mirror of
https://github.com/MariaDB/server.git
synced 2025-01-26 00:34:18 +01:00
9f99932a76
git-svn-id: file:///svn/toku/tokudb@55577 c7de825b-a66e-492c-adef-691d508d4ae1
415 lines
18 KiB
C++
415 lines
18 KiB
C++
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
|
|
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
|
|
#if !defined(TOKU_OMT_H)
|
|
#define TOKU_OMT_H
|
|
|
|
#ident "$Id$"
|
|
/*
|
|
COPYING CONDITIONS NOTICE:
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of version 2 of the GNU General Public License as
|
|
published by the Free Software Foundation, and provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain this COPYING
|
|
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
|
|
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
|
|
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
|
|
GRANT (below).
|
|
|
|
* Redistributions in binary form must reproduce this COPYING
|
|
CONDITIONS NOTICE, the COPYRIGHT NOTICE (below), the
|
|
DISCLAIMER (below), the UNIVERSITY PATENT NOTICE (below), the
|
|
PATENT MARKING NOTICE (below), and the PATENT RIGHTS
|
|
GRANT (below) in the documentation and/or other materials
|
|
provided with the distribution.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA.
|
|
|
|
COPYRIGHT NOTICE:
|
|
|
|
TokuDB, Tokutek Fractal Tree Indexing Library.
|
|
Copyright (C) 2007-2013 Tokutek, Inc.
|
|
|
|
DISCLAIMER:
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
UNIVERSITY PATENT NOTICE:
|
|
|
|
The technology is licensed by the Massachusetts Institute of
|
|
Technology, Rutgers State University of New Jersey, and the Research
|
|
Foundation of State University of New York at Stony Brook under
|
|
United States of America Serial No. 11/760379 and to the patents
|
|
and/or patent applications resulting from it.
|
|
|
|
PATENT MARKING NOTICE:
|
|
|
|
This software is covered by US Patent No. 8,185,551.
|
|
|
|
PATENT RIGHTS GRANT:
|
|
|
|
"THIS IMPLEMENTATION" means the copyrightable works distributed by
|
|
Tokutek as part of the Fractal Tree project.
|
|
|
|
"PATENT CLAIMS" means the claims of patents that are owned or
|
|
licensable by Tokutek, both currently or in the future; and that in
|
|
the absence of this license would be infringed by THIS
|
|
IMPLEMENTATION or by using or running THIS IMPLEMENTATION.
|
|
|
|
"PATENT CHALLENGE" shall mean a challenge to the validity,
|
|
patentability, enforceability and/or non-infringement of any of the
|
|
PATENT CLAIMS or otherwise opposing any of the PATENT CLAIMS.
|
|
|
|
Tokutek hereby grants to you, for the term and geographical scope of
|
|
the PATENT CLAIMS, a non-exclusive, no-charge, royalty-free,
|
|
irrevocable (except as stated in this section) patent license to
|
|
make, have made, use, offer to sell, sell, import, transfer, and
|
|
otherwise run, modify, and propagate the contents of THIS
|
|
IMPLEMENTATION, where such license applies only to the PATENT
|
|
CLAIMS. This grant does not include claims that would be infringed
|
|
only as a consequence of further modifications of THIS
|
|
IMPLEMENTATION. If you or your agent or licensee institute or order
|
|
or agree to the institution of patent litigation against any entity
|
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
|
THIS IMPLEMENTATION constitutes direct or contributory patent
|
|
infringement, or inducement of patent infringement, then any rights
|
|
granted to you under this License shall terminate as of the date
|
|
such litigation is filed. If you or your agent or exclusive
|
|
licensee institute or order or agree to the institution of a PATENT
|
|
CHALLENGE, then Tokutek may terminate any rights granted to you
|
|
under this License.
|
|
*/
|
|
|
|
#ident "Copyright (c) 2007-2013 Tokutek Inc. All rights reserved."
|
|
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."
|
|
|
|
|
|
// Order Maintenance Tree (OMT)
|
|
//
|
|
// Maintains a collection of totally ordered values, where each value has an integer weight.
|
|
// The OMT is a mutable datatype.
