mariadb/storage/innobase/row/row0upd.cc
Marko Mäkelä 5ff6694d70 enum btr_latch_mode: Incorporate some flags.
This fixes some GCC 6.3.0 warnings and makes the code a little
more debugging-friendly.
2017-03-09 10:30:36 +02:00

3487 lines
92 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2015, 2016, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file row/row0upd.cc
Update of a row
Created 12/27/1996 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include "row0upd.h"
#ifdef UNIV_NONINL
#include "row0upd.ic"
#endif
#include "dict0dict.h"
#include "dict0mem.h"
#include "trx0undo.h"
#include "rem0rec.h"
#include "dict0boot.h"
#include "dict0crea.h"
#include "mach0data.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "que0que.h"
#include "row0ext.h"
#include "row0ins.h"
#include "row0log.h"
#include "row0row.h"
#include "row0sel.h"
#include "rem0cmp.h"
#include "lock0lock.h"
#include "log0log.h"
#include "pars0sym.h"
#include "eval0eval.h"
#include "buf0lru.h"
#include "trx0rec.h"
#include "fts0fts.h"
#include "fts0types.h"
#include <algorithm>
#include <mysql/plugin.h>
#include <mysql/service_wsrep.h>
/* What kind of latch and lock can we assume when the control comes to
-------------------------------------------------------------------
an update node?
--------------
Efficiency of massive updates would require keeping an x-latch on a
clustered index page through many updates, and not setting an explicit
x-lock on clustered index records, as they anyway will get an implicit
x-lock when they are updated. A problem is that the read nodes in the
graph should know that they must keep the latch when passing the control
up to the update node, and not set any record lock on the record which
will be updated. Another problem occurs if the execution is stopped,
as the kernel switches to another query thread, or the transaction must
wait for a lock. Then we should be able to release the latch and, maybe,
acquire an explicit x-lock on the record.
Because this seems too complicated, we conclude that the less
efficient solution of releasing all the latches when the control is
transferred to another node, and acquiring explicit x-locks, is better. */
/* How is a delete performed? If there is a delete without an
explicit cursor, i.e., a searched delete, there are at least
two different situations:
the implicit select cursor may run on (1) the clustered index or
on (2) a secondary index. The delete is performed by setting
the delete bit in the record and substituting the id of the
deleting transaction for the original trx id, and substituting a
new roll ptr for previous roll ptr. The old trx id and roll ptr
are saved in the undo log record. Thus, no physical changes occur
in the index tree structure at the time of the delete. Only
when the undo log is purged, the index records will be physically
deleted from the index trees.
The query graph executing a searched delete would consist of
a delete node which has as a subtree a select subgraph.
The select subgraph should return a (persistent) cursor
in the clustered index, placed on page which is x-latched.
The delete node should look for all secondary index records for
this clustered index entry and mark them as deleted. When is
the x-latch freed? The most efficient way for performing a
searched delete is obviously to keep the x-latch for several
steps of query graph execution. */
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/***********************************************************//**
Checks if an update vector changes some of the first ordering fields of an
index record. This is only used in foreign key checks and we can assume
that index does not contain column prefixes.
@return TRUE if changes */
static
ibool
row_upd_changes_first_fields_binary(
/*================================*/
dtuple_t* entry, /*!< in: old value of index entry */
dict_index_t* index, /*!< in: index of entry */
const upd_t* update, /*!< in: update vector for the row */
ulint n); /*!< in: how many first fields to check */
/*********************************************************************//**
Checks if index currently is mentioned as a referenced index in a foreign
key constraint.
NOTE that since we do not hold dict_operation_lock when leaving the
function, it may be that the referencing table has been dropped when
we leave this function: this function is only for heuristic use!
@return TRUE if referenced */
static
ibool
row_upd_index_is_referenced(
/*========================*/
dict_index_t* index, /*!< in: index */
trx_t* trx) /*!< in: transaction */
{
dict_table_t* table = index->table;
ibool froze_data_dict = FALSE;
ibool is_referenced = FALSE;
if (table->referenced_set.empty()) {
return(FALSE);
}
if (trx->dict_operation_lock_mode == 0) {
row_mysql_freeze_data_dictionary(trx);
froze_data_dict = TRUE;
}
dict_foreign_set::iterator it
= std::find_if(table->referenced_set.begin(),
table->referenced_set.end(),
dict_foreign_with_index(index));
is_referenced = (it != table->referenced_set.end());
if (froze_data_dict) {
row_mysql_unfreeze_data_dictionary(trx);
}
return(is_referenced);
}
#ifdef WITH_WSREP
static
ibool
wsrep_row_upd_index_is_foreign(
/*========================*/
dict_index_t* index, /*!< in: index */
trx_t* trx) /*!< in: transaction */
{
dict_table_t* table = index->table;
ibool froze_data_dict = FALSE;
ibool is_referenced = FALSE;
if (table->foreign_set.empty()) {
return(FALSE);
}
if (trx->dict_operation_lock_mode == 0) {
row_mysql_freeze_data_dictionary(trx);
froze_data_dict = TRUE;
}
dict_foreign_set::iterator it
= std::find_if(table->foreign_set.begin(),
table->foreign_set.end(),
dict_foreign_with_foreign_index(index));
is_referenced = (it != table->foreign_set.end());
if (froze_data_dict) {
row_mysql_unfreeze_data_dictionary(trx);
}
return(is_referenced);
}
#endif /* WITH_WSREP */
/*********************************************************************//**
Checks if possible foreign key constraints hold after a delete of the record
under pcur.
NOTE that this function will temporarily commit mtr and lose the
pcur position!
@return DB_SUCCESS or an error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_check_references_constraints(
/*=================================*/
upd_node_t* node, /*!< in: row update node */
btr_pcur_t* pcur, /*!< in: cursor positioned on a record; NOTE: the
cursor position is lost in this function! */
dict_table_t* table, /*!< in: table in question */
dict_index_t* index, /*!< in: index of the cursor */
ulint* offsets,/*!< in/out: rec_get_offsets(pcur.rec, index) */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr */
{
dict_foreign_t* foreign;
mem_heap_t* heap;
dtuple_t* entry;
trx_t* trx;
const rec_t* rec;
ulint n_ext;
dberr_t err;
ibool got_s_lock = FALSE;
DBUG_ENTER("row_upd_check_references_constraints");
if (table->referenced_set.empty()) {
DBUG_RETURN(DB_SUCCESS);
}
trx = thr_get_trx(thr);
rec = btr_pcur_get_rec(pcur);
ut_ad(rec_offs_validate(rec, index, offsets));
heap = mem_heap_create(500);
entry = row_rec_to_index_entry(rec, index, offsets, &n_ext, heap);
mtr_commit(mtr);
DEBUG_SYNC_C("foreign_constraint_check_for_update");
mtr_start_trx(mtr, trx);
if (trx->dict_operation_lock_mode == 0) {
got_s_lock = TRUE;
row_mysql_freeze_data_dictionary(trx);
}
for (dict_foreign_set::iterator it = table->referenced_set.begin();
it != table->referenced_set.end();
++it) {
foreign = *it;
/* Note that we may have an update which updates the index
record, but does NOT update the first fields which are
referenced in a foreign key constraint. Then the update does
NOT break the constraint. */
if (foreign->referenced_index == index
&& (node->is_delete
|| row_upd_changes_first_fields_binary(
entry, index, node->update,
foreign->n_fields))) {
dict_table_t* foreign_table = foreign->foreign_table;
dict_table_t* ref_table = NULL;
if (foreign_table == NULL) {
ref_table = dict_table_open_on_name(
foreign->foreign_table_name_lookup,
FALSE, FALSE, DICT_ERR_IGNORE_NONE);
}
/* NOTE that if the thread ends up waiting for a lock
we will release dict_operation_lock temporarily!
But the counter on the table protects 'foreign' from
being dropped while the check is running. */
err = row_ins_check_foreign_constraint(
FALSE, foreign, table, entry, thr);
if (ref_table != NULL) {
dict_table_close(ref_table, FALSE, FALSE);
}
if (err != DB_SUCCESS) {
goto func_exit;
}
}
}
err = DB_SUCCESS;
func_exit:
if (got_s_lock) {
row_mysql_unfreeze_data_dictionary(trx);
}
mem_heap_free(heap);
DEBUG_SYNC_C("foreign_constraint_check_for_update_done");
DBUG_EXECUTE_IF("row_upd_cascade_lock_wait_err",
err = DB_LOCK_WAIT;
DBUG_SET("-d,row_upd_cascade_lock_wait_err"););
DBUG_RETURN(err);
}
#ifdef WITH_WSREP
static
dberr_t
wsrep_row_upd_check_foreign_constraints(
/*=================================*/
upd_node_t* node, /*!< in: row update node */
btr_pcur_t* pcur, /*!< in: cursor positioned on a record; NOTE: the
cursor position is lost in this function! */
dict_table_t* table, /*!< in: table in question */
dict_index_t* index, /*!< in: index of the cursor */
ulint* offsets,/*!< in/out: rec_get_offsets(pcur.rec, index) */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr */
{
dict_foreign_t* foreign;
mem_heap_t* heap;
dtuple_t* entry;
trx_t* trx;
const rec_t* rec;
ulint n_ext;
dberr_t err;
ibool got_s_lock = FALSE;
ibool opened = FALSE;
if (table->foreign_set.empty()) {
return(DB_SUCCESS);
}
trx = thr_get_trx(thr);
/* TODO: make native slave thread bail out here */
rec = btr_pcur_get_rec(pcur);
ut_ad(rec_offs_validate(rec, index, offsets));
heap = mem_heap_create(500);
entry = row_rec_to_index_entry(rec, index, offsets,
&n_ext, heap);
mtr_commit(mtr);
mtr_start(mtr);
if (trx->dict_operation_lock_mode == 0) {
got_s_lock = TRUE;
row_mysql_freeze_data_dictionary(trx);
}
for (dict_foreign_set::iterator it = table->foreign_set.begin();
it != table->foreign_set.end();
++it) {
foreign = *it;
/* Note that we may have an update which updates the index
record, but does NOT update the first fields which are
referenced in a foreign key constraint. Then the update does
NOT break the constraint. */
if (foreign->foreign_index == index
&& (node->is_delete
|| row_upd_changes_first_fields_binary(
entry, index, node->update,
foreign->n_fields))) {
if (foreign->referenced_table == NULL) {
foreign->referenced_table =
dict_table_open_on_name(
foreign->referenced_table_name_lookup,
FALSE, FALSE, DICT_ERR_IGNORE_NONE);
opened = (foreign->referenced_table) ? TRUE : FALSE;
}
/* NOTE that if the thread ends up waiting for a lock
we will release dict_operation_lock temporarily!
But the counter on the table protects 'foreign' from
being dropped while the check is running. */
err = row_ins_check_foreign_constraint(
TRUE, foreign, table, entry, thr);
if (foreign->referenced_table) {
if (opened == TRUE) {
dict_table_close(foreign->referenced_table, FALSE, FALSE);
opened = FALSE;
}
}
if (err != DB_SUCCESS) {
goto func_exit;
}
}
}
err = DB_SUCCESS;
func_exit:
if (got_s_lock) {
row_mysql_unfreeze_data_dictionary(trx);
}
mem_heap_free(heap);
return(err);
}
#endif /* WITH_WSREP */
/*********************************************************************//**
Creates an update node for a query graph.
