mariadb/storage/innobase/btr/btr0pcur.cc
Marko Mäkelä b102872ad5 MDEV-31767 InnoDB tables are being flagged as corrupted on an I/O bound server
The main problem is that at ever since
commit aaef2e1d8c removed the
function buf_wait_for_read(), it is not safe to invoke
buf_page_get_low() with RW_NO_LATCH, that is, only buffer-fixing
the page. If a page read (or decryption or decompression) is in
progress, there would be a race condition when executing consistency
checks, and a page would wrongly be flagged as corrupted.

Furthermore, if the page is actually corrupted and the initial
access to it was with RW_NO_LATCH (only buffer-fixing), the
page read handler would likely end up in an infinite loop in
buf_pool_t::corrupted_evict(). It is not safe to invoke
mtr_t::upgrade_buffer_fix() on a block on which a page latch
was not initially acquired in buf_page_get_low().

btr_block_reget(): Remove the constant parameter rw_latch=RW_X_LATCH.

btr_block_get(): Assert that RW_NO_LATCH is not being used,
and change the parameter type of rw_latch.

btr_pcur_move_to_next_page(), innobase_table_is_empty(): Adjust for the
parameter type change of btr_block_get().

btr_root_block_get(): If mode==RW_NO_LATCH, do not check the integrity of
the page, because it is not safe to do so.

btr_page_alloc_low(), btr_page_free(): If the root page latch is not
previously held by the mini-transaction, invoke btr_root_block_get()
again with the proper latching mode.

btr_latch_prev(): Helper function to safely acquire a latch on a
preceding sibling page while holding a latch on a B-tree page.
To avoid deadlocks, we must not wait for the latch while holding
a latch on the current page, because another thread may be waiting
for our page latch when moving to the next page from our preceding
sibling page. If s_lock_try() or x_lock_try() on the preceding page fails,
we must release the current page latch, and wait for the latch on the
preceding page as well as the current page, in that order.
Page splits or merges will be prevented by the parent page latch
that we are holding.

btr_cur_t::search_leaf(): Make use of btr_latch_prev().

btr_cur_t::open_leaf(): Make use of btr_latch_prev(). Do not invoke
mtr_t::upgrade_buffer_fix() (when latch_mode == BTR_MODIFY_TREE),
because we will already have acquired all page latches upfront.

btr_cur_t::pessimistic_search_leaf(): Do acquire an exclusive index latch
before accessing the page. Make use of btr_latch_prev().
2023-07-25 11:40:58 +03:00