|
|
//
|
|
// The Abstraction:
|
|
//
|
|
// An OMT is a vector of values, $V$, where $|V|$ is the length of the vector.
|
|
// The vector is numbered from $0$ to $|V|-1$.
|
|
// Each value has a weight. The weight of the $i$th element is denoted $w(V_i)$.
|
|
//
|
|
// We can create a new OMT, which is the empty vector.
|
|
//
|
|
// We can insert a new element $x$ into slot $i$, changing $V$ into $V'$ where
|
|
// $|V'|=1+|V|$ and
|
|
//
|
|
// V'_j = V_j if $j<i$
|
|
// x if $j=i$
|
|
// V_{j-1} if $j>i$.
|
|
//
|
|
// We can specify $i$ using a kind of function instead of as an integer.
|
|
// Let $b$ be a function mapping from values to nonzero integers, such that
|
|
// the signum of $b$ is monotically increasing.
|
|
// We can specify $i$ as the minimum integer such that $b(V_i)>0$.
|
|
//
|
|
// We look up a value using its index, or using a Heaviside function.
|
|
// For lookups, we allow $b$ to be zero for some values, and again the signum of $b$ must be monotonically increasing.
|
|
// When lookup up values, we can look up
|
|
// $V_i$ where $i$ is the minimum integer such that $b(V_i)=0$. (With a special return code if no such value exists.)
|
|
// (Rationale: Ordinarily we want $i$ to be unique. But for various reasons we want to allow multiple zeros, and we want the smallest $i$ in that case.)
|
|
// $V_i$ where $i$ is the minimum integer such that $b(V_i)>0$. (Or an indication that no such value exists.)
|
|
// $V_i$ where $i$ is the maximum integer such that $b(V_i)<0$. (Or an indication that no such value exists.)
|
|
//
|
|
// When looking up a value using a Heaviside function, we get the value and its index.
|
|
//
|
|
// We can also split an OMT into two OMTs, splitting the weight of the values evenly.
|
|
// Find a value $j$ such that the values to the left of $j$ have about the same total weight as the values to the right of $j$.
|
|
// The resulting two OMTs contain the values to the left of $j$ and the values to the right of $j$ respectively.
|
|
// All of the values from the original OMT go into one of the new OMTs.
|
|
// If the weights of the values don't split exactly evenly, then the implementation has the freedom to choose whether
|
|
// the new left OMT or the new right OMT is larger.
|
|
//
|
|
// Performance:
|
|
// Insertion and deletion should run with $O(\log |V|)$ time and $O(\log |V|)$ calls to the Heaviside function.
|
|
// The memory required is O(|V|).
|
|
//
|
|
// The programming API:
|
|
|
|
//typedef struct value *OMTVALUE; // A slight improvement over using void*.
|
|
#include <util/omt.h>
|
|
typedef void *OMTVALUE;
|
|
typedef toku::omt<OMTVALUE> *OMT;
|
|
|
|
|
|
int toku_omt_create (OMT *omtp);
|
|
// Effect: Create an empty OMT. Stores it in *omtp.
|
|
// Requires: omtp != NULL
|
|
// Returns:
|
|
// 0 success
|
|
// ENOMEM out of memory (and doesn't modify *omtp)
|
|
// Performance: constant time.
|
|
|
|
int toku_omt_create_from_sorted_array(OMT *omtp, OMTVALUE *values, uint32_t numvalues);
|
|
// Effect: Create a OMT containing values. The number of values is in numvalues.
|
|
// Stores the new OMT in *omtp.
|
|
// Requires: omtp != NULL
|
|
// Requires: values != NULL
|
|
// Requires: values is sorted
|
|
// Returns:
|
|
// 0 success
|
|
// ENOMEM out of memory (and doesn't modify *omtp)
|
|
// Performance: time=O(numvalues)
|
|
// Rational: Normally to insert N values takes O(N lg N) amortized time.
|
|
// If the N values are known in advance, are sorted, and
|
|
// the structure is empty, we can batch insert them much faster.
|
|
|
|
int toku_omt_create_steal_sorted_array(OMT *omtp, OMTVALUE **valuesp, uint32_t numvalues, uint32_t steal_capacity);
|
|
// Effect: Create an OMT containing values. The number of values is in numvalues.
