450e0999:
  Delete: bdb/perl.BerkeleyDB/config.in
BitKeeper/deleted/.del-dbinfo~28ad67d83be4f68e:
  Delete: bdb/perl.BerkeleyDB/dbinfo
BitKeeper/deleted/.del-mkconsts~543ab60669c7a04e:
  Delete: bdb/perl.BerkeleyDB/mkconsts
BitKeeper/deleted/.del-mkpod~182c0ca54e439afb:
  Delete: bdb/perl.BerkeleyDB/mkpod
BitKeeper/deleted/.del-5.004~e008cb5a48805543:
  Delete: bdb/perl.BerkeleyDB/patches/5.004
BitKeeper/deleted/.del-irix_6_5.pl~61662bb08afcdec8:
  Delete: bdb/perl.BerkeleyDB/hints/irix_6_5.pl
BitKeeper/deleted/.del-solaris.pl~6771e7182394e152:
  Delete: bdb/perl.BerkeleyDB/hints/solaris.pl
BitKeeper/deleted/.del-typemap~783b8f5295b05f3d:
  Delete: bdb/perl.BerkeleyDB/typemap
BitKeeper/deleted/.del-5.004_01~6081ce2fff7b0bc:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_01
BitKeeper/deleted/.del-5.004_02~87214eac35ad9e6:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_02
BitKeeper/deleted/.del-5.004_03~9a672becec7cb40f:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_03
BitKeeper/deleted/.del-5.004_04~e326cb51af09d154:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_04
BitKeeper/deleted/.del-5.004_05~7ab457a1e41a92fe:
  Delete: bdb/perl.BerkeleyDB/patches/5.004_05
BitKeeper/deleted/.del-5.005~f9e2d59b5964cd4b:
  Delete: bdb/perl.BerkeleyDB/patches/5.005
BitKeeper/deleted/.del-5.005_01~3eb9fb7b5842ea8e:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_01
BitKeeper/deleted/.del-5.005_02~67477ce0bef717cb:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_02
BitKeeper/deleted/.del-5.005_03~c4c29a1fb21e290a:
  Delete: bdb/perl.BerkeleyDB/patches/5.005_03
BitKeeper/deleted/.del-5.6.0~e1fb9897d124ee22:
  Delete: bdb/perl.BerkeleyDB/patches/5.6.0
BitKeeper/deleted/.del-btree.t~e4a1a3c675ddc406:
  Delete: bdb/perl.BerkeleyDB/t/btree.t
BitKeeper/deleted/.del-db-3.0.t~d2c60991d84558f2:
  Delete: bdb/perl.BerkeleyDB/t/db-3.0.t
BitKeeper/deleted/.del-db-3.1.t~6ee88cd13f55e018:
  Delete: bdb/perl.BerkeleyDB/t/db-3.1.t
BitKeeper/deleted/.del-db-3.2.t~f73b6461f98fd1cf:
  Delete: bdb/perl.BerkeleyDB/t/db-3.2.t
BitKeeper/deleted/.del-destroy.t~cc6a2ae1980a2ecd:
  Delete: bdb/perl.BerkeleyDB/t/destroy.t
BitKeeper/deleted/.del-env.t~a8604a4499c4bd07:
  Delete: bdb/perl.BerkeleyDB/t/env.t
BitKeeper/deleted/.del-examples.t~2571b77c3cc75574:
  Delete: bdb/perl.BerkeleyDB/t/examples.t
BitKeeper/deleted/.del-examples.t.T~8228bdd75ac78b88:
  Delete: bdb/perl.BerkeleyDB/t/examples.t.T
BitKeeper/deleted/.del-examples3.t.T~66a186897a87026d:
  Delete: bdb/perl.BerkeleyDB/t/examples3.t.T
BitKeeper/deleted/.del-examples3.t~fe3822ba2f2d7f83:
  Delete: bdb/perl.BerkeleyDB/t/examples3.t
BitKeeper/deleted/.del-filter.t~f87b045c1b708637:
  Delete: bdb/perl.BerkeleyDB/t/filter.t
BitKeeper/deleted/.del-hash.t~616bfb4d644de3a3:
  Delete: bdb/perl.BerkeleyDB/t/hash.t
BitKeeper/deleted/.del-join.t~29fc39f74a83ca22:
  Delete: bdb/perl.BerkeleyDB/t/join.t
BitKeeper/deleted/.del-mldbm.t~31f5015341eea040:
  Delete: bdb/perl.BerkeleyDB/t/mldbm.t
BitKeeper/deleted/.del-queue.t~8f338034ce44a641:
  Delete: bdb/perl.BerkeleyDB/t/queue.t
BitKeeper/deleted/.del-recno.t~d4ddbd3743add63e:
  Delete: bdb/perl.BerkeleyDB/t/recno.t
BitKeeper/deleted/.del-strict.t~6885cdd2ea71ca2d:
  Delete: bdb/perl.BerkeleyDB/t/strict.t
BitKeeper/deleted/.del-subdb.t~aab62a5d5864c603:
  Delete: bdb/perl.BerkeleyDB/t/subdb.t
BitKeeper/deleted/.del-txn.t~65033b8558ae1216:
  Delete: bdb/perl.BerkeleyDB/t/txn.t
BitKeeper/deleted/.del-unknown.t~f3710458682665e1:
  Delete: bdb/perl.BerkeleyDB/t/unknown.t
BitKeeper/deleted/.del-Changes~436f74a5c414c65b:
  Delete: bdb/perl.DB_File/Changes
BitKeeper/deleted/.del-DB_File.pm~ae0951c6c7665a82:
  Delete: bdb/perl.DB_File/DB_File.pm
BitKeeper/deleted/.del-DB_File.xs~89e49a0b5556f1d8:
  Delete: bdb/perl.DB_File/DB_File.xs
BitKeeper/deleted/.del-DB_File_BS~290fad5dbbb87069:
  Delete: bdb/perl.DB_File/DB_File_BS
BitKeeper/deleted/.del-MANIFEST~90ee581572bdd4ac:
  Delete: bdb/perl.DB_File/MANIFEST
BitKeeper/deleted/.del-Makefile.PL~ac0567bb5a377e38:
  Delete: bdb/perl.DB_File/Makefile.PL
BitKeeper/deleted/.del-README~77e924a5a9bae6b3:
  Delete: bdb/perl.DB_File/README
BitKeeper/deleted/.del-config.in~ab4c2792b86a810b:
  Delete: bdb/perl.DB_File/config.in
BitKeeper/deleted/.del-dbinfo~461c43b30fab2cb:
  Delete: bdb/perl.DB_File/dbinfo
BitKeeper/deleted/.del-dynixptx.pl~50dcddfae25d17e9:
  Delete: bdb/perl.DB_File/hints/dynixptx.pl
BitKeeper/deleted/.del-typemap~55cffb3288a9e587:
  Delete: bdb/perl.DB_File/typemap
BitKeeper/deleted/.del-version.c~a4df0e646f8b3975:
  Delete: bdb/perl.DB_File/version.c
BitKeeper/deleted/.del-5.004_01~d6830d0082702af7:
  Delete: bdb/perl.DB_File/patches/5.004_01
BitKeeper/deleted/.del-5.004_02~78b082dc80c91031:
  Delete: bdb/perl.DB_File/patches/5.004_02
BitKeeper/deleted/.del-5.004~4411ec2e3c9e008b:
  Delete: bdb/perl.DB_File/patches/5.004
BitKeeper/deleted/.del-sco.pl~1e795fe14fe4dcfe:
  Delete: bdb/perl.DB_File/hints/sco.pl
BitKeeper/deleted/.del-5.004_03~33f274648b160d95:
  Delete: bdb/perl.DB_File/patches/5.004_03
BitKeeper/deleted/.del-5.004_04~8f3d1b3cf18bb20a:
  Delete: bdb/perl.DB_File/patches/5.004_04
BitKeeper/deleted/.del-5.004_05~9c0f02e7331e142:
  Delete: bdb/perl.DB_File/patches/5.004_05
BitKeeper/deleted/.del-5.005~c2108cb2e3c8d951:
  Delete: bdb/perl.DB_File/patches/5.005
BitKeeper/deleted/.del-5.005_01~3b45e9673afc4cfa:
  Delete: bdb/perl.DB_File/patches/5.005_01
BitKeeper/deleted/.del-5.005_02~9fe5766bb02a4522:
  Delete: bdb/perl.DB_File/patches/5.005_02
BitKeeper/deleted/.del-5.005_03~ffa1c38c19ae72ea:
  Delete: bdb/perl.DB_File/patches/5.005_03
BitKeeper/deleted/.del-5.6.0~373be3a5ce47be85:
  Delete: bdb/perl.DB_File/patches/5.6.0
BitKeeper/deleted/.del-db-btree.t~3231595a1c241eb3:
  Delete: bdb/perl.DB_File/t/db-btree.t
BitKeeper/deleted/.del-db-hash.t~7c4ad0c795c7fad2:
  Delete: bdb/perl.DB_File/t/db-hash.t
BitKeeper/deleted/.del-db-recno.t~6c2d3d80b9ba4a50:
  Delete: bdb/perl.DB_File/t/db-recno.t
BitKeeper/deleted/.del-db_server.sed~cdb00ebcd48a64e2:
  Delete: bdb/rpc_server/db_server.sed
BitKeeper/deleted/.del-db_server_proc.c~d46c8f409c3747f4:
  Delete: bdb/rpc_server/db_server_proc.c
BitKeeper/deleted/.del-db_server_svc.sed~3f5e59f334fa4607:
  Delete: bdb/rpc_server/db_server_svc.sed
BitKeeper/deleted/.del-db_server_util.c~a809f3a4629acda:
  Delete: bdb/rpc_server/db_server_util.c
BitKeeper/deleted/.del-log.tcl~ff1b41f1355b97d7:
  Delete: bdb/test/log.tcl
BitKeeper/deleted/.del-mpool.tcl~b0df4dc1b04db26c:
  Delete: bdb/test/mpool.tcl
BitKeeper/deleted/.del-mutex.tcl~52fd5c73a150565:
  Delete: bdb/test/mutex.tcl
BitKeeper/deleted/.del-txn.tcl~c4ff071550b5446e:
  Delete: bdb/test/txn.tcl
BitKeeper/deleted/.del-README~e800a12a5392010a:
  Delete: bdb/test/upgrade/README
BitKeeper/deleted/.del-pack-2.6.6.pl~89d5076d758d3e98:
  Delete: bdb/test/upgrade/generate-2.X/pack-2.6.6.pl
BitKeeper/deleted/.del-test-2.6.patch~4a52dc83d447547b:
  Delete: bdb/test/upgrade/generate-2.X/test-2.6.patch
2002-10-30 15:57:05 +04:00

2387 lines
61 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1999-2002
* Sleepycat Software. All rights reserved.
