mariadb/ft/ft_node-serialize.cc
Yoni Fogel 798f83412e refs #6286 Reorganized static asserts and status macros so c++11 features stay out of exported headers
git-svn-id: file:///svn/toku/tokudb@54546 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-17 00:01:31 -04:00

3124 lines
115 KiB
C++

/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007-2012 Tokutek Inc. All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
#include "ft-internal.h"
#include "log-internal.h"
#include <compress.h>
#include <portability/toku_atomic.h>
#include <util/sort.h>
#include <util/threadpool.h>
#include "ft.h"
#include <util/status.h>
static FT_UPGRADE_STATUS_S ft_upgrade_status;
#define STATUS_INIT(k,c,t,l,inc) TOKUDB_STATUS_INIT(ft_upgrade_status, k, c, t, "brt upgrade: " l, inc)
static void
status_init(void)
{
// Note, this function initializes the keyname, type, and legend fields.
// Value fields are initialized to zero by compiler.
STATUS_INIT(FT_UPGRADE_FOOTPRINT, nullptr, UINT64, "footprint", TOKU_ENGINE_STATUS);
ft_upgrade_status.initialized = true;
}
#undef STATUS_INIT
#define UPGRADE_STATUS_VALUE(x) ft_upgrade_status.status[x].value.num
void
toku_ft_upgrade_get_status(FT_UPGRADE_STATUS s) {
if (!ft_upgrade_status.initialized) {
status_init();
}
UPGRADE_STATUS_VALUE(FT_UPGRADE_FOOTPRINT) = toku_log_upgrade_get_footprint();
*s = ft_upgrade_status;
}
static int num_cores = 0; // cache the number of cores for the parallelization
static struct toku_thread_pool *ft_pool = NULL;
int get_num_cores(void) {
return num_cores;
}
struct toku_thread_pool *get_ft_pool(void) {
return ft_pool;
}
void
toku_ft_serialize_layer_init(void) {
num_cores = toku_os_get_number_active_processors();
int r = toku_thread_pool_create(&ft_pool, num_cores); lazy_assert_zero(r);
}
void
toku_ft_serialize_layer_destroy(void) {
toku_thread_pool_destroy(&ft_pool);
}
enum {FILE_CHANGE_INCREMENT = (16<<20)};
static inline uint64_t
alignup64(uint64_t a, uint64_t b) {
return ((a+b-1)/b)*b;
}
// safe_file_size_lock must be held.
void
toku_maybe_truncate_file (int fd, uint64_t size_used, uint64_t expected_size, uint64_t *new_sizep)
// Effect: If file size >= SIZE+32MiB, reduce file size.
// (32 instead of 16.. hysteresis).
// Return 0 on success, otherwise an error number.
{
int64_t file_size;
{
int r = toku_os_get_file_size(fd, &file_size);
lazy_assert_zero(r);
invariant(file_size >= 0);
}
invariant(expected_size == (uint64_t)file_size);
// If file space is overallocated by at least 32M
if ((uint64_t)file_size >= size_used + (2*FILE_CHANGE_INCREMENT)) {
toku_off_t new_size = alignup64(size_used, (2*FILE_CHANGE_INCREMENT)); //Truncate to new size_used.
invariant(new_size < file_size);
invariant(new_size >= 0);
int r = ftruncate(fd, new_size);
lazy_assert_zero(r);
*new_sizep = new_size;
}
else {
*new_sizep = file_size;
}
return;
}
static int64_t
min64(int64_t a, int64_t b) {
if (a<b) return a;
return b;
}
void
toku_maybe_preallocate_in_file (int fd, int64_t size, int64_t expected_size, int64_t *new_size)
// Effect: make the file bigger by either doubling it or growing by 16MiB whichever is less, until it is at least size
// Return 0 on success, otherwise an error number.
{
int64_t file_size;
//TODO(yoni): Allow variable stripe_width (perhaps from ft) for larger raids
const uint64_t stripe_width = 4096;
{
int r = toku_os_get_file_size(fd, &file_size);
if (r != 0) { // debug #2463
int the_errno = get_maybe_error_errno();
fprintf(stderr, "%s:%d fd=%d size=%" PRIu64 " r=%d errno=%d\n", __FUNCTION__, __LINE__, fd, size, r, the_errno); fflush(stderr);
}
lazy_assert_zero(r);
}
invariant(file_size >= 0);
invariant(expected_size == file_size);
// We want to double the size of the file, or add 16MiB, whichever is less.
// We emulate calling this function repeatedly until it satisfies the request.
int64_t to_write = 0;
if (file_size == 0) {
// Prevent infinite loop by starting with stripe_width as a base case.
to_write = stripe_width;
}
while (file_size + to_write < size) {
to_write += alignup64(min64(file_size + to_write, FILE_CHANGE_INCREMENT), stripe_width);
}
if (to_write > 0) {
assert(to_write%512==0);
char *XMALLOC_N_ALIGNED(512, to_write, wbuf);
memset(wbuf, 0, to_write);
toku_off_t start_write = alignup64(file_size, stripe_width);
invariant(start_write >= file_size);
toku_os_full_pwrite(fd, wbuf, to_write, start_write);
toku_free(wbuf);
*new_size = start_write + to_write;
}
else {
*new_size = file_size;
}
}
// Don't include the sub_block header
// Overhead calculated in same order fields are written to wbuf
enum {
node_header_overhead = (8+ // magic "tokunode" or "tokuleaf" or "tokuroll"
4+ // layout_version
4+ // layout_version_original
4), // build_id
};
#include "sub_block.h"
#include "sub_block_map.h"
// uncompressed header offsets
enum {
uncompressed_magic_offset = 0,
uncompressed_version_offset = 8,
};
static uint32_t
serialize_node_header_size(FTNODE node) {
uint32_t retval = 0;
retval += 8; // magic
retval += sizeof(node->layout_version);
retval += sizeof(node->layout_version_original);
retval += 4; // BUILD_ID
retval += 4; // n_children
retval += node->n_children*8; // encode start offset and length of each partition
retval += 4; // checksum
return retval;
}
static void
serialize_node_header(FTNODE node, FTNODE_DISK_DATA ndd, struct wbuf *wbuf) {
if (node->height == 0)
wbuf_nocrc_literal_bytes(wbuf, "tokuleaf", 8);
else
wbuf_nocrc_literal_bytes(wbuf, "tokunode", 8);
paranoid_invariant(node->layout_version == FT_LAYOUT_VERSION);
wbuf_nocrc_int(wbuf, node->layout_version);
wbuf_nocrc_int(wbuf, node->layout_version_original);
wbuf_nocrc_uint(wbuf, BUILD_ID);
wbuf_nocrc_int (wbuf, node->n_children);
for (int i=0; i<node->n_children; i++) {
assert(BP_SIZE(ndd,i)>0);
wbuf_nocrc_int(wbuf, BP_START(ndd, i)); // save the beginning of the partition
wbuf_nocrc_int(wbuf, BP_SIZE (ndd, i)); // and the size
}
// checksum the header
uint32_t end_to_end_checksum = x1764_memory(wbuf->buf, wbuf_get_woffset(wbuf));
wbuf_nocrc_int(wbuf, end_to_end_checksum);
invariant(wbuf->ndone == wbuf->size);
}
static int
wbufwriteleafentry(OMTVALUE lev, const uint32_t UU(idx), void *wbv) {
const LEAFENTRY CAST_FROM_VOIDP(le, lev);
struct wbuf *CAST_FROM_VOIDP(wb, wbv);
wbuf_nocrc_LEAFENTRY(wb, le);
return 0;
}
static uint32_t
serialize_ftnode_partition_size (FTNODE node, int i)
{
uint32_t result = 0;
paranoid_invariant(node->bp[i].state == PT_AVAIL);
result++; // Byte that states what the partition is
if (node->height > 0) {
result += 4; // size of bytes in buffer table
result += toku_bnc_nbytesinbuf(BNC(node, i));
}
else {
result += 4; // n_entries in buffer table
result += BLB_NBYTESINBUF(node, i);
}
result += 4; // checksum
return result;
}
#define FTNODE_PARTITION_OMT_LEAVES 0xaa
#define FTNODE_PARTITION_FIFO_MSG 0xbb
static void
serialize_nonleaf_childinfo(NONLEAF_CHILDINFO bnc, struct wbuf *wb)
{
unsigned char ch = FTNODE_PARTITION_FIFO_MSG;
wbuf_nocrc_char(wb, ch);
// serialize the FIFO, first the number of entries, then the elements
wbuf_nocrc_int(wb, toku_bnc_n_entries(bnc));
FIFO_ITERATE(
bnc->buffer, key, keylen, data, datalen, type, msn, xids, is_fresh,
{
paranoid_invariant((int)type>=0 && type<256);
wbuf_nocrc_char(wb, (unsigned char)type);
wbuf_nocrc_char(wb, (unsigned char)is_fresh);
wbuf_MSN(wb, msn);
wbuf_nocrc_xids(wb, xids);
wbuf_nocrc_bytes(wb, key, keylen);
wbuf_nocrc_bytes(wb, data, datalen);
});
}
//
// Serialize the i'th partition of node into sb
// For leaf nodes, this would be the i'th basement node
// For internal nodes, this would be the i'th internal node
//
static void
serialize_ftnode_partition(FTNODE node, int i, struct sub_block *sb) {
assert(sb->uncompressed_size == 0);
assert(sb->uncompressed_ptr == NULL);
sb->uncompressed_size = serialize_ftnode_partition_size(node,i);
sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);
//
// Now put the data into sb->uncompressed_ptr
//
struct wbuf wb;
wbuf_init(&wb, sb->uncompressed_ptr, sb->uncompressed_size);
if (node->height > 0) {
// TODO: (Zardosht) possibly exit early if there are no messages
serialize_nonleaf_childinfo(BNC(node, i), &wb);
}
else {
unsigned char ch = FTNODE_PARTITION_OMT_LEAVES;
OMT buffer = BLB_BUFFER(node, i);
wbuf_nocrc_char(&wb, ch);
wbuf_nocrc_uint(&wb, toku_omt_size(buffer));
//
// iterate over leafentries and place them into the buffer
//
toku_omt_iterate(buffer, wbufwriteleafentry, &wb);
}
uint32_t end_to_end_checksum = x1764_memory(sb->uncompressed_ptr, wbuf_get_woffset(&wb));
wbuf_nocrc_int(&wb, end_to_end_checksum);
invariant(wb.ndone == wb.size);
invariant(sb->uncompressed_size==wb.ndone);
}
//
// Takes the data in sb->uncompressed_ptr, and compresses it
// into a newly allocated buffer sb->compressed_ptr
//
static void
compress_ftnode_sub_block(struct sub_block *sb, enum toku_compression_method method) {
assert(sb->compressed_ptr == NULL);
set_compressed_size_bound(sb, method);
// add 8 extra bytes, 4 for compressed size, 4 for decompressed size
sb->compressed_ptr = toku_xmalloc(sb->compressed_size_bound + 8);
//
// This probably seems a bit complicated. Here is what is going on.
// In TokuDB 5.0, sub_blocks were compressed and the compressed data
// was checksummed. The checksum did NOT include the size of the compressed data
// and the size of the uncompressed data. The fields of sub_block only reference the
// compressed data, and it is the responsibility of the user of the sub_block
// to write the length
//
// For Dr. No, we want the checksum to also include the size of the compressed data, and the
// size of the decompressed data, because this data
// may be read off of disk alone, so it must be verifiable alone.
//
// So, we pass in a buffer to compress_nocrc_sub_block that starts 8 bytes after the beginning
// of sb->compressed_ptr, so we have space to put in the sizes, and then run the checksum.
//
sb->compressed_size = compress_nocrc_sub_block(
sb,
(char *)sb->compressed_ptr + 8,
sb->compressed_size_bound,
method
);
uint32_t* extra = (uint32_t *)(sb->compressed_ptr);
// store the compressed and uncompressed size at the beginning
extra[0] = toku_htod32(sb->compressed_size);
extra[1] = toku_htod32(sb->uncompressed_size);
// now checksum the entire thing
sb->compressed_size += 8; // now add the eight bytes that we saved for the sizes
sb->xsum = x1764_memory(sb->compressed_ptr,sb->compressed_size);
//
// This is the end result for Dr. No and forward. For ftnodes, sb->compressed_ptr contains
// two integers at the beginning, the size and uncompressed size, and then the compressed
// data. sb->xsum contains the checksum of this entire thing.
//
// In TokuDB 5.0, sb->compressed_ptr only contained the compressed data, sb->xsum
// checksummed only the compressed data, and the checksumming of the sizes were not
// done here.
//
}
//
// Returns the size needed to serialize the ftnode info
// Does not include header information that is common with rollback logs
// such as the magic, layout_version, and build_id
// Includes only node specific info such as pivot information, n_children, and so on
//
static uint32_t
serialize_ftnode_info_size(FTNODE node)
{
uint32_t retval = 0;
retval += 8; // max_msn_applied_to_node_on_disk
retval += 4; // nodesize
retval += 4; // flags
retval += 4; // height;
retval += 8; // oldest_referenced_xid_known
retval += node->totalchildkeylens; // total length of pivots
retval += (node->n_children-1)*4; // encode length of each pivot
if (node->height > 0) {
retval += node->n_children*8; // child blocknum's
}
retval += 4; // checksum
return retval;
}
static void serialize_ftnode_info(FTNODE node,
SUB_BLOCK sb // output
) {
assert(sb->uncompressed_size == 0);
assert(sb->uncompressed_ptr == NULL);
sb->uncompressed_size = serialize_ftnode_info_size(node);
sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);
struct wbuf wb;
wbuf_init(&wb, sb->uncompressed_ptr, sb->uncompressed_size);
wbuf_MSN(&wb, node->max_msn_applied_to_node_on_disk);
wbuf_nocrc_uint(&wb, 0); // write a dummy value for where node->nodesize used to be
wbuf_nocrc_uint(&wb, node->flags);
wbuf_nocrc_int (&wb, node->height);
wbuf_TXNID(&wb, node->oldest_referenced_xid_known);
// pivot information
for (int i = 0; i < node->n_children-1; i++) {
wbuf_nocrc_bytes(&wb, node->childkeys[i].data, node->childkeys[i].size);
}
// child blocks, only for internal nodes
if (node->height > 0) {
for (int i = 0; i < node->n_children; i++) {
wbuf_nocrc_BLOCKNUM(&wb, BP_BLOCKNUM(node,i));
}
}
uint32_t end_to_end_checksum = x1764_memory(sb->uncompressed_ptr, wbuf_get_woffset(&wb));
wbuf_nocrc_int(&wb, end_to_end_checksum);
invariant(wb.ndone == wb.size);
invariant(sb->uncompressed_size==wb.ndone);
}
// This is the size of the uncompressed data, not including the compression headers
unsigned int
toku_serialize_ftnode_size (FTNODE node) {
unsigned int result = 0;
//
// As of now, this seems to be called if and only if the entire node is supposed
// to be in memory, so we will assert it.
