mariadb/mysys/crc32/crc32_arm64.c
mysqlonarm dec3f8ca69
MDEV-22641: Provide SIMD optimized wrapper for zlib crc32() (#1558)
Existing implementation used my_checksum (from mysys)
for calculating table checksum and binlog checksum.

This implementation was optimized for powerpc only and lacked
SIMD implementation for x86 (using clmul) and ARM
(using ACLE) instead used zlib-crc32.

mariabackup had its own copy of the crc32 implementation
using hardware optimized implementation only for x86 and lagged
hardware based implementation for powerpc and ARM.

Patch helps unifies all such calls and help aggregate all of them
using an unified interface my_checksum().

Said unification also enables hardware optimized calls for all
architecture viz. x86, ARM, POWERPC.
Default always fallback to zlib crc32.

Thanks to Daniel Black for reviewing, fixing and testing
PowerPC changes. Thanks to Marko and Daniel for early code feedback.
2020-06-01 11:34:06 +03:00

334 lines
10 KiB
C

#include <my_global.h>
#include <string.h>
#include <stdint.h>
#if defined(__GNUC__) && defined(HAVE_ARMV8_CRC)
#include <sys/auxv.h>
#include <asm/hwcap.h>
#ifndef HWCAP_CRC32
#define HWCAP_CRC32 (1 << 7)
#endif
/* ARM made crc32 default from ARMv8.1 but optional in ARMv8A
so the runtime check. */
int crc32_aarch64_available(void)
{
unsigned long auxv= getauxval(AT_HWCAP);
return (auxv & HWCAP_CRC32) != 0;
}
#endif
#ifndef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
/* Request crc extension capabilities from the assembler */
asm(".arch_extension crc");
#ifdef HAVE_ARMV8_CRYPTO
/* crypto extension */
asm(".arch_extension crypto");
#endif
#define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32C3X8(buffer, ITR) \
__asm__("crc32cx %w[c1], %w[c1], %x[v]":[c1]"+r"(crc1):[v]"r"(*((const uint64_t *)buffer + 42*1 + (ITR))));\
__asm__("crc32cx %w[c2], %w[c2], %x[v]":[c2]"+r"(crc2):[v]"r"(*((const uint64_t *)buffer + 42*2 + (ITR))));\
__asm__("crc32cx %w[c0], %w[c0], %x[v]":[c0]"+r"(crc0):[v]"r"(*((const uint64_t *)buffer + 42*0 + (ITR))));
#define CRC32C3X8_ZERO \
__asm__("crc32cx %w[c0], %w[c0], xzr":[c0]"+r"(crc0));
#else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/* Intrinsics header*/
#include <arm_acle.h>
#include <arm_neon.h>
#define CRC32CX(crc, value) (crc) = __crc32cd((crc), (value))
#define CRC32CW(crc, value) (crc) = __crc32cw((crc), (value))
#define CRC32CH(crc, value) (crc) = __crc32ch((crc), (value))
#define CRC32CB(crc, value) (crc) = __crc32cb((crc), (value))
#define CRC32C3X8(buffer, ITR) \
crc1 = __crc32cd(crc1, *((const uint64_t *)buffer + 42*1 + (ITR)));\
crc2 = __crc32cd(crc2, *((const uint64_t *)buffer + 42*2 + (ITR)));\
crc0 = __crc32cd(crc0, *((const uint64_t *)buffer + 42*0 + (ITR)));
#define CRC32C3X8_ZERO \
crc0 = __crc32cd(crc0, (const uint64_t)0);
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
#define CRC32C7X3X8(buffer, ITR) do {\
CRC32C3X8(buffer, ((ITR) * 7 + 0)) \
CRC32C3X8(buffer, ((ITR) * 7 + 1)) \
CRC32C3X8(buffer, ((ITR) * 7 + 2)) \