|
|
// On success the OMT takes ownership of *valuesp array, and sets valuesp=NULL.
|
|
// Requires: omtp != NULL
|
|
// Requires: valuesp != NULL
|
|
// Requires: *valuesp is sorted
|
|
// Requires: *valuesp was allocated with toku_malloc
|
|
// Requires: Capacity of the *valuesp array is <= steal_capacity
|
|
// Requires: On success, *valuesp may not be accessed again by the caller.
|
|
// Returns:
|
|
// 0 success
|
|
// ENOMEM out of memory (and doesn't modify *omtp)
|
|
// EINVAL *valuesp == NULL or numvalues > capacity
|
|
// Performance: time=O(1)
|
|
// Rational: toku_omt_create_from_sorted_array takes O(numvalues) time.
|
|
// By taking ownership of the array, we save a malloc and memcpy,
|
|
// and possibly a free (if the caller is done with the array).
|
|
|
|
void toku_omt_destroy(OMT *omtp);
|
|
// Effect: Destroy an OMT, freeing all its memory.
|
|
// Does not free the OMTVALUEs stored in the OMT.
|
|
// Those values may be freed before or after calling toku_omt_destroy.
|
|
// Also sets *omtp=NULL.
|
|
// Requires: omtp != NULL
|
|
// Requires: *omtp != NULL
|
|
// Rationale: The usage is to do something like
|
|
// toku_omt_destroy(&s->omt);
|
|
// and now s->omt will have a NULL pointer instead of a dangling freed pointer.
|
|
// Rationale: Returns no values since free() cannot fail.
|
|
// Rationale: Does not free the OMTVALUEs to reduce complexity.
|
|
// Performance: time=O(toku_omt_size(*omtp))
|
|
|
|
uint32_t toku_omt_size(OMT V);
|
|
// Effect: return |V|.
|
|
// Requires: V != NULL
|
|
// Performance: time=O(1)
|
|
|
|
int toku_omt_iterate_on_range(OMT omt, uint32_t left, uint32_t right, int (*f)(OMTVALUE, uint32_t, void*), void*v);
|
|
// Effect: Iterate over the values of the omt, from left to right, calling f on each value.
|
|
// The second argument passed to f is the index of the value.
|
|
// The third argument passed to f is v.
|
|
// The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive).
|
|
// We will iterate only over [left,right)
|
|
//
|
|
// Requires: omt != NULL
|
|
// left <= right
|
|
// Requires: f != NULL
|
|
// Returns:
|
|
// If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate.
|
|
// If f always returns zero, then toku_omt_iterate returns 0.
|
|
// Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.)
|
|
// Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt.
|
|
// Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read.
|
|
|
|
int toku_omt_iterate(OMT omt, int (*f)(OMTVALUE, uint32_t, void*), void*v);
|
|
// Effect: Iterate over the values of the omt, from left to right, calling f on each value.
|
|
// The second argument passed to f is the index of the value.
|
|
// The third argument passed to f is v.
|
|
// The indices run from 0 (inclusive) to toku_omt_size(omt) (exclusive).
|
|
// Requires: omt != NULL
|
|
// Requires: f != NULL
|
|
// Returns:
|
|
// If f ever returns nonzero, then the iteration stops, and the value returned by f is returned by toku_omt_iterate.
|
|
// If f always returns zero, then toku_omt_iterate returns 0.
|
|
// Requires: Don't modify omt while running. (E.g., f may not insert or delete values form omt.)
|
|
// Performance: time=O(i+\log N) where i is the number of times f is called, and N is the number of elements in omt.
|
|
// Rational: Although the functional iterator requires defining another function (as opposed to C++ style iterator), it is much easier to read.
|
|
|
|
int toku_omt_insert_at(OMT omt, OMTVALUE value, uint32_t idx);
|
|
// Effect: Increases indexes of all items at slot >= index by 1.
|
|
// Insert value into the position at index.
|
|
//
|
|
// Returns:
|
|
// 0 success
|
|
// EINVAL if index>toku_omt_size(omt)
|
|
// ENOMEM
|
|
// On error, omt is unchanged.
|
|
// Performance: time=O(\log N) amortized time.
