mariadb/storage/innobase/include/srw_lock.h
Marko Mäkelä 4e1ca38838 MDEV-26781 InnoDB hangs when using SUX_LOCK_GENERIC
The Shared/Update/Exclusive locks that were introduced in
commit 03ca6495df (MDEV-24142)
did not work correctly when a futex-like system call interface
was not available.

On all tested implementations (IBM AIX as well as FreeBSD and GNU/Linux
with the futex interface artificially disabled), the old implementation
would cause hangs in some SPATIAL INDEX tests (innodb_gis suite).
On FreeBSD, a hang was also observed in an encryption test.

We will simply emulate the futex system calls with a single mutex
and two condition variables, one for each wait queue. The condition
variables basically shadow the lock words and are used as wait queues,
just like the futex system calls would be.

The storage overhead of ssux_lock_impl will be increased by 32 bits
when using SUX_LOCK_GENERIC. Compared to the futex-based implementation,
the SUX_LOCK_GENERIC implementation has an overhead of
sizeof(pthread_mutex_t)+2*sizeof(pthread_cond_t).

rw_lock: Remove all SUX_LOCK_GENERIC extensions.

pthread_mutex_wrapper: A simple wrapper of pthread_mutex that
implements srw_spin_mutex and srw_mutex for SUX_LOCK_GENERIC.

srw_mutex_impl: Define this also for SUX_LOCK_GENERIC, but in
that case add the fields mutex, cond.

ssux_lock_impl: Define for SUX_LOCK_GENERIC with a minimal difference:
adding readers_cond.
2022-04-06 12:51:27 +03:00

