mariadb/sql/gcalc_tools.cc
2011-05-04 23:20:17 +05:00

1156 lines
26 KiB
C++

/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "mysql_priv.h"
#ifdef HAVE_SPATIAL
#include "gcalc_tools.h"
#include "spatial.h"
#define float_to_coord(d) ((double) d)
/*
Adds new shape to the relation.
After that it can be used as an argument of an operation.
*/
gcalc_shape_info Gcalc_function::add_new_shape(uint32 shape_id,
shape_type shape_kind)
{
shapes_buffer.q_append((uint32) shape_kind);
return n_shapes++;
}
/*
Adds new operation to the constructed relation.
To construct the complex relation one has to specify operations
in prefix style.
*/
void Gcalc_function::add_operation(op_type operation, uint32 n_operands)
{
uint32 op_code= (uint32 ) operation + n_operands;
function_buffer.q_append(op_code);
}
/*
Sometimes the number of arguments is unknown at the moment the operation
is added. That allows to specify it later.
*/
void Gcalc_function::add_operands_to_op(uint32 operation_pos, uint32 n_operands)
{
uint32 op_code= uint4korr(function_buffer.ptr() + operation_pos) + n_operands;
function_buffer.write_at_position(operation_pos, op_code);
}
/*
Just like the add_operation() but the result will be the inverted
value of an operation.
*/
void Gcalc_function::add_not_operation(op_type operation, uint32 n_operands)
{
uint32 op_code= ((uint32) op_not | (uint32 ) operation) + n_operands;
function_buffer.q_append(op_code);
}
int Gcalc_function::single_shape_op(shape_type shape_kind, gcalc_shape_info *si)
{
if (reserve_shape_buffer(1) || reserve_op_buffer(1))
return 1;
*si= add_new_shape(0, shape_kind);
add_operation(op_shape, *si);
return 0;
}
/*
Specify how many arguments we're going to have.
*/
int Gcalc_function::reserve_shape_buffer(uint n_shapes)
{
return shapes_buffer.reserve(n_shapes * 4, 512);
}
/*
Specify how many operations we're going to have.
*/
int Gcalc_function::reserve_op_buffer(uint n_ops)
{
return function_buffer.reserve(n_ops * 4, 512);
}
int Gcalc_function::alloc_states()
{
if (function_buffer.reserve((n_shapes+1) * sizeof(int)))
return 1;
i_states= (int *) (function_buffer.ptr() + ALIGN_SIZE(function_buffer.length()));
return 0;
}
int Gcalc_function::count_internal()
{
int c_op= uint4korr(cur_func);
op_type next_func= (op_type) (c_op & op_any);
int mask= (c_op & op_not) ? 1:0;
int n_ops= c_op & ~op_any;
int result;
cur_func+= 4;
if (next_func == op_shape)
return i_states[c_op & ~(op_any | op_not)] ^ mask;
result= count_internal();
while (--n_ops)
{
int next_res= count_internal();
switch (next_func)
{
case op_union:
result= result | next_res;
break;
case op_intersection:
result= result & next_res;
break;
case op_symdifference:
result= result ^ next_res;
break;
case op_difference:
result= result & !next_res;
break;
case op_backdifference:
result= !result & next_res;
break;
default:
DBUG_ASSERT(FALSE);
};
}
return result ^ mask;
}
/*
Clear the state of the object.