*
* $Id: bt_verify.c,v 1.76 2002/07/03 19:03:51 bostic Exp $
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: bt_verify.c,v 1.76 2002/07/03 19:03:51 bostic Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <string.h>
#endif
#include "db_int.h"
#include "dbinc/db_page.h"
#include "dbinc/db_verify.h"
#include "dbinc/btree.h"
static int __bam_safe_getdata __P((DB *, PAGE *, u_int32_t, int, DBT *, int *));
static int __bam_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
db_indx_t *, u_int32_t));
static int __bam_vrfy_treeorder __P((DB *, db_pgno_t, PAGE *, BINTERNAL *,
BINTERNAL *, int (*)(DB *, const DBT *, const DBT *), u_int32_t));
static int __ram_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
db_indx_t *, u_int32_t));
#define OKFLAGS (DB_AGGRESSIVE | DB_NOORDERCHK | DB_SALVAGE)
/*
* __bam_vrfy_meta --
* Verify the btree-specific part of a metadata page.
*
* PUBLIC: int __bam_vrfy_meta __P((DB *, VRFY_DBINFO *, BTMETA *,
* PUBLIC: db_pgno_t, u_int32_t));
*/
int
__bam_vrfy_meta(dbp, vdp, meta, pgno, flags)
DB *dbp;
VRFY_DBINFO *vdp;
BTMETA *meta;
db_pgno_t pgno;
u_int32_t flags;
{
VRFY_PAGEINFO *pip;
int isbad, t_ret, ret;
db_indx_t ovflsize;
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
isbad = 0;
/*
* If VRFY_INCOMPLETE is not set, then we didn't come through
* __db_vrfy_pagezero and didn't incompletely
* check this page--we haven't checked it at all.
* Thus we need to call __db_vrfy_meta and check the common fields.
*
* If VRFY_INCOMPLETE is set, we've already done all the same work
* in __db_vrfy_pagezero, so skip the check.
*/
if (!F_ISSET(pip, VRFY_INCOMPLETE) &&
(ret = __db_vrfy_meta(dbp, vdp, &meta->dbmeta, pgno, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
}
/* bt_minkey: must be >= 2; must produce sensible ovflsize */
/* avoid division by zero */
ovflsize = meta->minkey > 0 ?
B_MINKEY_TO_OVFLSIZE(dbp, meta->minkey, dbp->pgsize) : 0;
if (meta->minkey < 2 ||
ovflsize > B_MINKEY_TO_OVFLSIZE(dbp, DEFMINKEYPAGE, dbp->pgsize)) {
pip->bt_minkey = 0;
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: nonsensical bt_minkey value %lu on metadata page",
(u_long)pgno, (u_long)meta->minkey));
} else
pip->bt_minkey = meta->minkey;
/* bt_maxkey: no constraints (XXX: right?) */
pip->bt_maxkey = meta->maxkey;
/* re_len: no constraints on this (may be zero or huge--we make rope) */
pip->re_len = meta->re_len;
/*
* The root must not be current page or 0 and it must be within
* database. If this metadata page is the master meta data page
* of the file, then the root page had better be page 1.
*/
pip->root = 0;
if (meta->root == PGNO_INVALID ||
meta->root == pgno || !IS_VALID_PGNO(meta->root) ||
(pgno == PGNO_BASE_MD && meta->root != 1)) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: nonsensical root page %lu on metadata page",
(u_long)pgno, (u_long)meta->root));
} else
pip->root = meta->root;
/* Flags. */
if (F_ISSET(&meta->dbmeta, BTM_RENUMBER))
F_SET(pip, VRFY_IS_RRECNO);
if (F_ISSET(&meta->dbmeta, BTM_SUBDB)) {
/*
* If this is a master db meta page, it had better not have
* duplicates.
*/
if (F_ISSET(&meta->dbmeta, BTM_DUP) && pgno == PGNO_BASE_MD) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: Btree metadata page has both duplicates and multiple databases",
(u_long)pgno));
}
F_SET(pip, VRFY_HAS_SUBDBS);
}
if (F_ISSET(&meta->dbmeta, BTM_DUP))
F_SET(pip, VRFY_HAS_DUPS);
if (F_ISSET(&meta->dbmeta, BTM_DUPSORT))
F_SET(pip, VRFY_HAS_DUPSORT);
if (F_ISSET(&meta->dbmeta, BTM_RECNUM))
F_SET(pip, VRFY_HAS_RECNUMS);
if (F_ISSET(pip, VRFY_HAS_RECNUMS) && F_ISSET(pip, VRFY_HAS_DUPS)) {
EPRINT((dbp->dbenv,
"Page %lu: Btree metadata page illegally has both recnums and dups",
(u_long)pgno));
isbad = 1;
}
if (F_ISSET(&meta->dbmeta, BTM_RECNO)) {
F_SET(pip, VRFY_IS_RECNO);
dbp->type = DB_RECNO;
} else if (F_ISSET(pip, VRFY_IS_RRECNO)) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: metadata page has renumber flag set but is not recno",
(u_long)pgno));
}
if (F_ISSET(pip, VRFY_IS_RECNO) && F_ISSET(pip, VRFY_HAS_DUPS)) {
EPRINT((dbp->dbenv,
"Page %lu: recno metadata page specifies duplicates",
(u_long)pgno));
isbad = 1;
}
if (F_ISSET(&meta->dbmeta, BTM_FIXEDLEN))
F_SET(pip, VRFY_IS_FIXEDLEN);
else if (pip->re_len > 0) {
/*
* It's wrong to have an re_len if it's not a fixed-length
* database
*/
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: re_len of %lu in non-fixed-length database",
(u_long)pgno, (u_long)pip->re_len));
}
/*
* We do not check that the rest of the page is 0, because it may
* not be and may still be correct.
*/
err: if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __ram_vrfy_leaf --
* Verify a recno leaf page.
*
* PUBLIC: int __ram_vrfy_leaf __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
* PUBLIC: u_int32_t));
*/
int
__ram_vrfy_leaf(dbp, vdp, h, pgno, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
db_pgno_t pgno;
u_int32_t flags;
{
BKEYDATA *bk;
VRFY_PAGEINFO *pip;
db_indx_t i;
int ret, t_ret, isbad;
u_int32_t re_len_guess, len;
isbad = 0;
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
if ((ret = __db_fchk(dbp->dbenv,
"__ram_vrfy_leaf", flags, OKFLAGS)) != 0)
goto err;
if (TYPE(h) != P_LRECNO) {
/* We should not have been called. */
TYPE_ERR_PRINT(dbp->dbenv, "__ram_vrfy_leaf", pgno, TYPE(h));
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
/*
* Verify (and, if relevant, save off) page fields common to
* all PAGEs.
*/
if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
}
/*
* Verify inp[]. Return immediately if it returns DB_VERIFY_BAD;
* further checks are dangerous.
*/
if ((ret = __bam_vrfy_inp(dbp,
vdp, h, pgno, &pip->entries, flags)) != 0)
goto err;
if (F_ISSET(pip, VRFY_HAS_DUPS)) {
EPRINT((dbp->dbenv,
"Page %lu: Recno database has dups", (u_long)pgno));
ret = DB_VERIFY_BAD;
goto err;
}
/*
* Walk through inp and see if the lengths of all the records are the
* same--if so, this may be a fixed-length database, and we want to
* save off this value. We know inp to be safe if we've gotten this
* far.
*/
re_len_guess = 0;
for (i = 0; i < NUM_ENT(h); i++) {
bk = GET_BKEYDATA(dbp, h, i);
/* KEYEMPTY. Go on. */
if (B_DISSET(bk->type))
continue;
if (bk->type == B_OVERFLOW)
len = ((BOVERFLOW *)bk)->tlen;
else if (bk->type == B_KEYDATA)
len = bk->len;
else {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: nonsensical type for item %lu",
(u_long)pgno, (u_long)i));
continue;
}
if (re_len_guess == 0)
re_len_guess = len;
/*
* Is this item's len the same as the last one's? If not,
* reset to 0 and break--we don't have a single re_len.
* Otherwise, go on to the next item.
*/
if (re_len_guess != len) {
re_len_guess = 0;
break;
}
}
pip->re_len = re_len_guess;
/* Save off record count. */
pip->rec_cnt = NUM_ENT(h);
err: if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __bam_vrfy --
* Verify a btree leaf or internal page.
*
* PUBLIC: int __bam_vrfy __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t,
* PUBLIC: u_int32_t));
*/
int
__bam_vrfy(dbp, vdp, h, pgno, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
db_pgno_t pgno;
u_int32_t flags;
{
VRFY_PAGEINFO *pip;
int ret, t_ret, isbad;
isbad = 0;
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
switch (TYPE(h)) {
case P_IBTREE:
case P_IRECNO:
case P_LBTREE:
case P_LDUP:
break;
default:
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy", pgno, TYPE(h));
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
/*
* Verify (and, if relevant, save off) page fields common to
* all PAGEs.
*/
if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
}
/*
* The record count is, on internal pages, stored in an overloaded
* next_pgno field. Save it off; we'll verify it when we check
* overall database structure. We could overload the field
* in VRFY_PAGEINFO, too, but this seems gross, and space
* is not at such a premium.