554 lines
16 KiB
C++

/*****************************************************************************
Copyright (c) 2020, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
#pragma once
#include "univ.i"
#include "rw_lock.h"
#if defined __linux__
/* futex(2): FUTEX_WAIT_PRIVATE, FUTEX_WAKE_PRIVATE */
#elif defined __OpenBSD__ || defined __FreeBSD__ || defined __DragonFly__
/* system calls similar to Linux futex(2) */
#elif defined _WIN32
/* SRWLOCK as well as WaitOnAddress(), WakeByAddressSingle() */
#else
# define SUX_LOCK_GENERIC /* fall back to generic synchronization primitives */
#endif
#if !defined SUX_LOCK_GENERIC && 0 /* defined SAFE_MUTEX */
# define SUX_LOCK_GENERIC /* Use dummy implementation for debugging purposes */
#endif
#ifdef SUX_LOCK_GENERIC
/** An exclusive-only variant of srw_lock */
template<bool spinloop>
class pthread_mutex_wrapper final
{
pthread_mutex_t lock;
public:
void init()
{
if (spinloop)
pthread_mutex_init(&lock, MY_MUTEX_INIT_FAST);
else
pthread_mutex_init(&lock, nullptr);
}
void destroy() { pthread_mutex_destroy(&lock); }
# ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
void wr_lock() { pthread_mutex_lock(&lock); }
# else
private:
void wr_wait();
public:
inline void wr_lock();
# endif
void wr_unlock() { pthread_mutex_unlock(&lock); }
bool wr_lock_try() { return !pthread_mutex_trylock(&lock); }
};
# ifndef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
template<> void pthread_mutex_wrapper<true>::wr_wait();
template<>
inline void pthread_mutex_wrapper<false>::wr_lock()
{ pthread_mutex_lock(&lock); }
template<>
inline void pthread_mutex_wrapper<true>::wr_lock()
{ if (!wr_lock_try()) wr_wait(); }
# endif
#endif
/** Futex-based mutex */
template<bool spinloop>
class srw_mutex_impl final
{
/** The lock word, containing HOLDER + 1 if the lock is being held,
plus the number of waiters */
std::atomic<uint32_t> lock;
/** Identifies that the lock is being held */
static constexpr uint32_t HOLDER= 1U << 31;
#ifdef SUX_LOCK_GENERIC
public:
/** The mutex for the condition variables. */
pthread_mutex_t mutex;
private:
/** Condition variable for the lock word. Used with mutex. */
pthread_cond_t cond;
#endif
/** Wait until the mutex has been acquired */
void wait_and_lock();
/** Wait for lock!=lk */
inline void wait(uint32_t lk);
/** Wake up one wait() thread */
void wake();
public:
/** @return whether the mutex is being held or waited for */
bool is_locked_or_waiting() const
{ return lock.load(std::memory_order_acquire) != 0; }
/** @return whether the mutex is being held by any thread */
bool is_locked() const
{ return (lock.load(std::memory_order_acquire) & HOLDER) != 0; }
void init()
{
DBUG_ASSERT(!is_locked_or_waiting());
#ifdef SUX_LOCK_GENERIC
pthread_mutex_init(&mutex, nullptr);
pthread_cond_init(&cond, nullptr);
#endif
}
void destroy()
{
DBUG_ASSERT(!is_locked_or_waiting());
#ifdef SUX_LOCK_GENERIC
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
#endif
}
/** @return whether the mutex was acquired */
bool wr_lock_try()
{
uint32_t lk= 0;
return lock.compare_exchange_strong(lk, HOLDER + 1,
std::memory_order_acquire,
std::memory_order_relaxed);
}
void wr_lock() { if (!wr_lock_try()) wait_and_lock(); }
void wr_unlock()
{
const uint32_t lk= lock.fetch_sub(HOLDER + 1, std::memory_order_release);
if (lk != HOLDER + 1)
{
DBUG_ASSERT(lk & HOLDER);
wake();
}
}
};
#ifdef SUX_LOCK_GENERIC
typedef pthread_mutex_wrapper<true> srw_spin_mutex;
typedef pthread_mutex_wrapper<false> srw_mutex;
#else
typedef srw_mutex_impl<true> srw_spin_mutex;
typedef srw_mutex_impl<false> srw_mutex;
#endif
template<bool spinloop> class srw_lock_impl;
/** Slim shared-update-exclusive lock with no recursion */
template<bool spinloop>
class ssux_lock_impl final
{
#ifdef UNIV_PFS_RWLOCK
friend class ssux_lock;
# ifdef SUX_LOCK_GENERIC
# elif defined _WIN32
# else
friend srw_lock_impl<spinloop>;
# endif
#endif
/** mutex for synchronization; held by U or X lock holders */
srw_mutex_impl<spinloop> writer;
#ifdef SUX_LOCK_GENERIC
/** Condition variable for "readers"; used with writer.mutex. */
pthread_cond_t readers_cond;
#endif
/** S or U holders, and WRITER flag for X holder or waiter */
std::atomic<uint32_t> readers;
/** indicates an X request; readers=WRITER indicates granted X lock */
static constexpr uint32_t WRITER= 1U << 31;
/** Wait for readers!=lk */
inline void wait(uint32_t lk);
/** Wait for readers!=lk|WRITER */
void wr_wait(uint32_t lk);
/** Wake up wait() on the last rd_unlock() */
void wake();
/** Acquire a read lock */
void rd_wait();
public:
void init()
{
writer.init();