CRC32C3X8(buffer, ((ITR) * 7 + 3)) \
CRC32C3X8(buffer, ((ITR) * 7 + 4)) \
CRC32C3X8(buffer, ((ITR) * 7 + 5)) \
CRC32C3X8(buffer, ((ITR) * 7 + 6)) \
} while(0)
#define CRC32C7X3X8_ZERO do {\
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
} while(0)
#define PREF4X64L1(buffer, PREF_OFFSET, ITR) \
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL1(buffer, PREF_OFFSET) \
PREF4X64L1(buffer,(PREF_OFFSET), 0) \
PREF4X64L1(buffer,(PREF_OFFSET), 4) \
PREF4X64L1(buffer,(PREF_OFFSET), 8) \
PREF4X64L1(buffer,(PREF_OFFSET), 12)
#define PREF4X64L2(buffer, PREF_OFFSET, ITR) \
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL2(buffer, PREF_OFFSET) \
PREF4X64L2(buffer,(PREF_OFFSET), 0) \
PREF4X64L2(buffer,(PREF_OFFSET), 4) \
PREF4X64L2(buffer,(PREF_OFFSET), 8) \
PREF4X64L2(buffer,(PREF_OFFSET), 12)
uint32_t crc32c_aarch64(uint32_t crc, const unsigned char *buffer, uint64_t len)
{
uint32_t crc0, crc1, crc2;
int64_t length = (int64_t)len;
crc = 0xFFFFFFFFU;
if (buffer) {
/* Crypto extension Support
* Process 1024 Bytes (per block)
*/
#ifdef HAVE_ARMV8_CRYPTO
/* Intrinsics Support */
#ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
const poly64_t k1 = 0xe417f38a, k2 = 0x8f158014;
uint64_t t0, t1;
/* Process per block size of 1024 Bytes
* A block size = 8 + 42*3*sizeof(uint64_t) + 8
*/
while ((length -= 1024) >= 0) {
/* Prefetch 3*1024 data for avoiding L2 cache miss */
PREF1KL2(buffer, 1024*3);
/* Do first 8 bytes here for better pipelining */
crc0 = __crc32cd(crc, *(const uint64_t *)buffer);
crc1 = 0;
crc2 = 0;
buffer += sizeof(uint64_t);
/* Process block inline
* Process crc0 last to avoid dependency with above
*/
CRC32C7X3X8(buffer, 0);
CRC32C7X3X8(buffer, 1);
CRC32C7X3X8(buffer, 2);
CRC32C7X3X8(buffer, 3);
CRC32C7X3X8(buffer, 4);
CRC32C7X3X8(buffer, 5);
buffer += 42*3*sizeof(uint64_t);
/* Prefetch data for following block to avoid L1 cache miss */
PREF1KL1(buffer, 1024);
/* Last 8 bytes
* Merge crc0 and crc1 into crc2
* crc1 multiply by K2
* crc0 multiply by K1
*/
t1 = (uint64_t)vmull_p64(crc1, k2);
t0 = (uint64_t)vmull_p64(crc0, k1);
crc = __crc32cd(crc2, *(const uint64_t *)buffer);
crc1 = __crc32cd(0, t1);
crc ^= crc1;
crc0 = __crc32cd(0, t0);
crc ^= crc0;
buffer += sizeof(uint64_t);
}
#else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/*No intrinsics*/
__asm__("mov x16, #0xf38a \n\t"
"movk x16, #0xe417, lsl 16 \n\t"
"mov v1.2d[0], x16 \n\t"
"mov x16, #0x8014 \n\t"
"movk x16, #0x8f15, lsl 16 \n\t"
"mov v0.2d[0], x16 \n\t"
:::"x16");
while ((length -= 1024) >= 0) {
PREF1KL2(buffer, 1024*3);
__asm__("crc32cx %w[c0], %w[c], %x[v]\n\t"
:[c0]"=r"(crc0):[c]"r"(crc), [v]"r"(*(const uint64_t *)buffer):);
crc1 = 0;
crc2 = 0;
buffer += sizeof(uint64_t);
CRC32C7X3X8(buffer, 0);
CRC32C7X3X8(buffer, 1);
CRC32C7X3X8(buffer, 2);
CRC32C7X3X8(buffer, 3);
CRC32C7X3X8(buffer, 4);
CRC32C7X3X8(buffer, 5);
buffer += 42*3*sizeof(uint64_t);
PREF1KL1(buffer, 1024);
__asm__("mov v2.2d[0], %x[c1] \n\t"
"pmull v2.1q, v2.1d, v0.1d \n\t"
"mov v3.2d[0], %x[c0] \n\t"