//
toku_assert_entire_node_in_memory(node);
result += serialize_node_header_size(node);
result += serialize_ftnode_info_size(node);
for (int i = 0; i < node->n_children; i++) {
result += serialize_ftnode_partition_size(node,i);
}
return result;
}
struct array_info {
uint32_t offset;
OMTVALUE* array;
};
static int
array_item (OMTVALUE lev, const uint32_t idx, void *aiv) {
struct array_info *CAST_FROM_VOIDP(ai, aiv);
ai->array[idx+ai->offset] = lev;
return 0;
}
struct sum_info {
unsigned int dsum;
unsigned int count;
};
static int
sum_item (OMTVALUE lev, uint32_t UU(idx), void *vsi) {
LEAFENTRY le = (LEAFENTRY) lev;
struct sum_info *si = (struct sum_info *) vsi;
si->count++;
si->dsum += leafentry_disksize(le); // TODO 4050 delete this redundant call and use le_sizes[]
return 0;
}
// There must still be at least one child
// Requires that all messages in buffers above have been applied.
// Because all messages above have been applied, setting msn of all new basements
// to max msn of existing basements is correct. (There cannot be any messages in
// buffers above that still need to be applied.)
void
rebalance_ftnode_leaf(FTNODE node, unsigned int basementnodesize)
{
assert(node->height == 0);
assert(node->dirty);
uint32_t num_orig_basements = node->n_children;
// Count number of leaf entries in this leaf (num_le).
uint32_t num_le = 0;
for (uint32_t i = 0; i < num_orig_basements; i++) {
num_le += toku_omt_size(BLB_BUFFER(node, i));
}
uint32_t num_alloc = num_le ? num_le : 1; // simplify logic below by always having at least one entry per array
// Create an array of OMTVALUE's that store all the pointers to all the data.
// Each element in leafpointers is a pointer to a leaf.
OMTVALUE *XMALLOC_N(num_alloc, leafpointers);
leafpointers[0] = NULL;
// Capture pointers to old mempools' buffers (so they can be destroyed)
void **XMALLOC_N(num_orig_basements, old_mempool_bases);
uint32_t curr_le = 0;
for (uint32_t i = 0; i < num_orig_basements; i++) {
OMT curr_omt = BLB_BUFFER(node, i);
struct array_info ai;
ai.offset = curr_le; // index of first le in basement
ai.array = leafpointers;
toku_omt_iterate(curr_omt, array_item, &ai);
curr_le += toku_omt_size(curr_omt);
BASEMENTNODE bn = BLB(node, i);
old_mempool_bases[i] = toku_mempool_get_base(&bn->buffer_mempool);
}
// Create an array that will store indexes of new pivots.
// Each element in new_pivots is the index of a pivot key.
// (Allocating num_le of them is overkill, but num_le is an upper bound.)
uint32_t *XMALLOC_N(num_alloc, new_pivots);
new_pivots[0] = 0;
// Each element in le_sizes is the size of the leafentry pointed to by leafpointers.
size_t *XMALLOC_N(num_alloc, le_sizes);
le_sizes[0] = 0;
// Create an array that will store the size of each basement.
// This is the sum of the leaf sizes of all the leaves in that basement.
// We don't know how many basements there will be, so we use num_le as the upper bound.
size_t *XMALLOC_N(num_alloc, bn_sizes);
bn_sizes[0] = 0;
// TODO 4050: All these arrays should be combined into a single array of some bn_info struct (pivot, msize, num_les).
// Each entry is the number of leafentries in this basement. (Again, num_le is overkill upper baound.)
uint32_t *XMALLOC_N(num_alloc, num_les_this_bn);
num_les_this_bn[0] = 0;
// Figure out the new pivots.
// We need the index of each pivot, and for each basement we need
// the number of leaves and the sum of the sizes of the leaves (memory requirement for basement).
uint32_t curr_pivot = 0;
uint32_t num_le_in_curr_bn = 0;
uint32_t bn_size_so_far = 0;
for (uint32_t i = 0; i < num_le; i++) {
uint32_t curr_le_size = leafentry_disksize((LEAFENTRY) leafpointers[i]);
le_sizes[i] = curr_le_size;
if ((bn_size_so_far + curr_le_size > basementnodesize) && (num_le_in_curr_bn != 0)) {
// cap off the current basement node to end with the element before i
new_pivots[curr_pivot] = i-1;
curr_pivot++;
num_le_in_curr_bn = 0;
bn_size_so_far = 0;
}
num_le_in_curr_bn++;
num_les_this_bn[curr_pivot] = num_le_in_curr_bn;
bn_size_so_far += curr_le_size;
bn_sizes[curr_pivot] = bn_size_so_far;
}
// curr_pivot is now the total number of pivot keys in the leaf node
int num_pivots = curr_pivot;
int num_children = num_pivots + 1;
// now we need to fill in the new basement nodes and pivots
// TODO: (Zardosht) this is an ugly thing right now
// Need to figure out how to properly deal with seqinsert.
// I am not happy with how this is being
// handled with basement nodes
uint32_t tmp_seqinsert = BLB_SEQINSERT(node, num_orig_basements - 1);
// choose the max msn applied to any basement as the max msn applied to all new basements
MSN max_msn = ZERO_MSN;
for (uint32_t i = 0; i < num_orig_basements; i++) {
MSN curr_msn = BLB_MAX_MSN_APPLIED(node,i);
max_msn = (curr_msn.msn > max_msn.msn) ? curr_msn : max_msn;
}
// Now destroy the old basements, but do not destroy leaves
toku_destroy_ftnode_internals(node);
// now reallocate pieces and start filling them in
invariant(num_children > 0);
node->totalchildkeylens = 0;
XCALLOC_N(num_pivots, node->childkeys); // allocate pointers to pivot structs
node->n_children = num_children;
XCALLOC_N(num_children, node->bp); // allocate pointers to basements (bp)
for (int i = 0; i < num_children; i++) {
set_BLB(node, i, toku_create_empty_bn()); // allocate empty basements and set bp pointers
}
// now we start to fill in the data
// first the pivots
for (int i = 0; i < num_pivots; i++) {
LEAFENTRY CAST_FROM_VOIDP(curr_le_pivot, leafpointers[new_pivots[i]]);
uint32_t keylen;
void *key = le_key_and_len(curr_le_pivot, &keylen);
toku_memdup_dbt(&node->childkeys[i], key, keylen);
node->totalchildkeylens += keylen;
}
uint32_t baseindex_this_bn = 0;
// now the basement nodes
for (int i = 0; i < num_children; i++) {
// put back seqinsert
BLB_SEQINSERT(node, i) = tmp_seqinsert;
// create start (inclusive) and end (exclusive) boundaries for data of basement node
uint32_t curr_start = (i==0) ? 0 : new_pivots[i-1]+1; // index of first leaf in basement
uint32_t curr_end = (i==num_pivots) ? num_le : new_pivots[i]+1; // index of first leaf in next basement
uint32_t num_in_bn = curr_end - curr_start; // number of leaves in this basement
// create indexes for new basement
invariant(baseindex_this_bn == curr_start);
uint32_t num_les_to_copy = num_les_this_bn[i];
invariant(num_les_to_copy == num_in_bn);
// construct mempool for this basement
size_t size_this_bn = bn_sizes[i];
BASEMENTNODE bn = BLB(node, i);
struct mempool *mp = &bn->buffer_mempool;
toku_mempool_construct(mp, size_this_bn);
OMTVALUE *XMALLOC_N(num_in_bn, bn_array);
for (uint32_t le_index = 0; le_index < num_les_to_copy; le_index++) {
uint32_t le_within_node = baseindex_this_bn + le_index;
size_t le_size = le_sizes[le_within_node];
void *new_le = toku_mempool_malloc(mp, le_size, 1); // point to new location
void *old_le = leafpointers[le_within_node];
memcpy(new_le, old_le, le_size); // put le data at new location
bn_array[le_index] = new_le; // point to new location (in new mempool)
}
toku_omt_destroy(&BLB_BUFFER(node, i));
int r = toku_omt_create_steal_sorted_array(
&BLB_BUFFER(node, i),
&bn_array,
num_in_bn,
num_in_bn
);
invariant_zero(r);
BLB_NBYTESINBUF(node, i) = size_this_bn;
BP_STATE(node,i) = PT_AVAIL;
BP_TOUCH_CLOCK(node,i);
BLB_MAX_MSN_APPLIED(node,i) = max_msn;
baseindex_this_bn += num_les_to_copy; // set to index of next bn
}
node->max_msn_applied_to_node_on_disk = max_msn;
// destroy buffers of old mempools
for (uint32_t i = 0; i < num_orig_basements; i++) {
toku_free(old_mempool_bases[i]);
}
toku_free(leafpointers);
toku_free(old_mempool_bases);
toku_free(new_pivots);
toku_free(le_sizes);
toku_free(bn_sizes);
toku_free(num_les_this_bn);
} // end of rebalance_ftnode_leaf()
struct serialize_times {
tokutime_t serialize_time;
tokutime_t compress_time;
};
static void
serialize_and_compress_partition(FTNODE node,
int childnum,
enum toku_compression_method compression_method,
SUB_BLOCK sb,
struct serialize_times *st)
{
// serialize, compress, update status
tokutime_t t0 = toku_time_now();
serialize_ftnode_partition(node, childnum, sb);
tokutime_t t1 = toku_time_now();
compress_ftnode_sub_block(sb, compression_method);
tokutime_t t2 = toku_time_now();
st->serialize_time += t1 - t0;
st->compress_time += t2 - t1;
}
void
toku_create_compressed_partition_from_available(
FTNODE node,
int childnum,
enum toku_compression_method compression_method,
SUB_BLOCK sb
)
{
struct serialize_times st;
memset(&st, 0, sizeof(st));
serialize_and_compress_partition(node, childnum, compression_method, sb, &st);
toku_ft_status_update_serialize_times(node, st.serialize_time, st.compress_time);
//
// now we have an sb that would be ready for being written out,
// but we are not writing it out, we are storing it in cache for a potentially
// long time, so we need to do some cleanup
//
// The buffer created above contains metadata in the first 8 bytes, and is overallocated
// It allocates a bound on the compressed length (evaluated before compression) as opposed
// to just the amount of the actual compressed data. So, we create a new buffer and copy
// just the compressed data.
//
uint32_t compressed_size = toku_dtoh32(*(uint32_t *)sb->compressed_ptr);
void* compressed_data = toku_xmalloc(compressed_size);
memcpy(compressed_data, (char *)sb->compressed_ptr + 8, compressed_size);
toku_free(sb->compressed_ptr);
sb->compressed_ptr = compressed_data;
sb->compressed_size = compressed_size;
if (sb->uncompressed_ptr) {
toku_free(sb->uncompressed_ptr);
sb->uncompressed_ptr = NULL;
}
}
static void
serialize_and_compress_serially(FTNODE node,
int npartitions,
enum toku_compression_method compression_method,
struct sub_block sb[],
struct serialize_times *st) {
for (int i = 0; i < npartitions; i++) {
serialize_and_compress_partition(node, i, compression_method, &sb[i], st);
}
}
struct serialize_compress_work {
struct work base;
FTNODE node;
int i;
enum toku_compression_method compression_method;
struct sub_block *sb;
struct serialize_times st;
};
static void *
serialize_and_compress_worker(void *arg) {
struct workset *ws = (struct workset *) arg;
while (1) {
struct serialize_compress_work *w = (struct serialize_compress_work *) workset_get(ws);
if (w == NULL)
break;
int i = w->i;
serialize_and_compress_partition(w->node, i, w->compression_method, &w->sb[i], &w->st);
}
workset_release_ref(ws);
return arg;
}
static void
serialize_and_compress_in_parallel(FTNODE node,
int npartitions,
enum toku_compression_method compression_method,
struct sub_block sb[],
struct serialize_times *st) {
if (npartitions == 1) {
serialize_and_compress_partition(node, 0, compression_method, &sb[0], st);
} else {
int T = num_cores;
if (T > npartitions)
T = npartitions;
if (T > 0)
T = T - 1;
struct workset ws;
ZERO_STRUCT(ws);
workset_init(&ws);
struct serialize_compress_work work[npartitions];
workset_lock(&ws);
for (int i = 0; i < npartitions; i++) {
work[i] = (struct serialize_compress_work) { .base = {{NULL}},
.node = node,
.i = i,
.compression_method = compression_method,
.sb = sb,
.st = { .serialize_time = 0, .compress_time = 0} };
workset_put_locked(&ws, &work[i].base);
}
workset_unlock(&ws);
toku_thread_pool_run(ft_pool, 0, &T, serialize_and_compress_worker, &ws);
workset_add_ref(&ws, T);
serialize_and_compress_worker(&ws);
workset_join(&ws);
workset_destroy(&ws);
// gather up the statistics from each thread's work item
for (int i = 0; i < npartitions; i++) {
st->serialize_time += work[i].st.serialize_time;
st->compress_time += work[i].st.compress_time;
}
}
}
static void
serialize_and_compress_sb_node_info(FTNODE node, struct sub_block *sb,
enum toku_compression_method compression_method, struct serialize_times *st) {
// serialize, compress, update serialize times.
tokutime_t t0 = toku_time_now();
serialize_ftnode_info(node, sb);
tokutime_t t1 = toku_time_now();
compress_ftnode_sub_block(sb, compression_method);
tokutime_t t2 = toku_time_now();
st->serialize_time += t1 - t0;
st->compress_time += t2 - t1;
}
int toku_serialize_ftnode_to_memory(FTNODE node,
FTNODE_DISK_DATA* ndd,
unsigned int basementnodesize,
enum toku_compression_method compression_method,
bool do_rebalancing,
bool in_parallel, // for loader is true, for toku_ftnode_flush_callback, is false
/*out*/ size_t *n_bytes_to_write,
/*out*/ size_t *n_uncompressed_bytes,
/*out*/ char **bytes_to_write)
// Effect: Writes out each child to a separate malloc'd buffer, then compresses
// all of them, and writes the uncompressed header, to bytes_to_write,
// which is malloc'd.