*/
void Gcalc_function::reset()
{
n_shapes= 0;
shapes_buffer.length(0);
function_buffer.length(0);
}
int Gcalc_function::find_function(Gcalc_scan_iterator &scan_it)
{
while (scan_it.more_points())
{
if (scan_it.step())
return -1;
Gcalc_scan_events ev= scan_it.get_event();
const Gcalc_scan_iterator::point *evpos= scan_it.get_event_position();
if (ev & (scev_point | scev_end | scev_two_ends))
continue;
clear_state();
for (Gcalc_point_iterator pit(&scan_it); pit.point() != evpos; ++pit)
{
gcalc_shape_info si= pit.point()->get_shape();
if ((get_shape_kind(si) == Gcalc_function::shape_polygon))
invert_state(si);
}
invert_state(evpos->get_shape());
if (ev == scev_intersection)
{
const Gcalc_scan_iterator::point *evnext= evpos->c_get_next();
if ((get_shape_kind(evpos->get_shape()) !=
Gcalc_function::shape_polygon) ||
(get_shape_kind(evnext->get_shape()) !=
Gcalc_function::shape_polygon))
invert_state(evnext->get_shape());
}
if (count())
return 1;
}
return 0;
}
int Gcalc_operation_transporter::single_point(double x, double y)
{
gcalc_shape_info si;
return m_fn->single_shape_op(Gcalc_function::shape_point, &si) ||
int_single_point(si, x, y);
}
int Gcalc_operation_transporter::start_line()
{
int_start_line();
return m_fn->single_shape_op(Gcalc_function::shape_line, &m_si);
}
int Gcalc_operation_transporter::complete_line()
{
int_complete_line();
return 0;
}
int Gcalc_operation_transporter::start_poly()
{
int_start_poly();
return m_fn->single_shape_op(Gcalc_function::shape_polygon, &m_si);
}
int Gcalc_operation_transporter::complete_poly()
{
int_complete_poly();
return 0;
}
int Gcalc_operation_transporter::start_ring()
{
int_start_ring();
return 0;
}
int Gcalc_operation_transporter::complete_ring()
{
int_complete_ring();
return 0;
}
int Gcalc_operation_transporter::add_point(double x, double y)
{
return int_add_point(m_si, x, y);
}
int Gcalc_operation_transporter::start_collection(int n_objects)
{
if (m_fn->reserve_shape_buffer(n_objects) || m_fn->reserve_op_buffer(1))
return 1;
m_fn->add_operation(Gcalc_function::op_union, n_objects);
return 0;
}
int Gcalc_result_receiver::start_shape(Gcalc_function::shape_type shape)
{
if (buffer.reserve(4*2, 512))
return 1;
cur_shape= shape;
shape_pos= buffer.length();
buffer.length(shape_pos + ((shape == Gcalc_function::shape_point) ? 4:8));
n_points= 0;
shape_area= 0.0;
return 0;
}
int Gcalc_result_receiver::add_point(double x, double y)
{
if (n_points && x == prev_x && y == prev_y)
return 0;
if (!n_points++)
{
prev_x= first_x= x;
prev_y= first_y= y;
return 0;
}
shape_area+= prev_x*y - prev_y*x;
if (buffer.reserve(8*2, 512))
return 1;
buffer.q_append(prev_x);
buffer.q_append(prev_y);
prev_x= x;
prev_y= y;
return 0;
}
int Gcalc_result_receiver::complete_shape()
{
if (n_points == 0)
{
buffer.length(shape_pos);
return 0;
}
if (n_points == 1)
{
if (cur_shape != Gcalc_function::shape_point)
{
cur_shape= Gcalc_function::shape_point;
buffer.length(buffer.length()-4);
}
}
else
{
DBUG_ASSERT(cur_shape != Gcalc_function::shape_point);
if (cur_shape == Gcalc_function::shape_hole)
{
shape_area+= prev_x*first_y - prev_y*first_x;
if (fabs(shape_area) < 1e-8)
{
buffer.length(shape_pos);
return 0;
}
}
if ((cur_shape == Gcalc_function::shape_polygon ||
cur_shape == Gcalc_function::shape_hole) &&
prev_x == first_x && prev_y == first_y)
{
n_points--;
buffer.write_at_position(shape_pos+4, n_points);
goto do_complete;
}
buffer.write_at_position(shape_pos+4, n_points);
}
if (buffer.reserve(8*2, 512))
return 1;
buffer.q_append(prev_x);
buffer.q_append(prev_y);
do_complete:
buffer.write_at_position(shape_pos, (uint32) cur_shape);
if (!n_shapes++)
{
DBUG_ASSERT(cur_shape != Gcalc_function::shape_hole);
common_shapetype= cur_shape;
}
else if (cur_shape == Gcalc_function::shape_hole)
{
++n_holes;
}
else if (!collection_result && (cur_shape != common_shapetype))
{
collection_result= true;
}
return 0;
}
int Gcalc_result_receiver::single_point(double x, double y)
{
return start_shape(Gcalc_function::shape_point) ||
add_point(x, y) ||
complete_shape();
}
int Gcalc_result_receiver::done()
{
return 0;
}
void Gcalc_result_receiver::reset()
{
buffer.length(0);
collection_result= FALSE;
n_shapes= n_holes= 0;
}
int Gcalc_result_receiver::get_result_typeid()
{
if (!n_shapes)
return 0;
if (collection_result)
return Geometry::wkb_geometrycollection;
switch (common_shapetype)
{
case Gcalc_function::shape_polygon:
return (n_shapes - n_holes == 1) ?
