mariadb/storage/innobase/row/row0uins.cc
Marko Mäkelä 0ba6aaf030 MDEV-11415 Remove excessive undo logging during ALTER TABLE…ALGORITHM=COPY
If a crash occurs during ALTER TABLE…ALGORITHM=COPY, InnoDB would spend
a lot of time rolling back writes to the intermediate copy of the table.
To reduce the amount of busy work done, a work-around was introduced in
commit fd069e2bb3 in MySQL 4.1.8 and 5.0.2,
to commit the transaction after every 10,000 inserted rows.

A proper fix would have been to disable the undo logging altogether and
to simply drop the intermediate copy of the table on subsequent server
startup. This is what happens in MariaDB 10.3 with MDEV-14717,MDEV-14585.
In MariaDB 10.2, the intermediate copy of the table would be left behind
with a name starting with the string #sql.

This is a backport of a bug fix from MySQL 8.0.0 to MariaDB,
contributed by jixianliang <271365745@qq.com>.

Unlike recent MySQL, MariaDB supports ALTER IGNORE. For that operation
InnoDB must for now keep the undo logging enabled, so that the latest
row can be rolled back in case of an error.

In Galera cluster, the LOAD DATA statement will retain the existing
behaviour and commit the transaction after every 10,000 rows if
the parameter wsrep_load_data_splitting=ON is set. The logic to do
so (the wsrep_load_data_split() function and the call
handler::extra(HA_EXTRA_FAKE_START_STMT)) are joint work
by Ji Xianliang and Marko Mäkelä.

The original fix:

Author: Thirunarayanan Balathandayuthapani <thirunarayanan.balathandayuth@oracle.com>
Date:   Wed Dec 2 16:09:15 2015 +0530

Bug#17479594 AVOID INTERMEDIATE COMMIT WHILE DOING ALTER TABLE ALGORITHM=COPY

Problem:

During ALTER TABLE, we commit and restart the transaction for every
10,000 rows, so that the rollback after recovery would not take so long.

Fix:

Suppress the undo logging during copy alter operation. If fts_index is
present then insert directly into fts auxiliary table rather
than doing at commit time.

ha_innobase::num_write_row: Remove the variable.

ha_innobase::write_row(): Remove the hack for committing every 10000 rows.

row_lock_table_for_mysql(): Remove the extra 2 parameters.

lock_get_src_table(), lock_is_table_exclusive(): Remove.

Reviewed-by: Marko Mäkelä <marko.makela@oracle.com>
Reviewed-by: Shaohua Wang <shaohua.wang@oracle.com>
Reviewed-by: Jon Olav Hauglid <jon.hauglid@oracle.com>
2018-01-30 20:24:23 +02:00