//
// The resulting buffer is guaranteed to be 512-byte aligned and the total length is a multiple of 512 (so we pad with zeros at the end if needed).
// 512-byte padding is for O_DIRECT to work.
{
toku_assert_entire_node_in_memory(node);
if (do_rebalancing && node->height == 0) {
rebalance_ftnode_leaf(node, basementnodesize);
}
const int npartitions = node->n_children;
// Each partition represents a compressed sub block
// For internal nodes, a sub block is a message buffer
// For leaf nodes, a sub block is a basement node
struct sub_block *XMALLOC_N(npartitions, sb);
XREALLOC_N(npartitions, *ndd);
struct sub_block sb_node_info;
for (int i = 0; i < npartitions; i++) {
sub_block_init(&sb[i]);;
}
sub_block_init(&sb_node_info);
//
// First, let's serialize and compress the individual sub blocks
//
struct serialize_times st;
memset(&st, 0, sizeof(st));
if (in_parallel) {
serialize_and_compress_in_parallel(node, npartitions, compression_method, sb, &st);
}
else {
serialize_and_compress_serially(node, npartitions, compression_method, sb, &st);
}
//
// Now lets create a sub-block that has the common node information,
// This does NOT include the header
//
serialize_and_compress_sb_node_info(node, &sb_node_info, compression_method, &st);
// update the serialize times, ignore the header for simplicity. we captured all
// of the partitions' serialize times so that's probably good enough.
toku_ft_status_update_serialize_times(node, st.serialize_time, st.compress_time);
// now we have compressed each of our pieces into individual sub_blocks,
// we can put the header and all the subblocks into a single buffer
// and return it.
// The total size of the node is:
// size of header + disk size of the n+1 sub_block's created above
uint32_t total_node_size = (serialize_node_header_size(node) // uncompressed header
+ sb_node_info.compressed_size // compressed nodeinfo (without its checksum)
+ 4); // nodeinfo's checksum
uint32_t total_uncompressed_size = (serialize_node_header_size(node) // uncompressed header
+ sb_node_info.uncompressed_size // uncompressed nodeinfo (without its checksum)
+ 4); // nodeinfo's checksum
// store the BP_SIZESs
for (int i = 0; i < node->n_children; i++) {
uint32_t len = sb[i].compressed_size + 4; // data and checksum
BP_SIZE (*ndd,i) = len;
BP_START(*ndd,i) = total_node_size;
total_node_size += sb[i].compressed_size + 4;
total_uncompressed_size += sb[i].uncompressed_size + 4;
}
uint32_t total_buffer_size = roundup_to_multiple(512, total_node_size); // make the buffer be 512 bytes.
char *XMALLOC_N_ALIGNED(512, total_buffer_size, data);
char *curr_ptr = data;
// now create the final serialized node
// write the header
struct wbuf wb;
wbuf_init(&wb, curr_ptr, serialize_node_header_size(node));
serialize_node_header(node, *ndd, &wb);
assert(wb.ndone == wb.size);
curr_ptr += serialize_node_header_size(node);
// now write sb_node_info
memcpy(curr_ptr, sb_node_info.compressed_ptr, sb_node_info.compressed_size);
curr_ptr += sb_node_info.compressed_size;
// write the checksum
*(uint32_t *)curr_ptr = toku_htod32(sb_node_info.xsum);
curr_ptr += sizeof(sb_node_info.xsum);
for (int i = 0; i < npartitions; i++) {
memcpy(curr_ptr, sb[i].compressed_ptr, sb[i].compressed_size);
curr_ptr += sb[i].compressed_size;
// write the checksum
*(uint32_t *)curr_ptr = toku_htod32(sb[i].xsum);
curr_ptr += sizeof(sb[i].xsum);
}
// Zero the rest of the buffer
for (uint32_t i=total_node_size; i<total_buffer_size; i++) {
data[i]=0;
}
assert(curr_ptr - data == total_node_size);
*bytes_to_write = data;
*n_bytes_to_write = total_buffer_size;
*n_uncompressed_bytes = total_uncompressed_size;
//
// now that node has been serialized, go through sub_block's and free
// memory
//
toku_free(sb_node_info.compressed_ptr);
toku_free(sb_node_info.uncompressed_ptr);
for (int i = 0; i < npartitions; i++) {
toku_free(sb[i].compressed_ptr);
toku_free(sb[i].uncompressed_ptr);
}
assert(0 == (*n_bytes_to_write)%512);
assert(0 == ((unsigned long long)(*bytes_to_write))%512);
toku_free(sb);
return 0;
}
int
toku_serialize_ftnode_to (int fd, BLOCKNUM blocknum, FTNODE node, FTNODE_DISK_DATA* ndd, bool do_rebalancing, FT h, bool for_checkpoint) {
size_t n_to_write;
size_t n_uncompressed_bytes;
char *compressed_buf = nullptr;
// because toku_serialize_ftnode_to is only called for
// in toku_ftnode_flush_callback, we pass false
// for in_parallel. The reasoning is that when we write
// nodes to disk via toku_ftnode_flush_callback, we
// assume that it is being done on a non-critical
// background thread (probably for checkpointing), and therefore
// should not hog CPU,
//
// Should the above facts change, we may want to revisit
// passing false for in_parallel here
//
// alternatively, we could have made in_parallel a parameter
// for toku_serialize_ftnode_to, but instead we did this.
int r = toku_serialize_ftnode_to_memory(
node,
ndd,
h->h->basementnodesize,
h->h->compression_method,
do_rebalancing,
false, // in_parallel
&n_to_write,
&n_uncompressed_bytes,
&compressed_buf
);
if (r != 0) {
return r;
}
// If the node has never been written, then write the whole buffer, including the zeros
invariant(blocknum.b>=0);
DISKOFF offset;
toku_blocknum_realloc_on_disk(h->blocktable, blocknum, n_to_write, &offset,
h, fd, for_checkpoint); //dirties h
tokutime_t t0 = toku_time_now();
toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset);
tokutime_t t1 = toku_time_now();
tokutime_t io_time = t1 - t0;
toku_ft_status_update_flush_reason(node, n_uncompressed_bytes, n_to_write, io_time, for_checkpoint);
toku_free(compressed_buf);
node->dirty = 0; // See #1957. Must set the node to be clean after serializing it so that it doesn't get written again on the next checkpoint or eviction.
return 0;
}
static void
deserialize_child_buffer(NONLEAF_CHILDINFO bnc, struct rbuf *rbuf,
DESCRIPTOR desc, ft_compare_func cmp) {
int r;
int n_in_this_buffer = rbuf_int(rbuf);
int32_t *fresh_offsets = NULL, *stale_offsets = NULL;
int32_t *broadcast_offsets = NULL;
int nfresh = 0, nstale = 0;
int nbroadcast_offsets = 0;
if (cmp) {
XMALLOC_N(n_in_this_buffer, stale_offsets);
XMALLOC_N(n_in_this_buffer, fresh_offsets);
XMALLOC_N(n_in_this_buffer, broadcast_offsets);
}
for (int i = 0; i < n_in_this_buffer; i++) {
bytevec key; ITEMLEN keylen;
bytevec val; ITEMLEN vallen;
// this is weird but it's necessary to pass icc and gcc together
unsigned char ctype = rbuf_char(rbuf);
enum ft_msg_type type = (enum ft_msg_type) ctype;
bool is_fresh = rbuf_char(rbuf);
MSN msn = rbuf_msn(rbuf);
XIDS xids;
xids_create_from_buffer(rbuf, &xids);
rbuf_bytes(rbuf, &key, &keylen); /* Returns a pointer into the rbuf. */
rbuf_bytes(rbuf, &val, &vallen);
int32_t *dest;
if (cmp) {
if (ft_msg_type_applies_once(type)) {
if (is_fresh) {
dest = &fresh_offsets[nfresh];
nfresh++;
} else {
dest = &stale_offsets[nstale];
nstale++;
}
} else if (ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type)) {
dest = &broadcast_offsets[nbroadcast_offsets];
nbroadcast_offsets++;
} else {
abort();
}
} else {
dest = NULL;
}
r = toku_fifo_enq(bnc->buffer, key, keylen, val, vallen, type, msn, xids, is_fresh, dest); /* Copies the data into the fifo */
lazy_assert_zero(r);
xids_destroy(&xids);
}
invariant(rbuf->ndone == rbuf->size);
if (cmp) {
struct toku_fifo_entry_key_msn_cmp_extra extra = { .desc = desc, .cmp = cmp, .fifo = bnc->buffer };
r = toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp>::mergesort_r(fresh_offsets, nfresh, extra);
assert_zero(r);
bnc->fresh_message_tree.destroy();
bnc->fresh_message_tree.create_steal_sorted_array(&fresh_offsets, nfresh, n_in_this_buffer);
r = toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp>::mergesort_r(stale_offsets, nstale, extra);
assert_zero(r);
bnc->stale_message_tree.destroy();
bnc->stale_message_tree.create_steal_sorted_array(&stale_offsets, nstale, n_in_this_buffer);
bnc->broadcast_list.destroy();
bnc->broadcast_list.create_steal_sorted_array(&broadcast_offsets, nbroadcast_offsets, n_in_this_buffer);
}
}
// dump a buffer to stderr
// no locking around this for now
void
dump_bad_block(unsigned char *vp, uint64_t size) {
const uint64_t linesize = 64;
uint64_t n = size / linesize;
for (uint64_t i = 0; i < n; i++) {
fprintf(stderr, "%p: ", vp);
for (uint64_t j = 0; j < linesize; j++) {
unsigned char c = vp[j];
fprintf(stderr, "%2.2X", c);
}
fprintf(stderr, "\n");
vp += linesize;
}
size = size % linesize;
for (uint64_t i=0; i<size; i++) {
if ((i % linesize) == 0)
fprintf(stderr, "%p: ", vp+i);
fprintf(stderr, "%2.2X", vp[i]);
if (((i+1) % linesize) == 0)
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
BASEMENTNODE toku_create_empty_bn(void) {
BASEMENTNODE bn = toku_create_empty_bn_no_buffer();
int r = toku_omt_create(&bn->buffer);
lazy_assert_zero(r);
return bn;
}
struct mp_pair {
void* orig_base;
void* new_base;
OMT omt;
};
static int fix_mp_offset(OMTVALUE v, uint32_t i, void* extra) {
struct mp_pair *CAST_FROM_VOIDP(p, extra);
char* old_value = (char *) v;
char *new_value = old_value - (char *)p->orig_base + (char *)p->new_base;
toku_omt_set_at(p->omt, (OMTVALUE) new_value, i);
return 0;
}
BASEMENTNODE toku_clone_bn(BASEMENTNODE orig_bn) {
BASEMENTNODE bn = toku_create_empty_bn_no_buffer();
bn->max_msn_applied = orig_bn->max_msn_applied;
bn->n_bytes_in_buffer = orig_bn->n_bytes_in_buffer;
bn->seqinsert = orig_bn->seqinsert;
bn->stale_ancestor_messages_applied = orig_bn->stale_ancestor_messages_applied;
bn->stat64_delta = orig_bn->stat64_delta;
toku_mempool_clone(&orig_bn->buffer_mempool, &bn->buffer_mempool);
toku_omt_clone_noptr(&bn->buffer, orig_bn->buffer);
struct mp_pair p;
p.orig_base = toku_mempool_get_base(&orig_bn->buffer_mempool);
p.new_base = toku_mempool_get_base(&bn->buffer_mempool);
p.omt = bn->buffer;
toku_omt_iterate(
bn->buffer,
fix_mp_offset,
&p
);
return bn;
}
BASEMENTNODE toku_create_empty_bn_no_buffer(void) {
BASEMENTNODE XMALLOC(bn);
bn->max_msn_applied.msn = 0;
bn->buffer = NULL;
bn->n_bytes_in_buffer = 0;
bn->seqinsert = 0;
bn->stale_ancestor_messages_applied = false;
toku_mempool_zero(&bn->buffer_mempool);
bn->stat64_delta = ZEROSTATS;
return bn;
}
NONLEAF_CHILDINFO toku_create_empty_nl(void) {
NONLEAF_CHILDINFO XMALLOC(cn);
int r = toku_fifo_create(&cn->buffer); assert_zero(r);
cn->fresh_message_tree.create();
cn->stale_message_tree.create();
cn->broadcast_list.create();
memset(cn->flow, 0, sizeof cn->flow);
return cn;
}
// does NOT create OMTs, just the FIFO
NONLEAF_CHILDINFO toku_clone_nl(NONLEAF_CHILDINFO orig_childinfo) {
NONLEAF_CHILDINFO XMALLOC(cn);
toku_fifo_clone(orig_childinfo->buffer, &cn->buffer);
cn->fresh_message_tree.create_no_array();
cn->stale_message_tree.create_no_array();
cn->broadcast_list.create_no_array();
memset(cn->flow, 0, sizeof cn->flow);
return cn;
}
void destroy_basement_node (BASEMENTNODE bn)
{
// The buffer may have been freed already, in some cases.
if (bn->buffer) {
toku_omt_destroy(&bn->buffer);
}
toku_free(bn);
}
void destroy_nonleaf_childinfo (NONLEAF_CHILDINFO nl)
{
toku_fifo_free(&nl->buffer);
nl->fresh_message_tree.destroy();
nl->stale_message_tree.destroy();
nl->broadcast_list.destroy();
toku_free(nl);
}
void read_block_from_fd_into_rbuf(
int fd,
BLOCKNUM blocknum,
FT h,
struct rbuf *rb
)
{
// get the file offset and block size for the block
DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(h->blocktable, blocknum, &offset, &size);
DISKOFF size_aligned = roundup_to_multiple(512, size);
uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block);
rbuf_init(rb, raw_block, size);
// read the block
ssize_t rlen = toku_os_pread(fd, raw_block, size_aligned, offset);
assert((DISKOFF)rlen >= size);
assert((DISKOFF)rlen <= size_aligned);
}
static const int read_header_heuristic_max = 32*1024;
#ifndef MIN
#define MIN(a,b) (((a)>(b)) ? (b) : (a))
#endif
static void read_ftnode_header_from_fd_into_rbuf_if_small_enough (int fd, BLOCKNUM blocknum, FT ft, struct rbuf *rb, struct ftnode_fetch_extra *bfe)
// Effect: If the header part of the node is small enough, then read it into the rbuf. The rbuf will be allocated to be big enough in any case.