@return own: update node */
upd_node_t*
upd_node_create(
/*============*/
mem_heap_t* heap) /*!< in: mem heap where created */
{
upd_node_t* node;
node = static_cast<upd_node_t*>(
mem_heap_zalloc(heap, sizeof(upd_node_t)));
node->common.type = QUE_NODE_UPDATE;
node->state = UPD_NODE_UPDATE_CLUSTERED;
node->heap = mem_heap_create(128);
node->magic_n = UPD_NODE_MAGIC_N;
return(node);
}
/*********************************************************************//**
Updates the trx id and roll ptr field in a clustered index record in database
recovery. */
void
row_upd_rec_sys_fields_in_recovery(
/*===============================*/
rec_t* rec, /*!< in/out: record */
page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
ulint pos, /*!< in: TRX_ID position in rec */
trx_id_t trx_id, /*!< in: transaction id */
roll_ptr_t roll_ptr)/*!< in: roll ptr of the undo log record */
{
ut_ad(rec_offs_validate(rec, NULL, offsets));
if (page_zip) {
page_zip_write_trx_id_and_roll_ptr(
page_zip, rec, offsets, pos, trx_id, roll_ptr);
} else {
byte* field;
ulint len;
field = rec_get_nth_field(rec, offsets, pos, &len);
ut_ad(len == DATA_TRX_ID_LEN);
#if DATA_TRX_ID + 1 != DATA_ROLL_PTR
# error "DATA_TRX_ID + 1 != DATA_ROLL_PTR"
#endif
trx_write_trx_id(field, trx_id);
trx_write_roll_ptr(field + DATA_TRX_ID_LEN, roll_ptr);
}
}
/*********************************************************************//**
Sets the trx id or roll ptr field of a clustered index entry. */
void
row_upd_index_entry_sys_field(
/*==========================*/
dtuple_t* entry, /*!< in/out: index entry, where the memory
buffers for sys fields are already allocated:
the function just copies the new values to
them */
dict_index_t* index, /*!< in: clustered index */
ulint type, /*!< in: DATA_TRX_ID or DATA_ROLL_PTR */
ib_uint64_t val) /*!< in: value to write */
{
dfield_t* dfield;
byte* field;
ulint pos;
ut_ad(dict_index_is_clust(index));
pos = dict_index_get_sys_col_pos(index, type);
dfield = dtuple_get_nth_field(entry, pos);
field = static_cast<byte*>(dfield_get_data(dfield));
if (type == DATA_TRX_ID) {
ut_ad(val > 0);
trx_write_trx_id(field, val);
} else {
ut_ad(type == DATA_ROLL_PTR);
trx_write_roll_ptr(field, val);
}
}
/***********************************************************//**
Returns TRUE if row update changes size of some field in index or if some
field to be updated is stored externally in rec or update.
@return TRUE if the update changes the size of some field in index or
the field is external in rec or update */
ibool
row_upd_changes_field_size_or_external(
/*===================================*/
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
const upd_t* update) /*!< in: update vector */
{
const upd_field_t* upd_field;
const dfield_t* new_val;
ulint old_len;
ulint new_len;
ulint n_fields;
ulint i;
ut_ad(rec_offs_validate(NULL, index, offsets));
n_fields = upd_get_n_fields(update);
for (i = 0; i < n_fields; i++) {
upd_field = upd_get_nth_field(update, i);
/* We should ignore virtual field if the index is not
a virtual index */
if (upd_fld_is_virtual_col(upd_field)
&& dict_index_has_virtual(index) != DICT_VIRTUAL) {
continue;
}
new_val = &(upd_field->new_val);
new_len = dfield_get_len(new_val);
if (dfield_is_null(new_val) && !rec_offs_comp(offsets)) {
/* A bug fixed on Dec 31st, 2004: we looked at the
SQL NULL size from the wrong field! We may backport
this fix also to 4.0. The merge to 5.0 will be made
manually immediately after we commit this to 4.1. */
new_len = dict_col_get_sql_null_size(
dict_index_get_nth_col(index,
upd_field->field_no),
0);
}
old_len = rec_offs_nth_size(offsets, upd_field->field_no);
if (rec_offs_comp(offsets)
&& rec_offs_nth_sql_null(offsets,
upd_field->field_no)) {
/* Note that in the compact table format, for a
variable length field, an SQL NULL will use zero
bytes in the offset array at the start of the physical
record, but a zero-length value (empty string) will
use one byte! Thus, we cannot use update-in-place
if we update an SQL NULL varchar to an empty string! */
old_len = UNIV_SQL_NULL;
}
if (dfield_is_ext(new_val) || old_len != new_len
|| rec_offs_nth_extern(offsets, upd_field->field_no)) {
return(TRUE);
}
}
return(FALSE);
}
/***********************************************************//**
Returns true if row update contains disowned external fields.
@return true if the update contains disowned external fields. */
bool
row_upd_changes_disowned_external(
/*==============================*/
const upd_t* update) /*!< in: update vector */
{
const upd_field_t* upd_field;
const dfield_t* new_val;
ulint new_len;
ulint n_fields;
ulint i;
n_fields = upd_get_n_fields(update);
for (i = 0; i < n_fields; i++) {
const byte* field_ref;
upd_field = upd_get_nth_field(update, i);
new_val = &(upd_field->new_val);
new_len = dfield_get_len(new_val);
if (!dfield_is_ext(new_val)) {
continue;
}
ut_ad(new_len >= BTR_EXTERN_FIELD_REF_SIZE);
field_ref = static_cast<const byte*>(dfield_get_data(new_val))
+ new_len - BTR_EXTERN_FIELD_REF_SIZE;
if (field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG) {
return(true);
}
}
return(false);
}
/***********************************************************//**
Replaces the new column values stored in the update vector to the
record given. No field size changes are allowed. This function is
usually invoked on a clustered index. The only use case for a
secondary index is row_ins_sec_index_entry_by_modify() or its
counterpart in ibuf_insert_to_index_page(). */
void
row_upd_rec_in_place(
/*=================*/
rec_t* rec, /*!< in/out: record where replaced */
dict_index_t* index, /*!< in: the index the record belongs to */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
const upd_t* update, /*!< in: update vector */
page_zip_des_t* page_zip)/*!< in: compressed page with enough space
available, or NULL */
{
const upd_field_t* upd_field;
const dfield_t* new_val;
ulint n_fields;
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
if (rec_offs_comp(offsets)) {
rec_set_info_bits_new(rec, update->info_bits);
} else {
rec_set_info_bits_old(rec, update->info_bits);
}
n_fields = upd_get_n_fields(update);
for (i = 0; i < n_fields; i++) {
upd_field = upd_get_nth_field(update, i);
/* No need to update virtual columns for non-virtual index */
if (upd_fld_is_virtual_col(upd_field)
&& !dict_index_has_virtual(index)) {
continue;
}
new_val = &(upd_field->new_val);
ut_ad(!dfield_is_ext(new_val) ==
!rec_offs_nth_extern(offsets, upd_field->field_no));
rec_set_nth_field(rec, offsets, upd_field->field_no,
dfield_get_data(new_val),
dfield_get_len(new_val));
}
if (page_zip) {
page_zip_write_rec(page_zip, rec, index, offsets, 0);
}
}
/*********************************************************************//**
Writes into the redo log the values of trx id and roll ptr and enough info
to determine their positions within a clustered index record.
@return new pointer to mlog */
byte*
row_upd_write_sys_vals_to_log(
/*==========================*/
dict_index_t* index, /*!< in: clustered index */
trx_id_t trx_id, /*!< in: transaction id */
roll_ptr_t roll_ptr,/*!< in: roll ptr of the undo log record */
byte* log_ptr,/*!< pointer to a buffer of size > 20 opened
in mlog */
mtr_t* mtr MY_ATTRIBUTE((unused))) /*!< in: mtr */
{
ut_ad(dict_index_is_clust(index));
ut_ad(mtr);
log_ptr += mach_write_compressed(log_ptr,
dict_index_get_sys_col_pos(
index, DATA_TRX_ID));
trx_write_roll_ptr(log_ptr, roll_ptr);
log_ptr += DATA_ROLL_PTR_LEN;
log_ptr += mach_u64_write_compressed(log_ptr, trx_id);
return(log_ptr);
}
/*********************************************************************//**
Parses the log data of system field values.
@return log data end or NULL */
byte*
row_upd_parse_sys_vals(
/*===================*/
const byte* ptr, /*!< in: buffer */
const byte* end_ptr,/*!< in: buffer end */
ulint* pos, /*!< out: TRX_ID position in record */
trx_id_t* trx_id, /*!< out: trx id */
roll_ptr_t* roll_ptr)/*!< out: roll ptr */
{
*pos = mach_parse_compressed(&ptr, end_ptr);
if (ptr == NULL) {
return(NULL);
}
if (end_ptr < ptr + DATA_ROLL_PTR_LEN) {
return(NULL);
}
*roll_ptr = trx_read_roll_ptr(ptr);
ptr += DATA_ROLL_PTR_LEN;
*trx_id = mach_u64_parse_compressed(&ptr, end_ptr);
return(const_cast<byte*>(ptr));
}
/***********************************************************//**
Writes to the redo log the new values of the fields occurring in the index. */
void
row_upd_index_write_log(
/*====================*/
const upd_t* update, /*!< in: update vector */
byte* log_ptr,/*!< in: pointer to mlog buffer: must
contain at least MLOG_BUF_MARGIN bytes
of free space; the buffer is closed
within this function */
mtr_t* mtr) /*!< in: mtr into whose log to write */
{
const upd_field_t* upd_field;
const dfield_t* new_val;
ulint len;
ulint n_fields;
byte* buf_end;
ulint i;
n_fields = upd_get_n_fields(update);
buf_end = log_ptr + MLOG_BUF_MARGIN;
mach_write_to_1(log_ptr, update->info_bits);
log_ptr++;
log_ptr += mach_write_compressed(log_ptr, n_fields);
for (i = 0; i < n_fields; i++) {
#if MLOG_BUF_MARGIN <= 30
# error "MLOG_BUF_MARGIN <= 30"
#endif
if (log_ptr + 30 > buf_end) {
mlog_close(mtr, log_ptr);
log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN);
buf_end = log_ptr + MLOG_BUF_MARGIN;
}
upd_field = upd_get_nth_field(update, i);
new_val = &(upd_field->new_val);
len = dfield_get_len(new_val);
/* If this is a virtual column, mark it using special
field_no */
ulint field_no = upd_fld_is_virtual_col(upd_field)
? REC_MAX_N_FIELDS + upd_field->field_no
: upd_field->field_no;
log_ptr += mach_write_compressed(log_ptr, field_no);
log_ptr += mach_write_compressed(log_ptr, len);
if (len != UNIV_SQL_NULL) {
if (log_ptr + len < buf_end) {
memcpy(log_ptr, dfield_get_data(new_val), len);
log_ptr += len;
} else {
mlog_close(mtr, log_ptr);
mlog_catenate_string(
mtr,
static_cast<byte*>(
dfield_get_data(new_val)),
len);
log_ptr = mlog_open(mtr, MLOG_BUF_MARGIN);
buf_end = log_ptr + MLOG_BUF_MARGIN;
}
}
}
mlog_close(mtr, log_ptr);
}
/*********************************************************************//**
Parses the log data written by row_upd_index_write_log.
@return log data end or NULL */
byte*
row_upd_index_parse(
/*================*/
const byte* ptr, /*!< in: buffer */
const byte* end_ptr,/*!< in: buffer end */
mem_heap_t* heap, /*!< in: memory heap where update vector is
built */
upd_t** update_out)/*!< out: update vector */
{
upd_t* update;
upd_field_t* upd_field;
dfield_t* new_val;
ulint len;
ulint n_fields;
ulint info_bits;
ulint i;
if (end_ptr < ptr + 1) {
return(NULL);
}
info_bits = mach_read_from_1(ptr);
ptr++;
n_fields = mach_parse_compressed(&ptr, end_ptr);
if (ptr == NULL) {
return(NULL);
}
update = upd_create(n_fields, heap);
update->info_bits = info_bits;
for (i = 0; i < n_fields; i++) {
ulint field_no;
upd_field = upd_get_nth_field(update, i);
new_val = &(upd_field->new_val);
field_no = mach_parse_compressed(&ptr, end_ptr);
if (ptr == NULL) {
return(NULL);
}
/* Check if this is a virtual column, mark the prtype
if that is the case */
if (field_no >= REC_MAX_N_FIELDS) {
new_val->type.prtype |= DATA_VIRTUAL;
field_no -= REC_MAX_N_FIELDS;
}
upd_field->field_no = field_no;
len = mach_parse_compressed(&ptr, end_ptr);
if (ptr == NULL) {
return(NULL);
}
if (len != UNIV_SQL_NULL) {
if (end_ptr < ptr + len) {
return(NULL);
}
dfield_set_data(new_val,
mem_heap_dup(heap, ptr, len), len);
ptr += len;
} else {
dfield_set_null(new_val);
}
}
*update_out = update;
return(const_cast<byte*>(ptr));
}
/***************************************************************//**
Builds an update vector from those fields which in a secondary index entry
differ from a record that has the equal ordering fields. NOTE: we compare
the fields as binary strings!