Geometry::wkb_polygon : Geometry::wkb_multipolygon;
case Gcalc_function::shape_point:
return (n_shapes == 1) ? Geometry::wkb_point : Geometry::wkb_multipoint;
case Gcalc_function::shape_line:
return (n_shapes == 1) ? Geometry::wkb_linestring :
Geometry::wkb_multilinestring;
default:
DBUG_ASSERT(0);
}
return 0;
}
int Gcalc_result_receiver::move_hole(uint32 dest_position, uint32 source_position,
uint32 *new_dest_position)
{
char *ptr;
int source_len;
if (dest_position == source_position)
{
*new_dest_position= position();
return 0;
}
source_len= buffer.length() - source_position;
if (buffer.reserve(source_len, MY_ALIGN(source_len, 512)))
return 1;
ptr= (char *) buffer.ptr();
memmove(ptr + dest_position + source_len, ptr + dest_position,
buffer.length() - dest_position);
memcpy(ptr + dest_position, ptr + buffer.length(), source_len);
*new_dest_position= dest_position + source_len;
return 0;
}
Gcalc_operation_reducer::Gcalc_operation_reducer(size_t blk_size) :
Gcalc_dyn_list(blk_size, sizeof(res_point)),
m_res_hook((Gcalc_dyn_list::Item **)&m_result),
m_first_active_thread(NULL)
{}
void Gcalc_operation_reducer::init(Gcalc_function *fn, modes mode)
{
m_fn= fn;
m_mode= mode;
m_first_active_thread= NULL;
}
Gcalc_operation_reducer::
Gcalc_operation_reducer(Gcalc_function *fn, modes mode, size_t blk_size) :
Gcalc_dyn_list(blk_size, sizeof(res_point)),
m_res_hook((Gcalc_dyn_list::Item **)&m_result)
{
init(fn, mode);
}
inline int Gcalc_operation_reducer::continue_range(active_thread *t,
const Gcalc_heap::Info *p)
{
DBUG_ASSERT(t->result_range);
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= NULL;
rp->down= t->rp;
t->rp->up= rp;
rp->intersection_point= false;
rp->pi= p;
t->rp= rp;
return 0;
}
inline int Gcalc_operation_reducer::continue_i_range(active_thread *t,
const Gcalc_heap::Info *p,
double x, double y)
{
DBUG_ASSERT(t->result_range);
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= NULL;
rp->down= t->rp;
t->rp->up= rp;
rp->intersection_point= true;
rp->x= x;
rp->pi= p;
rp->y= y;
t->rp= rp;
return 0;
}
inline int Gcalc_operation_reducer::start_range(active_thread *t,
const Gcalc_heap::Info *p)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->down= NULL;
rp->intersection_point= false;
rp->pi= p;
t->result_range= 1;
t->rp= rp;
return 0;
}
inline int Gcalc_operation_reducer::start_i_range(active_thread *t,
const Gcalc_heap::Info *p,
double x, double y)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->down= NULL;
rp->intersection_point= true;
rp->x= x;
rp->y= y;
rp->pi= p;
t->result_range= 1;
t->rp= rp;
return 0;
}
inline int Gcalc_operation_reducer::end_range(active_thread *t,
const Gcalc_heap::Info *p)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->up= NULL;
rp->down= t->rp;
rp->intersection_point= false;
rp->pi= p;
t->rp->up= rp;
t->result_range= 0;
return 0;
}
inline int Gcalc_operation_reducer::end_i_range(active_thread *t,
const Gcalc_heap::Info *p,
double x, double y)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->up= NULL;