{
DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(ft->blocktable, blocknum, &offset, &size);
DISKOFF read_size = roundup_to_multiple(512, MIN(read_header_heuristic_max, size));
uint8_t *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, size), raw_block);
rbuf_init(rb, raw_block, read_size);
// read the block
tokutime_t t0 = toku_time_now();
ssize_t rlen = toku_os_pread(fd, raw_block, read_size, offset);
tokutime_t t1 = toku_time_now();
assert(rlen >= 0);
rbuf_init(rb, raw_block, rlen);
bfe->bytes_read = rlen;
bfe->io_time = t1 - t0;
toku_ft_status_update_pivot_fetch_reason(bfe);
}
//
// read the compressed partition into the sub_block,
// validate the checksum of the compressed data
//
int
read_compressed_sub_block(struct rbuf *rb, struct sub_block *sb)
{
int r = 0;
sb->compressed_size = rbuf_int(rb);
sb->uncompressed_size = rbuf_int(rb);
bytevec* cp = (bytevec*)&sb->compressed_ptr;
rbuf_literal_bytes(rb, cp, sb->compressed_size);
sb->xsum = rbuf_int(rb);
// let's check the checksum
uint32_t actual_xsum = x1764_memory((char *)sb->compressed_ptr-8, 8+sb->compressed_size);
if (sb->xsum != actual_xsum) {
r = TOKUDB_BAD_CHECKSUM;
}
return r;
}
static int
read_and_decompress_sub_block(struct rbuf *rb, struct sub_block *sb)
{
int r = 0;
r = read_compressed_sub_block(rb, sb);
if (r != 0) {
goto exit;
}
just_decompress_sub_block(sb);
exit:
return r;
}
// Allocates space for the sub-block and de-compresses the data from
// the supplied compressed pointer..
void
just_decompress_sub_block(struct sub_block *sb)
{
// <CER> TODO: Add assert that the subblock was read in.
sb->uncompressed_ptr = toku_xmalloc(sb->uncompressed_size);
toku_decompress(
(Bytef *) sb->uncompressed_ptr,
sb->uncompressed_size,
(Bytef *) sb->compressed_ptr,
sb->compressed_size
);
}
// verify the checksum
int
verify_ftnode_sub_block (struct sub_block *sb)
{
int r = 0;
// first verify the checksum
uint32_t data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end
uint32_t stored_xsum = toku_dtoh32(*((uint32_t *)((char *)sb->uncompressed_ptr + data_size)));
uint32_t actual_xsum = x1764_memory(sb->uncompressed_ptr, data_size);
if (stored_xsum != actual_xsum) {
dump_bad_block((Bytef *) sb->uncompressed_ptr, sb->uncompressed_size);
r = TOKUDB_BAD_CHECKSUM;
}
return r;
}
// This function deserializes the data stored by serialize_ftnode_info
static int
deserialize_ftnode_info(
struct sub_block *sb,
FTNODE node
)
{
// sb_node_info->uncompressed_ptr stores the serialized node information
// this function puts that information into node
// first verify the checksum
int r = 0;
r = verify_ftnode_sub_block(sb);
if (r != 0) {
goto exit;
}
uint32_t data_size;
data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end
// now with the data verified, we can read the information into the node
struct rbuf rb;
rbuf_init(&rb, (unsigned char *) sb->uncompressed_ptr, data_size);
node->max_msn_applied_to_node_on_disk = rbuf_msn(&rb);
(void)rbuf_int(&rb);
node->flags = rbuf_int(&rb);
node->height = rbuf_int(&rb);
if (node->layout_version_read_from_disk < FT_LAYOUT_VERSION_19) {
(void) rbuf_int(&rb); // optimized_for_upgrade
}
if (node->layout_version_read_from_disk >= FT_LAYOUT_VERSION_22) {
rbuf_TXNID(&rb, &node->oldest_referenced_xid_known);
}
// now create the basement nodes or childinfos, depending on whether this is a
// leaf node or internal node
// now the subtree_estimates
// n_children is now in the header, nd the allocatio of the node->bp is in deserialize_ftnode_from_rbuf.
// now the pivots
node->totalchildkeylens = 0;
if (node->n_children > 1) {
XMALLOC_N(node->n_children - 1, node->childkeys);
for (int i=0; i < node->n_children-1; i++) {
bytevec childkeyptr;
unsigned int cklen;
rbuf_bytes(&rb, &childkeyptr, &cklen);
toku_memdup_dbt(&node->childkeys[i], childkeyptr, cklen);
node->totalchildkeylens += cklen;
}
}
else {
node->childkeys = NULL;
node->totalchildkeylens = 0;
}
// if this is an internal node, unpack the block nums, and fill in necessary fields
// of childinfo
if (node->height > 0) {
for (int i = 0; i < node->n_children; i++) {
BP_BLOCKNUM(node,i) = rbuf_blocknum(&rb);
BP_WORKDONE(node, i) = 0;
}
}
// make sure that all the data was read
if (data_size != rb.ndone) {
dump_bad_block(rb.buf, rb.size);
abort();
}
exit:
return r;
}
static void
setup_available_ftnode_partition(FTNODE node, int i) {
if (node->height == 0) {
set_BLB(node, i, toku_create_empty_bn());
BLB_MAX_MSN_APPLIED(node,i) = node->max_msn_applied_to_node_on_disk;
}
else {
set_BNC(node, i, toku_create_empty_nl());
}
}
// Assign the child_to_read member of the bfe from the given brt node
// that has been brought into memory.
static void
update_bfe_using_ftnode(FTNODE node, struct ftnode_fetch_extra *bfe)
{
if (bfe->type == ftnode_fetch_subset && bfe->search != NULL) {
// we do not take into account prefetching yet
// as of now, if we need a subset, the only thing
// we can possibly require is a single basement node
// we find out what basement node the query cares about
// and check if it is available
bfe->child_to_read = toku_ft_search_which_child(
&bfe->h->cmp_descriptor,
bfe->h->compare_fun,
node,
bfe->search
);
} else if (bfe->type == ftnode_fetch_keymatch) {
// we do not take into account prefetching yet
// as of now, if we need a subset, the only thing
// we can possibly require is a single basement node
// we find out what basement node the query cares about
// and check if it is available
paranoid_invariant(bfe->h->compare_fun);
if (node->height == 0) {
int left_child = toku_bfe_leftmost_child_wanted(bfe, node);
int right_child = toku_bfe_rightmost_child_wanted(bfe, node);
if (left_child == right_child) {
bfe->child_to_read = left_child;
}
}
}
}
// Using the search parameters in the bfe, this function will
// initialize all of the given brt node's partitions.
static void
setup_partitions_using_bfe(FTNODE node,
struct ftnode_fetch_extra *bfe,
bool data_in_memory)
{
// Leftmost and Rightmost Child bounds.
int lc, rc;
if (bfe->type == ftnode_fetch_subset || bfe->type == ftnode_fetch_prefetch) {
lc = toku_bfe_leftmost_child_wanted(bfe, node);
rc = toku_bfe_rightmost_child_wanted(bfe, node);
} else {
lc = -1;
rc = -1;
}
//
// setup memory needed for the node
//
//printf("node height %d, blocknum %" PRId64 ", type %d lc %d rc %d\n", node->height, node->thisnodename.b, bfe->type, lc, rc);
for (int i = 0; i < node->n_children; i++) {
BP_INIT_UNTOUCHED_CLOCK(node,i);
if (data_in_memory) {
BP_STATE(node, i) = ((toku_bfe_wants_child_available(bfe, i) || (lc <= i && i <= rc))
? PT_AVAIL : PT_COMPRESSED);
} else {
BP_STATE(node, i) = PT_ON_DISK;
}
BP_WORKDONE(node,i) = 0;
switch (BP_STATE(node,i)) {
case PT_AVAIL:
setup_available_ftnode_partition(node, i);
BP_TOUCH_CLOCK(node,i);
break;
case PT_COMPRESSED:
set_BSB(node, i, sub_block_creat());
break;
case PT_ON_DISK:
set_BNULL(node, i);
break;
case PT_INVALID:
abort();
}
}
}
static void setup_ftnode_partitions(FTNODE node, struct ftnode_fetch_extra* bfe, bool data_in_memory)
// Effect: Used when reading a ftnode into main memory, this sets up the partitions.
// We set bfe->child_to_read as well as the BP_STATE and the data pointers (e.g., with set_BSB or set_BNULL or other set_ operations).
// Arguments: Node: the node to set up.
// bfe: Describes the key range needed.
// data_in_memory: true if we have all the data (in which case we set the BP_STATE to be either PT_AVAIL or PT_COMPRESSED depending on the bfe.
// false if we don't have the partitions in main memory (in which case we set the state to PT_ON_DISK.
{
// Set bfe->child_to_read.
update_bfe_using_ftnode(node, bfe);
// Setup the partitions.
setup_partitions_using_bfe(node, bfe, data_in_memory);
}
/* deserialize the partition from the sub-block's uncompressed buffer
* and destroy the uncompressed buffer
*/
static int
deserialize_ftnode_partition(
struct sub_block *sb,
FTNODE node,
int childnum, // which partition to deserialize
DESCRIPTOR desc,
ft_compare_func cmp
)
{
int r = 0;
r = verify_ftnode_sub_block(sb);
if (r != 0) {
goto exit;
}
uint32_t data_size;
data_size = sb->uncompressed_size - 4; // checksum is 4 bytes at end
// now with the data verified, we can read the information into the node
struct rbuf rb;
rbuf_init(&rb, (unsigned char *) sb->uncompressed_ptr, data_size);
unsigned char ch;
ch = rbuf_char(&rb);
if (node->height > 0) {
assert(ch == FTNODE_PARTITION_FIFO_MSG);
deserialize_child_buffer(BNC(node, childnum), &rb, desc, cmp);
BP_WORKDONE(node, childnum) = 0;
}
else {
assert(ch == FTNODE_PARTITION_OMT_LEAVES);
BLB_SEQINSERT(node, childnum) = 0;
uint32_t num_entries = rbuf_int(&rb);
uint32_t start_of_data = rb.ndone; // index of first byte of first leafentry
data_size -= start_of_data; // remaining bytes of leafentry data
// TODO 3988 Count empty basements (data_size == 0)
if (data_size == 0) {
// printf("#### Deserialize empty basement, childnum = %d\n", childnum);
invariant_zero(num_entries);
}
OMTVALUE *XMALLOC_N(num_entries, array); // create array of pointers to leafentries
BASEMENTNODE bn = BLB(node, childnum);
toku_mempool_copy_construct(&bn->buffer_mempool, &rb.buf[rb.ndone], data_size);
uint8_t *CAST_FROM_VOIDP(le_base, toku_mempool_get_base(&bn->buffer_mempool)); // point to first le in mempool
for (uint32_t i = 0; i < num_entries; i++) { // now set up the pointers in the omt
LEAFENTRY le = reinterpret_cast<LEAFENTRY>(&le_base[rb.ndone - start_of_data]); // point to durable mempool, not to transient rbuf
uint32_t disksize = leafentry_disksize(le);
rb.ndone += disksize;
invariant(rb.ndone<=rb.size);
array[i] = le;
}
uint32_t end_of_data = rb.ndone;
BLB_NBYTESINBUF(node, childnum) += end_of_data-start_of_data;
// destroy old omt (bn.buffer) that was created by toku_create_empty_bn(), so we can create a new one
toku_omt_destroy(&BLB_BUFFER(node, childnum));
r = toku_omt_create_steal_sorted_array(&BLB_BUFFER(node, childnum), &array, num_entries, num_entries);
invariant_zero(r);
}
assert(rb.ndone == rb.size);
toku_free(sb->uncompressed_ptr);
exit:
return r;
}
static int
decompress_and_deserialize_worker(struct rbuf curr_rbuf, struct sub_block curr_sb, FTNODE node, int child,
DESCRIPTOR desc, ft_compare_func cmp, tokutime_t *decompress_time)
{
int r = 0;
tokutime_t t0 = toku_time_now();
r = read_and_decompress_sub_block(&curr_rbuf, &curr_sb);
tokutime_t t1 = toku_time_now();
if (r == 0) {
// at this point, sb->uncompressed_ptr stores the serialized node partition
r = deserialize_ftnode_partition(&curr_sb, node, child, desc, cmp);
}
*decompress_time = t1 - t0;
return r;
}
static int
check_and_copy_compressed_sub_block_worker(struct rbuf curr_rbuf, struct sub_block curr_sb, FTNODE node, int child)
{
int r = 0;
r = read_compressed_sub_block(&curr_rbuf, &curr_sb);
if (r != 0) {
goto exit;
}
SUB_BLOCK bp_sb;
bp_sb = BSB(node, child);
bp_sb->compressed_size = curr_sb.compressed_size;
bp_sb->uncompressed_size = curr_sb.uncompressed_size;
bp_sb->compressed_ptr = toku_xmalloc(bp_sb->compressed_size);
memcpy(bp_sb->compressed_ptr, curr_sb.compressed_ptr, bp_sb->compressed_size);
exit:
return r;
}
static FTNODE alloc_ftnode_for_deserialize(uint32_t fullhash, BLOCKNUM blocknum) {
// Effect: Allocate an FTNODE and fill in the values that are not read from
FTNODE XMALLOC(node);
node->fullhash = fullhash;
node->thisnodename = blocknum;
node->dirty = 0;
node->bp = nullptr;
node->oldest_referenced_xid_known = TXNID_NONE;
return node;
}
static int
deserialize_ftnode_header_from_rbuf_if_small_enough (FTNODE *ftnode,
FTNODE_DISK_DATA* ndd,
BLOCKNUM blocknum,
uint32_t fullhash,
struct ftnode_fetch_extra *bfe,
struct rbuf *rb,
int fd)
// If we have enough information in the rbuf to construct a header, then do so.