@return own: update vector of differing fields */
upd_t*
row_upd_build_sec_rec_difference_binary(
/*====================================*/
const rec_t* rec, /*!< in: secondary index record */
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
const dtuple_t* entry, /*!< in: entry to insert */
mem_heap_t* heap) /*!< in: memory heap from which allocated */
{
upd_field_t* upd_field;
const dfield_t* dfield;
const byte* data;
ulint len;
upd_t* update;
ulint n_diff;
ulint i;
/* This function is used only for a secondary index */
ut_a(!dict_index_is_clust(index));
ut_ad(rec_offs_validate(rec, index, offsets));
ut_ad(rec_offs_n_fields(offsets) == dtuple_get_n_fields(entry));
ut_ad(!rec_offs_any_extern(offsets));
update = upd_create(dtuple_get_n_fields(entry), heap);
n_diff = 0;
for (i = 0; i < dtuple_get_n_fields(entry); i++) {
data = rec_get_nth_field(rec, offsets, i, &len);
dfield = dtuple_get_nth_field(entry, i);
/* NOTE that it may be that len != dfield_get_len(dfield) if we
are updating in a character set and collation where strings of
different length can be equal in an alphabetical comparison,
and also in the case where we have a column prefix index
and the last characters in the index field are spaces; the
latter case probably caused the assertion failures reported at
row0upd.cc line 713 in versions 4.0.14 - 4.0.16. */
/* NOTE: we compare the fields as binary strings!
(No collation) */
if (!dfield_data_is_binary_equal(dfield, len, data)) {
upd_field = upd_get_nth_field(update, n_diff);
dfield_copy(&(upd_field->new_val), dfield);
upd_field_set_field_no(upd_field, i, index, NULL);
n_diff++;
}
}
update->n_fields = n_diff;
return(update);
}
/** Builds an update vector from those fields, excluding the roll ptr and
trx id fields, which in an index entry differ from a record that has
the equal ordering fields. NOTE: we compare the fields as binary strings!
@param[in] index clustered index
@param[in] entry clustered index entry to insert
@param[in] rec clustered index record
@param[in] offsets rec_get_offsets(rec,index), or NULL
@param[in] no_sys skip the system columns
DB_TRX_ID and DB_ROLL_PTR
@param[in] trx transaction (for diagnostics),
or NULL
@param[in] heap memory heap from which allocated
@param[in] mysql_table NULL, or mysql table object when
user thread invokes dml
@return own: update vector of differing fields, excluding roll ptr and
trx id */
upd_t*
row_upd_build_difference_binary(
dict_index_t* index,
const dtuple_t* entry,
const rec_t* rec,
const ulint* offsets,
bool no_sys,
trx_t* trx,
mem_heap_t* heap,
TABLE* mysql_table)
{
upd_field_t* upd_field;
dfield_t* dfield;
const byte* data;
ulint len;
upd_t* update;
ulint n_diff;
ulint trx_id_pos;
ulint i;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint n_fld = dtuple_get_n_fields(entry);
ulint n_v_fld = dtuple_get_n_v_fields(entry);
rec_offs_init(offsets_);
/* This function is used only for a clustered index */
ut_a(dict_index_is_clust(index));
update = upd_create(n_fld + n_v_fld, heap);
n_diff = 0;
trx_id_pos = dict_index_get_sys_col_pos(index, DATA_TRX_ID);
ut_ad(dict_index_get_sys_col_pos(index, DATA_ROLL_PTR)
== trx_id_pos + 1);
if (!offsets) {
offsets = rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &heap);
} else {
ut_ad(rec_offs_validate(rec, index, offsets));
}
for (i = 0; i < n_fld; i++) {
data = rec_get_nth_field(rec, offsets, i, &len);
dfield = dtuple_get_nth_field(entry, i);
/* NOTE: we compare the fields as binary strings!
(No collation) */
if (no_sys) {
/* TRX_ID */
if (i == trx_id_pos) {
continue;
}
/* DB_ROLL_PTR */
if (i == trx_id_pos + 1) {
continue;
}
}
if (!dfield_is_ext(dfield)
!= !rec_offs_nth_extern(offsets, i)
|| !dfield_data_is_binary_equal(dfield, len, data)) {
upd_field = upd_get_nth_field(update, n_diff);
dfield_copy(&(upd_field->new_val), dfield);
upd_field_set_field_no(upd_field, i, index, trx);
n_diff++;
}
}
/* Check the virtual columns updates. Even if there is no non-virtual
column (base columns) change, we will still need to build the
indexed virtual column value so that undo log would log them (
for purge/mvcc purpose) */
if (n_v_fld > 0) {
row_ext_t* ext;
mem_heap_t* v_heap = NULL;
THD* thd;
if (trx == NULL) {
thd = current_thd;
} else {
thd = trx->mysql_thd;
}
ut_ad(!update->old_vrow);
for (i = 0; i < n_v_fld; i++) {
const dict_v_col_t* col
= dict_table_get_nth_v_col(index->table, i);
if (!col->m_col.ord_part) {
continue;
}
if (update->old_vrow == NULL) {
update->old_vrow = row_build(
ROW_COPY_POINTERS, index, rec, offsets,
index->table, NULL, NULL, &ext, heap);
}
dfield = dtuple_get_nth_v_field(entry, i);
dfield_t* vfield = innobase_get_computed_value(
update->old_vrow, col, index,
&v_heap, heap, NULL, thd, mysql_table,
NULL, NULL, NULL);
if (!dfield_data_is_binary_equal(
dfield, vfield->len,
static_cast<byte*>(vfield->data))) {
upd_field = upd_get_nth_field(update, n_diff);
upd_field->old_v_val = static_cast<dfield_t*>(
mem_heap_alloc(
heap,
sizeof *upd_field->old_v_val));
dfield_copy(upd_field->old_v_val, vfield);
dfield_copy(&(upd_field->new_val), dfield);
upd_field_set_v_field_no(
upd_field, i, index);
n_diff++;
}
}
if (v_heap) {
mem_heap_free(v_heap);
}
}
update->n_fields = n_diff;
ut_ad(update->validate());
return(update);
}
/** Fetch a prefix of an externally stored column.
This is similar to row_ext_lookup(), but the row_ext_t holds the old values
of the column and must not be poisoned with the new values.
@param[in] data 'internally' stored part of the field
containing also the reference to the external part
@param[in] local_len length of data, in bytes
@param[in] page_size BLOB page size
@param[in,out] len input - length of prefix to
fetch; output: fetched length of the prefix
@param[in,out] heap heap where to allocate
@return BLOB prefix */
static
byte*
row_upd_ext_fetch(
const byte* data,
ulint local_len,
const page_size_t& page_size,
ulint* len,
mem_heap_t* heap)
{
byte* buf = static_cast<byte*>(mem_heap_alloc(heap, *len));
*len = btr_copy_externally_stored_field_prefix(
buf, *len, page_size, data, local_len);
/* We should never update records containing a half-deleted BLOB. */
ut_a(*len);
return(buf);
}
/** Replaces the new column value stored in the update vector in
the given index entry field.
@param[in,out] dfield data field of the index entry
@param[in] field index field
@param[in] col field->col
@param[in] uf update field
@param[in,out] heap memory heap for allocating and copying
the new value
@param[in] page_size page size */
static
void
row_upd_index_replace_new_col_val(
dfield_t* dfield,
const dict_field_t* field,
const dict_col_t* col,
const upd_field_t* uf,
mem_heap_t* heap,
const page_size_t& page_size)
{
ulint len;
const byte* data;
dfield_copy_data(dfield, &uf->new_val);
if (dfield_is_null(dfield)) {
return;
}
len = dfield_get_len(dfield);
data = static_cast<const byte*>(dfield_get_data(dfield));
if (field->prefix_len > 0) {
ibool fetch_ext = dfield_is_ext(dfield)
&& len < (ulint) field->prefix_len
+ BTR_EXTERN_FIELD_REF_SIZE;
if (fetch_ext) {
ulint l = len;
len = field->prefix_len;
data = row_upd_ext_fetch(data, l, page_size,
&len, heap);
}
len = dtype_get_at_most_n_mbchars(col->prtype,
col->mbminmaxlen,
field->prefix_len, len,
(const char*) data);
dfield_set_data(dfield, data, len);
if (!fetch_ext) {
dfield_dup(dfield, heap);
}
return;
}
switch (uf->orig_len) {
byte* buf;
case BTR_EXTERN_FIELD_REF_SIZE:
/* Restore the original locally stored
part of the column. In the undo log,
InnoDB writes a longer prefix of externally
stored columns, so that column prefixes
in secondary indexes can be reconstructed. */
dfield_set_data(dfield,
data + len - BTR_EXTERN_FIELD_REF_SIZE,
BTR_EXTERN_FIELD_REF_SIZE);
dfield_set_ext(dfield);
/* fall through */
case 0:
dfield_dup(dfield, heap);
break;
default:
/* Reconstruct the original locally
stored part of the column. The data
will have to be copied. */
ut_a(uf->orig_len > BTR_EXTERN_FIELD_REF_SIZE);
buf = static_cast<byte*>(mem_heap_alloc(heap, uf->orig_len));
/* Copy the locally stored prefix. */
memcpy(buf, data,
uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE);
/* Copy the BLOB pointer. */
memcpy(buf + uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE,
data + len - BTR_EXTERN_FIELD_REF_SIZE,
BTR_EXTERN_FIELD_REF_SIZE);
dfield_set_data(dfield, buf, uf->orig_len);
dfield_set_ext(dfield);
break;
}
}
/***********************************************************//**
Replaces the new column values stored in the update vector to the index entry
given. */
void
row_upd_index_replace_new_col_vals_index_pos(
/*=========================================*/
dtuple_t* entry, /*!< in/out: index entry where replaced;
the clustered index record must be
covered by a lock or a page latch to
prevent deletion (rollback or purge) */
dict_index_t* index, /*!< in: index; NOTE that this may also be a
non-clustered index */
const upd_t* update, /*!< in: an update vector built for the index so
that the field number in an upd_field is the
index position */
ibool order_only,
/*!< in: if TRUE, limit the replacement to
ordering fields of index; note that this
does not work for non-clustered indexes. */
mem_heap_t* heap) /*!< in: memory heap for allocating and
copying the new values */
{
ulint i;
ulint n_fields;
const page_size_t& page_size = dict_table_page_size(index->table);
ut_ad(index);
dtuple_set_info_bits(entry, update->info_bits);
if (order_only) {
n_fields = dict_index_get_n_unique(index);
} else {
n_fields = dict_index_get_n_fields(index);
}
for (i = 0; i < n_fields; i++) {
const dict_field_t* field;
const dict_col_t* col;
const upd_field_t* uf;
field = dict_index_get_nth_field(index, i);
col = dict_field_get_col(field);
if (dict_col_is_virtual(col)) {
const dict_v_col_t* vcol = reinterpret_cast<
const dict_v_col_t*>(
col);
uf = upd_get_field_by_field_no(
update, vcol->v_pos, true);
} else {
uf = upd_get_field_by_field_no(
update, i, false);
}
if (uf) {
row_upd_index_replace_new_col_val(
dtuple_get_nth_field(entry, i),
field, col, uf, heap, page_size);
}
}
}
/***********************************************************//**
Replaces the new column values stored in the update vector to the index entry
given. */
void
row_upd_index_replace_new_col_vals(
/*===============================*/
dtuple_t* entry, /*!< in/out: index entry where replaced;
the clustered index record must be
covered by a lock or a page latch to
prevent deletion (rollback or purge) */
dict_index_t* index, /*!< in: index; NOTE that this may also be a
non-clustered index */
const upd_t* update, /*!< in: an update vector built for the
CLUSTERED index so that the field number in
an upd_field is the clustered index position */
mem_heap_t* heap) /*!< in: memory heap for allocating and
copying the new values */
{
ulint i;
const dict_index_t* clust_index
= dict_table_get_first_index(index->table);
const page_size_t& page_size = dict_table_page_size(index->table);
dtuple_set_info_bits(entry, update->info_bits);
for (i = 0; i < dict_index_get_n_fields(index); i++) {
const dict_field_t* field;
const dict_col_t* col;
const upd_field_t* uf;
field = dict_index_get_nth_field(index, i);
col = dict_field_get_col(field);
if (dict_col_is_virtual(col)) {
const dict_v_col_t* vcol = reinterpret_cast<
const dict_v_col_t*>(
col);
uf = upd_get_field_by_field_no(
update, vcol->v_pos, true);
} else {
uf = upd_get_field_by_field_no(
update,
dict_col_get_clust_pos(col, clust_index),
false);
}
if (uf) {
row_upd_index_replace_new_col_val(
dtuple_get_nth_field(entry, i),
field, col, uf, heap, page_size);
}
}
}
/** Replaces the virtual column values stored in the update vector.