rp->down= t->rp;
rp->intersection_point= true;
rp->x= x;
rp->pi= p;
rp->y= y;
t->rp->up= rp;
t->result_range= 0;
return 0;
}
int Gcalc_operation_reducer::start_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p,
const active_thread *prev_range)
{
res_point *rp0, *rp1;
if (!(rp0= add_res_point()) || !(rp1= add_res_point()))
return 1;
rp0->glue= rp1;
rp1->glue= rp0;
rp0->intersection_point= rp1->intersection_point= false;
rp0->down= rp1->down= NULL;
rp0->pi= rp1->pi= p;
t0->rp= rp0;
t1->rp= rp1;
if (prev_range)
{
rp0->outer_poly= prev_range->thread_start;
t1->thread_start= prev_range->thread_start;
}
else
{
rp0->outer_poly= 0;
t0->thread_start= rp0;
}
return 0;
}
int Gcalc_operation_reducer::start_i_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
double x, double y,
const active_thread *prev_range)
{
res_point *rp0, *rp1;
if (!(rp0= add_res_point()) || !(rp1= add_res_point()))
return 1;
rp0->glue= rp1;
rp1->glue= rp0;
rp0->pi= p0;
rp1->pi= p1;
rp0->intersection_point= rp1->intersection_point= true;
rp0->down= rp1->down= NULL;
rp0->x= rp1->x= x;
rp0->y= rp1->y= y;
t0->result_range= t1->result_range= 1;
t0->rp= rp0;
t1->rp= rp1;
if (prev_range)
{
rp0->outer_poly= prev_range->thread_start;
t1->thread_start= prev_range->thread_start;
}
else
{
rp0->outer_poly= 0;
t0->thread_start= rp0;
}
return 0;
}
int Gcalc_operation_reducer::end_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p)
{
res_point *rp0, *rp1;
DBUG_ASSERT(t1->result_range);
if (!(rp0= add_res_point()) || !(rp1= add_res_point()))
return 1;
rp0->down= t0->rp;
rp1->down= t1->rp;
rp1->glue= rp0;
rp0->glue= rp1;
rp0->up= rp1->up= NULL;
t0->rp->up= rp0;
t1->rp->up= rp1;
rp0->intersection_point= rp1->intersection_point= false;
rp0->pi= rp1->pi= p;
t0->result_range= t1->result_range= 0;
return 0;
}
int Gcalc_operation_reducer::end_i_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
double x, double y)
{
res_point *rp0, *rp1;
if (!(rp0= add_res_point()) || !(rp1= add_res_point()))
return 1;
rp0->down= t0->rp;
rp1->down= t1->rp;
rp0->pi= p0;
rp1->pi= p1;
rp1->glue= rp0;
rp0->glue= rp1;
rp0->up= rp1->up= NULL;
rp0->intersection_point= rp1->intersection_point= true;
rp0->x= rp1->x= x;
rp0->y= rp1->y= y;
t0->result_range= t1->result_range= 0;
t0->rp->up= rp0;
t1->rp->up= rp1;
return 0;
}
int Gcalc_operation_reducer::add_single_point(const Gcalc_heap::Info *p)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->up= rp->down= NULL;
rp->intersection_point= false;
rp->pi= p;
rp->x= p->x;
rp->y= p->y;
return 0;
}
int Gcalc_operation_reducer::add_i_single_point(const Gcalc_heap::Info *p,
double x, double y)
{
res_point *rp= add_res_point();
if (!rp)
return 1;
rp->glue= rp->up= rp->down= NULL;
rp->intersection_point= true;
rp->x= x;
rp->pi= p;
rp->y= y;
return 0;
}
int Gcalc_operation_reducer::
handle_lines_intersection(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p0, const Gcalc_heap::Info *p1,
double x, double y)
{
m_fn->invert_state(p0->shape);