*/
pip->rec_cnt = RE_NREC(h);
/*
* Verify inp[].
*/
if (TYPE(h) == P_IRECNO) {
if ((ret = __ram_vrfy_inp(dbp,
vdp, h, pgno, &pip->entries, flags)) != 0)
goto err;
} else if ((ret = __bam_vrfy_inp(dbp,
vdp, h, pgno, &pip->entries, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
EPRINT((dbp->dbenv,
"Page %lu: item order check unsafe: skipping",
(u_long)pgno));
} else if (!LF_ISSET(DB_NOORDERCHK) && (ret =
__bam_vrfy_itemorder(dbp, vdp, h, pgno, 0, 0, 0, flags)) != 0) {
/*
* We know that the elements of inp are reasonable.
*
* Check that elements fall in the proper order.
*/
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
}
err: if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __ram_vrfy_inp --
* Verify that all entries in a P_IRECNO inp[] array are reasonable,
* and count them. Note that P_LRECNO uses __bam_vrfy_inp;
* P_IRECNOs are a special, and simpler, case, since they have
* RINTERNALs rather than BKEYDATA/BINTERNALs.
*/
static int
__ram_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
db_pgno_t pgno;
db_indx_t *nentriesp;
u_int32_t flags;
{
RINTERNAL *ri;
VRFY_CHILDINFO child;
VRFY_PAGEINFO *pip;
int ret, t_ret, isbad;
u_int32_t himark, i, offset, nentries;
db_indx_t *inp;
u_int8_t *pagelayout, *p;
isbad = 0;
memset(&child, 0, sizeof(VRFY_CHILDINFO));
nentries = 0;
pagelayout = NULL;
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
if (TYPE(h) != P_IRECNO) {
TYPE_ERR_PRINT(dbp->dbenv, "__ram_vrfy_inp", pgno, TYPE(h));
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
himark = dbp->pgsize;
if ((ret =
__os_malloc(dbp->dbenv, dbp->pgsize, &pagelayout)) != 0)
goto err;
memset(pagelayout, 0, dbp->pgsize);
inp = P_INP(dbp, h);
for (i = 0; i < NUM_ENT(h); i++) {
if ((u_int8_t *)inp + i >= (u_int8_t *)h + himark) {
EPRINT((dbp->dbenv,
"Page %lu: entries listing %lu overlaps data",
(u_long)pgno, (u_long)i));
ret = DB_VERIFY_BAD;
goto err;
}
offset = inp[i];
/*
* Check that the item offset is reasonable: it points
* somewhere after the inp array and before the end of the
* page.
*/
if (offset <= (u_int32_t)((u_int8_t *)inp + i -
(u_int8_t *)h) ||
offset > (u_int32_t)(dbp->pgsize - RINTERNAL_SIZE)) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: bad offset %lu at index %lu",
(u_long)pgno, (u_long)offset, (u_long)i));
continue;
}
/* Update the high-water mark (what HOFFSET should be) */
if (offset < himark)
himark = offset;
nentries++;
/* Make sure this RINTERNAL is not multiply referenced. */
ri = GET_RINTERNAL(dbp, h, i);
if (pagelayout[offset] == 0) {
pagelayout[offset] = 1;
child.pgno = ri->pgno;
child.type = V_RECNO;
child.nrecs = ri->nrecs;
if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0)
goto err;
} else {
EPRINT((dbp->dbenv,
"Page %lu: RINTERNAL structure at offset %lu referenced twice",
(u_long)pgno, (u_long)offset));
isbad = 1;
}
}
for (p = pagelayout + himark;
p < pagelayout + dbp->pgsize;
p += RINTERNAL_SIZE)
if (*p != 1) {
EPRINT((dbp->dbenv,
"Page %lu: gap between items at offset %lu",
(u_long)pgno, (u_long)(p - pagelayout)));
isbad = 1;
}
if ((db_indx_t)himark != HOFFSET(h)) {
EPRINT((dbp->dbenv,
"Page %lu: bad HOFFSET %lu, appears to be %lu",
(u_long)pgno, (u_long)(HOFFSET(h)), (u_long)himark));
isbad = 1;
}
*nentriesp = nentries;
err: if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
if (pagelayout != NULL)
__os_free(dbp->dbenv, pagelayout);
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __bam_vrfy_inp --
* Verify that all entries in inp[] array are reasonable;
* count them.
*/
static int
__bam_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
db_pgno_t pgno;
db_indx_t *nentriesp;
u_int32_t flags;
{
BKEYDATA *bk;
BOVERFLOW *bo;
VRFY_CHILDINFO child;
VRFY_PAGEINFO *pip;
int isbad, initem, isdupitem, ret, t_ret;
u_int32_t himark, offset; /* These would be db_indx_ts but for algnmt.*/
u_int32_t i, endoff, nentries;
u_int8_t *pagelayout;
isbad = isdupitem = 0;
nentries = 0;
memset(&child, 0, sizeof(VRFY_CHILDINFO));
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
switch (TYPE(h)) {
case P_IBTREE:
case P_LBTREE:
case P_LDUP:
case P_LRECNO:
break;
default:
/*
* In the salvager, we might call this from a page which
* we merely suspect is a btree page. Otherwise, it
* shouldn't get called--if it is, that's a verifier bug.
*/
if (LF_ISSET(DB_SALVAGE))
break;
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy_inp", pgno, TYPE(h));
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
/*
* Loop through inp[], the array of items, until we either
* run out of entries or collide with the data. Keep track
* of h_offset in himark.
*
* For each element in inp[i], make sure it references a region
* that starts after the end of the inp array (as defined by
* NUM_ENT(h)), ends before the beginning of the page, doesn't
* overlap any other regions, and doesn't have a gap between
* it and the region immediately after it.
*/
himark = dbp->pgsize;
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &pagelayout)) != 0)
goto err;
memset(pagelayout, 0, dbp->pgsize);
for (i = 0; i < NUM_ENT(h); i++) {
switch (ret = __db_vrfy_inpitem(dbp,
h, pgno, i, 1, flags, &himark, &offset)) {
case 0:
break;
case DB_VERIFY_BAD:
isbad = 1;
continue;
case DB_VERIFY_FATAL:
isbad = 1;
goto err;
default:
DB_ASSERT(ret != 0);
break;
}
/*
* We now have a plausible beginning for the item, and we know
* its length is safe.
*
* Mark the beginning and end in pagelayout so we can make sure
* items have no overlaps or gaps.
*/
bk = GET_BKEYDATA(dbp, h, i);
#define ITEM_BEGIN 1
#define ITEM_END 2
if (pagelayout[offset] == 0)
pagelayout[offset] = ITEM_BEGIN;
else if (pagelayout[offset] == ITEM_BEGIN) {
/*
* Having two inp entries that point at the same patch
* of page is legal if and only if the page is
* a btree leaf and they're onpage duplicate keys--
* that is, if (i % P_INDX) == 0.
*/
if ((i % P_INDX == 0) && (TYPE(h) == P_LBTREE)) {
/* Flag for later. */
F_SET(pip, VRFY_HAS_DUPS);
/* Bump up nentries so we don't undercount. */
nentries++;
/*
* We'll check to make sure the end is
* equal, too.
*/
isdupitem = 1;
} else {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: duplicated item %lu",
(u_long)pgno, (u_long)i));
}
}
/*
* Mark the end. Its location varies with the page type
* and the item type.
*
* If the end already has a sign other than 0, do nothing--
* it's an overlap that we'll catch later.
*/
switch(B_TYPE(bk->type)) {
case B_KEYDATA:
if (TYPE(h) == P_IBTREE)
/* It's a BINTERNAL. */
endoff = offset + BINTERNAL_SIZE(bk->len) - 1;
else
endoff = offset + BKEYDATA_SIZE(bk->len) - 1;
break;
case B_DUPLICATE:
/*
* Flag that we have dups; we'll check whether
* that's okay during the structure check.
*/
F_SET(pip, VRFY_HAS_DUPS);
/* FALLTHROUGH */
case B_OVERFLOW:
/*
* Overflow entries on internal pages are stored
* as the _data_ of a BINTERNAL; overflow entries
* on leaf pages are stored as the entire entry.
*/
endoff = offset +
((TYPE(h) == P_IBTREE) ?
BINTERNAL_SIZE(BOVERFLOW_SIZE) :
BOVERFLOW_SIZE) - 1;
break;
default:
/*
* We'll complain later; for now, just mark
* a minimum.
*/
endoff = offset + BKEYDATA_SIZE(0) - 1;
break;
}
/*
* If this is an onpage duplicate key we've seen before,
* the end had better coincide too.
*/
if (isdupitem && pagelayout[endoff] != ITEM_END) {
EPRINT((dbp->dbenv,
"Page %lu: duplicated item %lu",
(u_long)pgno, (u_long)i));
isbad = 1;
} else if (pagelayout[endoff] == 0)
pagelayout[endoff] = ITEM_END;
isdupitem = 0;
/*
* There should be no deleted items in a quiescent tree,
* except in recno.
*/
if (B_DISSET(bk->type) && TYPE(h) != P_LRECNO) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: item %lu marked deleted",
(u_long)pgno, (u_long)i));
}
/*
* Check the type and such of bk--make sure it's reasonable
* for the pagetype.
*/
switch (B_TYPE(bk->type)) {
case B_KEYDATA:
/*
* This is a normal, non-overflow BKEYDATA or BINTERNAL.
* The only thing to check is the len, and that's
* already been done.
*/
break;
case B_DUPLICATE:
if (TYPE(h) == P_IBTREE) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: duplicate page referenced by internal btree page at item %lu",
(u_long)pgno, (u_long)i));
break;
} else if (TYPE(h) == P_LRECNO) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: duplicate page referenced by recno page at item %lu",
(u_long)pgno, (u_long)i));
break;
}
/* FALLTHROUGH */
case B_OVERFLOW:
bo = (TYPE(h) == P_IBTREE) ?