|
|
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
|
|
|
|
int toku_omt_set_at (OMT omt, OMTVALUE value, uint32_t idx);
|
|
// Effect: Replaces the item at index with value.
|
|
// Returns:
|
|
// 0 success
|
|
// EINVAL if index>=toku_omt_size(omt)
|
|
// On error, omt i sunchanged.
|
|
// Performance: time=O(\log N)
|
|
// Rationale: The BRT needs to be able to replace a value with another copy of the same value (allocated in a different location)
|
|
|
|
int toku_omt_insert(OMT omt, OMTVALUE value, int(*h)(OMTVALUE, void*v), void *v, uint32_t *idx);
|
|
// Effect: Insert value into the OMT.
|
|
// If there is some i such that $h(V_i, v)=0$ then returns DB_KEYEXIST.
|
|
// Otherwise, let i be the minimum value such that $h(V_i, v)>0$.
|
|
// If no such i exists, then let i be |V|
|
|
// Then this has the same effect as
|
|
// omt_insert_at(tree, value, i);
|
|
// If index!=NULL then i is stored in *index
|
|
// Requires: The signum of h must be monotonically increasing.
|
|
// Returns:
|
|
// 0 success
|
|
// DB_KEYEXIST the key is present (h was equal to zero for some value)
|
|
// ENOMEM
|
|
// On nonzero return, omt is unchanged.
|
|
// On nonzero non-DB_KEYEXIST return, *index is unchanged.
|
|
// Performance: time=O(\log N) amortized.
|
|
// Rationale: Some future implementation may be O(\log N) worst-case time, but O(\log N) amortized is good enough for now.
|
|
|
|
int toku_omt_delete_at(OMT omt, uint32_t idx);
|
|
// Effect: Delete the item in slot index.
|
|
// Decreases indexes of all items at slot >= index by 1.
|
|
// Returns
|
|
// 0 success
|
|
// EINVAL if index>=toku_omt_size(omt)
|
|
// On error, omt is unchanged.
|
|
// Rationale: To delete an item, first find its index using toku_omt_find, then delete it.
|
|
// Performance: time=O(\log N) amortized.
|
|
|
|
int toku_omt_fetch (OMT V, uint32_t i, OMTVALUE *v);
|
|
// Effect: Set *v=V_i
|
|
// If c!=NULL then set c's abstract offset to i.
|
|
// Requires: v != NULL
|
|
// Returns
|
|
// 0 success
|
|
// EINVAL if index>=toku_omt_size(omt)
|
|
// On nonzero return, *v is unchanged, and c (if nonnull) is either
|
|
// invalidated or unchanged.
|
|
// Performance: time=O(\log N)
|
|
// Implementation Notes: It is possible that c was previously valid and was
|
|
// associated with a different OMT. If c is changed by this
|
|
// function, the function must remove c's association with the old
|
|
// OMT, and associate it with the new OMT.
|
|
|
|
int toku_omt_find_zero(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, OMTVALUE *value, uint32_t *idx);
|
|
// Effect: Find the smallest i such that h(V_i, extra)>=0
|
|
// If there is such an i and h(V_i,extra)==0 then set *index=i and return 0.
|
|
// If there is such an i and h(V_i,extra)>0 then set *index=i and return DB_NOTFOUND.
|
|
// If there is no such i then set *index=toku_omt_size(V) and return DB_NOTFOUND.
|
|
// Requires: index!=NULL
|
|
|
|
int toku_omt_find(OMT V, int (*h)(OMTVALUE, void*extra), void*extra, int direction, OMTVALUE *value, uint32_t *idx);
|
|
// Effect:
|
|
// If direction >0 then find the smallest i such that h(V_i,extra)>0.
|
|
// If direction <0 then find the largest i such that h(V_i,extra)<0.
|
|
// (Direction may not be equal to zero.)
|
|
// If value!=NULL then store V_i in *value
|
|
// If index!=NULL then store i in *index.
|
|
// Requires: The signum of h is monotically increasing.
|
|
// Returns
|
|
// 0 success
|
|
// DB_NOTFOUND no such value is found.
|
|
// On nonzero return, *value and *index are unchanged, and c (if nonnull) is either invalidated
|
|
// or unchanged.