// Also fetch in the basement node if needed.
// Return 0 if it worked. If something goes wrong (including that we are looking at some old data format that doesn't have partitions) then return nonzero.
{
int r = 0;
tokutime_t t0, t1;
tokutime_t decompress_time = 0;
tokutime_t deserialize_time = 0;
t0 = toku_time_now();
FTNODE node = alloc_ftnode_for_deserialize(fullhash, blocknum);
if (rb->size < 24) {
// TODO: What error do we return here?
// Does it even matter?
r = toku_db_badformat();
goto cleanup;
}
bytevec magic;
rbuf_literal_bytes(rb, &magic, 8);
if (memcmp(magic, "tokuleaf", 8)!=0 &&
memcmp(magic, "tokunode", 8)!=0) {
r = toku_db_badformat();
goto cleanup;
}
node->layout_version_read_from_disk = rbuf_int(rb);
if (node->layout_version_read_from_disk < FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES) {
// This code path doesn't have to worry about upgrade.
r = toku_db_badformat();
goto cleanup;
}
// If we get here, we know the node is at least
// FT_FIRST_LAYOUT_VERSION_WITH_BASEMENT_NODES. We haven't changed
// the serialization format since then (this comment is correct as of
// version 20, which is Deadshot) so we can go ahead and say the
// layout version is current (it will be as soon as we finish
// deserializing).
// TODO(leif): remove node->layout_version (#5174)
node->layout_version = FT_LAYOUT_VERSION;
node->layout_version_original = rbuf_int(rb);
node->build_id = rbuf_int(rb);
node->n_children = rbuf_int(rb);
// Guaranteed to be have been able to read up to here. If n_children
// is too big, we may have a problem, so check that we won't overflow
// while reading the partition locations.
unsigned int nhsize;
nhsize = serialize_node_header_size(node); // we can do this because n_children is filled in.
unsigned int needed_size;
needed_size = nhsize + 12; // we need 12 more so that we can read the compressed block size information that follows for the nodeinfo.
if (needed_size > rb->size) {
r = toku_db_badformat();
goto cleanup;
}
XMALLOC_N(node->n_children, node->bp);
XMALLOC_N(node->n_children, *ndd);
// read the partition locations
for (int i=0; i<node->n_children; i++) {
BP_START(*ndd,i) = rbuf_int(rb);
BP_SIZE (*ndd,i) = rbuf_int(rb);
}
uint32_t checksum;
checksum = x1764_memory(rb->buf, rb->ndone);
uint32_t stored_checksum;
stored_checksum = rbuf_int(rb);
if (stored_checksum != checksum) {
dump_bad_block(rb->buf, rb->size);
r = TOKUDB_BAD_CHECKSUM;
goto cleanup;
}
// Now we want to read the pivot information.
struct sub_block sb_node_info;
sub_block_init(&sb_node_info);
sb_node_info.compressed_size = rbuf_int(rb); // we'll be able to read these because we checked the size earlier.
sb_node_info.uncompressed_size = rbuf_int(rb);
if (rb->size-rb->ndone < sb_node_info.compressed_size + 8) {
r = toku_db_badformat();
goto cleanup;
}
// Finish reading compressed the sub_block
bytevec* cp;
cp = (bytevec*)&sb_node_info.compressed_ptr;
rbuf_literal_bytes(rb, cp, sb_node_info.compressed_size);
sb_node_info.xsum = rbuf_int(rb);
// let's check the checksum
uint32_t actual_xsum;
actual_xsum = x1764_memory((char *)sb_node_info.compressed_ptr-8, 8+sb_node_info.compressed_size);
if (sb_node_info.xsum != actual_xsum) {
r = TOKUDB_BAD_CHECKSUM;
goto cleanup;
}
// Now decompress the subblock
sb_node_info.uncompressed_ptr = toku_xmalloc(sb_node_info.uncompressed_size);
{
tokutime_t decompress_t0 = toku_time_now();
toku_decompress(
(Bytef *) sb_node_info.uncompressed_ptr,
sb_node_info.uncompressed_size,
(Bytef *) sb_node_info.compressed_ptr,
sb_node_info.compressed_size
);
tokutime_t decompress_t1 = toku_time_now();
decompress_time = decompress_t1 - decompress_t0;
}
// at this point sb->uncompressed_ptr stores the serialized node info.
r = deserialize_ftnode_info(&sb_node_info, node);
if (r != 0) {
goto cleanup;
}
toku_free(sb_node_info.uncompressed_ptr);
sb_node_info.uncompressed_ptr = NULL;
// Now we have the ftnode_info. We have a bunch more stuff in the
// rbuf, so we might be able to store the compressed data for some
// objects.
// We can proceed to deserialize the individual subblocks.
paranoid_invariant(is_valid_ftnode_fetch_type(bfe->type));
// setup the memory of the partitions
// for partitions being decompressed, create either FIFO or basement node
// for partitions staying compressed, create sub_block
setup_ftnode_partitions(node, bfe, false);
// We must capture deserialize and decompression time before
// the pf_callback, otherwise we would double-count.
t1 = toku_time_now();
deserialize_time = (t1 - t0) - decompress_time;
// do partial fetch if necessary
if (bfe->type != ftnode_fetch_none) {
PAIR_ATTR attr;
r = toku_ftnode_pf_callback(node, *ndd, bfe, fd, &attr);
if (r != 0) {
goto cleanup;
}
}
// handle clock
for (int i = 0; i < node->n_children; i++) {
if (toku_bfe_wants_child_available(bfe, i)) {
paranoid_invariant(BP_STATE(node,i) == PT_AVAIL);
BP_TOUCH_CLOCK(node,i);
}
}
*ftnode = node;
r = 0;
cleanup:
if (r == 0) {
bfe->deserialize_time += deserialize_time;
bfe->decompress_time += decompress_time;
toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
}
if (r != 0) {
if (node) {
toku_free(*ndd);
toku_free(node->bp);
toku_free(node);
}
}
return r;
}
// This function takes a deserialized version 13 or 14 buffer and
// constructs the associated internal, non-leaf ftnode object. It
// also creates MSN's for older messages created in older versions
// that did not generate MSN's for messages. These new MSN's are
// generated from the root downwards, counting backwards from MIN_MSN
// and persisted in the brt header.
static int
deserialize_and_upgrade_internal_node(FTNODE node,
struct rbuf *rb,
struct ftnode_fetch_extra* bfe,
STAT64INFO info)
{
int r = 0;
int version = node->layout_version_read_from_disk;
if(version == FT_LAST_LAYOUT_VERSION_WITH_FINGERPRINT) {
(void) rbuf_int(rb); // 10. fingerprint
}
node->n_children = rbuf_int(rb); // 11. n_children
// Sub-tree esitmates...
for (int i = 0; i < node->n_children; ++i) {
if (version == FT_LAST_LAYOUT_VERSION_WITH_FINGERPRINT) {
(void) rbuf_int(rb); // 12. fingerprint
}
uint64_t nkeys = rbuf_ulonglong(rb); // 13. nkeys
uint64_t ndata = rbuf_ulonglong(rb); // 14. ndata
uint64_t dsize = rbuf_ulonglong(rb); // 15. dsize
(void) rbuf_char(rb); // 16. exact (char)
invariant(nkeys == ndata);
if (info) {
// info is non-null if we're trying to upgrade old subtree
// estimates to stat64info
info->numrows += nkeys;
info->numbytes += dsize;
}
}
node->childkeys = NULL;
node->totalchildkeylens = 0;
// I. Allocate keys based on number of children.
XMALLOC_N(node->n_children - 1, node->childkeys);
// II. Copy keys from buffer to allocated keys in ftnode.
for (int i = 0; i < node->n_children - 1; ++i) {
bytevec childkeyptr;
unsigned int cklen;
rbuf_bytes(rb, &childkeyptr, &cklen); // 17. child key pointers
toku_memdup_dbt(&node->childkeys[i], childkeyptr, cklen);
node->totalchildkeylens += cklen;
}
// Create space for the child node buffers (a.k.a. partitions).
XMALLOC_N(node->n_children, node->bp);
// Set the child blocknums.
for (int i = 0; i < node->n_children; ++i) {
BP_BLOCKNUM(node, i) = rbuf_blocknum(rb); // 18. blocknums
BP_WORKDONE(node, i) = 0;
}
// Read in the child buffer maps.
struct sub_block_map child_buffer_map[node->n_children];
for (int i = 0; i < node->n_children; ++i) {
// The following fields are read in the
// sub_block_map_deserialize() call:
// 19. index 20. offset 21. size
sub_block_map_deserialize(&child_buffer_map[i], rb);
}
// We need to setup this node's partitions, but we can't call the
// existing call (setup_ftnode_paritions.) because there are
// existing optimizations that would prevent us from bringing all
// of this node's partitions into memory. Instead, We use the
// existing bfe and node to set the bfe's child_to_search member.
// Then we create a temporary bfe that needs all the nodes to make
// sure we properly intitialize our partitions before filling them
// in from our soon-to-be-upgraded node.
update_bfe_using_ftnode(node, bfe);
struct ftnode_fetch_extra temp_bfe;
temp_bfe.type = ftnode_fetch_all;
setup_partitions_using_bfe(node, &temp_bfe, true);
// Cache the highest MSN generated for the message buffers. This
// will be set in the ftnode.
//
// The way we choose MSNs for upgraded messages is delicate. The
// field `highest_unused_msn_for_upgrade' in the header is always an
// MSN that no message has yet. So when we have N messages that need
// MSNs, we decrement it by N, and then use it and the N-1 MSNs less
// than it, but we do not use the value we decremented it to.
//
// In the code below, we initialize `lowest' with the value of
// `highest_unused_msn_for_upgrade' after it is decremented, so we
// need to be sure to increment it once before we enqueue our first
// message.
MSN highest_msn;
highest_msn.msn = 0;
// Deserialize de-compressed buffers.
for (int i = 0; i < node->n_children; ++i) {
NONLEAF_CHILDINFO bnc = BNC(node, i);
int n_in_this_buffer = rbuf_int(rb); // 22. node count
int32_t *fresh_offsets = NULL;
int32_t *broadcast_offsets = NULL;
int nfresh = 0;
int nbroadcast_offsets = 0;
if (bfe->h->compare_fun) {
XMALLOC_N(n_in_this_buffer, fresh_offsets);
// We skip 'stale' offsets for upgraded nodes.
XMALLOC_N(n_in_this_buffer, broadcast_offsets);
}
// Atomically decrement the header's MSN count by the number
// of messages in the buffer.
MSN lowest;
uint64_t amount = n_in_this_buffer;
lowest.msn = toku_sync_sub_and_fetch(&bfe->h->h->highest_unused_msn_for_upgrade.msn, amount);
if (highest_msn.msn == 0) {
highest_msn.msn = lowest.msn + n_in_this_buffer;
}
// Create the FIFO entires from the deserialized buffer.
for (int j = 0; j < n_in_this_buffer; ++j) {
bytevec key; ITEMLEN keylen;
bytevec val; ITEMLEN vallen;
unsigned char ctype = rbuf_char(rb); // 23. message type
enum ft_msg_type type = (enum ft_msg_type) ctype;
XIDS xids;
xids_create_from_buffer(rb, &xids); // 24. XID
rbuf_bytes(rb, &key, &keylen); // 25. key
rbuf_bytes(rb, &val, &vallen); // 26. value
// <CER> can we factor this out?
int32_t *dest;
if (bfe->h->compare_fun) {
if (ft_msg_type_applies_once(type)) {
dest = &fresh_offsets[nfresh];
nfresh++;
} else if (ft_msg_type_applies_all(type) || ft_msg_type_does_nothing(type)) {
dest = &broadcast_offsets[nbroadcast_offsets];
nbroadcast_offsets++;
} else {
abort();
}
} else {
dest = NULL;
}
// Increment our MSN, the last message should have the
// newest/highest MSN. See above for a full explanation.
lowest.msn++;
r = toku_fifo_enq(bnc->buffer,
key,
keylen,
val,
vallen,
type,
lowest,
xids,
true,
dest);
lazy_assert_zero(r);
xids_destroy(&xids);
}
if (bfe->h->compare_fun) {
struct toku_fifo_entry_key_msn_cmp_extra extra = { .desc = &bfe->h->cmp_descriptor,
.cmp = bfe->h->compare_fun,
.fifo = bnc->buffer };
typedef toku::sort<int32_t, const struct toku_fifo_entry_key_msn_cmp_extra, toku_fifo_entry_key_msn_cmp> key_msn_sort;
r = key_msn_sort::mergesort_r(fresh_offsets, nfresh, extra);
assert_zero(r);
bnc->fresh_message_tree.destroy();
bnc->fresh_message_tree.create_steal_sorted_array(&fresh_offsets, nfresh, n_in_this_buffer);
bnc->broadcast_list.destroy();
bnc->broadcast_list.create_steal_sorted_array(&broadcast_offsets, nbroadcast_offsets, n_in_this_buffer);
}
}
// Assign the highest msn from our upgrade message FIFO queues.
node->max_msn_applied_to_node_on_disk = highest_msn;
// Since we assigned MSNs to this node's messages, we need to dirty it.
node->dirty = 1;
// Must compute the checksum now (rather than at the end, while we
// still have the pointer to the buffer).
if (version >= FT_FIRST_LAYOUT_VERSION_WITH_END_TO_END_CHECKSUM) {
uint32_t expected_xsum = toku_dtoh32(*(uint32_t*)(rb->buf+rb->size-4)); // 27. checksum
uint32_t actual_xsum = x1764_memory(rb->buf, rb->size-4);
if (expected_xsum != actual_xsum) {
fprintf(stderr, "%s:%d: Bad checksum: expected = %" PRIx32 ", actual= %" PRIx32 "\n",
__FUNCTION__,
__LINE__,
expected_xsum,
actual_xsum);
fprintf(stderr,
"Checksum failure while reading node in file %s.\n",
toku_cachefile_fname_in_env(bfe->h->cf));
fflush(stderr);
return toku_db_badformat();
}
}
return r;
}
// This function takes a deserialized version 13 or 14 buffer and
// constructs the associated leaf ftnode object.
static int
deserialize_and_upgrade_leaf_node(FTNODE node,
struct rbuf *rb,
struct ftnode_fetch_extra* bfe,
STAT64INFO info)
{
int r = 0;
int version = node->layout_version_read_from_disk;
// This is a leaf node, so the offsets in the buffer will be
// different from the internal node offsets above.
uint64_t nkeys = rbuf_ulonglong(rb); // 10. nkeys
uint64_t ndata = rbuf_ulonglong(rb); // 11. ndata
uint64_t dsize = rbuf_ulonglong(rb); // 12. dsize
invariant(nkeys == ndata);
if (info) {
// info is non-null if we're trying to upgrade old subtree
// estimates to stat64info
info->numrows += nkeys;
info->numbytes += dsize;
}
// This is the optimized for upgrade field.
if (version == FT_LAYOUT_VERSION_14) {
(void) rbuf_int(rb); // 13. optimized
}
// npartitions - This is really the number of leaf entries in
// our single basement node. There should only be 1 (ONE)
// partition, so there shouldn't be any pivot key stored. This
// means the loop will not iterate. We could remove the loop and
// assert that the value is indeed 1.
int npartitions = rbuf_int(rb); // 14. npartitions
assert(npartitions == 1);
// Set number of children to 1, since we will only have one
// basement node.
node->n_children = 1;
XMALLOC_N(node->n_children, node->bp);
// This is a malloc(0), but we need to do it in order to get a pointer
// we can free() later.