(BOVERFLOW *)(((BINTERNAL *)bk)->data) :
(BOVERFLOW *)bk;
if (B_TYPE(bk->type) == B_OVERFLOW)
/* Make sure tlen is reasonable. */
if (bo->tlen > dbp->pgsize * vdp->last_pgno) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: impossible tlen %lu, item %lu",
(u_long)pgno,
(u_long)bo->tlen, (u_long)i));
/* Don't save as a child. */
break;
}
if (!IS_VALID_PGNO(bo->pgno) || bo->pgno == pgno ||
bo->pgno == PGNO_INVALID) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: offpage item %lu has bad pgno %lu",
(u_long)pgno, (u_long)i, (u_long)bo->pgno));
/* Don't save as a child. */
break;
}
child.pgno = bo->pgno;
child.type = (B_TYPE(bk->type) == B_OVERFLOW ?
V_OVERFLOW : V_DUPLICATE);
child.tlen = bo->tlen;
if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0)
goto err;
break;
default:
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: item %lu of invalid type %lu",
(u_long)pgno, (u_long)i));
break;
}
}
/*
* Now, loop through and make sure the items are contiguous and
* non-overlapping.
*/
initem = 0;
for (i = himark; i < dbp->pgsize; i++)
if (initem == 0)
switch (pagelayout[i]) {
case 0:
/* May be just for alignment. */
if (i != ALIGN(i, sizeof(u_int32_t)))
continue;
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: gap between items at offset %lu",
(u_long)pgno, (u_long)i));
/* Find the end of the gap */
for ( ; pagelayout[i + 1] == 0 &&
(size_t)(i + 1) < dbp->pgsize; i++)
;
break;
case ITEM_BEGIN:
/* We've found an item. Check its alignment. */
if (i != ALIGN(i, sizeof(u_int32_t))) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: offset %lu unaligned",
(u_long)pgno, (u_long)i));
}
initem = 1;
nentries++;
break;
case ITEM_END:
/*
* We've hit the end of an item even though
* we don't think we're in one; must
* be an overlap.
*/
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: overlapping items at offset %lu",
(u_long)pgno, (u_long)i));
break;
default:
/* Should be impossible. */
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
else
switch (pagelayout[i]) {
case 0:
/* In the middle of an item somewhere. Okay. */
break;
case ITEM_END:
/* End of an item; switch to out-of-item mode.*/
initem = 0;
break;
case ITEM_BEGIN:
/*
* Hit a second item beginning without an
* end. Overlap.
*/
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: overlapping items at offset %lu",
(u_long)pgno, (u_long)i));
break;
}
(void)__os_free(dbp->dbenv, pagelayout);
/* Verify HOFFSET. */
if ((db_indx_t)himark != HOFFSET(h)) {
EPRINT((dbp->dbenv,
"Page %lu: bad HOFFSET %lu, appears to be %lu",
(u_long)pgno, (u_long)HOFFSET(h), (u_long)himark));
isbad = 1;
}
err: if (nentriesp != NULL)
*nentriesp = nentries;
if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
return ((isbad == 1 && ret == 0) ? DB_VERIFY_BAD : ret);
}
/*
* __bam_vrfy_itemorder --
* Make sure the items on a page sort correctly.
*
* Assumes that NUM_ENT(h) and inp[0]..inp[NUM_ENT(h) - 1] are
* reasonable; be sure that __bam_vrfy_inp has been called first.
*
* If ovflok is set, it also assumes that overflow page chains
* hanging off the current page have been sanity-checked, and so we
* can use __bam_cmp to verify their ordering. If it is not set,
* and we run into an overflow page, carp and return DB_VERIFY_BAD;
* we shouldn't be called if any exist.
*
* PUBLIC: int __bam_vrfy_itemorder __P((DB *, VRFY_DBINFO *, PAGE *,
* PUBLIC: db_pgno_t, u_int32_t, int, int, u_int32_t));
*/
int
__bam_vrfy_itemorder(dbp, vdp, h, pgno, nentries, ovflok, hasdups, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
db_pgno_t pgno;
u_int32_t nentries;
int ovflok, hasdups;
u_int32_t flags;
{
DBT dbta, dbtb, dup_1, dup_2, *p1, *p2, *tmp;
BTREE *bt;
BINTERNAL *bi;
BKEYDATA *bk;
BOVERFLOW *bo;
VRFY_PAGEINFO *pip;
db_indx_t i;
int cmp, freedup_1, freedup_2, isbad, ret, t_ret;
int (*dupfunc) __P((DB *, const DBT *, const DBT *));
int (*func) __P((DB *, const DBT *, const DBT *));
void *buf1, *buf2, *tmpbuf;
/*
* We need to work in the ORDERCHKONLY environment where we might
* not have a pip, but we also may need to work in contexts where
* NUM_ENT isn't safe.
*/
if (vdp != NULL) {
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
nentries = pip->entries;
} else
pip = NULL;
ret = isbad = 0;
bo = NULL; /* Shut up compiler. */
memset(&dbta, 0, sizeof(DBT));
F_SET(&dbta, DB_DBT_REALLOC);
memset(&dbtb, 0, sizeof(DBT));
F_SET(&dbtb, DB_DBT_REALLOC);
buf1 = buf2 = NULL;
DB_ASSERT(!LF_ISSET(DB_NOORDERCHK));
dupfunc = (dbp->dup_compare == NULL) ? __bam_defcmp : dbp->dup_compare;
if (TYPE(h) == P_LDUP)
func = dupfunc;
else {
func = __bam_defcmp;
if (dbp->bt_internal != NULL) {
bt = (BTREE *)dbp->bt_internal;
if (bt->bt_compare != NULL)
func = bt->bt_compare;
}
}
/*
* We alternate our use of dbta and dbtb so that we can walk
* through the page key-by-key without copying a dbt twice.
* p1 is always the dbt for index i - 1, and p2 for index i.
*/
p1 = &dbta;
p2 = &dbtb;
/*
* Loop through the entries. nentries ought to contain the
* actual count, and so is a safe way to terminate the loop; whether
* we inc. by one or two depends on whether we're a leaf page--
* on a leaf page, we care only about keys. On internal pages
* and LDUP pages, we want to check the order of all entries.
*
* Note that on IBTREE pages, we start with item 1, since item
* 0 doesn't get looked at by __bam_cmp.
*/
for (i = (TYPE(h) == P_IBTREE) ? 1 : 0; i < nentries;
i += (TYPE(h) == P_LBTREE) ? P_INDX : O_INDX) {
/*
* Put key i-1, now in p2, into p1, by swapping DBTs and bufs.
*/
tmp = p1;
p1 = p2;
p2 = tmp;
tmpbuf = buf1;
buf1 = buf2;
buf2 = tmpbuf;
/*
* Get key i into p2.
*/
switch (TYPE(h)) {
case P_IBTREE:
bi = GET_BINTERNAL(dbp, h, i);
if (B_TYPE(bi->type) == B_OVERFLOW) {
bo = (BOVERFLOW *)(bi->data);
goto overflow;
} else {
p2->data = bi->data;
p2->size = bi->len;
}
/*
* The leftmost key on an internal page must be
* len 0, since it's just a placeholder and
* automatically sorts less than all keys.
*
* XXX
* This criterion does not currently hold!
* See todo list item #1686. Meanwhile, it's harmless
* to just not check for it.
*/
#if 0
if (i == 0 && bi->len != 0) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: lowest key on internal page of nonzero length",
(u_long)pgno));
}
#endif
break;
case P_LBTREE:
case P_LDUP:
bk = GET_BKEYDATA(dbp, h, i);
if (B_TYPE(bk->type) == B_OVERFLOW) {
bo = (BOVERFLOW *)bk;
goto overflow;
} else {
p2->data = bk->data;
p2->size = bk->len;
}
break;
default:
/*
* This means our caller screwed up and sent us
* an inappropriate page.
*/
TYPE_ERR_PRINT(dbp->dbenv,
"__bam_vrfy_itemorder", pgno, TYPE(h))
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
if (0) {
/*
* If ovflok != 1, we can't safely go chasing
* overflow pages with the normal routines now;
* they might be unsafe or nonexistent. Mark this
* page as incomplete and return.
*
* Note that we don't need to worry about freeing
* buffers, since they can't have been allocated
* if overflow items are unsafe.
*/
overflow: if (!ovflok) {
F_SET(pip, VRFY_INCOMPLETE);
goto err;
}
/*
* Overflow items are safe to chase. Do so.
* Fetch the overflow item into p2->data,
* NULLing it or reallocing it as appropriate.
*
* (We set p2->data to buf2 before the call
* so we're sure to realloc if we can and if p2
* was just pointing at a non-overflow item.)
*/
p2->data = buf2;
if ((ret = __db_goff(dbp,
p2, bo->tlen, bo->pgno, NULL, NULL)) != 0) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: error %lu in fetching overflow item %lu",
(u_long)pgno, (u_long)ret, (u_long)i));
}
/* In case it got realloc'ed and thus changed. */
buf2 = p2->data;
}
/* Compare with the last key. */
if (p1->data != NULL && p2->data != NULL) {
cmp = func(dbp, p1, p2);
/* comparison succeeded */
if (cmp > 0) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: out-of-order key at entry %lu",
(u_long)pgno, (u_long)i));
/* proceed */
} else if (cmp == 0) {
/*
* If they compared equally, this
* had better be a (sub)database with dups.
* Mark it so we can check during the
* structure check.
*/
if (pip != NULL)
F_SET(pip, VRFY_HAS_DUPS);
else if (hasdups == 0) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: database with no duplicates has duplicated keys",
(u_long)pgno));
}
/*
* If we're a btree leaf, check to see
* if the data items of these on-page dups are
* in sorted order. If not, flag this, so
* that we can make sure during the
* structure checks that the DUPSORT flag
* is unset.
*
* At this point i points to a duplicate key.
* Compare the datum before it (same key)
* to the datum after it, i.e. i-1 to i+1.
*/
if (TYPE(h) == P_LBTREE) {
/*
* Unsafe; continue and we'll pick
* up the bogus nentries later.