539 lines
15 KiB
C++

/*****************************************************************************
Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2017, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0uins.cc
Fresh insert undo
Created 2/25/1997 Heikki Tuuri
*******************************************************/
#include "row0uins.h"
#include "dict0dict.h"
#include "dict0stats.h"
#include "dict0boot.h"
#include "dict0crea.h"
#include "trx0undo.h"
#include "trx0roll.h"
#include "btr0btr.h"
#include "mach0data.h"
#include "row0undo.h"
#include "row0vers.h"
#include "row0log.h"
#include "trx0trx.h"
#include "trx0rec.h"
#include "row0row.h"
#include "row0upd.h"
#include "que0que.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "fil0fil.h"
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/***************************************************************//**
Removes a clustered index record. The pcur in node was positioned on the
record, now it is detached.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_clust_rec(
/*==========================*/
undo_node_t* node) /*!< in: undo node */
{
btr_cur_t* btr_cur;
ibool success;
dberr_t err;
ulint n_tries = 0;
mtr_t mtr;
dict_index_t* index = node->pcur.btr_cur.index;
bool online;
ut_ad(dict_index_is_clust(index));
ut_ad(node->trx->in_rollback);
mtr.start();
if (index->table->is_temporary()) {
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
mtr.set_named_space(index->space);
}
/* This is similar to row_undo_mod_clust(). The DDL thread may
already have copied this row from the log to the new table.
We must log the removal, so that the row will be correctly
purged. However, we can log the removal out of sync with the
B-tree modification. */
online = dict_index_is_online_ddl(index);
if (online) {
ut_ad(node->trx->dict_operation_lock_mode
!= RW_X_LATCH);
ut_ad(node->table->id != DICT_INDEXES_ID);
mtr_s_lock(dict_index_get_lock(index), &mtr);
}
success = btr_pcur_restore_position(
online
? BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED
: BTR_MODIFY_LEAF, &node->pcur, &mtr);
ut_a(success);
btr_cur = btr_pcur_get_btr_cur(&node->pcur);
ut_ad(rec_get_trx_id(btr_cur_get_rec(btr_cur), btr_cur->index)
== node->trx->id);
ut_ad(!rec_get_deleted_flag(
btr_cur_get_rec(btr_cur),
dict_table_is_comp(btr_cur->index->table)));
if (online && dict_index_is_online_ddl(index)) {
const rec_t* rec = btr_cur_get_rec(btr_cur);
mem_heap_t* heap = NULL;
const ulint* offsets = rec_get_offsets(
rec, index, NULL, true, ULINT_UNDEFINED, &heap);
row_log_table_delete(rec, index, offsets, NULL);
mem_heap_free(heap);
}
if (node->table->id == DICT_INDEXES_ID) {
ut_ad(!online);
ut_ad(node->trx->dict_operation_lock_mode == RW_X_LATCH);
dict_drop_index_tree(
btr_pcur_get_rec(&node->pcur), &(node->pcur), &mtr);
mtr.commit();
mtr.start();
success = btr_pcur_restore_position(
BTR_MODIFY_LEAF, &node->pcur, &mtr);
ut_a(success);
}
if (btr_cur_optimistic_delete(btr_cur, 0, &mtr)) {
err = DB_SUCCESS;
goto func_exit;
}
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
retry:
/* If did not succeed, try pessimistic descent to tree */
mtr.start();
if (index->table->is_temporary()) {
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
mtr.set_named_space(index->space);
}
success = btr_pcur_restore_position(
BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
&node->pcur, &mtr);
ut_a(success);
btr_cur_pessimistic_delete(&err, FALSE, btr_cur, 0, true, &mtr);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err == DB_OUT_OF_FILE_SPACE
&& n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
btr_pcur_commit_specify_mtr(&(node->pcur), &mtr);
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
func_exit:
btr_pcur_commit_specify_mtr(&node->pcur, &mtr);
return(err);
}
/***************************************************************//**
Removes a secondary index entry if found.
@return DB_SUCCESS, DB_FAIL, or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec_low(
/*========================*/
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree */
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry to remove */
que_thr_t* thr) /*!< in: query thread */
{
btr_pcur_t pcur;
btr_cur_t* btr_cur;