XMALLOC_N(node->n_children - 1, node->childkeys);
node->totalchildkeylens = 0;
// Create one basement node to contain all the leaf entries by
// setting up the single partition and updating the bfe.
update_bfe_using_ftnode(node, bfe);
struct ftnode_fetch_extra temp_bfe;
fill_bfe_for_full_read(&temp_bfe, bfe->h);
setup_partitions_using_bfe(node, &temp_bfe, true);
// 11. Deserialize the partition maps, though they are not used in the
// newer versions of brt nodes.
struct sub_block_map part_map[npartitions];
for (int i = 0; i < npartitions; ++i) {
sub_block_map_deserialize(&part_map[i], rb);
}
// Copy all of the leaf entries into the single basement node.
// The number of leaf entries in buffer.
int n_in_buf = rbuf_int(rb); // 15. # of leaves
BLB_NBYTESINBUF(node,0) = 0;
BLB_SEQINSERT(node,0) = 0;
BASEMENTNODE bn = BLB(node, 0);
// The current end of the buffer, read from disk and decompressed,
// is the start of the leaf entries.
uint32_t start_of_data = rb->ndone;
// Read the leaf entries from the buffer, advancing the buffer
// as we go.
if (version <= FT_LAYOUT_VERSION_13) {
// Create our mempool.
toku_mempool_construct(&bn->buffer_mempool, 0);
// Loop through
for (int i = 0; i < n_in_buf; ++i) {
LEAFENTRY_13 le = reinterpret_cast<LEAFENTRY_13>(&rb->buf[rb->ndone]);
uint32_t disksize = leafentry_disksize_13(le);
rb->ndone += disksize; // 16. leaf entry (13)
invariant(rb->ndone<=rb->size);
LEAFENTRY new_le;
size_t new_le_size;
r = toku_le_upgrade_13_14(le,
&new_le_size,
&new_le,
&bn->buffer,
&bn->buffer_mempool);
assert_zero(r);
// Copy the pointer value straight into the OMT
r = toku_omt_insert_at(bn->buffer, new_le, i);
assert_zero(r);
bn->n_bytes_in_buffer += new_le_size;
}
} else {
uint32_t end_of_data;
uint32_t data_size;
// Leaf Entry creation for version 14 and above:
// Allocate space for our leaf entry pointers.
OMTVALUE *XMALLOC_N(n_in_buf, array);
// Iterate over leaf entries copying their addresses into our
// temporary array.
for (int i = 0; i < n_in_buf; ++i) {
LEAFENTRY le = reinterpret_cast<LEAFENTRY>(&rb->buf[rb->ndone]);
uint32_t disksize = leafentry_disksize(le);
rb->ndone += disksize; // 16. leaf entry (14)
invariant(rb->ndone <= rb->size);
array[i] = le;
}
end_of_data = rb->ndone;
data_size = end_of_data - start_of_data;
// Now we must create the OMT and it's associated mempool.
// Allocate mempool in basement node and memcpy from start of
// input/deserialized buffer.
toku_mempool_copy_construct(&bn->buffer_mempool,
&rb->buf[start_of_data],
data_size);
// Adjust the array of OMT values to point to the correct
// position in the mempool. The mempool should have all the
// data at this point.
for (int i = 0; i < n_in_buf; ++i) {
int offset = (unsigned char *) array[i] - &rb->buf[start_of_data];
unsigned char *mp_base = (unsigned char *) toku_mempool_get_base(&bn->buffer_mempool);
array[i] = &mp_base[offset];
}
BLB_NBYTESINBUF(node, 0) = data_size;
toku_omt_destroy(&BLB_BUFFER(node, 0));
// Construct the omt.
r = toku_omt_create_steal_sorted_array(&BLB_BUFFER(node, 0), &array, n_in_buf, n_in_buf);
invariant_zero(r);
}
// Whatever this is must be less than the MSNs of every message above
// it, so it's ok to take it here.
bn->max_msn_applied = bfe->h->h->highest_unused_msn_for_upgrade;
bn->stale_ancestor_messages_applied = false;
node->max_msn_applied_to_node_on_disk = bn->max_msn_applied;
// Checksum (end to end) is only on version 14
if (version >= FT_FIRST_LAYOUT_VERSION_WITH_END_TO_END_CHECKSUM) {
uint32_t expected_xsum = rbuf_int(rb); // 17. checksum
uint32_t actual_xsum = x1764_memory(rb->buf, rb->size - 4);
if (expected_xsum != actual_xsum) {
fprintf(stderr, "%s:%d: Bad checksum: expected = %" PRIx32 ", actual= %" PRIx32 "\n",
__FUNCTION__,
__LINE__,
expected_xsum,
actual_xsum);
fprintf(stderr,
"Checksum failure while reading node in file %s.\n",
toku_cachefile_fname_in_env(bfe->h->cf));
fflush(stderr);
return toku_db_badformat();
}
}
// We should have read the whole block by this point.
if (rb->ndone != rb->size) {
// TODO: Error handling.
return 1;
}
return r;
}
static int
read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum,
DISKOFF offset, DISKOFF size,
FT h,
struct rbuf *rb,
/* out */ int *layout_version_p);
// This function upgrades a version 14 or 13 ftnode to the current
// verison. NOTE: This code assumes the first field of the rbuf has
// already been read from the buffer (namely the layout_version of the
// ftnode.)
static int
deserialize_and_upgrade_ftnode(FTNODE node,
FTNODE_DISK_DATA* ndd,
BLOCKNUM blocknum,
struct ftnode_fetch_extra* bfe,
STAT64INFO info,
int fd)
{
int r = 0;
int version;
// I. First we need to de-compress the entire node, only then can
// we read the different sub-sections.
// get the file offset and block size for the block
DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(bfe->h->blocktable,
blocknum,
&offset,
&size);
struct rbuf rb;
r = read_and_decompress_block_from_fd_into_rbuf(fd,
blocknum,
offset,
size,
bfe->h,
&rb,
&version);
if (r != 0) {
goto exit;
}
// Re-read the magic field from the previous call, since we are
// restarting with a fresh rbuf.
{
bytevec magic;
rbuf_literal_bytes(&rb, &magic, 8); // 1. magic
}
// II. Start reading ftnode fields out of the decompressed buffer.
// Copy over old version info.
node->layout_version_read_from_disk = rbuf_int(&rb); // 2. layout version
version = node->layout_version_read_from_disk;
assert(version <= FT_LAYOUT_VERSION_14);
// Upgrade the current version number to the current version.
node->layout_version = FT_LAYOUT_VERSION;
node->layout_version_original = rbuf_int(&rb); // 3. original layout
node->build_id = rbuf_int(&rb); // 4. build id
// The remaining offsets into the rbuf do not map to the current
// version, so we need to fill in the blanks and ignore older
// fields.
(void)rbuf_int(&rb); // 5. nodesize
node->flags = rbuf_int(&rb); // 6. flags
node->height = rbuf_int(&rb); // 7. height
// If the version is less than 14, there are two extra ints here.
// we would need to ignore them if they are there.
// These are the 'fingerprints'.
if (version == FT_LAYOUT_VERSION_13) {
(void) rbuf_int(&rb); // 8. rand4
(void) rbuf_int(&rb); // 9. local
}
// The next offsets are dependent on whether this is a leaf node
// or not.
// III. Read in Leaf and Internal Node specific data.
// Check height to determine whether this is a leaf node or not.
if (node->height > 0) {
r = deserialize_and_upgrade_internal_node(node, &rb, bfe, info);
} else {
r = deserialize_and_upgrade_leaf_node(node, &rb, bfe, info);
}
XMALLOC_N(node->n_children, *ndd);
// Initialize the partition locations to zero, because version 14
// and below have no notion of partitions on disk.
for (int i=0; i<node->n_children; i++) {
BP_START(*ndd,i) = 0;
BP_SIZE (*ndd,i) = 0;
}
toku_free(rb.buf);
exit:
return r;
}
static int
deserialize_ftnode_from_rbuf(
FTNODE *ftnode,
FTNODE_DISK_DATA* ndd,
BLOCKNUM blocknum,
uint32_t fullhash,
struct ftnode_fetch_extra* bfe,
STAT64INFO info,
struct rbuf *rb,
int fd
)
// Effect: deserializes a ftnode that is in rb (with pointer of rb just past the magic) into a FTNODE.
{
int r = 0;
struct sub_block sb_node_info;
tokutime_t t0, t1;
tokutime_t decompress_time = 0;
tokutime_t deserialize_time = 0;
t0 = toku_time_now();
FTNODE node = alloc_ftnode_for_deserialize(fullhash, blocknum);
// now start reading from rbuf
// first thing we do is read the header information
bytevec magic;
rbuf_literal_bytes(rb, &magic, 8);
if (memcmp(magic, "tokuleaf", 8)!=0 &&
memcmp(magic, "tokunode", 8)!=0) {
r = toku_db_badformat();
goto cleanup;
}
node->layout_version_read_from_disk = rbuf_int(rb);
lazy_assert(node->layout_version_read_from_disk >= FT_LAYOUT_MIN_SUPPORTED_VERSION);
// Check if we are reading in an older node version.
if (node->layout_version_read_from_disk <= FT_LAYOUT_VERSION_14) {
int version = node->layout_version_read_from_disk;
// Perform the upgrade.
r = deserialize_and_upgrade_ftnode(node, ndd, blocknum, bfe, info, fd);
if (r != 0) {
goto cleanup;
}
if (version <= FT_LAYOUT_VERSION_13) {
// deprecate 'TOKU_DB_VALCMP_BUILTIN'. just remove the flag
node->flags &= ~TOKU_DB_VALCMP_BUILTIN_13;
}
// If everything is ok, just re-assign the ftnode and retrn.
*ftnode = node;
r = 0;
goto cleanup;
}
// Upgrade versions after 14 to current. This upgrade is trivial, it
// removes the optimized for upgrade field, which has already been
// removed in the deserialization code (see
// deserialize_ftnode_info()).
node->layout_version = FT_LAYOUT_VERSION;
node->layout_version_original = rbuf_int(rb);
node->build_id = rbuf_int(rb);
node->n_children = rbuf_int(rb);
XMALLOC_N(node->n_children, node->bp);
XMALLOC_N(node->n_children, *ndd);
// read the partition locations
for (int i=0; i<node->n_children; i++) {
BP_START(*ndd,i) = rbuf_int(rb);
BP_SIZE (*ndd,i) = rbuf_int(rb);
}
// verify checksum of header stored
uint32_t checksum;
checksum = x1764_memory(rb->buf, rb->ndone);
uint32_t stored_checksum;
stored_checksum = rbuf_int(rb);
if (stored_checksum != checksum) {
dump_bad_block(rb->buf, rb->size);
invariant(stored_checksum == checksum);
}
// now we read and decompress the pivot and child information
sub_block_init(&sb_node_info);
{
tokutime_t sb_decompress_t0 = toku_time_now();
r = read_and_decompress_sub_block(rb, &sb_node_info);
tokutime_t sb_decompress_t1 = toku_time_now();
decompress_time += sb_decompress_t1 - sb_decompress_t0;
}
if (r != 0) {
goto cleanup;
}
// at this point, sb->uncompressed_ptr stores the serialized node info
r = deserialize_ftnode_info(&sb_node_info, node);
if (r != 0) {
goto cleanup;
}
toku_free(sb_node_info.uncompressed_ptr);
// now that the node info has been deserialized, we can proceed to deserialize
// the individual sub blocks
paranoid_invariant(is_valid_ftnode_fetch_type(bfe->type));
// setup the memory of the partitions
// for partitions being decompressed, create either FIFO or basement node
// for partitions staying compressed, create sub_block
setup_ftnode_partitions(node, bfe, true);
// This loop is parallelizeable, since we don't have a dependency on the work done so far.
for (int i = 0; i < node->n_children; i++) {
uint32_t curr_offset = BP_START(*ndd,i);
uint32_t curr_size = BP_SIZE(*ndd,i);
// the compressed, serialized partitions start at where rb is currently pointing,
// which would be rb->buf + rb->ndone
// we need to intialize curr_rbuf to point to this place
struct rbuf curr_rbuf = {.buf = NULL, .size = 0, .ndone = 0};
rbuf_init(&curr_rbuf, rb->buf + curr_offset, curr_size);
//
// now we are at the point where we have:
// - read the entire compressed node off of disk,
// - decompressed the pivot and offset information,
// - have arrived at the individual partitions.