667 lines
20 KiB
C++

/*****************************************************************************
Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2016, 2023, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file btr/btr0pcur.cc
The index tree persistent cursor
Created 2/23/1996 Heikki Tuuri
*******************************************************/
#include "btr0pcur.h"
#include "ut0byte.h"
#include "rem0cmp.h"
#include "trx0trx.h"
/**************************************************************//**
Resets a persistent cursor object, freeing ::old_rec_buf if it is
allocated and resetting the other members to their initial values. */
void
btr_pcur_reset(
/*===========*/
btr_pcur_t* cursor) /*!< in, out: persistent cursor */
{
ut_free(cursor->old_rec_buf);
memset(&cursor->btr_cur.page_cur, 0, sizeof(page_cur_t));
cursor->old_rec_buf = NULL;
cursor->old_rec = NULL;
cursor->old_n_core_fields = 0;
cursor->old_n_fields = 0;
cursor->latch_mode = BTR_NO_LATCHES;
cursor->pos_state = BTR_PCUR_NOT_POSITIONED;
}
/**************************************************************//**
The position of the cursor is stored by taking an initial segment of the
record the cursor is positioned on, before, or after, and copying it to the
cursor data structure, or just setting a flag if the cursor id before the
first in an EMPTY tree, or after the last in an EMPTY tree. NOTE that the
page where the cursor is positioned must not be empty if the index tree is
not totally empty! */
void
btr_pcur_store_position(
/*====================*/
btr_pcur_t* cursor, /*!< in: persistent cursor */
mtr_t* mtr) /*!< in: mtr */
{
page_cur_t* page_cursor;
buf_block_t* block;
rec_t* rec;
dict_index_t* index;
ulint offs;
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
block = btr_pcur_get_block(cursor);
index = btr_cur_get_index(btr_pcur_get_btr_cur(cursor));
page_cursor = btr_pcur_get_page_cur(cursor);
rec = page_cur_get_rec(page_cursor);
offs = rec - block->page.frame;
ut_ad(block->page.id().page_no()
== page_get_page_no(block->page.frame));
ut_ad(block->page.buf_fix_count());
/* For spatial index, when we do positioning on parent
buffer if necessary, it might not hold latches, but the
tree must be locked to prevent change on the page */
ut_ad(mtr->memo_contains_flagged(block, MTR_MEMO_PAGE_S_FIX
| MTR_MEMO_PAGE_X_FIX)
|| (index->is_spatial()
&& mtr->memo_contains_flagged(&index->lock, MTR_MEMO_X_LOCK
| MTR_MEMO_SX_LOCK)));
if (page_is_empty(block->page.frame)) {
/* It must be an empty index tree; NOTE that in this case
we do not store the modify_clock, but always do a search
if we restore the cursor position */
ut_a(!page_has_siblings(block->page.frame));
ut_ad(page_is_leaf(block->page.frame));
ut_ad(block->page.id().page_no() == index->page);
if (page_rec_is_supremum_low(offs)) {
cursor->rel_pos = BTR_PCUR_AFTER_LAST_IN_TREE;
} else {
before_first:
cursor->rel_pos = BTR_PCUR_BEFORE_FIRST_IN_TREE;
}
return;
}
if (page_rec_is_supremum_low(offs)) {
rec = page_rec_get_prev(rec);
if (UNIV_UNLIKELY(!rec || page_rec_is_infimum(rec))) {
ut_ad("corrupted index" == 0);
cursor->rel_pos = BTR_PCUR_AFTER_LAST_IN_TREE;
return;
}
ut_ad(!page_rec_is_infimum(rec));
if (UNIV_UNLIKELY(rec_is_metadata(rec, *index))) {
#if 0 /* MDEV-22867 had to relax this */
/* If the table is emptied during an ALGORITHM=NOCOPY
DROP COLUMN ... that is not ALGORITHM=INSTANT,
then we must preserve any instant ADD metadata. */
ut_ad(index->table->instant
|| block->page.id().page_no() != index->page);
#endif
ut_ad(index->is_instant()
|| block->page.id().page_no() != index->page);
ut_ad(page_get_n_recs(block->page.frame) == 1);
ut_ad(page_is_leaf(block->page.frame));