dberr_t err = DB_SUCCESS;
mtr_t mtr;
enum row_search_result search_result;
const bool modify_leaf = mode == BTR_MODIFY_LEAF;
memset(&pcur, 0, sizeof(pcur));
row_mtr_start(&mtr, index, !modify_leaf);
if (modify_leaf) {
mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED;
mtr_s_lock(dict_index_get_lock(index), &mtr);
} else {
ut_ad(mode == (BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE));
mtr_sx_lock(dict_index_get_lock(index), &mtr);
}
if (row_log_online_op_try(index, entry, 0)) {
goto func_exit_no_pcur;
}
if (dict_index_is_spatial(index)) {
if (modify_leaf) {
mode |= BTR_RTREE_DELETE_MARK;
}
btr_pcur_get_btr_cur(&pcur)->thr = thr;
mode |= BTR_RTREE_UNDO_INS;
}
search_result = row_search_index_entry(index, entry, mode,
&pcur, &mtr);
switch (search_result) {
case ROW_NOT_FOUND:
goto func_exit;
case ROW_FOUND:
if (dict_index_is_spatial(index)
&& rec_get_deleted_flag(
btr_pcur_get_rec(&pcur),
dict_table_is_comp(index->table))) {
ib::error() << "Record found in index " << index->name
<< " is deleted marked on insert rollback.";
ut_ad(0);
}
break;
case ROW_BUFFERED:
case ROW_NOT_DELETED_REF:
/* These are invalid outcomes, because the mode passed
to row_search_index_entry() did not include any of the
flags BTR_INSERT, BTR_DELETE, or BTR_DELETE_MARK. */
ut_error;
}
btr_cur = btr_pcur_get_btr_cur(&pcur);
if (modify_leaf) {
err = btr_cur_optimistic_delete(btr_cur, 0, &mtr)
? DB_SUCCESS : DB_FAIL;
} else {
/* Passing rollback=false here, because we are
deleting a secondary index record: the distinction
only matters when deleting a record that contains
externally stored columns. */
ut_ad(!dict_index_is_clust(index));
btr_cur_pessimistic_delete(&err, FALSE, btr_cur, 0,
false, &mtr);
}
func_exit:
btr_pcur_close(&pcur);
func_exit_no_pcur:
mtr_commit(&mtr);
return(err);
}
/***************************************************************//**
Removes a secondary index entry from the index if found. Tries first
optimistic, then pessimistic descent down the tree.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec(
/*====================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ulint n_tries = 0;
/* Try first optimistic descent to the B-tree */
err = row_undo_ins_remove_sec_low(BTR_MODIFY_LEAF, index, entry, thr);
if (err == DB_SUCCESS) {
return(err);
}
/* Try then pessimistic descent to the B-tree */
retry:
err = row_undo_ins_remove_sec_low(
BTR_MODIFY_TREE | BTR_LATCH_FOR_DELETE,
index, entry, thr);
/* The delete operation may fail if we have little
file space left: TODO: easiest to crash the database
and restart with more file space */
if (err != DB_SUCCESS && n_tries < BTR_CUR_RETRY_DELETE_N_TIMES) {
n_tries++;
os_thread_sleep(BTR_CUR_RETRY_SLEEP_TIME);
goto retry;
}
return(err);
}
/***********************************************************//**
Parses the row reference and other info in a fresh insert undo record. */
static
void
row_undo_ins_parse_undo_rec(
/*========================*/
undo_node_t* node, /*!< in/out: row undo node */
ibool dict_locked) /*!< in: TRUE if own dict_sys->mutex */
{
dict_index_t* clust_index;
byte* ptr;
undo_no_t undo_no;
table_id_t table_id;
ulint type;
ulint dummy;
bool dummy_extern;
ut_ad(node);
ptr = trx_undo_rec_get_pars(node->undo_rec, &type, &dummy,
&dummy_extern, &undo_no, &table_id);
ut_ad(type == TRX_UNDO_INSERT_REC);
node->rec_type = type;
node->update = NULL;
node->table = dict_table_open_on_id(
table_id, dict_locked, DICT_TABLE_OP_NORMAL);
/* Skip the UNDO if we can't find the table or the .ibd file. */
if (UNIV_UNLIKELY(node->table == NULL)) {
return;
}
if (UNIV_UNLIKELY(!fil_table_accessible(node->table))) {
close_table:
/* Normally, tables should not disappear or become
unaccessible during ROLLBACK, because they should be
protected by InnoDB table locks. TRUNCATE TABLE
or table corruption could be valid exceptions.
FIXME: When running out of temporary tablespace, it
would probably be better to just drop all temporary
tables (and temporary undo log records) of the current
connection, instead of doing this rollback. */
dict_table_close(node->table, dict_locked, FALSE);
node->table = NULL;
} else {
ut_ad(!node->table->skip_alter_undo);
clust_index = dict_table_get_first_index(node->table);