@param[in,out] row row whose column to be set
@param[in] field data to set
@param[in] len data length
@param[in] vcol virtual column info */
static
void
row_upd_set_vcol_data(
dtuple_t* row,
const byte* field,
ulint len,
dict_v_col_t* vcol)
{
dfield_t* dfield = dtuple_get_nth_v_field(row, vcol->v_pos);
if (dfield_get_type(dfield)->mtype == DATA_MISSING) {
dict_col_copy_type(&vcol->m_col, dfield_get_type(dfield));
dfield_set_data(dfield, field, len);
}
}
/** Replaces the virtual column values stored in a dtuple with that of
a update vector.
@param[in,out] row row whose column to be updated
@param[in] table table
@param[in] update an update vector built for the clustered index
@param[in] upd_new update to new or old value
@param[in,out] undo_row undo row (if needs to be updated)
@param[in] ptr remaining part in update undo log */
void
row_upd_replace_vcol(
dtuple_t* row,
const dict_table_t* table,
const upd_t* update,
bool upd_new,
dtuple_t* undo_row,
const byte* ptr)
{
ulint col_no;
ulint i;
ulint n_cols;
n_cols = dtuple_get_n_v_fields(row);
for (col_no = 0; col_no < n_cols; col_no++) {
dfield_t* dfield;
const dict_v_col_t* col
= dict_table_get_nth_v_col(table, col_no);
/* If there is no index on the column, do not bother for
value update */
if (!col->m_col.ord_part) {
dict_index_t* clust_index
= dict_table_get_first_index(table);
/* Skip the column if there is no online alter
table in progress or it is not being indexed
in new table */
if (!dict_index_is_online_ddl(clust_index)
|| !row_log_col_is_indexed(clust_index, col_no)) {
continue;
}
}
dfield = dtuple_get_nth_v_field(row, col_no);
for (i = 0; i < upd_get_n_fields(update); i++) {
const upd_field_t* upd_field
= upd_get_nth_field(update, i);
if (!upd_fld_is_virtual_col(upd_field)
|| upd_field->field_no != col->v_pos) {
continue;
}
if (upd_new) {
dfield_copy_data(dfield, &upd_field->new_val);
} else {
dfield_copy_data(dfield, upd_field->old_v_val);
}
dfield_get_type(dfield)->mtype =
upd_field->new_val.type.mtype;
dfield_get_type(dfield)->prtype =
upd_field->new_val.type.prtype;
dfield_get_type(dfield)->mbminmaxlen =
upd_field->new_val.type.mbminmaxlen;
break;
}
}
bool first_v_col = true;
bool is_undo_log = true;
/* We will read those unchanged (but indexed) virtual columns in */
if (ptr != NULL) {
const byte* end_ptr;
end_ptr = ptr + mach_read_from_2(ptr);
ptr += 2;
while (ptr != end_ptr) {
const byte* field;
ulint field_no;
ulint len;
ulint orig_len;
bool is_v;
field_no = mach_read_next_compressed(&ptr);
is_v = (field_no >= REC_MAX_N_FIELDS);
if (is_v) {
ptr = trx_undo_read_v_idx(
table, ptr, first_v_col, &is_undo_log,
&field_no);
first_v_col = false;
}
ptr = trx_undo_rec_get_col_val(
ptr, &field, &len, &orig_len);
if (field_no == ULINT_UNDEFINED) {
ut_ad(is_v);
continue;
}
if (is_v) {
dict_v_col_t* vcol = dict_table_get_nth_v_col(
table, field_no);
row_upd_set_vcol_data(row, field, len, vcol);
if (undo_row) {
row_upd_set_vcol_data(
undo_row, field, len, vcol);
}
}
ut_ad(ptr<= end_ptr);
}
}
}
/***********************************************************//**
Replaces the new column values stored in the update vector. */
void
row_upd_replace(
/*============*/
dtuple_t* row, /*!< in/out: row where replaced,
indexed by col_no;
the clustered index record must be
covered by a lock or a page latch to
prevent deletion (rollback or purge) */
row_ext_t** ext, /*!< out, own: NULL, or externally
stored column prefixes */
const dict_index_t* index, /*!< in: clustered index */
const upd_t* update, /*!< in: an update vector built for the
clustered index */
mem_heap_t* heap) /*!< in: memory heap */
{
ulint col_no;
ulint i;
ulint n_cols;
ulint n_ext_cols;
ulint* ext_cols;
const dict_table_t* table;
ut_ad(row);
ut_ad(ext);
ut_ad(index);
ut_ad(dict_index_is_clust(index));
ut_ad(update);
ut_ad(heap);
ut_ad(update->validate());
n_cols = dtuple_get_n_fields(row);
table = index->table;
ut_ad(n_cols == dict_table_get_n_cols(table));
ext_cols = static_cast<ulint*>(
mem_heap_alloc(heap, n_cols * sizeof *ext_cols));
n_ext_cols = 0;
dtuple_set_info_bits(row, update->info_bits);
for (col_no = 0; col_no < n_cols; col_no++) {
const dict_col_t* col
= dict_table_get_nth_col(table, col_no);
const ulint clust_pos
= dict_col_get_clust_pos(col, index);
dfield_t* dfield;
if (UNIV_UNLIKELY(clust_pos == ULINT_UNDEFINED)) {
continue;
}
dfield = dtuple_get_nth_field(row, col_no);
for (i = 0; i < upd_get_n_fields(update); i++) {
const upd_field_t* upd_field
= upd_get_nth_field(update, i);
if (upd_field->field_no != clust_pos
|| upd_fld_is_virtual_col(upd_field)) {
continue;
}
dfield_copy_data(dfield, &upd_field->new_val);
break;
}
if (dfield_is_ext(dfield) && col->ord_part) {
ext_cols[n_ext_cols++] = col_no;
}
}
if (n_ext_cols) {
*ext = row_ext_create(n_ext_cols, ext_cols, table->flags, row,
heap);
} else {
*ext = NULL;
}
row_upd_replace_vcol(row, table, update, true, NULL, NULL);
}
/***********************************************************//**
Checks if an update vector changes an ordering field of an index record.
This function is fast if the update vector is short or the number of ordering
fields in the index is small. Otherwise, this can be quadratic.
NOTE: we compare the fields as binary strings!
@return TRUE if update vector changes an ordering field in the index record */
ibool
row_upd_changes_ord_field_binary_func(
/*==================================*/
dict_index_t* index, /*!< in: index of the record */
const upd_t* update, /*!< in: update vector for the row; NOTE: the
field numbers in this MUST be clustered index
positions! */
#ifdef UNIV_DEBUG
const que_thr_t*thr, /*!< in: query thread */
#endif /* UNIV_DEBUG */
const dtuple_t* row, /*!< in: old value of row, or NULL if the
row and the data values in update are not
known when this function is called, e.g., at
compile time */
const row_ext_t*ext, /*!< NULL, or prefixes of the externally
stored columns in the old row */
ulint flag) /*!< in: ROW_BUILD_NORMAL,
ROW_BUILD_FOR_PURGE or ROW_BUILD_FOR_UNDO */
{
ulint n_unique;
ulint i;
const dict_index_t* clust_index;
ut_ad(index);
ut_ad(update);
ut_ad(thr);
ut_ad(thr->graph);
ut_ad(thr->graph->trx);
n_unique = dict_index_get_n_unique(index);
clust_index = dict_table_get_first_index(index->table);
for (i = 0; i < n_unique; i++) {
const dict_field_t* ind_field;
const dict_col_t* col;
ulint col_no;
const upd_field_t* upd_field;
const dfield_t* dfield;
dfield_t dfield_ext;
ulint dfield_len= 0;
const byte* buf;
bool is_virtual;
const dict_v_col_t* vcol = NULL;
ind_field = dict_index_get_nth_field(index, i);
col = dict_field_get_col(ind_field);
col_no = dict_col_get_no(col);
is_virtual = dict_col_is_virtual(col);
if (is_virtual) {
vcol = reinterpret_cast<const dict_v_col_t*>(col);
upd_field = upd_get_field_by_field_no(
update, vcol->v_pos, true);
} else {
upd_field = upd_get_field_by_field_no(
update,
dict_col_get_clust_pos(col, clust_index),
false);
}
if (upd_field == NULL) {
continue;
}
if (row == NULL) {
ut_ad(ext == NULL);
return(TRUE);
}
if (is_virtual) {
dfield = dtuple_get_nth_v_field(
row, vcol->v_pos);
} else {
dfield = dtuple_get_nth_field(row, col_no);
}
/* For spatial index update, since the different geometry
data could generate same MBR, so, if the new index entry is
same as old entry, which means the MBR is not changed, we
don't need to do anything. */
if (dict_index_is_spatial(index) && i == 0) {
double mbr1[SPDIMS * 2];
double mbr2[SPDIMS * 2];
rtr_mbr_t* old_mbr;
rtr_mbr_t* new_mbr;
uchar* dptr = NULL;
ulint flen = 0;
ulint dlen = 0;
mem_heap_t* temp_heap = NULL;
const dfield_t* new_field = &upd_field->new_val;
const page_size_t page_size
= (ext != NULL)
? ext->page_size
: dict_table_page_size(
index->table);
ut_ad(dfield->data != NULL
&& dfield->len > GEO_DATA_HEADER_SIZE);
ut_ad(dict_col_get_spatial_status(col) != SPATIAL_NONE);
/* Get the old mbr. */
if (dfield_is_ext(dfield)) {
/* For off-page stored data, we
need to read the whole field data. */
flen = dfield_get_len(dfield);
dptr = static_cast<byte*>(
dfield_get_data(dfield));
temp_heap = mem_heap_create(1000);
dptr = btr_copy_externally_stored_field(
&dlen, dptr,
page_size,
flen,
temp_heap);
} else {
dptr = static_cast<uchar*>(dfield->data);
dlen = dfield->len;
}
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
static_cast<uint>(dlen
- GEO_DATA_HEADER_SIZE),
SPDIMS, mbr1);
old_mbr = reinterpret_cast<rtr_mbr_t*>(mbr1);
/* Get the new mbr. */
if (dfield_is_ext(new_field)) {
if (flag == ROW_BUILD_FOR_UNDO
&& dict_table_get_format(index->table)
>= UNIV_FORMAT_B) {
/* For undo, and the table is Barrcuda,
we need to skip the prefix data. */
flen = BTR_EXTERN_FIELD_REF_SIZE;
ut_ad(dfield_get_len(new_field) >=
BTR_EXTERN_FIELD_REF_SIZE);
dptr = static_cast<byte*>(
dfield_get_data(new_field))
+ dfield_get_len(new_field)
- BTR_EXTERN_FIELD_REF_SIZE;
} else {
flen = dfield_get_len(new_field);
dptr = static_cast<byte*>(
dfield_get_data(new_field));
}
if (temp_heap == NULL) {
temp_heap = mem_heap_create(1000);
}
dptr = btr_copy_externally_stored_field(
&dlen, dptr,
page_size,
flen,
temp_heap);
} else {
dptr = static_cast<uchar*>(upd_field->new_val.data);
dlen = upd_field->new_val.len;
}
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
static_cast<uint>(dlen
- GEO_DATA_HEADER_SIZE),
SPDIMS, mbr2);
new_mbr = reinterpret_cast<rtr_mbr_t*>(mbr2);
if (temp_heap) {
mem_heap_free(temp_heap);
}
if (!MBR_EQUAL_CMP(old_mbr, new_mbr)) {
return(TRUE);
} else {
continue;
}
}
/* This treatment of column prefix indexes is loosely
based on row_build_index_entry(). */
if (UNIV_LIKELY(ind_field->prefix_len == 0)
|| dfield_is_null(dfield)) {
/* do nothing special */
} else if (ext) {
/* Silence a compiler warning without
silencing a Valgrind error. */
dfield_len = 0;
UNIV_MEM_INVALID(&dfield_len, sizeof dfield_len);
/* See if the column is stored externally. */
buf = row_ext_lookup(ext, col_no, &dfield_len);
ut_ad(col->ord_part);
if (UNIV_LIKELY_NULL(buf)) {
if (UNIV_UNLIKELY(buf == field_ref_zero)) {
/* The externally stored field
was not written yet. This
record should only be seen by
recv_recovery_rollback_active(),
when the server had crashed before
storing the field. */
ut_ad(thr->graph->trx->is_recovered);
ut_ad(trx_is_recv(thr->graph->trx));
return(TRUE);
}
goto copy_dfield;
}
} else if (dfield_is_ext(dfield)) {
dfield_len = dfield_get_len(dfield);
ut_a(dfield_len > BTR_EXTERN_FIELD_REF_SIZE);
dfield_len -= BTR_EXTERN_FIELD_REF_SIZE;
ut_a(dict_index_is_clust(index)
|| ind_field->prefix_len <= dfield_len);
buf = static_cast<byte*>(dfield_get_data(dfield));
copy_dfield:
ut_a(dfield_len > 0);
dfield_copy(&dfield_ext, dfield);
dfield_set_data(&dfield_ext, buf, dfield_len);
dfield = &dfield_ext;
}
if (!dfield_datas_are_binary_equal(
dfield, &upd_field->new_val,
ind_field->prefix_len)) {
return(TRUE);
}
}
return(FALSE);
}
/***********************************************************//**
Checks if an update vector changes an ordering field of an index record.