ut_ad(!page_has_prev(block->page.frame));
cursor->rel_pos = BTR_PCUR_AFTER_LAST_IN_TREE;
return;
}
cursor->rel_pos = BTR_PCUR_AFTER;
} else if (page_rec_is_infimum_low(offs)) {
rec = page_rec_get_next(rec);
if (UNIV_UNLIKELY(!rec)) {
ut_ad("corrupted page" == 0);
goto before_first;
}
if (rec_is_metadata(rec, *index)) {
ut_ad(!page_has_prev(block->page.frame));
rec = page_rec_get_next(rec);
ut_ad(rec);
if (!rec || page_rec_is_supremum(rec)) {
goto before_first;
}
}
cursor->rel_pos = BTR_PCUR_BEFORE;
} else {
cursor->rel_pos = BTR_PCUR_ON;
}
if (index->is_ibuf()) {
ut_ad(!index->table->not_redundant());
cursor->old_n_fields = uint16_t(rec_get_n_fields_old(rec));
} else {
cursor->old_n_fields = static_cast<uint16>(
dict_index_get_n_unique_in_tree(index));
if (index->is_spatial() && !page_rec_is_leaf(rec)) {
ut_ad(dict_index_get_n_unique_in_tree_nonleaf(index)
== DICT_INDEX_SPATIAL_NODEPTR_SIZE);
/* For R-tree, we have to compare
the child page numbers as well. */
cursor->old_n_fields
= DICT_INDEX_SPATIAL_NODEPTR_SIZE + 1;
}
}
cursor->old_n_core_fields = index->n_core_fields;
cursor->old_rec = rec_copy_prefix_to_buf(rec, index,
cursor->old_n_fields,
&cursor->old_rec_buf,
&cursor->buf_size);
cursor->block_when_stored.store(block);
/* Function try to check if block is S/X latch. */
cursor->modify_clock = buf_block_get_modify_clock(block);
}
/**************************************************************//**
Copies the stored position of a pcur to another pcur. */
void
btr_pcur_copy_stored_position(
/*==========================*/
btr_pcur_t* pcur_receive, /*!< in: pcur which will receive the
position info */
btr_pcur_t* pcur_donate) /*!< in: pcur from which the info is
copied */
{
ut_free(pcur_receive->old_rec_buf);
memcpy(pcur_receive, pcur_donate, sizeof(btr_pcur_t));
if (pcur_donate->old_rec_buf) {
pcur_receive->old_rec_buf = (byte*)
ut_malloc_nokey(pcur_donate->buf_size);
memcpy(pcur_receive->old_rec_buf, pcur_donate->old_rec_buf,
pcur_donate->buf_size);
pcur_receive->old_rec = pcur_receive->old_rec_buf
+ (pcur_donate->old_rec - pcur_donate->old_rec_buf);
}
pcur_receive->old_n_core_fields = pcur_donate->old_n_core_fields;
pcur_receive->old_n_fields = pcur_donate->old_n_fields;
}
/** Optimistically latches the leaf page or pages requested.
@param[in] block guessed buffer block
@param[in,out] pcur cursor
@param[in,out] latch_mode BTR_SEARCH_LEAF, ...
@param[in,out] mtr mini-transaction
@return true if success */
TRANSACTIONAL_TARGET
static bool btr_pcur_optimistic_latch_leaves(buf_block_t *block,
btr_pcur_t *pcur,
btr_latch_mode *latch_mode,
mtr_t *mtr)
{
ut_ad(block->page.buf_fix_count());
ut_ad(block->page.in_file());
ut_ad(block->page.frame);
static_assert(BTR_SEARCH_PREV & BTR_SEARCH_LEAF, "");
static_assert(BTR_MODIFY_PREV & BTR_MODIFY_LEAF, "");
static_assert((BTR_SEARCH_PREV ^ BTR_MODIFY_PREV) ==
(RW_S_LATCH ^ RW_X_LATCH), "");
const rw_lock_type_t mode=
rw_lock_type_t(*latch_mode & (RW_X_LATCH | RW_S_LATCH));
switch (*latch_mode) {
default:
ut_ad(*latch_mode == BTR_SEARCH_LEAF || *latch_mode == BTR_MODIFY_LEAF);
return buf_page_optimistic_get(mode, block, pcur->modify_clock, mtr);
case BTR_SEARCH_PREV:
case BTR_MODIFY_PREV:
page_id_t id{0};
uint32_t left_page_no;
ulint zip_size;
buf_block_t *left_block= nullptr;
{
transactional_shared_lock_guard<block_lock> g{block->page.lock};
if (block->modify_clock != pcur->modify_clock)
return false;
id= block->page.id();
zip_size= block->zip_size();
left_page_no= btr_page_get_prev(block->page.frame);
}
if (left_page_no != FIL_NULL)
{
left_block=
buf_page_get_gen(page_id_t(id.space(), left_page_no), zip_size,
mode, nullptr, BUF_GET_POSSIBLY_FREED, mtr);
if (left_block &&