if (clust_index != NULL) {
ptr = trx_undo_rec_get_row_ref(
ptr, clust_index, &node->ref, node->heap);
if (!row_undo_search_clust_to_pcur(node)) {
/* An error probably occurred during
an insert into the clustered index,
after we wrote the undo log record. */
goto close_table;
}
if (node->table->n_v_cols) {
trx_undo_read_v_cols(node->table, ptr,
node->row, false);
}
} else {
ib::warn() << "Table " << node->table->name
<< " has no indexes,"
" ignoring the table";
goto close_table;
}
}
}
/***************************************************************//**
Removes secondary index records.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_undo_ins_remove_sec_rec(
/*========================*/
undo_node_t* node, /*!< in/out: row undo node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err = DB_SUCCESS;
dict_index_t* index = node->index;
mem_heap_t* heap;
heap = mem_heap_create(1024);
while (index != NULL) {
dtuple_t* entry;
if (index->type & DICT_FTS) {
dict_table_next_uncorrupted_index(index);
continue;
}
/* An insert undo record TRX_UNDO_INSERT_REC will
always contain all fields of the index. It does not
matter if any indexes were created afterwards; all
index entries can be reconstructed from the row. */
entry = row_build_index_entry(
node->row, node->ext, index, heap);
if (UNIV_UNLIKELY(!entry)) {
/* The database must have crashed after
inserting a clustered index record but before
writing all the externally stored columns of
that record, or a statement is being rolled
back because an error occurred while storing
off-page columns.
Because secondary index entries are inserted
after the clustered index record, we may
assume that the secondary index record does
not exist. */
} else {
err = row_undo_ins_remove_sec(index, entry, thr);
if (UNIV_UNLIKELY(err != DB_SUCCESS)) {
goto func_exit;
}
}
mem_heap_empty(heap);
dict_table_next_uncorrupted_index(index);
}
func_exit:
node->index = index;
mem_heap_free(heap);
return(err);
}
/***********************************************************//**
Undoes a fresh insert of a row to a table. A fresh insert means that
the same clustered index unique key did not have any record, even delete
marked, at the time of the insert. InnoDB is eager in a rollback:
if it figures out that an index record will be removed in the purge
anyway, it will remove it in the rollback.
@return DB_SUCCESS or DB_OUT_OF_FILE_SPACE */
dberr_t
row_undo_ins(
/*=========*/
undo_node_t* node, /*!< in: row undo node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err;
ibool dict_locked;
ut_ad(node->state == UNDO_NODE_INSERT);
ut_ad(node->trx->in_rollback);
ut_ad(trx_undo_roll_ptr_is_insert(node->roll_ptr));
dict_locked = node->trx->dict_operation_lock_mode == RW_X_LATCH;
row_undo_ins_parse_undo_rec(node, dict_locked);
if (node->table == NULL) {
return(DB_SUCCESS);
}
/* Iterate over all the indexes and undo the insert.*/
node->index = dict_table_get_first_index(node->table);
ut_ad(dict_index_is_clust(node->index));
/* Skip the clustered index (the first index) */
node->index = dict_table_get_next_index(node->index);
dict_table_skip_corrupt_index(node->index);
err = row_undo_ins_remove_sec_rec(node, thr);
if (err == DB_SUCCESS) {
log_free_check();
if (node->table->id == DICT_INDEXES_ID) {
if (!dict_locked) {
mutex_enter(&dict_sys->mutex);
}
}
// FIXME: We need to update the dict_index_t::space and
// page number fields too.
err = row_undo_ins_remove_clust_rec(node);
if (node->table->id == DICT_INDEXES_ID
&& !dict_locked) {
mutex_exit(&dict_sys->mutex);
}
if (err == DB_SUCCESS && node->table->stat_initialized) {
/* Not protected by dict_table_stats_lock() for
performance reasons, we would rather get garbage
in stat_n_rows (which is just an estimate anyway)
than protecting the following code with a latch. */
dict_table_n_rows_dec(node->table);
/* Do not attempt to update statistics when
executing ROLLBACK in the InnoDB SQL
interpreter, because in that case we would
already be holding dict_sys->mutex, which
would be acquired when updating statistics. */
if (!dict_locked) {
dict_stats_update_if_needed(node->table);
}
}
}
dict_table_close(node->table, dict_locked, FALSE);
node->table = NULL;
return(err);
}