//
// Based on the information in bfe, we want to decompress a subset of
// of the compressed partitions (also possibly none or possibly all)
// The partitions that we want to decompress and make available
// to the node, we do, the rest we simply copy in compressed
// form into the node, and set the state of the partition to PT_COMPRESSED
//
struct sub_block curr_sb;
sub_block_init(&curr_sb);
// curr_rbuf is passed by value to decompress_and_deserialize_worker, so there's no ugly race condition.
// This would be more obvious if curr_rbuf were an array.
// deserialize_ftnode_info figures out what the state
// should be and sets up the memory so that we are ready to use it
switch (BP_STATE(node,i)) {
case PT_AVAIL: {
// case where we read and decompress the partition
tokutime_t partition_decompress_time;
r = decompress_and_deserialize_worker(curr_rbuf, curr_sb, node, i,
&bfe->h->cmp_descriptor, bfe->h->compare_fun, &partition_decompress_time);
decompress_time += partition_decompress_time;
if (r != 0) {
goto cleanup;
}
break;
}
case PT_COMPRESSED:
// case where we leave the partition in the compressed state
r = check_and_copy_compressed_sub_block_worker(curr_rbuf, curr_sb, node, i);
if (r != 0) {
goto cleanup;
}
break;
case PT_INVALID: // this is really bad
case PT_ON_DISK: // it's supposed to be in memory.
abort();
}
}
*ftnode = node;
r = 0;
cleanup:
if (r == 0) {
t1 = toku_time_now();
deserialize_time = (t1 - t0) - decompress_time;
bfe->deserialize_time += deserialize_time;
bfe->decompress_time += decompress_time;
toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
}
if (r != 0) {
// NOTE: Right now, callers higher in the stack will assert on
// failure, so this is OK for production. However, if we
// create tools that use this function to search for errors in
// the BRT, then we will leak memory.
if (node) {
toku_free(node);
}
}
return r;
}
int
toku_deserialize_bp_from_disk(FTNODE node, FTNODE_DISK_DATA ndd, int childnum, int fd, struct ftnode_fetch_extra* bfe) {
int r = 0;
assert(BP_STATE(node,childnum) == PT_ON_DISK);
assert(node->bp[childnum].ptr.tag == BCT_NULL);
//
// setup the partition
//
setup_available_ftnode_partition(node, childnum);
BP_STATE(node,childnum) = PT_AVAIL;
//
// read off disk and make available in memory
//
// get the file offset and block size for the block
DISKOFF node_offset, total_node_disk_size;
toku_translate_blocknum_to_offset_size(
bfe->h->blocktable,
node->thisnodename,
&node_offset,
&total_node_disk_size
);
uint32_t curr_offset = BP_START(ndd, childnum);
uint32_t curr_size = BP_SIZE (ndd, childnum);
struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};
uint32_t pad_at_beginning = (node_offset+curr_offset)%512;
uint32_t padded_size = roundup_to_multiple(512, pad_at_beginning + curr_size);
uint8_t *XMALLOC_N_ALIGNED(512, padded_size, raw_block);
rbuf_init(&rb, pad_at_beginning+raw_block, curr_size);
tokutime_t t0 = toku_time_now();
// read the block
assert(0==((unsigned long long)raw_block)%512); // for O_DIRECT
assert(0==(padded_size)%512);
assert(0==(node_offset+curr_offset-pad_at_beginning)%512);
ssize_t rlen = toku_os_pread(fd, raw_block, padded_size, node_offset+curr_offset-pad_at_beginning);
assert((DISKOFF)rlen >= pad_at_beginning + curr_size); // we read in at least enough to get what we wanted
assert((DISKOFF)rlen <= padded_size); // we didn't read in too much.
tokutime_t t1 = toku_time_now();
// decompress
struct sub_block curr_sb;
sub_block_init(&curr_sb);
r = read_and_decompress_sub_block(&rb, &curr_sb);
// deserialize
tokutime_t t2 = toku_time_now();
if (r == 0) {
// at this point, sb->uncompressed_ptr stores the serialized node partition
r = deserialize_ftnode_partition(&curr_sb, node, childnum, &bfe->h->cmp_descriptor, bfe->h->compare_fun);
}
tokutime_t t3 = toku_time_now();
// capture stats
tokutime_t io_time = t1 - t0;
tokutime_t decompress_time = t2 - t1;
tokutime_t deserialize_time = t3 - t2;
bfe->deserialize_time += deserialize_time;
bfe->decompress_time += decompress_time;
toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
bfe->bytes_read = rlen;
bfe->io_time = io_time;
toku_free(raw_block);
return r;
}
// Take a ftnode partition that is in the compressed state, and make it avail
int
toku_deserialize_bp_from_compressed(FTNODE node, int childnum, struct ftnode_fetch_extra *bfe) {
int r = 0;
assert(BP_STATE(node, childnum) == PT_COMPRESSED);
SUB_BLOCK curr_sb = BSB(node, childnum);
assert(curr_sb->uncompressed_ptr == NULL);
curr_sb->uncompressed_ptr = toku_xmalloc(curr_sb->uncompressed_size);
setup_available_ftnode_partition(node, childnum);
BP_STATE(node,childnum) = PT_AVAIL;
// decompress the sub_block
tokutime_t t0 = toku_time_now();
toku_decompress(
(Bytef *) curr_sb->uncompressed_ptr,
curr_sb->uncompressed_size,
(Bytef *) curr_sb->compressed_ptr,
curr_sb->compressed_size
);
tokutime_t t1 = toku_time_now();
r = deserialize_ftnode_partition(curr_sb, node, childnum, &bfe->h->cmp_descriptor, bfe->h->compare_fun);
tokutime_t t2 = toku_time_now();
tokutime_t decompress_time = t1 - t0;
tokutime_t deserialize_time = t2 - t1;
bfe->deserialize_time += deserialize_time;
bfe->decompress_time += decompress_time;
toku_ft_status_update_deserialize_times(node, deserialize_time, decompress_time);
toku_free(curr_sb->compressed_ptr);
toku_free(curr_sb);
return r;
}
static int
deserialize_ftnode_from_fd(int fd,
BLOCKNUM blocknum,
uint32_t fullhash,
FTNODE *ftnode,
FTNODE_DISK_DATA *ndd,
struct ftnode_fetch_extra *bfe,
STAT64INFO info)
{
struct rbuf rb = RBUF_INITIALIZER;
tokutime_t t0 = toku_time_now();
read_block_from_fd_into_rbuf(fd, blocknum, bfe->h, &rb);
tokutime_t t1 = toku_time_now();
// Decompress and deserialize the ftnode. Time statistics
// are taken inside this function.
int r = deserialize_ftnode_from_rbuf(ftnode, ndd, blocknum, fullhash, bfe, info, &rb, fd);
if (r != 0) {
dump_bad_block(rb.buf,rb.size);
}
bfe->bytes_read = rb.size;
bfe->io_time = t1 - t0;
toku_free(rb.buf);
return r;
}
// Read brt node from file into struct. Perform version upgrade if necessary.
int
toku_deserialize_ftnode_from (int fd,
BLOCKNUM blocknum,
uint32_t fullhash,
FTNODE *ftnode,
FTNODE_DISK_DATA* ndd,
struct ftnode_fetch_extra* bfe
)
// Effect: Read a node in. If possible, read just the header.
{
int r = 0;
struct rbuf rb = RBUF_INITIALIZER;
// each function below takes the appropriate io/decompression/deserialize statistics
if (!bfe->read_all_partitions) {
read_ftnode_header_from_fd_into_rbuf_if_small_enough(fd, blocknum, bfe->h, &rb, bfe);
r = deserialize_ftnode_header_from_rbuf_if_small_enough(ftnode, ndd, blocknum, fullhash, bfe, &rb, fd);
} else {
// force us to do it the old way
r = -1;
}
if (r != 0) {
// Something went wrong, go back to doing it the old way.
r = deserialize_ftnode_from_fd(fd, blocknum, fullhash, ftnode, ndd, bfe, NULL);
}
toku_free(rb.buf);
return r;
}
void
toku_verify_or_set_counts(FTNODE node) {
if (node->height==0) {
for (int i=0; i<node->n_children; i++) {
lazy_assert(BLB_BUFFER(node, i));
struct sum_info sum_info = {0,0};
toku_omt_iterate(BLB_BUFFER(node, i), sum_item, &sum_info);
lazy_assert(sum_info.count==toku_omt_size(BLB_BUFFER(node, i)));
lazy_assert(sum_info.dsum==BLB_NBYTESINBUF(node, i));
}
}
else {
// nothing to do because we no longer store n_bytes_in_buffers for
// the whole node
}
}
int
toku_db_badformat(void) {
return DB_BADFORMAT;
}
static size_t
serialize_rollback_log_size(ROLLBACK_LOG_NODE log) {
size_t size = node_header_overhead //8 "tokuroll", 4 version, 4 version_original, 4 build_id
+16 //TXNID_PAIR
+8 //sequence
+8 //blocknum
+8 //previous (blocknum)
+8 //resident_bytecount
+8 //memarena_size_needed_to_load
+log->rollentry_resident_bytecount;
return size;
}
static void
serialize_rollback_log_node_to_buf(ROLLBACK_LOG_NODE log, char *buf, size_t calculated_size, int UU(n_sub_blocks), struct sub_block UU(sub_block[])) {
struct wbuf wb;
wbuf_init(&wb, buf, calculated_size);
{ //Serialize rollback log to local wbuf
wbuf_nocrc_literal_bytes(&wb, "tokuroll", 8);
lazy_assert(log->layout_version == FT_LAYOUT_VERSION);
wbuf_nocrc_int(&wb, log->layout_version);
wbuf_nocrc_int(&wb, log->layout_version_original);
wbuf_nocrc_uint(&wb, BUILD_ID);
wbuf_nocrc_TXNID_PAIR(&wb, log->txnid);
wbuf_nocrc_ulonglong(&wb, log->sequence);
wbuf_nocrc_BLOCKNUM(&wb, log->blocknum);
wbuf_nocrc_BLOCKNUM(&wb, log->previous);
wbuf_nocrc_ulonglong(&wb, log->rollentry_resident_bytecount);
//Write down memarena size needed to restore
wbuf_nocrc_ulonglong(&wb, memarena_total_size_in_use(log->rollentry_arena));
{
//Store rollback logs
struct roll_entry *item;
size_t done_before = wb.ndone;
for (item = log->newest_logentry; item; item = item->prev) {
toku_logger_rollback_wbuf_nocrc_write(&wb, item);
}
lazy_assert(done_before + log->rollentry_resident_bytecount == wb.ndone);
}
}
lazy_assert(wb.ndone == wb.size);
lazy_assert(calculated_size==wb.ndone);
}
static void
serialize_uncompressed_block_to_memory(char * uncompressed_buf,
int n_sub_blocks,
struct sub_block sub_block[/*n_sub_blocks*/],
enum toku_compression_method method,
/*out*/ size_t *n_bytes_to_write,
/*out*/ char **bytes_to_write)
// Guarantees that the malloc'd BYTES_TO_WRITE is 512-byte aligned (so that O_DIRECT will work)
{
// allocate space for the compressed uncompressed_buf
size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, method);
size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
size_t header_len = node_header_overhead + sub_block_header_len + sizeof (uint32_t); // node + sub_block + checksum
char *XMALLOC_N_ALIGNED(512, roundup_to_multiple(512, header_len + compressed_len), compressed_buf);
// copy the header
memcpy(compressed_buf, uncompressed_buf, node_header_overhead);
if (0) printf("First 4 bytes before compressing data are %02x%02x%02x%02x\n",
uncompressed_buf[node_header_overhead], uncompressed_buf[node_header_overhead+1],
uncompressed_buf[node_header_overhead+2], uncompressed_buf[node_header_overhead+3]);
// compress all of the sub blocks
char *uncompressed_ptr = uncompressed_buf + node_header_overhead;
char *compressed_ptr = compressed_buf + header_len;
compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr, num_cores, ft_pool, method);
//if (0) printf("Block %" PRId64 " Size before compressing %u, after compression %" PRIu64 "\n", blocknum.b, calculated_size-node_header_overhead, (uint64_t) compressed_len);
// serialize the sub block header
uint32_t *ptr = (uint32_t *)(compressed_buf + node_header_overhead);
*ptr++ = toku_htod32(n_sub_blocks);
for (int i=0; i<n_sub_blocks; i++) {
ptr[0] = toku_htod32(sub_block[i].compressed_size);
ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
ptr[2] = toku_htod32(sub_block[i].xsum);
ptr += 3;
}
// compute the header checksum and serialize it
uint32_t header_length = (char *)ptr - (char *)compressed_buf;
uint32_t xsum = x1764_memory(compressed_buf, header_length);
*ptr = toku_htod32(xsum);
uint32_t padded_len = roundup_to_multiple(512, header_len + compressed_len);
// Zero out padding.
for (uint32_t i = header_len+compressed_len; i < padded_len; i++) {
compressed_buf[i] = 0;
}
*n_bytes_to_write = padded_len;
*bytes_to_write = compressed_buf;
}
void
toku_serialize_rollback_log_to_memory_uncompressed(ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBACK_LOG_NODE serialized) {
// get the size of the serialized node
size_t calculated_size = serialize_rollback_log_size(log);
serialized->len = calculated_size;
serialized->n_sub_blocks = 0;
// choose sub block parameters
int sub_block_size = 0;
size_t data_size = calculated_size - node_header_overhead;
choose_sub_block_size(data_size, max_sub_blocks, &sub_block_size, &serialized->n_sub_blocks);
lazy_assert(0 < serialized->n_sub_blocks && serialized->n_sub_blocks <= max_sub_blocks);
lazy_assert(sub_block_size > 0);
// set the initial sub block size for all of the sub blocks
for (int i = 0; i < serialized->n_sub_blocks; i++)
sub_block_init(&serialized->sub_block[i]);
set_all_sub_block_sizes(data_size, sub_block_size, serialized->n_sub_blocks, serialized->sub_block);
// allocate space for the serialized node
XMALLOC_N(calculated_size, serialized->data);
// serialize the node into buf
serialize_rollback_log_node_to_buf(log, serialized->data, calculated_size, serialized->n_sub_blocks, serialized->sub_block);
serialized->blocknum = log->blocknum;
}
int
toku_serialize_rollback_log_to (int fd, ROLLBACK_LOG_NODE log, SERIALIZED_ROLLBACK_LOG_NODE serialized_log, bool is_serialized,
FT h, bool for_checkpoint) {
size_t n_to_write;
char *compressed_buf;
struct serialized_rollback_log_node serialized_local;
if (is_serialized) {
invariant_null(log);
} else {
invariant_null(serialized_log);
serialized_log = &serialized_local;
toku_serialize_rollback_log_to_memory_uncompressed(log, serialized_log);
}
BLOCKNUM blocknum = serialized_log->blocknum;
//Compress and malloc buffer to write
serialize_uncompressed_block_to_memory(serialized_log->data,
serialized_log->n_sub_blocks, serialized_log->sub_block,
h->h->compression_method, &n_to_write, &compressed_buf);
{
lazy_assert(blocknum.b>=0);
DISKOFF offset;
toku_blocknum_realloc_on_disk(h->blocktable, blocknum, n_to_write, &offset,
h, fd, for_checkpoint); //dirties h
toku_os_full_pwrite(fd, compressed_buf, n_to_write, offset);
}
toku_free(compressed_buf);
if (!is_serialized) {
toku_static_serialized_rollback_log_destroy(&serialized_local);
log->dirty = 0; // See #1957. Must set the node to be clean after serializing it so that it doesn't get written again on the next checkpoint or eviction.