NOTE: we compare the fields as binary strings!
@return TRUE if update vector may change an ordering field in an index
record */
ibool
row_upd_changes_some_index_ord_field_binary(
/*========================================*/
const dict_table_t* table, /*!< in: table */
const upd_t* update) /*!< in: update vector for the row */
{
upd_field_t* upd_field;
dict_index_t* index;
ulint i;
index = dict_table_get_first_index(table);
for (i = 0; i < upd_get_n_fields(update); i++) {
upd_field = upd_get_nth_field(update, i);
if (upd_fld_is_virtual_col(upd_field)) {
if (dict_table_get_nth_v_col(index->table,
upd_field->field_no)
->m_col.ord_part) {
return(TRUE);
}
} else {
if (dict_field_get_col(dict_index_get_nth_field(
index, upd_field->field_no))->ord_part) {
return(TRUE);
}
}
}
return(FALSE);
}
/***********************************************************//**
Checks if an FTS Doc ID column is affected by an UPDATE.
@return whether the Doc ID column is changed */
bool
row_upd_changes_doc_id(
/*===================*/
dict_table_t* table, /*!< in: table */
upd_field_t* upd_field) /*!< in: field to check */
{
ulint col_no;
dict_index_t* clust_index;
fts_t* fts = table->fts;
clust_index = dict_table_get_first_index(table);
/* Convert from index-specific column number to table-global
column number. */
col_no = dict_index_get_nth_col_no(clust_index, upd_field->field_no);
return(col_no == fts->doc_col);
}
/***********************************************************//**
Checks if an FTS indexed column is affected by an UPDATE.
@return offset within fts_t::indexes if FTS indexed column updated else
ULINT_UNDEFINED */
ulint
row_upd_changes_fts_column(
/*=======================*/
dict_table_t* table, /*!< in: table */
upd_field_t* upd_field) /*!< in: field to check */
{
ulint col_no;
dict_index_t* clust_index;
fts_t* fts = table->fts;
if (upd_fld_is_virtual_col(upd_field)) {
col_no = upd_field->field_no;
return(dict_table_is_fts_column(fts->indexes, col_no, true));
} else {
clust_index = dict_table_get_first_index(table);
/* Convert from index-specific column number to table-global
column number. */
col_no = dict_index_get_nth_col_no(clust_index,
upd_field->field_no);
return(dict_table_is_fts_column(fts->indexes, col_no, false));
}
}
/***********************************************************//**
Checks if an update vector changes some of the first ordering fields of an
index record. This is only used in foreign key checks and we can assume
that index does not contain column prefixes.
@return TRUE if changes */
static
ibool
row_upd_changes_first_fields_binary(
/*================================*/
dtuple_t* entry, /*!< in: index entry */
dict_index_t* index, /*!< in: index of entry */
const upd_t* update, /*!< in: update vector for the row */
ulint n) /*!< in: how many first fields to check */
{
ulint n_upd_fields;
ulint i, j;
dict_index_t* clust_index;
ut_ad(update && index);
ut_ad(n <= dict_index_get_n_fields(index));
n_upd_fields = upd_get_n_fields(update);
clust_index = dict_table_get_first_index(index->table);
for (i = 0; i < n; i++) {
const dict_field_t* ind_field;
const dict_col_t* col;
ulint col_pos;
ind_field = dict_index_get_nth_field(index, i);
col = dict_field_get_col(ind_field);
col_pos = dict_col_get_clust_pos(col, clust_index);
ut_a(ind_field->prefix_len == 0);
for (j = 0; j < n_upd_fields; j++) {
upd_field_t* upd_field
= upd_get_nth_field(update, j);
if (col_pos == upd_field->field_no
&& !dfield_datas_are_binary_equal(
dtuple_get_nth_field(entry, i),
&upd_field->new_val, 0)) {
return(TRUE);
}
}
}
return(FALSE);
}
/*********************************************************************//**
Copies the column values from a record. */
UNIV_INLINE
void
row_upd_copy_columns(
/*=================*/
rec_t* rec, /*!< in: record in a clustered index */
const ulint* offsets,/*!< in: array returned by rec_get_offsets() */
sym_node_t* column) /*!< in: first column in a column list, or
NULL */
{
byte* data;
ulint len;
while (column) {
data = rec_get_nth_field(rec, offsets,
column->field_nos[SYM_CLUST_FIELD_NO],
&len);
eval_node_copy_and_alloc_val(column, data, len);
column = UT_LIST_GET_NEXT(col_var_list, column);
}
}
/*********************************************************************//**
Calculates the new values for fields to update. Note that row_upd_copy_columns
must have been called first. */
UNIV_INLINE
void
row_upd_eval_new_vals(
/*==================*/
upd_t* update) /*!< in/out: update vector */
{
que_node_t* exp;
upd_field_t* upd_field;
ulint n_fields;
ulint i;
n_fields = upd_get_n_fields(update);
for (i = 0; i < n_fields; i++) {
upd_field = upd_get_nth_field(update, i);
exp = upd_field->exp;
eval_exp(exp);
dfield_copy_data(&(upd_field->new_val), que_node_get_val(exp));
}
}
/** Stores to the heap the virtual columns that need for any indexes
@param[in,out] node row update node
@param[in] update an update vector if it is update
@param[in] thd mysql thread handle
@param[in,out] mysql_table mysql table object */
void
row_upd_store_v_row(
upd_node_t* node,
const upd_t* update,
THD* thd,
TABLE* mysql_table)
{
mem_heap_t* heap = NULL;
dict_index_t* index = dict_table_get_first_index(node->table);
for (ulint col_no = 0; col_no < dict_table_get_n_v_cols(node->table);
col_no++) {
const dict_v_col_t* col
= dict_table_get_nth_v_col(node->table, col_no);
if (col->m_col.ord_part) {
dfield_t* dfield
= dtuple_get_nth_v_field(node->row, col_no);
ulint n_upd
= update ? upd_get_n_fields(update) : 0;
ulint i = 0;
/* Check if the value is already in update vector */
for (i = 0; i < n_upd; i++) {
const upd_field_t* upd_field
= upd_get_nth_field(update, i);
if (!(upd_field->new_val.type.prtype
& DATA_VIRTUAL)
|| upd_field->field_no != col->v_pos) {
continue;
}
dfield_copy_data(dfield, upd_field->old_v_val);
break;
}
/* Not updated */
if (i >= n_upd) {
/* If this is an update, then the value
should be in update->old_vrow */
if (update) {
if (update->old_vrow == NULL) {
/* This only happens in
cascade update. And virtual
column can't be affected,
so it is Ok to set it to NULL */
ut_ad(!node->cascade_top);
dfield_set_null(dfield);
} else {
dfield_t* vfield
= dtuple_get_nth_v_field(
update->old_vrow,
col_no);
dfield_copy_data(dfield, vfield);
}
} else {
/* Need to compute, this happens when
deleting row */
innobase_get_computed_value(
node->row, col, index,
&heap, node->heap, NULL,
thd, mysql_table, NULL,
NULL, NULL);
}
}
}
}
if (heap) {
mem_heap_free(heap);
}
}
/** Stores to the heap the row on which the node->pcur is positioned.
@param[in] node row update node
@param[in] thd mysql thread handle
@param[in,out] mysql_table NULL, or mysql table object when
user thread invokes dml */
void
row_upd_store_row(
upd_node_t* node,
THD* thd,
TABLE* mysql_table)
{
dict_index_t* clust_index;
rec_t* rec;
mem_heap_t* heap = NULL;
row_ext_t** ext;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
const ulint* offsets;
rec_offs_init(offsets_);
ut_ad(node->pcur->latch_mode != BTR_NO_LATCHES);
if (node->row != NULL) {
mem_heap_empty(node->heap);
}
clust_index = dict_table_get_first_index(node->table);
rec = btr_pcur_get_rec(node->pcur);
offsets = rec_get_offsets(rec, clust_index, offsets_,
ULINT_UNDEFINED, &heap);
if (dict_table_get_format(node->table) >= UNIV_FORMAT_B) {
/* In DYNAMIC or COMPRESSED format, there is no prefix
of externally stored columns in the clustered index
record. Build a cache of column prefixes. */
ext = &node->ext;
} else {
/* REDUNDANT and COMPACT formats store a local
768-byte prefix of each externally stored column.
No cache is needed. */
ext = NULL;
node->ext = NULL;
}
node->row = row_build(ROW_COPY_DATA, clust_index, rec, offsets,
NULL, NULL, NULL, ext, node->heap);
if (node->table->n_v_cols) {
row_upd_store_v_row(node, node->is_delete ? NULL : node->update,
thd, mysql_table);
}
if (node->is_delete) {
node->upd_row = NULL;
node->upd_ext = NULL;
} else {
node->upd_row = dtuple_copy(node->row, node->heap);
row_upd_replace(node->upd_row, &node->upd_ext,
clust_index, node->update, node->heap);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
}
/***********************************************************//**
Print a MBR data from disk */
static
void
srv_mbr_print(const byte* data)
{
double a, b, c, d;
a = mach_double_read(data);
data += sizeof(double);
b = mach_double_read(data);
data += sizeof(double);
c = mach_double_read(data);
data += sizeof(double);
d = mach_double_read(data);
ib::info() << "GIS MBR INFO: " << a << " and " << b << ", " << c
<< ", " << d << "\n";
}
/***********************************************************//**
Updates a secondary index entry of a row.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_sec_index_entry(
/*====================*/
upd_node_t* node, /*!< in: row update node */
que_thr_t* thr) /*!< in: query thread */
{
mtr_t mtr;
const rec_t* rec;
btr_pcur_t pcur;
mem_heap_t* heap;
dtuple_t* entry;
dict_index_t* index;
btr_cur_t* btr_cur;
ibool referenced;
dberr_t err = DB_SUCCESS;
trx_t* trx = thr_get_trx(thr);
ulint mode;
ulint flags;
enum row_search_result search_result;
ut_ad(trx->id != 0);
index = node->index;
referenced = row_upd_index_is_referenced(index, trx);
#ifdef WITH_WSREP
bool foreign = wsrep_row_upd_index_is_foreign(index, trx);
#endif /* WITH_WSREP */
heap = mem_heap_create(1024);
/* Build old index entry */
entry = row_build_index_entry(node->row, node->ext, index, heap);
ut_a(entry);
log_free_check();
DEBUG_SYNC_C_IF_THD(trx->mysql_thd,
"before_row_upd_sec_index_entry");
mtr_start_trx(&mtr, trx);
mtr.set_named_space(index->space);
/* Disable REDO logging as lifetime of temp-tables is limited to
server or connection lifetime and so REDO information is not needed
on restart for recovery.
