mariadb/sql/gcalc_tools.h
2011-05-04 23:20:17 +05:00

306 lines
9.7 KiB
C++

/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef GCALC_TOOLS_INCLUDED
#define GCALC_TOOLS_INCLUDED
#include "gcalc_slicescan.h"
/*
The Gcalc_function class objects are used to check for a binary relation.
The relation can be constructed with the prefix notation using predicates as
op_not (as !A)
op_union ( A || B || C... )
op_intersection ( A && B && C ... )
op_symdifference ( A+B+C+... == 1 )
op_difference ( A && !(B||C||..))
with the calls of the add_operation(operation, n_operands) method.
The relation is calculated over a set of shapes, that in turn have
to be added with the add_new_shape() method. All the 'shapes' can
be set to 0 with clear_shapes() method and single value
can be changed with the invert_state() method.
Then the value of the relation can be calculated with the count() method.
Frequently used method is find_function(Gcalc_scan_iterator it) that
iterates through the 'it' until the relation becomes TRUE.
*/
class Gcalc_function
{
private:
String shapes_buffer;
String function_buffer;
const char *cur_func;
int *i_states;
uint32 cur_object_id;
uint n_shapes;
int count_internal();
public:
enum op_type
{
op_shape= 0,
op_not= 0x80000000,
op_union= 0x10000000,
op_intersection= 0x20000000,
op_symdifference= 0x30000000,
op_difference= 0x40000000,
op_backdifference= 0x50000000,
op_any= 0x70000000
};
enum shape_type
{
shape_point= 0,
shape_line= 1,
shape_polygon= 2,
shape_hole= 3
};
Gcalc_function() : n_shapes(0) {}
gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind);
/*
Adds the leaf operation that returns the shape value.
Also adds the shape to the list of operands.
*/
int single_shape_op(shape_type shape_kind, gcalc_shape_info *si);
void add_operation(op_type operation, uint32 n_operands);
void add_not_operation(op_type operation, uint32 n_operands);
uint32 get_next_operation_pos() { return function_buffer.length(); }
void add_operands_to_op(uint32 operation_pos, uint32 n_operands);
void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; }
int reserve_shape_buffer(uint n_shapes);
int reserve_op_buffer(uint n_ops);
uint get_nshapes() const { return n_shapes; }
shape_type get_shape_kind(gcalc_shape_info si) const
{
return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4));
}
void set_states(int *shape_states) { i_states= shape_states; }
int alloc_states();
void invert_state(gcalc_shape_info shape) { i_states[shape]^= 1; }
int get_state(gcalc_shape_info shape) { return i_states[shape]; }
int count()
{
cur_func= function_buffer.ptr();
return count_internal();
}
void clear_state() { bzero(i_states, n_shapes * sizeof(int)); }
void reset();
int find_function(Gcalc_scan_iterator &scan_it);
};
/*
Gcalc_operation_transporter class extends the Gcalc_shape_transporter.
In addition to the parent's functionality, it fills the Gcalc_function
object so it has the function that determines the proper shape.
For example Multipolyline will be represented as an union of polylines.
*/
class Gcalc_operation_transporter : public Gcalc_shape_transporter
{
protected:
Gcalc_function *m_fn;
gcalc_shape_info m_si;
public:
Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) :
Gcalc_shape_transporter(heap), m_fn(fn) {}
int single_point(double x, double y);
int start_line();
int complete_line();
int start_poly();
int complete_poly();
int start_ring();
int complete_ring();
int add_point(double x, double y);
int start_collection(int n_objects);
};
/*
When we calculate the result of an spatial operation like
Union or Intersection, we receive vertexes of the result
one-by-one, and probably need to treat them in variative ways.