*/
if (i + 1 >= (db_indx_t)nentries)
continue;
/*
* We don't bother with clever memory
* management with on-page dups,
* as it's only really a big win
* in the overflow case, and overflow
* dups are probably (?) rare.
*/
if (((ret = __bam_safe_getdata(dbp,
h, i - 1, ovflok, &dup_1,
&freedup_1)) != 0) ||
((ret = __bam_safe_getdata(dbp,
h, i + 1, ovflok, &dup_2,
&freedup_2)) != 0))
goto err;
/*
* If either of the data are NULL,
* it's because they're overflows and
* it's not safe to chase them now.
* Mark an incomplete and return.
*/
if (dup_1.data == NULL ||
dup_2.data == NULL) {
DB_ASSERT(!ovflok);
F_SET(pip, VRFY_INCOMPLETE);
goto err;
}
/*
* If the dups are out of order,
* flag this. It's not an error
* until we do the structure check
* and see whether DUPSORT is set.
*/
if (dupfunc(dbp, &dup_1, &dup_2) > 0)
F_SET(pip, VRFY_DUPS_UNSORTED);
if (freedup_1)
__os_ufree(dbp->dbenv,
dup_1.data);
if (freedup_2)
__os_ufree(dbp->dbenv,
dup_2.data);
}
}
}
}
err: if (pip != NULL && ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0) && ret == 0)
ret = t_ret;
if (buf1 != NULL)
__os_ufree(dbp->dbenv, buf1);
if (buf2 != NULL)
__os_ufree(dbp->dbenv, buf2);
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __bam_vrfy_structure --
* Verify the tree structure of a btree database (including the master
* database containing subdbs).
*
* PUBLIC: int __bam_vrfy_structure __P((DB *, VRFY_DBINFO *, db_pgno_t,
* PUBLIC: u_int32_t));
*/
int
__bam_vrfy_structure(dbp, vdp, meta_pgno, flags)
DB *dbp;
VRFY_DBINFO *vdp;
db_pgno_t meta_pgno;
u_int32_t flags;
{
DB *pgset;
VRFY_PAGEINFO *mip, *rip;
db_pgno_t root, p;
int t_ret, ret;
u_int32_t nrecs, level, relen, stflags;
mip = rip = 0;
pgset = vdp->pgset;
if ((ret = __db_vrfy_getpageinfo(vdp, meta_pgno, &mip)) != 0)
return (ret);
if ((ret = __db_vrfy_pgset_get(pgset, meta_pgno, (int *)&p)) != 0)
goto err;
if (p != 0) {
EPRINT((dbp->dbenv,
"Page %lu: btree metadata page observed twice",
(u_long)meta_pgno));
ret = DB_VERIFY_BAD;
goto err;
}
if ((ret = __db_vrfy_pgset_inc(pgset, meta_pgno)) != 0)
goto err;
root = mip->root;
if (root == 0) {
EPRINT((dbp->dbenv,
"Page %lu: btree metadata page has no root",
(u_long)meta_pgno));
ret = DB_VERIFY_BAD;
goto err;
}
if ((ret = __db_vrfy_getpageinfo(vdp, root, &rip)) != 0)
goto err;
switch (rip->type) {
case P_IBTREE:
case P_LBTREE:
stflags = flags | ST_TOPLEVEL;
if (F_ISSET(mip, VRFY_HAS_DUPS))
stflags |= ST_DUPOK;
if (F_ISSET(mip, VRFY_HAS_DUPSORT))
stflags |= ST_DUPSORT;
if (F_ISSET(mip, VRFY_HAS_RECNUMS))
stflags |= ST_RECNUM;
ret = __bam_vrfy_subtree(dbp,
vdp, root, NULL, NULL, stflags, NULL, NULL, NULL);
break;
case P_IRECNO:
case P_LRECNO:
stflags = flags | ST_RECNUM | ST_IS_RECNO | ST_TOPLEVEL;
if (mip->re_len > 0)
stflags |= ST_RELEN;
if ((ret = __bam_vrfy_subtree(dbp, vdp,
root, NULL, NULL, stflags, &level, &nrecs, &relen)) != 0)
goto err;
/*
* Even if mip->re_len > 0, re_len may come back zero if the
* tree is empty. It should be okay to just skip the check in
* this case, as if there are any non-deleted keys at all,
* that should never happen.
*/
if (mip->re_len > 0 && relen > 0 && mip->re_len != relen) {
EPRINT((dbp->dbenv,
"Page %lu: recno database has bad re_len %lu",
(u_long)meta_pgno, (u_long)relen));
ret = DB_VERIFY_BAD;
goto err;
}
ret = 0;
break;
case P_LDUP:
EPRINT((dbp->dbenv,
"Page %lu: duplicate tree referenced from metadata page",
(u_long)meta_pgno));
ret = DB_VERIFY_BAD;
break;
default:
EPRINT((dbp->dbenv,
"Page %lu: btree root of incorrect type %lu on metadata page",
(u_long)meta_pgno, (u_long)rip->type));
ret = DB_VERIFY_BAD;
break;
}
err: if (mip != NULL && ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, mip)) != 0) && ret == 0)
ret = t_ret;
if (rip != NULL && ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, rip)) != 0) && ret == 0)
ret = t_ret;
return (ret);
}
/*
* __bam_vrfy_subtree--
* Verify a subtree (or entire) btree with specified root.
*
* Note that this is public because it must be called to verify
* offpage dup trees, including from hash.
*
* PUBLIC: int __bam_vrfy_subtree __P((DB *, VRFY_DBINFO *, db_pgno_t, void *,
* PUBLIC: void *, u_int32_t, u_int32_t *, u_int32_t *, u_int32_t *));
*/
int
__bam_vrfy_subtree(dbp,
vdp, pgno, l, r, flags, levelp, nrecsp, relenp)
DB *dbp;
VRFY_DBINFO *vdp;
db_pgno_t pgno;
void *l, *r;
u_int32_t flags, *levelp, *nrecsp, *relenp;
{
BINTERNAL *li, *ri, *lp, *rp;
DB *pgset;
DB_MPOOLFILE *mpf;
DBC *cc;
PAGE *h;
VRFY_CHILDINFO *child;
VRFY_PAGEINFO *pip;
db_indx_t i;
db_pgno_t next_pgno, prev_pgno;
db_recno_t child_nrecs, nrecs;
u_int32_t child_level, child_relen, level, relen, stflags;
u_int8_t leaf_type;
int (*func) __P((DB *, const DBT *, const DBT *));
int isbad, p, ret, t_ret, toplevel;
mpf = dbp->mpf;
ret = isbad = 0;
nrecs = 0;
h = NULL;
relen = 0;
leaf_type = P_INVALID;
next_pgno = prev_pgno = PGNO_INVALID;
rp = (BINTERNAL *)r;
lp = (BINTERNAL *)l;
/* Provide feedback on our progress to the application. */
if (!LF_ISSET(DB_SALVAGE))
__db_vrfy_struct_feedback(dbp, vdp);
if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0)
return (ret);
cc = NULL;
level = pip->bt_level;
toplevel = LF_ISSET(ST_TOPLEVEL) ? 1 : 0;
LF_CLR(ST_TOPLEVEL);
/*
* If this is the root, initialize the vdp's prev- and next-pgno
* accounting.
*
* For each leaf page we hit, we'll want to make sure that
* vdp->prev_pgno is the same as pip->prev_pgno and vdp->next_pgno is
* our page number. Then, we'll set vdp->next_pgno to pip->next_pgno
* and vdp->prev_pgno to our page number, and the next leaf page in
* line should be able to do the same verification.
*/
if (toplevel) {
/*
* Cache the values stored in the vdp so that if we're an
* auxiliary tree such as an off-page duplicate set, our
* caller's leaf page chain doesn't get lost.
*/
prev_pgno = vdp->prev_pgno;
next_pgno = vdp->next_pgno;
leaf_type = vdp->leaf_type;
vdp->next_pgno = vdp->prev_pgno = PGNO_INVALID;
vdp->leaf_type = P_INVALID;
}
/*
* We are recursively descending a btree, starting from the root
* and working our way out to the leaves.
*
* There are four cases we need to deal with:
* 1. pgno is a recno leaf page. Any children are overflows.
* 2. pgno is a duplicate leaf page. Any children
* are overflow pages; traverse them, and then return
* level and nrecs.
* 3. pgno is an ordinary leaf page. Check whether dups are
* allowed, and if so, traverse any off-page dups or
* overflows. Then return nrecs and level.
* 4. pgno is a recno internal page. Recursively check any
* child pages, making sure their levels are one lower
* and their nrecs sum to ours.
* 5. pgno is a btree internal page. Same as #4, plus we
* must verify that for each pair of BINTERNAL entries
* N and N+1, the leftmost item on N's child sorts
* greater than N, and the rightmost item on N's child
* sorts less than N+1.
*
* Furthermore, in any sorted page type (P_LDUP, P_LBTREE, P_IBTREE),
* we need to verify the internal sort order is correct if,
* due to overflow items, we were not able to do so earlier.
*/
switch (pip->type) {
case P_LRECNO:
case P_LDUP:
case P_LBTREE:
/*
* Cases 1, 2 and 3.
*
* We're some sort of leaf page; verify
* that our linked list of leaves is consistent.
*/
if (vdp->leaf_type == P_INVALID) {
/*
* First leaf page. Set the type that all its
* successors should be, and verify that our prev_pgno
* is PGNO_INVALID.
*/
vdp->leaf_type = pip->type;
if (pip->prev_pgno != PGNO_INVALID)
goto bad_prev;
} else {
/*
* Successor leaf page. Check our type, the previous
* page's next_pgno, and our prev_pgno.