btr_page_get_next(left_block->page.frame) != id.page_no())
{
release_left_block:
mtr->release_last_page();
return false;
}
}
if (buf_page_optimistic_get(mode, block, pcur->modify_clock, mtr))
{
if (btr_page_get_prev(block->page.frame) == left_page_no)
{
/* block was already buffer-fixed while entering the function and
buf_page_optimistic_get() buffer-fixes it again. */
ut_ad(2 <= block->page.buf_fix_count());
*latch_mode= btr_latch_mode(mode);
return true;
}
mtr->release_last_page();
}
ut_ad(block->page.buf_fix_count());
if (left_block)
goto release_left_block;
return false;
}
}
/** Structure acts as functor to do the latching of leaf pages.
It returns true if latching of leaf pages succeeded and false
otherwise. */
struct optimistic_latch_leaves
{
btr_pcur_t *const cursor;
btr_latch_mode *const latch_mode;
mtr_t *const mtr;
bool operator()(buf_block_t *hint) const
{
return hint &&
btr_pcur_optimistic_latch_leaves(hint, cursor, latch_mode, mtr);
}
};
/** Restores the stored position of a persistent cursor bufferfixing
the page and obtaining the specified latches. If the cursor position
was saved when the
(1) cursor was positioned on a user record: this function restores the
position to the last record LESS OR EQUAL to the stored record;
(2) cursor was positioned on a page infimum record: restores the
position to the last record LESS than the user record which was the
successor of the page infimum;
(3) cursor was positioned on the page supremum: restores to the first
record GREATER than the user record which was the predecessor of the
supremum.
(4) cursor was positioned before the first or after the last in an
empty tree: restores to before first or after the last in the tree.
@param latch_mode BTR_SEARCH_LEAF, ...
@param mtr mini-transaction
@return btr_pcur_t::SAME_ALL cursor position on user rec and points on
the record with the same field values as in the stored record,
btr_pcur_t::SAME_UNIQ cursor position is on user rec and points on the
record with the same unique field values as in the stored record,
btr_pcur_t::NOT_SAME cursor position is not on user rec or points on
the record with not the samebuniq field values as in the stored */
btr_pcur_t::restore_status
btr_pcur_t::restore_position(btr_latch_mode restore_latch_mode, mtr_t *mtr)
{
dict_index_t* index;
dtuple_t* tuple;
page_cur_mode_t mode;
page_cur_mode_t old_mode;
mem_heap_t* heap;
ut_ad(mtr->is_active());
ut_ad(pos_state == BTR_PCUR_WAS_POSITIONED
|| pos_state == BTR_PCUR_IS_POSITIONED);
index = btr_cur_get_index(&btr_cur);
if (UNIV_UNLIKELY
(rel_pos == BTR_PCUR_AFTER_LAST_IN_TREE
|| rel_pos == BTR_PCUR_BEFORE_FIRST_IN_TREE)) {
/* In these cases we do not try an optimistic restoration,
but always do a search */
if (btr_cur.open_leaf(rel_pos == BTR_PCUR_BEFORE_FIRST_IN_TREE,
index, restore_latch_mode, mtr)
!= DB_SUCCESS) {
return restore_status::CORRUPTED;
}
latch_mode =
BTR_LATCH_MODE_WITHOUT_INTENTION(restore_latch_mode);
pos_state = BTR_PCUR_IS_POSITIONED;
block_when_stored.clear();
return restore_status::NOT_SAME;
}
ut_a(old_rec);
ut_a(old_n_core_fields);
ut_a(old_n_core_fields <= index->n_core_fields);
ut_a(old_n_fields);
static_assert(BTR_SEARCH_PREV == (4 | BTR_SEARCH_LEAF), "");
static_assert(BTR_MODIFY_PREV == (4 | BTR_MODIFY_LEAF), "");
switch (restore_latch_mode | 4) {
case BTR_SEARCH_PREV:
case BTR_MODIFY_PREV:
/* Try optimistic restoration. */
if (block_when_stored.run_with_hint(
optimistic_latch_leaves{this, &restore_latch_mode,
mtr})) {
pos_state = BTR_PCUR_IS_POSITIONED;
latch_mode = restore_latch_mode;
if (rel_pos == BTR_PCUR_ON) {
#ifdef UNIV_DEBUG
const rec_t* rec;
rec_offs offsets1_[REC_OFFS_NORMAL_SIZE];