}
return 0;
}
static int
deserialize_rollback_log_from_rbuf (BLOCKNUM blocknum, uint32_t fullhash, ROLLBACK_LOG_NODE *log_p,
FT h, struct rbuf *rb) {
ROLLBACK_LOG_NODE MALLOC(result);
int r;
if (result==NULL) {
r=get_error_errno();
if (0) { died0: toku_free(result); }
return r;
}
//printf("Deserializing %lld datasize=%d\n", off, datasize);
bytevec magic;
rbuf_literal_bytes(rb, &magic, 8);
lazy_assert(!memcmp(magic, "tokuroll", 8));
result->layout_version = rbuf_int(rb);
lazy_assert(result->layout_version == FT_LAYOUT_VERSION);
result->layout_version_original = rbuf_int(rb);
result->layout_version_read_from_disk = result->layout_version;
result->build_id = rbuf_int(rb);
result->dirty = false;
//TODO: Maybe add descriptor (or just descriptor version) here eventually?
//TODO: This is hard.. everything is shared in a single dictionary.
rbuf_TXNID_PAIR(rb, &result->txnid);
result->sequence = rbuf_ulonglong(rb);
result->blocknum = rbuf_blocknum(rb);
if (result->blocknum.b != blocknum.b) {
r = toku_db_badformat();
goto died0;
}
result->hash = toku_cachetable_hash(h->cf, result->blocknum);
if (result->hash != fullhash) {
r = toku_db_badformat();
goto died0;
}
result->previous = rbuf_blocknum(rb);
result->previous_hash = toku_cachetable_hash(h->cf, result->previous);
result->rollentry_resident_bytecount = rbuf_ulonglong(rb);
size_t arena_initial_size = rbuf_ulonglong(rb);
result->rollentry_arena = memarena_create_presized(arena_initial_size);
if (0) { died1: memarena_close(&result->rollentry_arena); goto died0; }
//Load rollback entries
lazy_assert(rb->size > 4);
//Start with empty list
result->oldest_logentry = result->newest_logentry = NULL;
while (rb->ndone < rb->size) {
struct roll_entry *item;
uint32_t rollback_fsize = rbuf_int(rb); //Already read 4. Rest is 4 smaller
bytevec item_vec;
rbuf_literal_bytes(rb, &item_vec, rollback_fsize-4);
unsigned char* item_buf = (unsigned char*)item_vec;
r = toku_parse_rollback(item_buf, rollback_fsize-4, &item, result->rollentry_arena);
if (r!=0) {
r = toku_db_badformat();
goto died1;
}
//Add to head of list
if (result->oldest_logentry) {
result->oldest_logentry->prev = item;
result->oldest_logentry = item;
item->prev = NULL;
}
else {
result->oldest_logentry = result->newest_logentry = item;
item->prev = NULL;
}
}
toku_free(rb->buf);
rb->buf = NULL;
*log_p = result;
return 0;
}
static int
deserialize_rollback_log_from_rbuf_versioned (uint32_t version, BLOCKNUM blocknum, uint32_t fullhash,
ROLLBACK_LOG_NODE *log,
FT h, struct rbuf *rb) {
int r = 0;
ROLLBACK_LOG_NODE rollback_log_node = NULL;
invariant(version==FT_LAYOUT_VERSION); //Rollback log nodes do not survive version changes.
r = deserialize_rollback_log_from_rbuf(blocknum, fullhash, &rollback_log_node, h, rb);
if (r==0) {
*log = rollback_log_node;
}
return r;
}
int
decompress_from_raw_block_into_rbuf(uint8_t *raw_block, size_t raw_block_size, struct rbuf *rb, BLOCKNUM blocknum) {
int r = 0;
// get the number of compressed sub blocks
int n_sub_blocks;
n_sub_blocks = toku_dtoh32(*(uint32_t*)(&raw_block[node_header_overhead]));
// verify the number of sub blocks
invariant(0 <= n_sub_blocks);
invariant(n_sub_blocks <= max_sub_blocks);
{ // verify the header checksum
uint32_t header_length = node_header_overhead + sub_block_header_size(n_sub_blocks);
invariant(header_length <= raw_block_size);
uint32_t xsum = x1764_memory(raw_block, header_length);
uint32_t stored_xsum = toku_dtoh32(*(uint32_t *)(raw_block + header_length));
if (xsum != stored_xsum) {
r = TOKUDB_BAD_CHECKSUM;
}
}
// deserialize the sub block header
struct sub_block sub_block[n_sub_blocks];
uint32_t *sub_block_header = (uint32_t *) &raw_block[node_header_overhead+4];
for (int i = 0; i < n_sub_blocks; i++) {
sub_block_init(&sub_block[i]);
sub_block[i].compressed_size = toku_dtoh32(sub_block_header[0]);
sub_block[i].uncompressed_size = toku_dtoh32(sub_block_header[1]);
sub_block[i].xsum = toku_dtoh32(sub_block_header[2]);
sub_block_header += 3;
}
// This predicate needs to be here and instead of where it is set
// for the compiler.
if (r == TOKUDB_BAD_CHECKSUM) {
goto exit;
}
// verify sub block sizes
for (int i = 0; i < n_sub_blocks; i++) {
uint32_t compressed_size = sub_block[i].compressed_size;
if (compressed_size<=0 || compressed_size>(1<<30)) {
r = toku_db_badformat();
goto exit;
}
uint32_t uncompressed_size = sub_block[i].uncompressed_size;
if (0) printf("Block %" PRId64 " Compressed size = %u, uncompressed size=%u\n", blocknum.b, compressed_size, uncompressed_size);
if (uncompressed_size<=0 || uncompressed_size>(1<<30)) {
r = toku_db_badformat();
goto exit;
}
}
// sum up the uncompressed size of the sub blocks
size_t uncompressed_size;
uncompressed_size = get_sum_uncompressed_size(n_sub_blocks, sub_block);
// allocate the uncompressed buffer
size_t size;
size = node_header_overhead + uncompressed_size;
unsigned char *buf;
XMALLOC_N(size, buf);
rbuf_init(rb, buf, size);
// copy the uncompressed node header to the uncompressed buffer
memcpy(rb->buf, raw_block, node_header_overhead);
// point at the start of the compressed data (past the node header, the sub block header, and the header checksum)
unsigned char *compressed_data;
compressed_data = raw_block + node_header_overhead + sub_block_header_size(n_sub_blocks) + sizeof (uint32_t);
// point at the start of the uncompressed data
unsigned char *uncompressed_data;
uncompressed_data = rb->buf + node_header_overhead;
// decompress all the compressed sub blocks into the uncompressed buffer
r = decompress_all_sub_blocks(n_sub_blocks, sub_block, compressed_data, uncompressed_data, num_cores, ft_pool);
if (r != 0) {
fprintf(stderr, "%s:%d block %" PRId64 " failed %d at %p size %lu\n", __FUNCTION__, __LINE__, blocknum.b, r, raw_block, raw_block_size);
dump_bad_block(raw_block, raw_block_size);
goto exit;
}
rb->ndone=0;
exit:
return r;
}
static int
decompress_from_raw_block_into_rbuf_versioned(uint32_t version, uint8_t *raw_block, size_t raw_block_size, struct rbuf *rb, BLOCKNUM blocknum) {
// This function exists solely to accomodate future changes in compression.
int r = 0;
switch (version) {
case FT_LAYOUT_VERSION_13:
case FT_LAYOUT_VERSION_14:
case FT_LAYOUT_VERSION:
r = decompress_from_raw_block_into_rbuf(raw_block, raw_block_size, rb, blocknum);
break;
default:
abort();
}
return r;
}
static int
read_and_decompress_block_from_fd_into_rbuf(int fd, BLOCKNUM blocknum,
DISKOFF offset, DISKOFF size,
FT h,
struct rbuf *rb,
/* out */ int *layout_version_p) {
int r = 0;
if (0) printf("Deserializing Block %" PRId64 "\n", blocknum.b);
DISKOFF size_aligned = roundup_to_multiple(512, size);
uint8_t *XMALLOC_N_ALIGNED(512, size_aligned, raw_block);
{
// read the (partially compressed) block
ssize_t rlen = toku_os_pread(fd, raw_block, size_aligned, offset);
lazy_assert((DISKOFF)rlen >= size);
lazy_assert((DISKOFF)rlen <= size_aligned);
}
// get the layout_version
int layout_version;
{
uint8_t *magic = raw_block + uncompressed_magic_offset;
if (memcmp(magic, "tokuleaf", 8)!=0 &&
memcmp(magic, "tokunode", 8)!=0 &&
memcmp(magic, "tokuroll", 8)!=0) {
r = toku_db_badformat();
goto cleanup;
}
uint8_t *version = raw_block + uncompressed_version_offset;
layout_version = toku_dtoh32(*(uint32_t*)version);
if (layout_version < FT_LAYOUT_MIN_SUPPORTED_VERSION || layout_version > FT_LAYOUT_VERSION) {
r = toku_db_badformat();
goto cleanup;
}
}
r = decompress_from_raw_block_into_rbuf_versioned(layout_version, raw_block, size, rb, blocknum);
if (r != 0) {
// We either failed the checksome, or there is a bad format in
// the buffer.
if (r == TOKUDB_BAD_CHECKSUM) {
fprintf(stderr,
"Checksum failure while reading raw block in file %s.\n",
toku_cachefile_fname_in_env(h->cf));
abort();
} else {
r = toku_db_badformat();
goto cleanup;
}
}
*layout_version_p = layout_version;
cleanup:
if (r!=0) {
if (rb->buf) toku_free(rb->buf);
rb->buf = NULL;
}
if (raw_block) {
toku_free(raw_block);
}
return r;
}
// Read rollback log node from file into struct. Perform version upgrade if necessary.
int
toku_deserialize_rollback_log_from (int fd, BLOCKNUM blocknum, uint32_t fullhash,
ROLLBACK_LOG_NODE *logp, FT h) {
int layout_version = 0;
int r;
struct rbuf rb = {.buf = NULL, .size = 0, .ndone = 0};
// get the file offset and block size for the block
DISKOFF offset, size;
toku_translate_blocknum_to_offset_size(h->blocktable, blocknum, &offset, &size);
// if the size is 0, then the blocknum is unused
if (size == 0) {
// blocknum is unused, just create an empty one and get out
ROLLBACK_LOG_NODE XMALLOC(log);
rollback_empty_log_init(log);
log->blocknum.b = blocknum.b;
log->hash = fullhash;
r = 0;
*logp = log;
goto cleanup;
}
r = read_and_decompress_block_from_fd_into_rbuf(fd, blocknum, offset, size, h, &rb, &layout_version);
if (r!=0) goto cleanup;
{
uint8_t *magic = rb.buf + uncompressed_magic_offset;
if (memcmp(magic, "tokuroll", 8)!=0) {
r = toku_db_badformat();
goto cleanup;
}
}
r = deserialize_rollback_log_from_rbuf_versioned(layout_version, blocknum, fullhash, logp, h, &rb);
cleanup:
if (rb.buf) toku_free(rb.buf);
return r;
}
int
toku_upgrade_subtree_estimates_to_stat64info(int fd, FT h)
{
int r = 0;
// 15 was the last version with subtree estimates
invariant(h->layout_version_read_from_disk <= FT_LAYOUT_VERSION_15);
FTNODE unused_node = NULL;
FTNODE_DISK_DATA unused_ndd = NULL;
struct ftnode_fetch_extra bfe;
fill_bfe_for_min_read(&bfe, h);
r = deserialize_ftnode_from_fd(fd, h->h->root_blocknum, 0, &unused_node, &unused_ndd,
&bfe, &h->h->on_disk_stats);
h->in_memory_stats = h->h->on_disk_stats;
if (unused_node) {
toku_ftnode_free(&unused_node);
}
if (unused_ndd) {
toku_free(unused_ndd);
}
return r;
}
int
toku_upgrade_msn_from_root_to_header(int fd, FT h)
{
int r;
// 21 was the first version with max_msn_in_ft in the header
invariant(h->layout_version_read_from_disk <= FT_LAYOUT_VERSION_20);
FTNODE node;
FTNODE_DISK_DATA ndd;
struct ftnode_fetch_extra bfe;
fill_bfe_for_min_read(&bfe, h);
r = deserialize_ftnode_from_fd(fd, h->h->root_blocknum, 0, &node, &ndd, &bfe, nullptr);
if (r != 0) {
goto exit;
}
h->h->max_msn_in_ft = node->max_msn_applied_to_node_on_disk;
toku_ftnode_free(&node);
toku_free(ndd);
exit:
return r;
}
#undef UPGRADE_STATUS_VALUE