*/
if (pip->type != vdp->leaf_type) {
EPRINT((dbp->dbenv,
"Page %lu: unexpected page type %lu found in leaf chain (expected %lu)",
(u_long)pip->pgno, (u_long)pip->type,
(u_long)vdp->leaf_type));
isbad = 1;
}
if (pip->pgno != vdp->next_pgno) {
EPRINT((dbp->dbenv,
"Page %lu: incorrect next_pgno %lu found in leaf chain (should be %lu)",
(u_long)vdp->prev_pgno,
(u_long)vdp->next_pgno, (u_long)pip->pgno));
isbad = 1;
}
if (pip->prev_pgno != vdp->prev_pgno) {
bad_prev: EPRINT((dbp->dbenv,
"Page %lu: incorrect prev_pgno %lu found in leaf chain (should be %lu)",
(u_long)pip->pgno, (u_long)pip->prev_pgno,
(u_long)vdp->prev_pgno));
isbad = 1;
}
}
vdp->prev_pgno = pip->pgno;
vdp->next_pgno = pip->next_pgno;
/*
* Overflow pages are common to all three leaf types;
* traverse the child list, looking for overflows.
*/
if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0)
goto err;
for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0;
ret = __db_vrfy_ccnext(cc, &child))
if (child->type == V_OVERFLOW &&
(ret = __db_vrfy_ovfl_structure(dbp, vdp,
child->pgno, child->tlen,
flags | ST_OVFL_LEAF)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto done;
}
if ((ret = __db_vrfy_ccclose(cc)) != 0)
goto err;
cc = NULL;
/* Case 1 */
if (pip->type == P_LRECNO) {
if (!LF_ISSET(ST_IS_RECNO) &&
!(LF_ISSET(ST_DUPOK) && !LF_ISSET(ST_DUPSORT))) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: recno leaf page non-recno tree",
(u_long)pgno));
goto done;
}
goto leaf;
} else if (LF_ISSET(ST_IS_RECNO)) {
/*
* It's a non-recno leaf. Had better not be a recno
* subtree.
*/
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: non-recno leaf page in recno tree",
(u_long)pgno));
goto done;
}
/* Case 2--no more work. */
if (pip->type == P_LDUP)
goto leaf;
/* Case 3 */
/* Check if we have any dups. */
if (F_ISSET(pip, VRFY_HAS_DUPS)) {
/* If dups aren't allowed in this btree, trouble. */
if (!LF_ISSET(ST_DUPOK)) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: duplicates in non-dup btree",
(u_long)pgno));
} else {
/*
* We correctly have dups. If any are off-page,
* traverse those btrees recursively.
*/
if ((ret =
__db_vrfy_childcursor(vdp, &cc)) != 0)
goto err;
for (ret = __db_vrfy_ccset(cc, pgno, &child);
ret == 0;
ret = __db_vrfy_ccnext(cc, &child)) {
stflags = flags | ST_RECNUM | ST_DUPSET;
/* Skip any overflow entries. */
if (child->type == V_DUPLICATE) {
if ((ret = __db_vrfy_duptype(
dbp, vdp, child->pgno,
stflags)) != 0) {
isbad = 1;
/* Next child. */
continue;
}
if ((ret = __bam_vrfy_subtree(
dbp, vdp, child->pgno, NULL,
NULL, stflags | ST_TOPLEVEL,
NULL, NULL, NULL)) != 0) {
if (ret !=
DB_VERIFY_BAD)
goto err;
else
isbad = 1;
}
}
}
if ((ret = __db_vrfy_ccclose(cc)) != 0)
goto err;
cc = NULL;
/*
* If VRFY_DUPS_UNSORTED is set,
* ST_DUPSORT had better not be.
*/
if (F_ISSET(pip, VRFY_DUPS_UNSORTED) &&
LF_ISSET(ST_DUPSORT)) {
EPRINT((dbp->dbenv,
"Page %lu: unsorted duplicate set in sorted-dup database",
(u_long)pgno));
isbad = 1;
}
}
}
goto leaf;
case P_IBTREE:
case P_IRECNO:
/* We handle these below. */
break;
default:
/*
* If a P_IBTREE or P_IRECNO contains a reference to an
* invalid page, we'll wind up here; handle it gracefully.
* Note that the code at the "done" label assumes that the
* current page is a btree/recno one of some sort; this
* is not the case here, so we goto err.
*
* If the page is entirely zeroed, its pip->type will be a lie
* (we assumed it was a hash page, as they're allowed to be
* zeroed); handle this case specially.
*/
if (F_ISSET(pip, VRFY_IS_ALLZEROES))
ZEROPG_ERR_PRINT(dbp->dbenv,
pgno, "btree or recno page");
else
EPRINT((dbp->dbenv,
"Page %lu: btree or recno page is of inappropriate type %lu",
(u_long)pgno, (u_long)pip->type));
ret = DB_VERIFY_BAD;
goto err;
}
/*
* Cases 4 & 5: This is a btree or recno internal page. For each child,
* recurse, keeping a running count of nrecs and making sure the level
* is always reasonable.
*/
if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0)
goto err;
for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0;
ret = __db_vrfy_ccnext(cc, &child))
if (child->type == V_RECNO) {
if (pip->type != P_IRECNO) {
TYPE_ERR_PRINT(dbp->dbenv, "__bam_vrfy_subtree",
pgno, pip->type);
DB_ASSERT(0);
ret = EINVAL;
goto err;
}
if ((ret = __bam_vrfy_subtree(dbp, vdp, child->pgno,
NULL, NULL, flags, &child_level, &child_nrecs,
&child_relen)) != 0) {
if (ret != DB_VERIFY_BAD)
goto done;
else
isbad = 1;
}
if (LF_ISSET(ST_RELEN)) {
if (relen == 0)
relen = child_relen;
/*
* child_relen may be zero if the child subtree
* is empty.
*/
else if (child_relen > 0 &&
relen != child_relen) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: recno page returned bad re_len %lu",
(u_long)child->pgno,
(u_long)child_relen));
}
if (relenp)
*relenp = relen;
}
if (LF_ISSET(ST_RECNUM))
nrecs += child_nrecs;
if (level != child_level + 1) {
isbad = 1;
EPRINT((dbp->dbenv, "Page %lu: recno level incorrect: got %lu, expected %lu",
(u_long)child->pgno, (u_long)child_level,
(u_long)(level - 1)));
}
} else if (child->type == V_OVERFLOW &&
(ret = __db_vrfy_ovfl_structure(dbp, vdp,
child->pgno, child->tlen, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto done;
}
if ((ret = __db_vrfy_ccclose(cc)) != 0)
goto err;
cc = NULL;
/* We're done with case 4. */
if (pip->type == P_IRECNO)
goto done;
/*
* Case 5. Btree internal pages.
* As described above, we need to iterate through all the
* items on the page and make sure that our children sort appropriately
* with respect to them.
*
* For each entry, li will be the "left-hand" key for the entry
* itself, which must sort lower than all entries on its child;
* ri will be the key to its right, which must sort greater.
*/
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
goto err;
for (i = 0; i < pip->entries; i += O_INDX) {
li = GET_BINTERNAL(dbp, h, i);
ri = (i + O_INDX < pip->entries) ?
GET_BINTERNAL(dbp, h, i + O_INDX) : NULL;
/*
* The leftmost key is forcibly sorted less than all entries,
* so don't bother passing it.
*/
if ((ret = __bam_vrfy_subtree(dbp, vdp, li->pgno,
i == 0 ? NULL : li, ri, flags, &child_level,
&child_nrecs, NULL)) != 0) {
if (ret != DB_VERIFY_BAD)
goto done;
else
isbad = 1;
}
if (LF_ISSET(ST_RECNUM)) {
/*
* Keep a running tally on the actual record count so
* we can return it to our parent (if we have one) or
* compare it to the NRECS field if we're a root page.
*/
nrecs += child_nrecs;
/*
* Make sure the actual record count of the child
* is equal to the value in the BINTERNAL structure.
*/
if (li->nrecs != child_nrecs) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: item %lu has incorrect record count of %lu, should be %lu",
(u_long)pgno, (u_long)i, (u_long)li->nrecs,
(u_long)child_nrecs));
}
}
if (level != child_level + 1) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: Btree level incorrect: got %lu, expected %lu",
(u_long)li->pgno,
(u_long)child_level, (u_long)(level - 1)));
}
}
if (0) {
leaf: level = LEAFLEVEL;
if (LF_ISSET(ST_RECNUM))
nrecs = pip->rec_cnt;
/* XXX
* We should verify that the record count on a leaf page
* is the sum of the number of keys and the number of
* records in its off-page dups. This requires looking
* at the page again, however, and it may all be changing
* soon, so for now we don't bother.
*/
if (LF_ISSET(ST_RELEN) && relenp)
*relenp = pip->re_len;
}
done: if (F_ISSET(pip, VRFY_INCOMPLETE) && isbad == 0 && ret == 0) {
/*
* During the page-by-page pass, item order verification was
* not finished due to the presence of overflow items. If
* isbad == 0, though, it's now safe to do so, as we've
* traversed any child overflow pages. Do it.
*/
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
goto err;
if ((ret = __bam_vrfy_itemorder(dbp,
vdp, h, pgno, 0, 1, 0, flags)) != 0)
goto err;
F_CLR(pip, VRFY_INCOMPLETE);
}
/*
* It's possible to get to this point with a page that has no
* items, but without having detected any sort of failure yet.
* Having zero items is legal if it's a leaf--it may be the
* root page in an empty tree, or the tree may have been
* modified with the DB_REVSPLITOFF flag set (there's no way
* to tell from what's on disk). For an internal page,
* though, having no items is a problem (all internal pages
* must have children).
*/
if (isbad == 0 && ret == 0) {
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
goto err;
if (NUM_ENT(h) == 0 && ISINTERNAL(h)) {
EPRINT((dbp->dbenv,
"Page %lu: internal page is empty and should not be",
(u_long)pgno));
isbad = 1;
goto err;
}
}
/*
* Our parent has sent us BINTERNAL pointers to parent records
* so that we can verify our place with respect to them. If it's
* appropriate--we have a default sort function--verify this.
*/
if (isbad == 0 && ret == 0 && !LF_ISSET(DB_NOORDERCHK) && lp != NULL) {
if (h == NULL && (ret = mpf->get(mpf, &pgno, 0, &h)) != 0)
goto err;
/*
* __bam_vrfy_treeorder needs to know what comparison function
* to use. If ST_DUPSET is set, we're in a duplicate tree
* and we use the duplicate comparison function; otherwise,
* use the btree one. If unset, use the default, of course.