rec_offs offsets2_[REC_OFFS_NORMAL_SIZE];
rec_offs* offsets1 = offsets1_;
rec_offs* offsets2 = offsets2_;
rec = btr_pcur_get_rec(this);
rec_offs_init(offsets1_);
rec_offs_init(offsets2_);
heap = mem_heap_create(256);
ut_ad(old_n_core_fields
== index->n_core_fields);
offsets1 = rec_get_offsets(
old_rec, index, offsets1,
old_n_core_fields,
old_n_fields, &heap);
offsets2 = rec_get_offsets(
rec, index, offsets2,
index->n_core_fields,
old_n_fields, &heap);
ut_ad(!cmp_rec_rec(old_rec,
rec, offsets1, offsets2,
index));
mem_heap_free(heap);
#endif /* UNIV_DEBUG */
return restore_status::SAME_ALL;
}
/* This is the same record as stored,
may need to be adjusted for BTR_PCUR_BEFORE/AFTER,
depending on search mode and direction. */
if (btr_pcur_is_on_user_rec(this)) {
pos_state
= BTR_PCUR_IS_POSITIONED_OPTIMISTIC;
}
return restore_status::NOT_SAME;
}
}
/* If optimistic restoration did not succeed, open the cursor anew */
heap = mem_heap_create(256);
tuple = dtuple_create(heap, old_n_fields);
dict_index_copy_types(tuple, index, old_n_fields);
rec_copy_prefix_to_dtuple(tuple, old_rec, index,
old_n_core_fields,
old_n_fields, heap);
ut_ad(dtuple_check_typed(tuple));
/* Save the old search mode of the cursor */
old_mode = search_mode;
switch (rel_pos) {
case BTR_PCUR_ON:
mode = PAGE_CUR_LE;
break;
case BTR_PCUR_AFTER:
mode = PAGE_CUR_G;
break;
case BTR_PCUR_BEFORE:
mode = PAGE_CUR_L;
break;
default:
MY_ASSERT_UNREACHABLE();
mode = PAGE_CUR_UNSUPP;
}
if (btr_pcur_open_with_no_init(tuple, mode, restore_latch_mode,
this, mtr) != DB_SUCCESS) {
mem_heap_free(heap);
return restore_status::CORRUPTED;
}
/* Restore the old search mode */
search_mode = old_mode;
ut_ad(rel_pos == BTR_PCUR_ON
|| rel_pos == BTR_PCUR_BEFORE
|| rel_pos == BTR_PCUR_AFTER);
rec_offs offsets[REC_OFFS_NORMAL_SIZE];
rec_offs_init(offsets);
restore_status ret_val= restore_status::NOT_SAME;
if (rel_pos == BTR_PCUR_ON && btr_pcur_is_on_user_rec(this)) {
ulint n_matched_fields= 0;
if (!cmp_dtuple_rec_with_match(
tuple, btr_pcur_get_rec(this),
rec_get_offsets(btr_pcur_get_rec(this), index, offsets,
index->n_core_fields, ULINT_UNDEFINED, &heap),
&n_matched_fields)) {
/* We have to store the NEW value for the modify clock,
since the cursor can now be on a different page!
But we can retain the value of old_rec */
block_when_stored.store(btr_pcur_get_block(this));
modify_clock= buf_block_get_modify_clock(
block_when_stored.block());
mem_heap_free(heap);
return restore_status::SAME_ALL;
}
if (n_matched_fields >= index->n_uniq)
ret_val= restore_status::SAME_UNIQ;
}
mem_heap_free(heap);
/* We have to store new position information, modify_clock etc.,
to the cursor because it can now be on a different page, the record
under it may have been removed, etc. */
btr_pcur_store_position(this, mtr);
return ret_val;
}
/*********************************************************//**
Moves the persistent cursor to the first record on the next page. Releases the
latch on the current page, and bufferunfixes it. Note that there must not be
modifications on the current page, as then the x-latch can be released only in
mtr_commit. */
dberr_t
btr_pcur_move_to_next_page(
/*=======================*/
btr_pcur_t* cursor, /*!< in: persistent cursor; must be on the
last record of the current page */
mtr_t* mtr) /*!< in: mtr */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
ut_ad(btr_pcur_is_after_last_on_page(cursor));
cursor->old_rec = nullptr;
const page_t* page = btr_pcur_get_page(cursor);
const uint32_t next_page_no = btr_page_get_next(page);
switch (next_page_no) {
case 0:
case 1:
case FIL_NULL:
return DB_CORRUPTION;
}
if (UNIV_UNLIKELY(next_page_no == btr_pcur_get_block(cursor)