"pmull v3.1q, v3.1d, v1.1d \n\t"
"crc32cx %w[c], %w[c2], %x[v] \n\t"
"mov %x[c1], v2.2d[0] \n\t"
"crc32cx %w[c1], wzr, %x[c1] \n\t"
"eor %w[c], %w[c], %w[c1] \n\t"
"mov %x[c0], v3.2d[0] \n\t"
"crc32cx %w[c0], wzr, %x[c0] \n\t"
"eor %w[c], %w[c], %w[c0] \n\t"
:[c1]"+r"(crc1), [c0]"+r"(crc0), [c2]"+r"(crc2), [c]"+r"(crc)
:[v]"r"(*((const uint64_t *)buffer)));
buffer += sizeof(uint64_t);
}
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
/* Done if Input data size is aligned with 1024 */
if(!(length += 1024))
return (~crc);
#endif /* HAVE_ARMV8_CRYPTO */
while ((length -= sizeof(uint64_t)) >= 0) {
CRC32CX(crc, *(uint64_t *)buffer);
buffer += sizeof(uint64_t);
}
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t)) {
CRC32CW(crc, *(uint32_t *)buffer);
buffer += sizeof(uint32_t);
}
if (length & sizeof(uint16_t)) {
CRC32CH(crc, *(uint16_t *)buffer);
buffer += sizeof(uint16_t);
}
if (length & sizeof(uint8_t))
CRC32CB(crc, *buffer);
} else {
#ifdef HAVE_ARMV8_CRYPTO
#ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
const poly64_t k1 = 0xe417f38a;
uint64_t t0;
while ((length -= 1024) >= 0) {
crc0 = __crc32cd(crc, 0);
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
/* Merge crc0 into crc: crc0 multiply by K1 */
t0 = (uint64_t)vmull_p64(crc0, k1);
crc = __crc32cd(0, t0);
}
#else /* !HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
__asm__("mov x16, #0xf38a \n\t"
"movk x16, #0xe417, lsl 16 \n\t"
"mov v1.2d[0], x16 \n\t"
:::"x16");
while ((length -= 1024) >= 0) {
__asm__("crc32cx %w[c0], %w[c], xzr\n\t"
:[c0]"=r"(crc0):[c]"r"(crc));
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
__asm__("mov v3.2d[0], %x[c0] \n\t"
"pmull v3.1q, v3.1d, v1.1d \n\t"
"mov %x[c0], v3.2d[0] \n\t"
"crc32cx %w[c], wzr, %x[c0] \n\t"
:[c]"=r"(crc)
:[c0]"r"(crc0));
}
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
if(!(length += 1024))
return (~crc);
#endif /* HAVE_ARMV8_CRYPTO */
while ((length -= sizeof(uint64_t)) >= 0)
CRC32CX(crc, 0);
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t))
CRC32CW(crc, 0);
if (length & sizeof(uint16_t))
CRC32CH(crc, 0);
if (length & sizeof(uint8_t))
CRC32CB(crc, 0);
}
return (~crc);
}
/* There are multiple approaches to calculate crc.
Approach-1: Process 8 bytes then 4 bytes then 2 bytes and then 1 bytes
Approach-2: Process 8 bytes and remaining workload using 1 bytes
Apporach-3: Process 64 bytes at once by issuing 8 crc call and remaining
using 8/1 combination.
Based on micro-benchmark testing we found that Approach-2 works best especially
given small chunk of variable data. */
unsigned int crc32_aarch64(unsigned int crc, const void *buf, size_t len)
{
const uint8_t *buf1= buf;
const uint64_t *buf8= (const uint64_t *) (((uintptr_t) buf + 7) & ~7);
crc= ~crc;
/* if start pointer is not 8 bytes aligned */
while ((buf1 != (const uint8_t *) buf8) && len)
{
crc= __crc32b(crc, *buf1++);
len--;
}
for (; len >= 8; len-= 8)
crc= __crc32d(crc, *buf8++);
buf1= (const uint8_t *) buf8;
while (len--)
crc= __crc32b(crc, *buf1++);
return ~crc;
}