m_fn->invert_state(p1->shape);
int intersection_state= m_fn->count();
if ((t0->result_range | t1->result_range) == intersection_state)
return 0;
if (t0->result_range &&
(end_i_range(t0, p1, x, y) || start_i_range(t0, p1, x, y)))
return 1;
if (t1->result_range &&
(end_i_range(t1, p0, x, y) || start_i_range(t1, p0, x, y)))
return 1;
if (intersection_state &&
add_i_single_point(p0, x, y))
return 1;
return 0;
}
inline int Gcalc_operation_reducer::
handle_line_polygon_intersection(active_thread *l, const Gcalc_heap::Info *pl,
int line_state, int poly_state,
double x, double y)
{
int range_after= ~poly_state & line_state;
if (l->result_range == range_after)
return 0;
return range_after ? start_i_range(l, pl, x, y) : end_i_range(l, pl, x, y);
}
static inline void switch_athreads(Gcalc_operation_reducer::active_thread *t0,
Gcalc_operation_reducer::active_thread *t1,
Gcalc_dyn_list::Item **hook)
{
*hook= t1;
t0->next= t1->next;
t1->next= t0;
}
inline int Gcalc_operation_reducer::
handle_polygons_intersection(active_thread *t0, active_thread *t1,
Gcalc_dyn_list::Item **t_hook,
const Gcalc_heap::Info *p0,
const Gcalc_heap::Info *p1,
int prev_state, double x, double y,
const active_thread *prev_range)
{
m_fn->invert_state(p0->shape);
int state_11= m_fn->count();
m_fn->invert_state(p1->shape);
int state_2= m_fn->count();
int state_01= prev_state ^ t0->result_range;
if ((prev_state == state_01) && (prev_state == state_2))
{
if (state_11 == prev_state)
{
switch_athreads(t0, t1, t_hook);
return 0;
}
return start_i_couple(t0, t1, p0, p1, x, y, prev_range);
}
if (prev_state == state_2)
{
if (state_01 == state_11)
{
if (m_mode & polygon_selfintersections_allowed)
{
switch_athreads(t0, t1, t_hook);
return 0;
}
if (prev_state != (m_mode & prefer_big_with_holes))
return continue_i_range(t0, p0, x, y) || continue_i_range(t1, p1, x, y);
return end_i_couple(t0, t1, p0, p1, x, y) ||
start_i_couple(t0, t1, p0, p1, x, y, prev_range);
}
else
return end_i_couple(t0, t1, p0, p1, x, y);
}
if (state_01 ^ state_11)
{
switch_athreads(t0, t1, t_hook);
return 0;
}
active_thread *thread_to_continue;
const Gcalc_heap::Info *way_to_go;
if (prev_state == state_01)
{
thread_to_continue= t1;
way_to_go= p1;
}
else
{
thread_to_continue= t0;
way_to_go= p0;
}
return continue_i_range(thread_to_continue, way_to_go, x, y);
}
int Gcalc_operation_reducer::count_slice(Gcalc_scan_iterator *si)
{
Gcalc_point_iterator pi(si);
active_thread *cur_t= m_first_active_thread;
Gcalc_dyn_list::Item **at_hook= (Gcalc_dyn_list::Item **)&m_first_active_thread;
const active_thread *prev_range;
int prev_state;
if (si->get_event() & (scev_point | scev_end | scev_two_ends))
{
for (; pi.point() != si->get_event_position(); ++pi, cur_t= cur_t->get_next())
at_hook= &cur_t->next;
switch (si->get_event())
{
case scev_point:
{
if (cur_t->result_range &&
continue_range(cur_t, pi.get_pi()))
return 1;
break;
}
case scev_end:
{
if (cur_t->result_range &&
end_range(cur_t, pi.get_pi()))
return 1;
*at_hook= cur_t->next;