Disable locking as temp-tables are not shared across connection. */
if (dict_table_is_temporary(index->table)) {
flags = BTR_NO_LOCKING_FLAG;
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
flags = 0;
}
if (!index->is_committed()) {
/* The index->online_status may change if the index is
or was being created online, but not committed yet. It
is protected by index->lock. */
mtr_s_lock(dict_index_get_lock(index), &mtr);
switch (dict_index_get_online_status(index)) {
case ONLINE_INDEX_COMPLETE:
/* This is a normal index. Do not log anything.
Perform the update on the index tree directly. */
break;
case ONLINE_INDEX_CREATION:
/* Log a DELETE and optionally INSERT. */
row_log_online_op(index, entry, 0);
if (!node->is_delete) {
mem_heap_empty(heap);
entry = row_build_index_entry(
node->upd_row, node->upd_ext,
index, heap);
ut_a(entry);
row_log_online_op(index, entry, trx->id);
}
/* fall through */
case ONLINE_INDEX_ABORTED:
case ONLINE_INDEX_ABORTED_DROPPED:
mtr_commit(&mtr);
goto func_exit;
}
/* We can only buffer delete-mark operations if there
are no foreign key constraints referring to the index.
Change buffering is disabled for temporary tables and
spatial index. */
mode = (referenced || dict_table_is_temporary(index->table)
|| dict_index_is_spatial(index))
? BTR_MODIFY_LEAF_ALREADY_S_LATCHED
: BTR_DELETE_MARK_LEAF_ALREADY_S_LATCHED;
} else {
/* For secondary indexes,
index->online_status==ONLINE_INDEX_COMPLETE if
index->is_committed(). */
ut_ad(!dict_index_is_online_ddl(index));
/* We can only buffer delete-mark operations if there
are no foreign key constraints referring to the index.
Change buffering is disabled for temporary tables and
spatial index. */
mode = (referenced || dict_table_is_temporary(index->table)
|| dict_index_is_spatial(index))
? BTR_MODIFY_LEAF
: BTR_DELETE_MARK_LEAF;
}
if (dict_index_is_spatial(index)) {
ut_ad(mode & BTR_MODIFY_LEAF);
mode |= BTR_RTREE_DELETE_MARK;
}
/* Set the query thread, so that ibuf_insert_low() will be
able to invoke thd_get_trx(). */
btr_pcur_get_btr_cur(&pcur)->thr = thr;
search_result = row_search_index_entry(index, entry, mode,
&pcur, &mtr);
btr_cur = btr_pcur_get_btr_cur(&pcur);
rec = btr_cur_get_rec(btr_cur);
switch (search_result) {
case ROW_NOT_DELETED_REF: /* should only occur for BTR_DELETE */
ut_error;
break;
case ROW_BUFFERED:
/* Entry was delete marked already. */
break;
case ROW_NOT_FOUND:
if (!index->is_committed()) {
/* When online CREATE INDEX copied the update
that we already made to the clustered index,
and completed the secondary index creation
before we got here, the old secondary index
record would not exist. The CREATE INDEX
should be waiting for a MySQL meta-data lock
upgrade at least until this UPDATE returns.
After that point, set_committed(true) would be
invoked by commit_inplace_alter_table(). */
break;
}
if (dict_index_is_spatial(index) && btr_cur->rtr_info->fd_del) {
/* We found the record, but a delete marked */
break;
}
ib::error()
<< "Record in index " << index->name
<< " of table " << index->table->name
<< " was not found on update: " << *entry
<< " at: " << rec_index_print(rec, index);
if (entry->fields[0].data)
srv_mbr_print((unsigned char*)entry->fields[0].data);
#ifdef UNIV_DEBUG
mtr_commit(&mtr);
mtr_start(&mtr);
ut_ad(btr_validate_index(index, 0, false));
ut_ad(0);
#endif /* UNIV_DEBUG */
break;
case ROW_FOUND:
ut_ad(err == DB_SUCCESS);
/* Delete mark the old index record; it can already be
delete marked if we return after a lock wait in
row_ins_sec_index_entry() below */
if (!rec_get_deleted_flag(
rec, dict_table_is_comp(index->table))) {
#ifdef WITH_WSREP
que_node_t *parent = que_node_get_parent(node);
#endif
err = btr_cur_del_mark_set_sec_rec(
flags, btr_cur, TRUE, thr, &mtr);
if (err != DB_SUCCESS) {
break;
}
#ifdef WITH_WSREP
if (err == DB_SUCCESS && !referenced &&
!(parent && que_node_get_type(parent) ==
QUE_NODE_UPDATE &&
(std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(),
((upd_node_t*)parent)->cascade_upd_nodes->end(),
node) ==
((upd_node_t*)parent)->cascade_upd_nodes->end())) &&
foreign
) {
ulint* offsets =
rec_get_offsets(
rec, index, NULL, ULINT_UNDEFINED,
&heap);
err = wsrep_row_upd_check_foreign_constraints(
node, &pcur, index->table,
index, offsets, thr, &mtr);
switch (err) {
case DB_SUCCESS:
case DB_NO_REFERENCED_ROW:
err = DB_SUCCESS;
break;
case DB_DEADLOCK:
if (wsrep_debug) {
ib::warn() << "WSREP: sec index FK check fail for deadlock"
<< " index " << index->name()
<< " table " << index->table->name.m_name;
}
break;
default:
ib::error() << "WSREP: referenced FK check fail: " << err
<< " index " << index->name()
<< " table " << index->table->name.m_name;
break;
}
}
#endif /* WITH_WSREP */
}
ut_ad(err == DB_SUCCESS);
if (referenced) {
ulint* offsets;
offsets = rec_get_offsets(
rec, index, NULL, ULINT_UNDEFINED,
&heap);
/* NOTE that the following call loses
the position of pcur ! */
err = row_upd_check_references_constraints(
node, &pcur, index->table,
index, offsets, thr, &mtr);
}
}
btr_pcur_close(&pcur);
mtr_commit(&mtr);
if (node->is_delete || err != DB_SUCCESS) {
goto func_exit;
}
mem_heap_empty(heap);
/* Build a new index entry */
entry = row_build_index_entry(node->upd_row, node->upd_ext,
index, heap);
ut_a(entry);
/* Insert new index entry */
err = row_ins_sec_index_entry(index, entry, thr, false);
func_exit:
mem_heap_free(heap);
return(err);
}
/***********************************************************//**
Updates the secondary index record if it is changed in the row update or
deletes it if this is a delete.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_sec_step(
/*=============*/
upd_node_t* node, /*!< in: row update node */
que_thr_t* thr) /*!< in: query thread */
{
ut_ad((node->state == UPD_NODE_UPDATE_ALL_SEC)
|| (node->state == UPD_NODE_UPDATE_SOME_SEC));
ut_ad(!dict_index_is_clust(node->index));
if (node->state == UPD_NODE_UPDATE_ALL_SEC
|| row_upd_changes_ord_field_binary(node->index, node->update,
thr, node->row, node->ext)) {
return(row_upd_sec_index_entry(node, thr));
}
return(DB_SUCCESS);
}
#ifdef UNIV_DEBUG
# define row_upd_clust_rec_by_insert_inherit(rec,offsets,entry,update) \
row_upd_clust_rec_by_insert_inherit_func(rec,offsets,entry,update)
#else /* UNIV_DEBUG */
# define row_upd_clust_rec_by_insert_inherit(rec,offsets,entry,update) \
row_upd_clust_rec_by_insert_inherit_func(rec,entry,update)
#endif /* UNIV_DEBUG */
/*******************************************************************//**
Mark non-updated off-page columns inherited when the primary key is
updated. We must mark them as inherited in entry, so that they are not
freed in a rollback. A limited version of this function used to be
called btr_cur_mark_dtuple_inherited_extern().
@return whether any columns were inherited */
static
bool
row_upd_clust_rec_by_insert_inherit_func(
/*=====================================*/
const rec_t* rec, /*!< in: old record, or NULL */
#ifdef UNIV_DEBUG
const ulint* offsets,/*!< in: rec_get_offsets(rec), or NULL */
#endif /* UNIV_DEBUG */
dtuple_t* entry, /*!< in/out: updated entry to be
inserted into the clustered index */
const upd_t* update) /*!< in: update vector */
{
bool inherit = false;
ulint i;
ut_ad(!rec == !offsets);
ut_ad(!rec || rec_offs_any_extern(offsets));
for (i = 0; i < dtuple_get_n_fields(entry); i++) {
dfield_t* dfield = dtuple_get_nth_field(entry, i);
byte* data;
ulint len;
ut_ad(!offsets
|| !rec_offs_nth_extern(offsets, i)
== !dfield_is_ext(dfield)
|| upd_get_field_by_field_no(update, i, false));
if (!dfield_is_ext(dfield)
|| upd_get_field_by_field_no(update, i, false)) {
continue;
}
#ifdef UNIV_DEBUG
if (UNIV_LIKELY(rec != NULL)) {
const byte* rec_data
= rec_get_nth_field(rec, offsets, i, &len);
ut_ad(len == dfield_get_len(dfield));
ut_ad(len != UNIV_SQL_NULL);
ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE);
rec_data += len - BTR_EXTERN_FIELD_REF_SIZE;
/* The pointer must not be zero. */
ut_ad(memcmp(rec_data, field_ref_zero,
BTR_EXTERN_FIELD_REF_SIZE));
/* The BLOB must be owned. */
ut_ad(!(rec_data[BTR_EXTERN_LEN]
& BTR_EXTERN_OWNER_FLAG));
}
#endif /* UNIV_DEBUG */
len = dfield_get_len(dfield);
ut_a(len != UNIV_SQL_NULL);
ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
data = static_cast<byte*>(dfield_get_data(dfield));
data += len - BTR_EXTERN_FIELD_REF_SIZE;
/* The pointer must not be zero. */
ut_a(memcmp(data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE));
/* The BLOB must be owned, unless we are resuming from
a lock wait and we already had disowned the BLOB. */
ut_a(rec == NULL
|| !(data[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG));
data[BTR_EXTERN_LEN] &= ~BTR_EXTERN_OWNER_FLAG;
data[BTR_EXTERN_LEN] |= BTR_EXTERN_INHERITED_FLAG;
/* The BTR_EXTERN_INHERITED_FLAG only matters in
rollback of a fresh insert (insert_undo log).