So, the Gcalc_result_receiver class designed to get these
vertexes and construct shapes/objects out of them.
and to store the result in an appropriate format
*/
class Gcalc_result_receiver
{
String buffer;
uint32 n_points;
Gcalc_function::shape_type common_shapetype;
bool collection_result;
uint32 n_shapes;
uint32 n_holes;
Gcalc_function::shape_type cur_shape;
uint32 shape_pos;
double first_x, first_y, prev_x, prev_y;
double shape_area;
public:
Gcalc_result_receiver() : collection_result(FALSE), n_shapes(0), n_holes(0)
{}
int start_shape(Gcalc_function::shape_type shape);
int add_point(double x, double y);
int complete_shape();
int single_point(double x, double y);
int done();
void reset();
const char *result() { return buffer.ptr(); }
uint length() { return buffer.length(); }
int get_nshapes() { return n_shapes; }
int get_nholes() { return n_holes; }
int get_result_typeid();
uint32 position() { return buffer.length(); }
int move_hole(uint32 dest_position, uint32 source_position,
uint32 *new_dest_position);
};
/*
Gcalc_operation_reducer class incapsulates the spatial
operation functionality. It analyses the slices generated by
the slicescan and calculates the shape of the result defined
by some Gcalc_function.
*/
class Gcalc_operation_reducer : public Gcalc_dyn_list
{
public:
enum modes
{
/* Numeric values important here - careful with changing */
default_mode= 0,
prefer_big_with_holes= 1,
polygon_selfintersections_allowed= 2, /* allowed in the result */
line_selfintersections_allowed= 4 /* allowed in the result */
};
Gcalc_operation_reducer(size_t blk_size=8192);
void init(Gcalc_function *fn, modes mode= default_mode);
Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode,
size_t blk_size=8192);
int count_slice(Gcalc_scan_iterator *si);
int count_all(Gcalc_heap *hp);
int get_result(Gcalc_result_receiver *storage);
void reset();
class res_point : public Gcalc_dyn_list::Item
{
public:
bool intersection_point;
double x,y;
res_point *up;
res_point *down;
res_point *glue;
union
{
const Gcalc_heap::Info *pi;
res_point *first_poly_node;
};
union
{
res_point *outer_poly;
uint32 poly_position;
};
Gcalc_dyn_list::Item **prev_hook;
res_point *get_next() { return (res_point *)next; }
};
class active_thread : public Gcalc_dyn_list::Item
{
public:
res_point *rp;
int result_range;
res_point *thread_start;
active_thread *get_next() { return (active_thread *)next; }
};
protected:
Gcalc_function *m_fn;
Gcalc_dyn_list::Item **m_res_hook;
res_point *m_result;
int m_mode;
res_point *result_heap;
active_thread *m_first_active_thread;
res_point *add_res_point()
{
res_point *result= (res_point *)new_item();
*m_res_hook= result;
result->prev_hook= m_res_hook;
m_res_hook= &result->next;
return result;
}
active_thread *new_active_thread() { return (active_thread *)new_item(); }
private:
int continue_range(active_thread *t, const Gcalc_heap::Info *p);
int continue_i_range(active_thread *t, const Gcalc_heap::Info *p,
double x, double y);
int start_range(active_thread *t, const Gcalc_heap::Info *p);
int start_i_range(active_thread *t, const Gcalc_heap::Info *p,
double x, double y);
int end_range(active_thread *t, const Gcalc_heap::Info *p);
int end_i_range(active_thread *t, const Gcalc_heap::Info *p,
double x, double y);
int start_couple(active_thread *t0, active_thread *t1,const Gcalc_heap::Info *p,
const active_thread *prev_range);
int start_i_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
double x, double y,
const active_thread *prev_range);
int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p);
int end_i_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
double x, double y);
int add_single_point(const Gcalc_heap::Info *p);
int add_i_single_point(const Gcalc_heap::Info *p, double x, double y);
int handle_lines_intersection(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
double x, double y);
int handle_polygons_intersection(active_thread *t0, active_thread *t1,
Gcalc_dyn_list::Item **t_hook,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
int prev_state, double x, double y,
const active_thread *prev_range);
int handle_line_polygon_intersection(active_thread *l,
const Gcalc_heap::Info *pl,
int line_state, int poly_state,
double x, double y);
int get_single_result(res_point *res, Gcalc_result_receiver *storage);
int get_result_thread(res_point *cur, Gcalc_result_receiver *storage,
int move_upward);
int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage);
int get_line_result(res_point *cur, Gcalc_result_receiver *storage);
void free_result(res_point *res);
};
#endif /*GCALC_TOOLS_INCLUDED*/