|
|
// Performance: time=O(\log N)
|
|
// Rationale:
|
|
// Here's how to use the find function to find various things
|
|
// Cases for find:
|
|
// find first value: ( h(v)=+1, direction=+1 )
|
|
// find last value ( h(v)=-1, direction=-1 )
|
|
// find first X ( h(v)=(v< x) ? -1 : 1 direction=+1 )
|
|
// find last X ( h(v)=(v<=x) ? -1 : 1 direction=-1 )
|
|
// find X or successor to X ( same as find first X. )
|
|
//
|
|
// Rationale: To help understand heaviside functions and behavor of find:
|
|
// There are 7 kinds of heaviside functions.
|
|
// The signus of the h must be monotonically increasing.
|
|
// Given a function of the following form, A is the element
|
|
// returned for direction>0, B is the element returned
|
|
// for direction<0, C is the element returned for
|
|
// direction==0 (see find_zero) (with a return of 0), and D is the element
|
|
// returned for direction==0 (see find_zero) with a return of DB_NOTFOUND.
|
|
// If any of A, B, or C are not found, then asking for the
|
|
// associated direction will return DB_NOTFOUND.
|
|
// See find_zero for more information.
|
|
//
|
|
// Let the following represent the signus of the heaviside function.
|
|
//
|
|
// -...-
|
|
// A
|
|
// D
|
|
//
|
|
// +...+
|
|
// B
|
|
// D
|
|
//
|
|
// 0...0
|
|
// C
|
|
//
|
|
// -...-0...0
|
|
// AC
|
|
//
|
|
// 0...0+...+
|
|
// C B
|
|
//
|
|
// -...-+...+
|
|
// AB
|
|
// D
|
|
//
|
|
// -...-0...0+...+
|
|
// AC B
|
|
|
|
int toku_omt_split_at(OMT omt, OMT *newomt, uint32_t idx);
|
|
// Effect: Create a new OMT, storing it in *newomt.
|
|
// The values to the right of index (starting at index) are moved to *newomt.
|
|
// Requires: omt != NULL
|
|
// Requires: newomt != NULL
|
|
// Returns
|
|
// 0 success,
|
|
// EINVAL if index > toku_omt_size(omt)
|
|
// ENOMEM
|
|
// On nonzero return, omt and *newomt are unmodified.
|
|
// Performance: time=O(n)
|
|
// Rationale: We don't need a split-evenly operation. We need to split items so that their total sizes
|
|
// are even, and other similar splitting criteria. It's easy to split evenly by calling toku_omt_size(), and dividing by two.
|
|
|
|
int toku_omt_merge(OMT leftomt, OMT rightomt, OMT *newomt);
|
|
// Effect: Appends leftomt and rightomt to produce a new omt.
|
|
// Sets *newomt to the new omt.
|
|
// On success, leftomt and rightomt destroyed,.
|
|
// Returns 0 on success
|
|
// ENOMEM on out of memory.
|
|
// On error, nothing is modified.
|
|
// Performance: time=O(n) is acceptable, but one can imagine implementations that are O(\log n) worst-case.
|
|
|
|
int toku_omt_clone_noptr(OMT *dest, OMT src);
|
|
// Effect: Creates a copy of an omt.
|
|
// Sets *dest to the clone
|
|
// Each element is assumed to be stored directly in the omt, that is, the OMTVALUEs are not pointers, they are data. Thus no extra memory allocation is required.
|
|
// Returns 0 on success
|
|
// ENOMEM on out of memory.
|
|
// On error, nothing is modified.
|
|
// Performance: time between O(n) and O(n log n), depending how long it
|
|
// takes to traverse src.
|
|
|
|
void toku_omt_clear(OMT omt);
|
|
// Effect: Set the tree to be empty.
|
|
// Note: Will not reallocate or resize any memory, since returning void precludes calling malloc.
|
|
// Performance: time=O(1)
|
|
|
|
size_t toku_omt_memory_size (OMT omt);
|
|
// Effect: Return the size (in bytes) of the omt, as it resides in main memory. Don't include any of the OMTVALUES.
|
|
|
|
|
|
|
|
#endif /* #ifndef TOKU_OMT_H */
|
|
|