Purge (operating on update_undo log) will always free
the extern fields of a delete-marked row. */
inherit = true;
}
return(inherit);
}
/***********************************************************//**
Marks the clustered index record deleted and inserts the updated version
of the record to the index. This function should be used when the ordering
fields of the clustered index record change. This should be quite rare in
database applications.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_clust_rec_by_insert(
/*========================*/
ulint flags, /*!< in: undo logging and locking flags */
upd_node_t* node, /*!< in/out: row update node */
dict_index_t* index, /*!< in: clustered index of the record */
que_thr_t* thr, /*!< in: query thread */
ibool referenced,/*!< in: TRUE if index may be referenced in
a foreign key constraint */
ibool foreign, /*!< in: TRUE if index is foreign key index */
mtr_t* mtr) /*!< in/out: mtr; gets committed here */
{
mem_heap_t* heap;
btr_pcur_t* pcur;
btr_cur_t* btr_cur;
trx_t* trx;
dict_table_t* table;
dtuple_t* entry;
dberr_t err;
rec_t* rec;
ulint* offsets = NULL;
#ifdef WITH_WSREP
que_node_t *parent = que_node_get_parent(node);
#endif
ut_ad(node);
ut_ad(dict_index_is_clust(index));
trx = thr_get_trx(thr);
table = node->table;
pcur = node->pcur;
btr_cur = btr_pcur_get_btr_cur(pcur);
heap = mem_heap_create(1000);
entry = row_build_index_entry_low(node->upd_row, node->upd_ext,
index, heap, ROW_BUILD_FOR_INSERT);
ut_ad(dtuple_get_info_bits(entry) == 0);
row_upd_index_entry_sys_field(entry, index, DATA_TRX_ID, trx->id);
switch (node->state) {
default:
ut_error;
case UPD_NODE_INSERT_CLUSTERED:
/* A lock wait occurred in row_ins_clust_index_entry() in
the previous invocation of this function. */
row_upd_clust_rec_by_insert_inherit(
NULL, NULL, entry, node->update);
break;
case UPD_NODE_UPDATE_CLUSTERED:
/* This is the first invocation of the function where
we update the primary key. Delete-mark the old record
in the clustered index and prepare to insert a new entry. */
rec = btr_cur_get_rec(btr_cur);
offsets = rec_get_offsets(rec, index, NULL,
ULINT_UNDEFINED, &heap);
ut_ad(page_rec_is_user_rec(rec));
if (rec_get_deleted_flag(rec, rec_offs_comp(offsets))) {
/* If the clustered index record is already delete
marked, then we are here after a DB_LOCK_WAIT.
Skip delete marking clustered index and disowning
its blobs. */
ut_ad(rec_get_trx_id(rec, index) == trx->id);
ut_ad(!trx_undo_roll_ptr_is_insert(
row_get_rec_roll_ptr(rec, index,
offsets)));
goto check_fk;
}
err = btr_cur_del_mark_set_clust_rec(
flags, btr_cur_get_block(btr_cur), rec, index, offsets,
thr, node->row, mtr);
if (err != DB_SUCCESS) {
err_exit:
mtr_commit(mtr);
mem_heap_free(heap);
return(err);
}
/* If the the new row inherits externally stored
fields (off-page columns a.k.a. BLOBs) from the
delete-marked old record, mark them disowned by the
old record and owned by the new entry. */
if (rec_offs_any_extern(offsets)) {
if (row_upd_clust_rec_by_insert_inherit(
rec, offsets, entry, node->update)) {
/* The blobs are disowned here, expecting the
insert down below to inherit them. But if the
insert fails, then this disown will be undone
when the operation is rolled back. */
btr_cur_disown_inherited_fields(
btr_cur_get_page_zip(btr_cur),
rec, index, offsets, node->update,
mtr);
}
}
check_fk:
if (referenced) {
/* NOTE that the following call loses
the position of pcur ! */
err = row_upd_check_references_constraints(
node, pcur, table, index, offsets, thr, mtr);
if (err != DB_SUCCESS) {
goto err_exit;
}
}
#ifdef WITH_WSREP
if (!referenced &&
!(parent && que_node_get_type(parent) == QUE_NODE_UPDATE &&
(std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(),
((upd_node_t*)parent)->cascade_upd_nodes->end(),
node) ==
((upd_node_t*)parent)->cascade_upd_nodes->end())) &&
foreign
) {
err = wsrep_row_upd_check_foreign_constraints(
node, pcur, table, index, offsets, thr, mtr);
switch (err) {
case DB_SUCCESS:
case DB_NO_REFERENCED_ROW:
err = DB_SUCCESS;
break;
case DB_DEADLOCK:
if (wsrep_debug) {
ib::warn() << "WSREP: sec index FK check fail for deadlock"
<< " index " << index->name()
<< " table " << index->table->name.m_name;
}
break;
default:
ib::error() << "WSREP: referenced FK check fail: " << err
<< " index " << index->name()
<< " table " << index->table->name.m_name;
break;
}
if (err != DB_SUCCESS) {
goto err_exit;
}
}
#endif /* WITH_WSREP */
}
mtr_commit(mtr);
err = row_ins_clust_index_entry(
index, entry, thr,
node->upd_ext ? node->upd_ext->n_ext : 0, false);
node->state = UPD_NODE_INSERT_CLUSTERED;
mem_heap_free(heap);
return(err);
}
/***********************************************************//**
Updates a clustered index record of a row when the ordering fields do
not change.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_clust_rec(
/*==============*/
ulint flags, /*!< in: undo logging and locking flags */
upd_node_t* node, /*!< in: row update node */
dict_index_t* index, /*!< in: clustered index */
ulint* offsets,/*!< in: rec_get_offsets() on node->pcur */
mem_heap_t** offsets_heap,
/*!< in/out: memory heap, can be emptied */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr; gets committed here */
{
mem_heap_t* heap = NULL;
big_rec_t* big_rec = NULL;
btr_pcur_t* pcur;
btr_cur_t* btr_cur;
dberr_t err;
const dtuple_t* rebuilt_old_pk = NULL;
ut_ad(node);
ut_ad(dict_index_is_clust(index));
ut_ad(!thr_get_trx(thr)->in_rollback);
pcur = node->pcur;
btr_cur = btr_pcur_get_btr_cur(pcur);
ut_ad(btr_cur_get_index(btr_cur) == index);
ut_ad(!rec_get_deleted_flag(btr_cur_get_rec(btr_cur),
dict_table_is_comp(index->table)));
ut_ad(rec_offs_validate(btr_cur_get_rec(btr_cur), index, offsets));
if (dict_index_is_online_ddl(index)) {
rebuilt_old_pk = row_log_table_get_pk(
btr_cur_get_rec(btr_cur), index, offsets, NULL, &heap);
}
/* Try optimistic updating of the record, keeping changes within
the page; we do not check locks because we assume the x-lock on the
record to update */
if (node->cmpl_info & UPD_NODE_NO_SIZE_CHANGE) {
err = btr_cur_update_in_place(
flags | BTR_NO_LOCKING_FLAG, btr_cur,
offsets, node->update,
node->cmpl_info, thr, thr_get_trx(thr)->id, mtr);
} else {
err = btr_cur_optimistic_update(
flags | BTR_NO_LOCKING_FLAG, btr_cur,
&offsets, offsets_heap, node->update,
node->cmpl_info, thr, thr_get_trx(thr)->id, mtr);
}
if (err == DB_SUCCESS) {
goto success;
}
mtr_commit(mtr);
if (buf_LRU_buf_pool_running_out()) {
err = DB_LOCK_TABLE_FULL;
goto func_exit;
}
/* We may have to modify the tree structure: do a pessimistic descent
down the index tree */
mtr_start_trx(mtr, thr_get_trx(thr));
mtr->set_named_space(index->space);
/* Disable REDO logging as lifetime of temp-tables is limited to
server or connection lifetime and so REDO information is not needed
on restart for recovery.
Disable locking as temp-tables are not shared across connection. */
if (dict_table_is_temporary(index->table)) {
flags |= BTR_NO_LOCKING_FLAG;
mtr->set_log_mode(MTR_LOG_NO_REDO);
}
/* NOTE: this transaction has an s-lock or x-lock on the record and
therefore other transactions cannot modify the record when we have no
latch on the page. In addition, we assume that other query threads of
the same transaction do not modify the record in the meantime.
Therefore we can assert that the restoration of the cursor succeeds. */
ut_a(btr_pcur_restore_position(BTR_MODIFY_TREE, pcur, mtr));
ut_ad(!rec_get_deleted_flag(btr_pcur_get_rec(pcur),
dict_table_is_comp(index->table)));
if (!heap) {
heap = mem_heap_create(1024);
}
err = btr_cur_pessimistic_update(
flags | BTR_NO_LOCKING_FLAG | BTR_KEEP_POS_FLAG, btr_cur,
&offsets, offsets_heap, heap, &big_rec,
node->update, node->cmpl_info,
thr, thr_get_trx(thr)->id, mtr);
if (big_rec) {
ut_a(err == DB_SUCCESS);
DEBUG_SYNC_C("before_row_upd_extern");
err = btr_store_big_rec_extern_fields(
pcur, node->update, offsets, big_rec, mtr,
BTR_STORE_UPDATE);
DEBUG_SYNC_C("after_row_upd_extern");
}
if (err == DB_SUCCESS) {
success:
if (dict_index_is_online_ddl(index)) {
dtuple_t* new_v_row = NULL;
dtuple_t* old_v_row = NULL;
if (!(node->cmpl_info & UPD_NODE_NO_ORD_CHANGE)) {
new_v_row = node->upd_row;
old_v_row = node->update->old_vrow;
}
row_log_table_update(
btr_cur_get_rec(btr_cur),
index, offsets, rebuilt_old_pk, new_v_row,
old_v_row);
}
}
mtr_commit(mtr);
func_exit:
if (heap) {
mem_heap_free(heap);
}
if (big_rec) {
dtuple_big_rec_free(big_rec);
}
return(err);
}
/***********************************************************//**
Delete marks a clustered index record.
@return DB_SUCCESS if operation successfully completed, else error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_del_mark_clust_rec(
/*=======================*/
ulint flags, /*!< in: undo logging and locking flags */
upd_node_t* node, /*!< in: row update node */
dict_index_t* index, /*!< in: clustered index */
ulint* offsets,/*!< in/out: rec_get_offsets() for the
record under the cursor */
que_thr_t* thr, /*!< in: query thread */
ibool referenced,
/*!< in: TRUE if index may be referenced in
a foreign key constraint */
ibool foreign,/*!< in: TRUE if index is foreign key index */
mtr_t* mtr) /*!< in: mtr; gets committed here */
{
btr_pcur_t* pcur;
btr_cur_t* btr_cur;
dberr_t err;
rec_t* rec;
#ifdef WITH_WSREP
que_node_t *parent = que_node_get_parent(node);
#endif
ut_ad(node);
ut_ad(dict_index_is_clust(index));
ut_ad(node->is_delete);
pcur = node->pcur;
btr_cur = btr_pcur_get_btr_cur(pcur);
/* Store row because we have to build also the secondary index
entries */
row_upd_store_row(node, thr_get_trx(thr)->mysql_thd,
thr->prebuilt ? thr->prebuilt->m_mysql_table : NULL);
/* Mark the clustered index record deleted; we do not have to check
locks, because we assume that we have an x-lock on the record */
rec = btr_cur_get_rec(btr_cur);
err = btr_cur_del_mark_set_clust_rec(
flags, btr_cur_get_block(btr_cur), rec,
index, offsets, thr, node->row, mtr);
if (err == DB_SUCCESS && referenced) {
/* NOTE that the following call loses the position of pcur ! */
err = row_upd_check_references_constraints(
node, pcur, index->table, index, offsets, thr, mtr);
}
#ifdef WITH_WSREP
if (err == DB_SUCCESS && !referenced &&
!(parent && que_node_get_type(parent) == QUE_NODE_UPDATE &&
(std::find(((upd_node_t*)parent)->cascade_upd_nodes->begin(),
((upd_node_t*)parent)->cascade_upd_nodes->end(),
node) ==
((upd_node_t*)parent)->cascade_upd_nodes->end())) &&
thr_get_trx(thr) &&
foreign
) {
err = wsrep_row_upd_check_foreign_constraints(
node, pcur, index->table, index, offsets, thr, mtr);
switch (err) {
case DB_SUCCESS:
case DB_NO_REFERENCED_ROW:
err = DB_SUCCESS;
break;
case DB_DEADLOCK:
if (wsrep_debug) {
ib::warn() << "WSREP: sec index FK check fail for deadlock"
<< " index " << index->name()
<< " table " << index->table->name.m_name;
}
break;
default:
ib::error() << "WSREP: referenced FK check fail: " << err
<< " index " << index->name()
<< " table " << index->table->name.m_name;
break;
}
}
#endif /* WITH_WSREP */
mtr_commit(mtr);
return(err);
}
/***********************************************************//**
Updates the clustered index record.