free_item(cur_t);
break;
}
case scev_two_ends:
{
active_thread *cur_t1= cur_t->get_next();
if (cur_t->result_range &&
end_couple(cur_t, cur_t1, pi.get_pi()))
return 1;
*at_hook= cur_t1->next;
free_list(cur_t, &cur_t1->next);
break;
}
default:
DBUG_ASSERT(0);
}
return 0;
}
prev_state= 0;
prev_range= 0;
m_fn->clear_state();
for (; pi.point() != si->get_event_position(); ++pi, cur_t= cur_t->get_next())
{
if (m_fn->get_shape_kind(pi.get_shape()) == Gcalc_function::shape_polygon)
{
m_fn->invert_state(pi.get_shape());
prev_state^= cur_t->result_range;
}
at_hook= &cur_t->next;
if (cur_t->result_range)
prev_range= prev_state ? cur_t : 0;
}
switch (si->get_event())
{
case scev_thread:
{
active_thread *new_t= new_active_thread();
if (!new_t)
return 1;
m_fn->invert_state(pi.get_shape());
new_t->result_range= prev_state ^ m_fn->count();
new_t->next= *at_hook;
*at_hook= new_t;
if (new_t->result_range &&
start_range(new_t, pi.get_pi()))
return 1;
break;
}
case scev_two_threads:
{
active_thread *new_t0, *new_t1;
int fn_result;
if (!(new_t0= new_active_thread()) || !(new_t1= new_active_thread()))
return 1;
m_fn->invert_state(pi.get_shape());
fn_result= m_fn->count();
new_t0->result_range= new_t1->result_range= prev_state ^ fn_result;
new_t1->next= *at_hook;
new_t0->next= new_t1;
*at_hook= new_t0;
if (new_t0->result_range &&
start_couple(new_t0, new_t1, pi.get_pi(), prev_range))
return 1;
break;
}
case scev_intersection:
{
active_thread *cur_t1= cur_t->get_next();
const Gcalc_heap::Info *p0, *p1;
p0= pi.get_pi();
++pi;
p1= pi.get_pi();
bool line0= m_fn->get_shape_kind(p0->shape) == Gcalc_function::shape_line;
bool line1= m_fn->get_shape_kind(p1->shape) == Gcalc_function::shape_line;
if (!line0 && !line1) /* two polygons*/
{
if (handle_polygons_intersection(cur_t, cur_t1, at_hook, p0, p1,
prev_state, pi.get_x(), si->get_y(),
prev_range))
return 1;
}
else if (line0 && line1)
{
if (!prev_state &&
handle_lines_intersection(cur_t, cur_t1,
p0, p1, pi.get_x(), si->get_y()))
return 1;
switch_athreads(cur_t, cur_t1, at_hook);
}
else
{
int poly_state;
int line_state;
const Gcalc_heap::Info *line;
active_thread *line_t;
m_fn->invert_state(p0->shape);
if (line0)
{
line_state= m_fn->count();
poly_state= prev_state;
line= p0;
line_t= cur_t1;
}
else
{
poly_state= m_fn->count();
m_fn->invert_state(p1->shape);
line_state= m_fn->count();
line= p1;
line_t= cur_t;
}
if (handle_line_polygon_intersection(line_t, line,
line_state, poly_state,
pi.get_x(), si->get_y()))
return 1;
switch_athreads(cur_t, cur_t1, at_hook);
}
break;
}
case scev_single_point:
{
m_fn->invert_state(pi.get_shape());
if ((prev_state ^ m_fn->count()) &&
add_single_point(pi.get_pi()))
return 1;
break;
}
default:
DBUG_ASSERT(0);
}
return 0;
}
int Gcalc_operation_reducer::count_all(Gcalc_heap *hp)
{
Gcalc_scan_iterator si;
si.init(hp);
while (si.more_points())
{
if (si.step())
return 1;
if (count_slice(&si))
return 1;
}
return 0;
}
inline void Gcalc_operation_reducer::free_result(res_point *res)
{