DBUG_ASSERT(is_vacant());
#ifdef SUX_LOCK_GENERIC
pthread_cond_init(&readers_cond, nullptr);
#endif
}
void destroy()
{
DBUG_ASSERT(is_vacant());
writer.destroy();
#ifdef SUX_LOCK_GENERIC
pthread_cond_destroy(&readers_cond);
#endif
}
/** @return whether any writer is waiting */
bool is_waiting() const
{ return (readers.load(std::memory_order_relaxed) & WRITER) != 0; }
#ifndef DBUG_OFF
/** @return whether the lock is being held or waited for */
bool is_vacant() const { return !is_locked_or_waiting(); }
#endif /* !DBUG_OFF */
bool rd_lock_try()
{
uint32_t lk= 0;
while (!readers.compare_exchange_weak(lk, lk + 1,
std::memory_order_acquire,
std::memory_order_relaxed))
if (lk & WRITER)
return false;
return true;
}
bool u_lock_try()
{
if (!writer.wr_lock_try())
return false;
IF_DBUG_ASSERT(uint32_t lk=,)
readers.fetch_add(1, std::memory_order_acquire);
DBUG_ASSERT(lk < WRITER - 1);
return true;
}
bool wr_lock_try()
{
if (!writer.wr_lock_try())
return false;
uint32_t lk= 0;
if (readers.compare_exchange_strong(lk, WRITER,
std::memory_order_acquire,
std::memory_order_relaxed))
return true;
writer.wr_unlock();
return false;
}
void rd_lock() { if (!rd_lock_try()) rd_wait(); }
void u_lock()
{
writer.wr_lock();
IF_DBUG_ASSERT(uint32_t lk=,)
readers.fetch_add(1, std::memory_order_acquire);
DBUG_ASSERT(lk < WRITER - 1);
}
void wr_lock()
{
writer.wr_lock();
#if defined __i386__||defined __x86_64__||defined _M_IX86||defined _M_X64
/* On IA-32 and AMD64, this type of fetch_or() can only be implemented
as a loop around LOCK CMPXCHG. In this particular case, setting the
most significant bit using fetch_add() is equivalent, and is
translated into a simple LOCK XADD. */
static_assert(WRITER == 1U << 31, "compatibility");
if (uint32_t lk= readers.fetch_add(WRITER, std::memory_order_acquire))
wr_wait(lk);
#else
if (uint32_t lk= readers.fetch_or(WRITER, std::memory_order_acquire))
wr_wait(lk);
#endif
}
void u_wr_upgrade()
{
DBUG_ASSERT(writer.is_locked());
uint32_t lk= readers.fetch_add(WRITER - 1, std::memory_order_acquire);
if (lk != 1)
wr_wait(lk - 1);
}
void wr_u_downgrade()
{
DBUG_ASSERT(writer.is_locked());
DBUG_ASSERT(is_write_locked());
readers.store(1, std::memory_order_release);
/* Note: Any pending rd_lock() will not be woken up until u_unlock() */
}
void rd_unlock()
{
uint32_t lk= readers.fetch_sub(1, std::memory_order_release);
ut_ad(~WRITER & lk);
if (lk == WRITER + 1)
wake();
}
void u_unlock()
{
IF_DBUG_ASSERT(uint32_t lk=,)
readers.fetch_sub(1, std::memory_order_release);
DBUG_ASSERT(lk);
DBUG_ASSERT(lk < WRITER);
writer.wr_unlock();
}
void wr_unlock()
{
DBUG_ASSERT(is_write_locked());
readers.store(0, std::memory_order_release);
writer.wr_unlock();
}
/** @return whether an exclusive lock may be held by any thread */
bool is_write_locked() const noexcept
{ return readers.load(std::memory_order_acquire) == WRITER; }
/** @return whether any lock may be held by any thread */
bool is_locked() const noexcept
{ return readers.load(std::memory_order_acquire) != 0; }
/** @return whether any lock may be held by any thread */
bool is_locked_or_waiting() const noexcept
{ return is_locked() || writer.is_locked_or_waiting(); }
void lock_shared() { rd_lock(); }
void unlock_shared() { rd_unlock(); }
void lock() { wr_lock(); }
void unlock() { wr_unlock(); }
};
#if defined _WIN32 || defined SUX_LOCK_GENERIC
/** Slim read-write lock */
template<bool spinloop>
class srw_lock_
{
# ifdef UNIV_PFS_RWLOCK
friend srw_lock_impl<spinloop>;
# endif
# ifdef _WIN32
SRWLOCK lk;
# else
rw_lock_t lk;
# endif
void rd_wait();
void wr_wait();
public:
void init() { IF_WIN(,my_rwlock_init(&lk, nullptr)); }
void destroy() { IF_WIN(,rwlock_destroy(&lk)); }
inline void rd_lock();
inline void wr_lock();
bool rd_lock_try()
{ return IF_WIN(TryAcquireSRWLockShared(&lk), !rw_tryrdlock(&lk)); }
void rd_unlock()
{ IF_WIN(ReleaseSRWLockShared(&lk), rw_unlock(&lk)); }
bool wr_lock_try()
{ return IF_WIN(TryAcquireSRWLockExclusive(&lk), !rw_trywrlock(&lk)); }
void wr_unlock()
{ IF_WIN(ReleaseSRWLockExclusive(&lk), rw_unlock(&lk)); }
#ifdef _WIN32
/** @return whether any lock may be held by any thread */
bool is_locked_or_waiting() const noexcept { return (size_t&)(lk) != 0; }
/** @return whether any lock may be held by any thread */
bool is_locked() const noexcept { return is_locked_or_waiting(); }
/** @return whether an exclusive lock may be held by any thread */
bool is_write_locked() const noexcept
{
// FIXME: this returns false positives for shared locks
return is_locked();
}
void lock_shared() { rd_lock(); }
void unlock_shared() { rd_unlock(); }
void lock() { wr_lock(); }