*/
func = LF_ISSET(ST_DUPSET) ? dbp->dup_compare :
((BTREE *)dbp->bt_internal)->bt_compare;
if (func == NULL)
func = __bam_defcmp;
if ((ret = __bam_vrfy_treeorder(
dbp, pgno, h, lp, rp, func, flags)) != 0) {
if (ret == DB_VERIFY_BAD)
isbad = 1;
else
goto err;
}
}
/*
* This is guaranteed to succeed for leaf pages, but no harm done.
*
* Internal pages below the top level do not store their own
* record numbers, so we skip them.
*/
if (LF_ISSET(ST_RECNUM) && nrecs != pip->rec_cnt && toplevel) {
isbad = 1;
EPRINT((dbp->dbenv,
"Page %lu: bad record count: has %lu records, claims %lu",
(u_long)pgno, (u_long)nrecs, (u_long)pip->rec_cnt));
}
if (levelp)
*levelp = level;
if (nrecsp)
*nrecsp = nrecs;
pgset = vdp->pgset;
if ((ret = __db_vrfy_pgset_get(pgset, pgno, &p)) != 0)
goto err;
if (p != 0) {
isbad = 1;
EPRINT((dbp->dbenv, "Page %lu: linked twice", (u_long)pgno));
} else if ((ret = __db_vrfy_pgset_inc(pgset, pgno)) != 0)
goto err;
if (toplevel)
/*
* The last page's next_pgno in the leaf chain should have been
* PGNO_INVALID.
*/
if (vdp->next_pgno != PGNO_INVALID) {
EPRINT((dbp->dbenv, "Page %lu: unterminated leaf chain",
(u_long)vdp->prev_pgno));
isbad = 1;
}
err: if (toplevel) {
/* Restore our caller's settings. */
vdp->next_pgno = next_pgno;
vdp->prev_pgno = prev_pgno;
vdp->leaf_type = leaf_type;
}
if (h != NULL && (t_ret = mpf->put(mpf, h, 0)) != 0 && ret == 0)
ret = t_ret;
if ((t_ret =
__db_vrfy_putpageinfo(dbp->dbenv, vdp, pip)) != 0 && ret == 0)
ret = t_ret;
if (cc != NULL && ((t_ret = __db_vrfy_ccclose(cc)) != 0) && ret == 0)
ret = t_ret;
return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret);
}
/*
* __bam_vrfy_treeorder --
* Verify that the lowest key on a page sorts greater than the
* BINTERNAL which points to it (lp), and the highest key
* sorts less than the BINTERNAL above that (rp).
*
* If lp is NULL, this means that it was the leftmost key on the
* parent, which (regardless of sort function) sorts less than
* all keys. No need to check it.
*
* If rp is NULL, lp was the highest key on the parent, so there's
* no higher key we must sort less than.
*/
static int
__bam_vrfy_treeorder(dbp, pgno, h, lp, rp, func, flags)
DB *dbp;
db_pgno_t pgno;
PAGE *h;
BINTERNAL *lp, *rp;
int (*func) __P((DB *, const DBT *, const DBT *));
u_int32_t flags;
{
BOVERFLOW *bo;
DBT dbt;
db_indx_t last;
int ret, cmp;
memset(&dbt, 0, sizeof(DBT));
F_SET(&dbt, DB_DBT_MALLOC);
ret = 0;
/*
* Empty pages are sorted correctly by definition. We check
* to see whether they ought to be empty elsewhere; leaf
* pages legally may be.
*/
if (NUM_ENT(h) == 0)
return (0);
switch (TYPE(h)) {
case P_IBTREE:
case P_LDUP:
last = NUM_ENT(h) - O_INDX;
break;
case P_LBTREE:
last = NUM_ENT(h) - P_INDX;
break;
default:
TYPE_ERR_PRINT(dbp->dbenv,
"__bam_vrfy_treeorder", pgno, TYPE(h));
DB_ASSERT(0);
return (EINVAL);
}
/*
* The key on page h, the child page, is more likely to be
* an overflow page, so we pass its offset, rather than lp/rp's,
* into __bam_cmp. This will take advantage of __db_moff.
*/
/*
* Skip first-item check if we're an internal page--the first
* entry on an internal page is treated specially by __bam_cmp,
* so what's on the page shouldn't matter. (Plus, since we're passing
* our page and item 0 as to __bam_cmp, we'll sort before our
* parent and falsely report a failure.)
*/
if (lp != NULL && TYPE(h) != P_IBTREE) {
if (lp->type == B_KEYDATA) {
dbt.data = lp->data;
dbt.size = lp->len;
} else if (lp->type == B_OVERFLOW) {
bo = (BOVERFLOW *)lp->data;
if ((ret = __db_goff(dbp, &dbt, bo->tlen, bo->pgno,
NULL, NULL)) != 0)
return (ret);
} else {
DB_ASSERT(0);
EPRINT((dbp->dbenv,
"Page %lu: unknown type for internal record",
(u_long)PGNO(h)));
return (EINVAL);
}
/* On error, fall through, free if neeeded, and return. */
if ((ret = __bam_cmp(dbp, &dbt, h, 0, func, &cmp)) == 0) {
if (cmp > 0) {
EPRINT((dbp->dbenv,
"Page %lu: first item on page sorted greater than parent entry",
(u_long)PGNO(h)));
ret = DB_VERIFY_BAD;
}
} else
EPRINT((dbp->dbenv,
"Page %lu: first item on page had comparison error",
(u_long)PGNO(h)));
if (dbt.data != lp->data)
__os_ufree(dbp->dbenv, dbt.data);
if (ret != 0)
return (ret);
}
if (rp != NULL) {
if (rp->type == B_KEYDATA) {
dbt.data = rp->data;
dbt.size = rp->len;
} else if (rp->type == B_OVERFLOW) {
bo = (BOVERFLOW *)rp->data;
if ((ret = __db_goff(dbp, &dbt, bo->tlen, bo->pgno,
NULL, NULL)) != 0)
return (ret);
} else {
DB_ASSERT(0);
EPRINT((dbp->dbenv,
"Page %lu: unknown type for internal record",
(u_long)PGNO(h)));
return (EINVAL);
}
/* On error, fall through, free if neeeded, and return. */
if ((ret = __bam_cmp(dbp, &dbt, h, last, func, &cmp)) == 0) {
if (cmp < 0) {
EPRINT((dbp->dbenv,
"Page %lu: last item on page sorted greater than parent entry",
(u_long)PGNO(h)));
ret = DB_VERIFY_BAD;
}
} else
EPRINT((dbp->dbenv,
"Page %lu: last item on page had comparison error",
(u_long)PGNO(h)));
if (dbt.data != rp->data)
__os_ufree(dbp->dbenv, dbt.data);
}
return (ret);
}
/*
* __bam_salvage --
* Safely dump out anything that looks like a key on an alleged
* btree leaf page.
*
* PUBLIC: int __bam_salvage __P((DB *, VRFY_DBINFO *, db_pgno_t, u_int32_t,
* PUBLIC: PAGE *, void *, int (*)(void *, const void *), DBT *,
* PUBLIC: u_int32_t));
*/
int
__bam_salvage(dbp, vdp, pgno, pgtype, h, handle, callback, key, flags)
DB *dbp;
VRFY_DBINFO *vdp;
db_pgno_t pgno;
u_int32_t pgtype;
PAGE *h;
void *handle;
int (*callback) __P((void *, const void *));
DBT *key;
u_int32_t flags;
{
DBT dbt, unkdbt;
BKEYDATA *bk;
BOVERFLOW *bo;
db_indx_t i, beg, end, *inp;
u_int32_t himark;
u_int8_t *pgmap;
void *ovflbuf;
int t_ret, ret, err_ret;
/* Shut up lint. */
COMPQUIET(end, 0);
ovflbuf = pgmap = NULL;
err_ret = ret = 0;
inp = P_INP(dbp, h);
memset(&dbt, 0, sizeof(DBT));
dbt.flags = DB_DBT_REALLOC;
memset(&unkdbt, 0, sizeof(DBT));
unkdbt.size = (u_int32_t)(strlen("UNKNOWN") + 1);
unkdbt.data = "UNKNOWN";
/*
* Allocate a buffer for overflow items. Start at one page;
* __db_safe_goff will realloc as needed.
*/
if ((ret = __os_malloc(dbp->dbenv, dbp->pgsize, &ovflbuf)) != 0)
return (ret);
if (LF_ISSET(DB_AGGRESSIVE)) {
if ((ret =
__os_malloc(dbp->dbenv, dbp->pgsize, &pgmap)) != 0)
goto err;
memset(pgmap, 0, dbp->pgsize);
}
/*
* Loop through the inp array, spitting out key/data pairs.
*
* If we're salvaging normally, loop from 0 through NUM_ENT(h).
* If we're being aggressive, loop until we hit the end of the page--
* NUM_ENT() may be bogus.
*/
himark = dbp->pgsize;
for (i = 0;; i += O_INDX) {
/* If we're not aggressive, break when we hit NUM_ENT(h). */
if (!LF_ISSET(DB_AGGRESSIVE) && i >= NUM_ENT(h))
break;
/* Verify the current item. */
ret = __db_vrfy_inpitem(dbp,
h, pgno, i, 1, flags, &himark, NULL);
/* If this returned a fatality, it's time to break. */
if (ret == DB_VERIFY_FATAL) {
/*
* Don't return DB_VERIFY_FATAL; it's private
* and means only that we can't go on with this
* page, not with the whole database. It's
* not even an error if we've run into it
* after NUM_ENT(h).
*/
ret = (i < NUM_ENT(h)) ? DB_VERIFY_BAD : 0;
break;
}
/*
* If this returned 0, it's safe to print or (carefully)
* try to fetch.
*/
if (ret == 0) {
/*
* We only want to print deleted items if
* DB_AGGRESSIVE is set.