@return DB_SUCCESS if operation successfully completed, DB_LOCK_WAIT
in case of a lock wait, else error code */
static MY_ATTRIBUTE((nonnull, warn_unused_result))
dberr_t
row_upd_clust_step(
/*===============*/
upd_node_t* node, /*!< in: row update node */
que_thr_t* thr) /*!< in: query thread */
{
dict_index_t* index;
btr_pcur_t* pcur;
ibool success;
dberr_t err;
mtr_t mtr;
rec_t* rec;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets;
ibool referenced;
ulint flags;
ibool foreign = FALSE;
trx_t* trx = thr_get_trx(thr);
rec_offs_init(offsets_);
index = dict_table_get_first_index(node->table);
referenced = row_upd_index_is_referenced(index, trx);
#ifdef WITH_WSREP
foreign = wsrep_row_upd_index_is_foreign(
index, thr_get_trx(thr));
#endif
pcur = node->pcur;
/* We have to restore the cursor to its position */
mtr_start_trx(&mtr, thr_get_trx(thr));
mtr.set_named_space(index->space);
/* Disable REDO logging as lifetime of temp-tables is limited to
server or connection lifetime and so REDO information is not needed
on restart for recovery.
Disable locking as temp-tables are not shared across connection. */
if (dict_table_is_temporary(index->table)) {
flags = BTR_NO_LOCKING_FLAG;
mtr.set_log_mode(MTR_LOG_NO_REDO);
} else {
flags = 0;
}
/* If the restoration does not succeed, then the same
transaction has deleted the record on which the cursor was,
and that is an SQL error. If the restoration succeeds, it may
still be that the same transaction has successively deleted
and inserted a record with the same ordering fields, but in
that case we know that the transaction has at least an
implicit x-lock on the record. */
ut_a(pcur->rel_pos == BTR_PCUR_ON);
ulint mode;
DEBUG_SYNC_C_IF_THD(
thr_get_trx(thr)->mysql_thd,
"innodb_row_upd_clust_step_enter");
if (dict_index_is_online_ddl(index)) {
ut_ad(node->table->id != DICT_INDEXES_ID);
mode = BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED;
mtr_s_lock(dict_index_get_lock(index), &mtr);
} else {
mode = BTR_MODIFY_LEAF;
}
success = btr_pcur_restore_position(mode, pcur, &mtr);
if (!success) {
err = DB_RECORD_NOT_FOUND;
mtr_commit(&mtr);
return(err);
}
/* If this is a row in SYS_INDEXES table of the data dictionary,
then we have to free the file segments of the index tree associated
with the index */
if (node->is_delete && node->table->id == DICT_INDEXES_ID) {
ut_ad(!dict_index_is_online_ddl(index));
dict_drop_index_tree(
btr_pcur_get_rec(pcur), pcur, &mtr);
mtr_commit(&mtr);
mtr_start_trx(&mtr, thr_get_trx(thr));
mtr.set_named_space(index->space);
success = btr_pcur_restore_position(BTR_MODIFY_LEAF, pcur,
&mtr);
if (!success) {
err = DB_ERROR;
mtr_commit(&mtr);
return(err);
}
}
rec = btr_pcur_get_rec(pcur);
offsets = rec_get_offsets(rec, index, offsets_,
ULINT_UNDEFINED, &heap);
if (!node->has_clust_rec_x_lock) {
err = lock_clust_rec_modify_check_and_lock(
flags, btr_pcur_get_block(pcur),
rec, index, offsets, thr);
if (err != DB_SUCCESS) {
mtr_commit(&mtr);
goto exit_func;
}
}
ut_ad(lock_trx_has_rec_x_lock(thr_get_trx(thr), index->table,
btr_pcur_get_block(pcur),
page_rec_get_heap_no(rec)));
/* NOTE: the following function calls will also commit mtr */
if (node->is_delete) {
err = row_upd_del_mark_clust_rec(
flags, node, index, offsets, thr, referenced, foreign, &mtr);
if (err == DB_SUCCESS) {
node->state = UPD_NODE_UPDATE_ALL_SEC;
node->index = dict_table_get_next_index(index);
}
goto exit_func;
}
/* If the update is made for MySQL, we already have the update vector
ready, else we have to do some evaluation: */
if (UNIV_UNLIKELY(!node->in_mysql_interface)) {
/* Copy the necessary columns from clust_rec and calculate the
new values to set */
row_upd_copy_columns(rec, offsets,
UT_LIST_GET_FIRST(node->columns));
row_upd_eval_new_vals(node->update);
}
if (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE) {
err = row_upd_clust_rec(
flags, node, index, offsets, &heap, thr, &mtr);
goto exit_func;
}
row_upd_store_row(node, trx->mysql_thd,
thr->prebuilt ? thr->prebuilt->m_mysql_table : NULL);
if (row_upd_changes_ord_field_binary(index, node->update, thr,
node->row, node->ext)) {
/* Update causes an ordering field (ordering fields within
the B-tree) of the clustered index record to change: perform
the update by delete marking and inserting.
TODO! What to do to the 'Halloween problem', where an update
moves the record forward in index so that it is again
updated when the cursor arrives there? Solution: the
read operation must check the undo record undo number when
choosing records to update. MySQL solves now the problem
externally! */
err = row_upd_clust_rec_by_insert(
flags, node, index, thr, referenced, foreign, &mtr);
if (err != DB_SUCCESS) {
goto exit_func;
}
node->state = UPD_NODE_UPDATE_ALL_SEC;
} else {
err = row_upd_clust_rec(
flags, node, index, offsets, &heap, thr, &mtr);
if (err != DB_SUCCESS) {
goto exit_func;
}
node->state = UPD_NODE_UPDATE_SOME_SEC;
}
node->index = dict_table_get_next_index(index);
exit_func:
if (heap) {
mem_heap_free(heap);
}
return(err);
}
/***********************************************************//**
Updates the affected index records of a row. When the control is transferred
to this node, we assume that we have a persistent cursor which was on a
record, and the position of the cursor is stored in the cursor.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
dberr_t
row_upd(
/*====*/
upd_node_t* node, /*!< in: row update node */
que_thr_t* thr) /*!< in: query thread */
{
dberr_t err = DB_SUCCESS;
DBUG_ENTER("row_upd");
ut_ad(!thr_get_trx(thr)->in_rollback);
DBUG_PRINT("row_upd", ("table: %s", node->table->name.m_name));
DBUG_PRINT("row_upd", ("info bits in update vector: 0x%lx",
node->update ? node->update->info_bits: 0));
DBUG_PRINT("row_upd", ("foreign_id: %s",
node->foreign ? node->foreign->id: "NULL"));
if (UNIV_LIKELY(node->in_mysql_interface)) {
/* We do not get the cmpl_info value from the MySQL
interpreter: we must calculate it on the fly: */
if (node->is_delete
|| row_upd_changes_some_index_ord_field_binary(
node->table, node->update)) {
node->cmpl_info = 0;
} else {
node->cmpl_info = UPD_NODE_NO_ORD_CHANGE;
}
}
switch (node->state) {
case UPD_NODE_UPDATE_CLUSTERED:
case UPD_NODE_INSERT_CLUSTERED:
log_free_check();
err = row_upd_clust_step(node, thr);
if (err != DB_SUCCESS) {
DBUG_RETURN(err);
}
}
DEBUG_SYNC_C_IF_THD(thr_get_trx(thr)->mysql_thd,
"after_row_upd_clust");
if (node->index == NULL
|| (!node->is_delete
&& (node->cmpl_info & UPD_NODE_NO_ORD_CHANGE))) {
DBUG_RETURN(DB_SUCCESS);
}
DBUG_EXECUTE_IF("row_upd_skip_sec", node->index = NULL;);
do {
/* Skip corrupted index */
dict_table_skip_corrupt_index(node->index);
if (!node->index) {
break;
}
if (node->index->type != DICT_FTS) {
err = row_upd_sec_step(node, thr);
if (err != DB_SUCCESS) {
DBUG_RETURN(err);
}
}
node->index = dict_table_get_next_index(node->index);
} while (node->index != NULL);
ut_ad(err == DB_SUCCESS);
/* Do some cleanup */
if (node->row != NULL) {
node->row = NULL;
node->ext = NULL;
node->upd_row = NULL;
node->upd_ext = NULL;
mem_heap_empty(node->heap);
}
node->state = UPD_NODE_UPDATE_CLUSTERED;
DBUG_RETURN(err);
}
/***********************************************************//**
Updates a row in a table. This is a high-level function used in SQL execution
graphs.
@return query thread to run next or NULL */
que_thr_t*
row_upd_step(
/*=========*/
que_thr_t* thr) /*!< in: query thread */
{
upd_node_t* node;
sel_node_t* sel_node;
que_node_t* parent;
dberr_t err = DB_SUCCESS;
trx_t* trx;
DBUG_ENTER("row_upd_step");
ut_ad(thr);
trx = thr_get_trx(thr);
trx_start_if_not_started_xa(trx, true);
node = static_cast<upd_node_t*>(thr->run_node);
sel_node = node->select;
parent = que_node_get_parent(node);
ut_ad(que_node_get_type(node) == QUE_NODE_UPDATE);
if (thr->prev_node == parent) {
node->state = UPD_NODE_SET_IX_LOCK;
}
if (node->state == UPD_NODE_SET_IX_LOCK) {
if (!node->has_clust_rec_x_lock) {
/* It may be that the current session has not yet
started its transaction, or it has been committed: */
err = lock_table(0, node->table, LOCK_IX, thr);
if (err != DB_SUCCESS) {
goto error_handling;
}
}
node->state = UPD_NODE_UPDATE_CLUSTERED;
if (node->searched_update) {
/* Reset the cursor */
sel_node->state = SEL_NODE_OPEN;
/* Fetch a row to update */
thr->run_node = sel_node;
DBUG_RETURN(thr);
}
}
/* sel_node is NULL if we are in the MySQL interface */
if (sel_node && (sel_node->state != SEL_NODE_FETCH)) {
if (!node->searched_update) {
/* An explicit cursor should be positioned on a row
to update */
ut_error;
err = DB_ERROR;
goto error_handling;
}
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS);
/* No more rows to update, or the select node performed the
updates directly in-place */
thr->run_node = parent;
DBUG_RETURN(thr);
}
/* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */
err = row_upd(node, thr);
error_handling:
trx->error_state = err;
if (err != DB_SUCCESS) {
DBUG_RETURN(NULL);
}
/* DO THE TRIGGER ACTIONS HERE */
if (node->searched_update) {
/* Fetch next row to update */
thr->run_node = sel_node;
} else {
/* It was an explicit cursor update */
thr->run_node = parent;
}
node->state = UPD_NODE_UPDATE_CLUSTERED;
DBUG_RETURN(thr);
}
#ifndef DBUG_OFF
/** Ensure that the member cascade_upd_nodes has only one update node
for each of the tables. This is useful for testing purposes. */
void upd_node_t::check_cascade_only_once()
{
DBUG_ENTER("upd_node_t::check_cascade_only_once");
dbug_trace();
for (upd_cascade_t::const_iterator i = cascade_upd_nodes->begin();
i != cascade_upd_nodes->end(); ++i) {
const upd_node_t* update_node = *i;
std::string table_name(update_node->table->name.m_name);
ulint count = 0;
for (upd_cascade_t::const_iterator j
= cascade_upd_nodes->begin();
j != cascade_upd_nodes->end(); ++j) {
const upd_node_t* node = *j;
if (table_name == node->table->name.m_name) {
DBUG_ASSERT(count++ == 0);
}
}
}
DBUG_VOID_RETURN;
}
/** Print information about this object into the trace log file. */
void upd_node_t::dbug_trace()
{
DBUG_ENTER("upd_node_t::dbug_trace");
for (upd_cascade_t::const_iterator i = cascade_upd_nodes->begin();
i != cascade_upd_nodes->end(); ++i) {
DBUG_LOG("upd_node_t", "cascade_upd_nodes: Cascade to table: "
<< (*i)->table->name);
}
for (upd_cascade_t::const_iterator j = new_upd_nodes->begin();
j != new_upd_nodes->end(); ++j) {
DBUG_LOG("upd_node_t", "new_upd_nodes: Cascade to table: "
<< (*j)->table->name);
}
DBUG_VOID_RETURN;
}
#endif /* !DBUG_OFF */