void unlock() { wr_unlock(); }
#endif
};
template<> void srw_lock_<true>::rd_wait();
template<> void srw_lock_<true>::wr_wait();
template<>
inline void srw_lock_<false>::rd_lock()
{ IF_WIN(AcquireSRWLockShared(&lk), rw_rdlock(&lk)); }
template<>
inline void srw_lock_<false>::wr_lock()
{ IF_WIN(AcquireSRWLockExclusive(&lk), rw_wrlock(&lk)); }
template<>
inline void srw_lock_<true>::rd_lock() { if (!rd_lock_try()) rd_wait(); }
template<>
inline void srw_lock_<true>::wr_lock() { if (!wr_lock_try()) wr_wait(); }
typedef srw_lock_<false> srw_lock_low;
typedef srw_lock_<true> srw_spin_lock_low;
#else
typedef ssux_lock_impl<false> srw_lock_low;
typedef ssux_lock_impl<true> srw_spin_lock_low;
#endif
#ifndef UNIV_PFS_RWLOCK
# define SRW_LOCK_INIT(key) init()
# define SRW_LOCK_ARGS(file, line) /* nothing */
# define SRW_LOCK_CALL /* nothing */
typedef srw_lock_low srw_lock;
typedef srw_spin_lock_low srw_spin_lock;
#else
# define SRW_LOCK_INIT(key) init(key)
# define SRW_LOCK_ARGS(file, line) file, line
# define SRW_LOCK_CALL __FILE__, __LINE__
/** Slim shared-update-exclusive lock with PERFORMANCE_SCHEMA instrumentation */
class ssux_lock
{
PSI_rwlock *pfs_psi;
ssux_lock_impl<false> lock;
ATTRIBUTE_NOINLINE void psi_rd_lock(const char *file, unsigned line);
ATTRIBUTE_NOINLINE void psi_wr_lock(const char *file, unsigned line);
ATTRIBUTE_NOINLINE void psi_u_lock(const char *file, unsigned line);
ATTRIBUTE_NOINLINE void psi_u_wr_upgrade(const char *file, unsigned line);
public:
void init(mysql_pfs_key_t key)
{
pfs_psi= PSI_RWLOCK_CALL(init_rwlock)(key, this);
lock.init();
}
void destroy()
{
if (psi_likely(pfs_psi != nullptr))
{
PSI_RWLOCK_CALL(destroy_rwlock)(pfs_psi);
pfs_psi= nullptr;
}
lock.destroy();
}
void rd_lock(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_rd_lock(file, line);
else
lock.rd_lock();
}
void rd_unlock()
{
if (psi_likely(pfs_psi != nullptr))
PSI_RWLOCK_CALL(unlock_rwlock)(pfs_psi);
lock.rd_unlock();
}
void u_lock(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_u_lock(file, line);
else
lock.u_lock();
}
void u_unlock()
{
if (psi_likely(pfs_psi != nullptr))
PSI_RWLOCK_CALL(unlock_rwlock)(pfs_psi);
lock.u_unlock();
}
void wr_lock(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_wr_lock(file, line);
else
lock.wr_lock();
}
void wr_unlock()
{
if (psi_likely(pfs_psi != nullptr))
PSI_RWLOCK_CALL(unlock_rwlock)(pfs_psi);
lock.wr_unlock();
}
void u_wr_upgrade(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_u_wr_upgrade(file, line);
else
lock.u_wr_upgrade();
}
bool rd_lock_try() { return lock.rd_lock_try(); }
bool u_lock_try() { return lock.u_lock_try(); }
bool wr_lock_try() { return lock.wr_lock_try(); }
bool is_waiting() const { return lock.is_waiting(); }
};
/** Slim reader-writer lock with PERFORMANCE_SCHEMA instrumentation */
template<bool spinloop>
class srw_lock_impl
{
PSI_rwlock *pfs_psi;
# if defined _WIN32 || defined SUX_LOCK_GENERIC
srw_lock_<spinloop> lock;
# else
ssux_lock_impl<spinloop> lock;
# endif
ATTRIBUTE_NOINLINE void psi_rd_lock(const char *file, unsigned line);
ATTRIBUTE_NOINLINE void psi_wr_lock(const char *file, unsigned line);
public:
void init(mysql_pfs_key_t key)
{
pfs_psi= PSI_RWLOCK_CALL(init_rwlock)(key, this);
lock.init();
}
void destroy()
{
if (psi_likely(pfs_psi != nullptr))
{
PSI_RWLOCK_CALL(destroy_rwlock)(pfs_psi);
pfs_psi= nullptr;
}
lock.destroy();
}
void rd_lock(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_rd_lock(file, line);
else
lock.rd_lock();
}
void rd_unlock()
{
if (psi_likely(pfs_psi != nullptr))
PSI_RWLOCK_CALL(unlock_rwlock)(pfs_psi);
lock.rd_unlock();
}
void wr_lock(const char *file, unsigned line)
{
if (psi_likely(pfs_psi != nullptr))
psi_wr_lock(file, line);
else
lock.wr_lock();
}
void wr_unlock()
{
if (psi_likely(pfs_psi != nullptr))
PSI_RWLOCK_CALL(unlock_rwlock)(pfs_psi);
lock.wr_unlock();
}
bool rd_lock_try() { return lock.rd_lock_try(); }
bool wr_lock_try() { return lock.wr_lock_try(); }
void lock_shared() { return rd_lock(SRW_LOCK_CALL); }
void unlock_shared() { return rd_unlock(); }
#ifndef SUX_LOCK_GENERIC
/** @return whether any lock may be held by any thread */
bool is_locked_or_waiting() const noexcept
{ return lock.is_locked_or_waiting(); }
/** @return whether an exclusive lock may be held by any thread */
bool is_locked() const noexcept { return lock.is_locked(); }
/** @return whether an exclusive lock may be held by any thread */
bool is_write_locked() const noexcept { return lock.is_write_locked(); }
#endif
};
typedef srw_lock_impl<false> srw_lock;
typedef srw_lock_impl<true> srw_spin_lock;
#endif