if ((*res->prev_hook= res->next))
{
res->get_next()->prev_hook= res->prev_hook;
}
free_item(res);
}
inline int Gcalc_operation_reducer::get_single_result(res_point *res,
Gcalc_result_receiver *storage)
{
if (res->intersection_point)
{
if (storage->single_point(float_to_coord(res->x),
float_to_coord(res->y)))
return 1;
}
else
if (storage->single_point(res->x, res->y))
return 1;
free_result(res);
return 0;
}
int Gcalc_operation_reducer::get_result_thread(res_point *cur,
Gcalc_result_receiver *storage,
int move_upward)
{
res_point *next;
bool glue_step= false;
res_point *first_poly_node= cur;
double x, y;
while (cur)
{
if (!glue_step)
{
if (cur->intersection_point)
{
x= float_to_coord(cur->x);
y= float_to_coord(cur->y);
}
else
{
x= cur->pi->x;
y= cur->pi->y;
}
if (storage->add_point(x, y))
return 1;
}
next= move_upward ? cur->up : cur->down;
if (!next && !glue_step)
{
next= cur->glue;
move_upward^= 1;
glue_step= true;
if (next)
next->glue= NULL;
}
else
glue_step= false;
cur->first_poly_node= first_poly_node;
free_result(cur);
cur= next;
}
return 0;
}
int Gcalc_operation_reducer::get_polygon_result(res_point *cur,
Gcalc_result_receiver *storage)
{
res_point *glue= cur->glue;
glue->up->down= NULL;
free_result(glue);
return get_result_thread(cur, storage, 1) ||
storage->complete_shape();
}
int Gcalc_operation_reducer::get_line_result(res_point *cur,
Gcalc_result_receiver *storage)
{
res_point *next;
int move_upward= 1;
if (cur->glue)
{
/* Here we have to find the beginning of the line */
next= cur->up;
move_upward= 1;
while (next)
{
cur= next;
next= move_upward ? next->up : next->down;
if (!next)
{
next= cur->glue;
move_upward^= 1;
}
}
}
return get_result_thread(cur, storage, move_upward) ||
storage->complete_shape();
}
int Gcalc_operation_reducer::get_result(Gcalc_result_receiver *storage)
{
*m_res_hook= NULL;
while (m_result)
{
if (!m_result->up)
{
if (get_single_result(m_result, storage))
return 1;
continue;
}
Gcalc_function::shape_type shape= m_fn->get_shape_kind(m_result->pi->shape);
if (shape == Gcalc_function::shape_polygon)
{
if (m_result->outer_poly)
{
uint32 *insert_position, hole_position;
insert_position= &m_result->outer_poly->first_poly_node->poly_position;
DBUG_ASSERT(*insert_position);
hole_position= storage->position();
storage->start_shape(Gcalc_function::shape_hole);
if (get_polygon_result(m_result, storage) ||
storage->move_hole(*insert_position, hole_position,
insert_position))
return 1;
}
else
{
uint32 *poly_position= &m_result->poly_position;
storage->start_shape(Gcalc_function::shape_polygon);
if (get_polygon_result(m_result, storage))
return 1;
*poly_position= storage->position();
}
}
else
{
storage->start_shape(shape);
if (get_line_result(m_result, storage))
return 1;
}
}
m_res_hook= (Gcalc_dyn_list::Item **)&m_result;
storage->done();
return 0;
}
void Gcalc_operation_reducer::reset()
{
free_list(m_result, m_res_hook);
m_res_hook= (Gcalc_dyn_list::Item **)&m_result;
free_list(m_first_active_thread);
}
#endif /*HAVE_SPATIAL*/