*/
bk = GET_BKEYDATA(dbp, h, i);
if (!LF_ISSET(DB_AGGRESSIVE) && B_DISSET(bk->type))
continue;
/*
* We're going to go try to print the next item. If
* key is non-NULL, we're a dup page, so we've got to
* print the key first, unless SA_SKIPFIRSTKEY is set
* and we're on the first entry.
*/
if (key != NULL &&
(i != 0 || !LF_ISSET(SA_SKIPFIRSTKEY)))
if ((ret = __db_prdbt(key,
0, " ", handle, callback, 0, vdp)) != 0)
err_ret = ret;
beg = inp[i];
switch (B_TYPE(bk->type)) {
case B_DUPLICATE:
end = beg + BOVERFLOW_SIZE - 1;
/*
* If we're not on a normal btree leaf page,
* there shouldn't be off-page
* dup sets. Something's confused; just
* drop it, and the code to pick up unlinked
* offpage dup sets will print it out
* with key "UNKNOWN" later.
*/
if (pgtype != P_LBTREE)
break;
bo = (BOVERFLOW *)bk;
/*
* If the page number is unreasonable, or
* if this is supposed to be a key item,
* just spit out "UNKNOWN"--the best we
* can do is run into the data items in the
* unlinked offpage dup pass.
*/
if (!IS_VALID_PGNO(bo->pgno) ||
(i % P_INDX == 0)) {
/* Not much to do on failure. */
if ((ret = __db_prdbt(&unkdbt, 0, " ",
handle, callback, 0, vdp)) != 0)
err_ret = ret;
break;
}
if ((ret = __db_salvage_duptree(dbp,
vdp, bo->pgno, &dbt, handle, callback,
flags | SA_SKIPFIRSTKEY)) != 0)
err_ret = ret;
break;
case B_KEYDATA:
end =
ALIGN(beg + bk->len, sizeof(u_int32_t)) - 1;
dbt.data = bk->data;
dbt.size = bk->len;
if ((ret = __db_prdbt(&dbt,
0, " ", handle, callback, 0, vdp)) != 0)
err_ret = ret;
break;
case B_OVERFLOW:
end = beg + BOVERFLOW_SIZE - 1;
bo = (BOVERFLOW *)bk;
if ((ret = __db_safe_goff(dbp, vdp,
bo->pgno, &dbt, &ovflbuf, flags)) != 0) {
err_ret = ret;
/* We care about err_ret more. */
(void)__db_prdbt(&unkdbt, 0, " ",
handle, callback, 0, vdp);
break;
}
if ((ret = __db_prdbt(&dbt,
0, " ", handle, callback, 0, vdp)) != 0)
err_ret = ret;
break;
default:
/*
* We should never get here; __db_vrfy_inpitem
* should not be returning 0 if bk->type
* is unrecognizable.
*/
DB_ASSERT(0);
return (EINVAL);
}
/*
* If we're being aggressive, mark the beginning
* and end of the item; we'll come back and print
* whatever "junk" is in the gaps in case we had
* any bogus inp elements and thereby missed stuff.
*/
if (LF_ISSET(DB_AGGRESSIVE)) {
pgmap[beg] = ITEM_BEGIN;
pgmap[end] = ITEM_END;
}
}
}
/*
* If i is odd and this is a btree leaf, we've printed out a key but not
* a datum; fix this imbalance by printing an "UNKNOWN".
*/
if (pgtype == P_LBTREE && (i % P_INDX == 1) && ((ret =
__db_prdbt(&unkdbt, 0, " ", handle, callback, 0, vdp)) != 0))
err_ret = ret;
err: if (pgmap != NULL)
__os_free(dbp->dbenv, pgmap);
__os_free(dbp->dbenv, ovflbuf);
/* Mark this page as done. */
if ((t_ret = __db_salvage_markdone(vdp, pgno)) != 0)
return (t_ret);
return ((err_ret != 0) ? err_ret : ret);
}
/*
* __bam_salvage_walkdupint --
* Walk a known-good btree or recno internal page which is part of
* a dup tree, calling __db_salvage_duptree on each child page.
*
* PUBLIC: int __bam_salvage_walkdupint __P((DB *, VRFY_DBINFO *, PAGE *,
* PUBLIC: DBT *, void *, int (*)(void *, const void *), u_int32_t));
*/
int
__bam_salvage_walkdupint(dbp, vdp, h, key, handle, callback, flags)
DB *dbp;
VRFY_DBINFO *vdp;
PAGE *h;
DBT *key;
void *handle;
int (*callback) __P((void *, const void *));
u_int32_t flags;
{
RINTERNAL *ri;
BINTERNAL *bi;
int ret, t_ret;
db_indx_t i;
ret = 0;
for (i = 0; i < NUM_ENT(h); i++) {
switch (TYPE(h)) {
case P_IBTREE:
bi = GET_BINTERNAL(dbp, h, i);
if ((t_ret = __db_salvage_duptree(dbp,
vdp, bi->pgno, key, handle, callback, flags)) != 0)
ret = t_ret;
break;
case P_IRECNO:
ri = GET_RINTERNAL(dbp, h, i);
if ((t_ret = __db_salvage_duptree(dbp,
vdp, ri->pgno, key, handle, callback, flags)) != 0)
ret = t_ret;
break;
default:
__db_err(dbp->dbenv,
"__bam_salvage_walkdupint called on non-int. page");
DB_ASSERT(0);
return (EINVAL);
}
/* Pass SA_SKIPFIRSTKEY, if set, on to the 0th child only. */
flags &= ~LF_ISSET(SA_SKIPFIRSTKEY);
}
return (ret);
}
/*
* __bam_meta2pgset --
* Given a known-good meta page, return in pgsetp a 0-terminated list of
* db_pgno_t's corresponding to the pages in the btree.
*
* We do this by a somewhat sleazy method, to avoid having to traverse the
* btree structure neatly: we walk down the left side to the very
* first leaf page, then we mark all the pages in the chain of
* NEXT_PGNOs (being wary of cycles and invalid ones), then we
* consolidate our scratch array into a nice list, and return. This
* avoids the memory management hassles of recursion and the
* trouble of walking internal pages--they just don't matter, except
* for the left branch.
*
* PUBLIC: int __bam_meta2pgset __P((DB *, VRFY_DBINFO *, BTMETA *,
* PUBLIC: u_int32_t, DB *));
*/
int
__bam_meta2pgset(dbp, vdp, btmeta, flags, pgset)
DB *dbp;
VRFY_DBINFO *vdp;
BTMETA *btmeta;
u_int32_t flags;
DB *pgset;
{
BINTERNAL *bi;
DB_MPOOLFILE *mpf;
PAGE *h;
RINTERNAL *ri;
db_pgno_t current, p;
int err_ret, ret;
mpf = dbp->mpf;
h = NULL;
ret = err_ret = 0;
DB_ASSERT(pgset != NULL);
for (current = btmeta->root;;) {
if (!IS_VALID_PGNO(current) || current == PGNO(btmeta)) {
err_ret = DB_VERIFY_BAD;
goto err;
}
if ((ret = mpf->get(mpf, &current, 0, &h)) != 0) {
err_ret = ret;
goto err;
}
switch (TYPE(h)) {
case P_IBTREE:
case P_IRECNO:
if ((ret = __bam_vrfy(dbp,
vdp, h, current, flags | DB_NOORDERCHK)) != 0) {
err_ret = ret;
goto err;
}
if (TYPE(h) == P_IBTREE) {
bi = GET_BINTERNAL(dbp, h, 0);
current = bi->pgno;
} else { /* P_IRECNO */
ri = GET_RINTERNAL(dbp, h, 0);
current = ri->pgno;
}
break;
case P_LBTREE:
case P_LRECNO:
goto traverse;
default:
err_ret = DB_VERIFY_BAD;
goto err;
}
if ((ret = mpf->put(mpf, h, 0)) != 0)
err_ret = ret;
h = NULL;
}
/*
* At this point, current is the pgno of leaf page h, the 0th in the
* tree we're concerned with.
*/
traverse:
while (IS_VALID_PGNO(current) && current != PGNO_INVALID) {
if (h == NULL && (ret = mpf->get(mpf, &current, 0, &h)) != 0) {
err_ret = ret;
break;
}
if ((ret = __db_vrfy_pgset_get(pgset, current, (int *)&p)) != 0)
goto err;
if (p != 0) {
/*
* We've found a cycle. Return success anyway--
* our caller may as well use however much of
* the pgset we've come up with.
*/
break;
}
if ((ret = __db_vrfy_pgset_inc(pgset, current)) != 0)
goto err;
current = NEXT_PGNO(h);
if ((ret = mpf->put(mpf, h, 0)) != 0)
err_ret = ret;
h = NULL;
}
err: if (h != NULL)
(void)mpf->put(mpf, h, 0);
return (ret == 0 ? err_ret : ret);
}
/*
* __bam_safe_getdata --
*
* Utility function for __bam_vrfy_itemorder. Safely gets the datum at
* index i, page h, and sticks it in DBT dbt. If ovflok is 1 and i's an
* overflow item, we do a safe_goff to get the item and signal that we need
* to free dbt->data; if ovflok is 0, we leaves the DBT zeroed.
*/
static int
__bam_safe_getdata(dbp, h, i, ovflok, dbt, freedbtp)
DB *dbp;
PAGE *h;
u_int32_t i;
int ovflok;
DBT *dbt;
int *freedbtp;
{
BKEYDATA *bk;
BOVERFLOW *bo;
memset(dbt, 0, sizeof(DBT));
*freedbtp = 0;
bk = GET_BKEYDATA(dbp, h, i);
if (B_TYPE(bk->type) == B_OVERFLOW) {
if (!ovflok)
return (0);
bo = (BOVERFLOW *)bk;
F_SET(dbt, DB_DBT_MALLOC);
*freedbtp = 1;
return (__db_goff(dbp, dbt, bo->tlen, bo->pgno, NULL, NULL));
} else {
dbt->data = bk->data;
dbt->size = bk->len;
}
return (0);
}