->page.id().page_no())) {
return DB_CORRUPTION;
}
dberr_t err;
buf_block_t* next_block = btr_block_get(
*cursor->index(), next_page_no,
rw_lock_type_t(cursor->latch_mode & (RW_X_LATCH | RW_S_LATCH)),
page_is_leaf(page), mtr, &err);
if (UNIV_UNLIKELY(!next_block)) {
return err;
}
const page_t* next_page = buf_block_get_frame(next_block);
if (UNIV_UNLIKELY(memcmp_aligned<4>(next_page + FIL_PAGE_PREV,
page + FIL_PAGE_OFFSET, 4))) {
return DB_CORRUPTION;
}
page_cur_set_before_first(next_block, btr_pcur_get_page_cur(cursor));
ut_d(page_check_dir(next_page));
const auto s = mtr->get_savepoint();
mtr->rollback_to_savepoint(s - 2, s - 1);
return DB_SUCCESS;
}
MY_ATTRIBUTE((nonnull,warn_unused_result))
/*********************************************************//**
Moves the persistent cursor backward if it is on the first record of the page.
Commits mtr. Note that to prevent a possible deadlock, the operation
first stores the position of the cursor, commits mtr, acquires the necessary
latches and restores the cursor position again before returning. The
alphabetical position of the cursor is guaranteed to be sensible on
return, but it may happen that the cursor is not positioned on the last
record of any page, because the structure of the tree may have changed
during the time when the cursor had no latches. */
static
bool
btr_pcur_move_backward_from_page(
/*=============================*/
btr_pcur_t* cursor, /*!< in: persistent cursor, must be on the first
record of the current page */
mtr_t* mtr) /*!< in: mtr */
{
ut_ad(btr_pcur_is_before_first_on_page(cursor));
ut_ad(!btr_pcur_is_before_first_in_tree(cursor));
const auto latch_mode = cursor->latch_mode;
ut_ad(latch_mode == BTR_SEARCH_LEAF || latch_mode == BTR_MODIFY_LEAF);
btr_pcur_store_position(cursor, mtr);
mtr_commit(mtr);
mtr_start(mtr);
static_assert(BTR_SEARCH_PREV == (4 | BTR_SEARCH_LEAF), "");
static_assert(BTR_MODIFY_PREV == (4 | BTR_MODIFY_LEAF), "");
if (UNIV_UNLIKELY(cursor->restore_position(
btr_latch_mode(4 | latch_mode), mtr)
== btr_pcur_t::CORRUPTED)) {
return true;
}
buf_block_t* block = btr_pcur_get_block(cursor);
if (page_has_prev(block->page.frame)) {
buf_block_t* left_block
= mtr->at_savepoint(mtr->get_savepoint() - 1);
const page_t* const left = left_block->page.frame;
if (memcmp_aligned<4>(left + FIL_PAGE_NEXT,
block->page.frame
+ FIL_PAGE_OFFSET, 4)) {
/* This should be the right sibling page, or
if there is none, the current block. */
ut_ad(left_block == block
|| !memcmp_aligned<4>(left + FIL_PAGE_PREV,
block->page.frame
+ FIL_PAGE_OFFSET, 4));
/* The previous one must be the left sibling. */
left_block
= mtr->at_savepoint(mtr->get_savepoint() - 2);
ut_ad(!memcmp_aligned<4>(left_block->page.frame
+ FIL_PAGE_NEXT,
block->page.frame
+ FIL_PAGE_OFFSET, 4));
}
if (btr_pcur_is_before_first_on_page(cursor)) {
page_cur_set_after_last(left_block,
&cursor->btr_cur.page_cur);
/* Release the right sibling. */
} else {
/* Release the left sibling. */
block = left_block;
}
mtr->release(*block);
}
cursor->latch_mode = latch_mode;
cursor->old_rec = nullptr;
return false;
}
/*********************************************************//**
Moves the persistent cursor to the previous record in the tree. If no records
are left, the cursor stays 'before first in tree'.
@return TRUE if the cursor was not before first in tree */
bool
btr_pcur_move_to_prev(
/*==================*/
btr_pcur_t* cursor, /*!< in: persistent cursor; NOTE that the
function may release the page latch */
mtr_t* mtr) /*!< in: mtr */
{
ut_ad(cursor->pos_state == BTR_PCUR_IS_POSITIONED);
ut_ad(cursor->latch_mode != BTR_NO_LATCHES);
cursor->old_rec = nullptr;
if (btr_pcur_is_before_first_on_page(cursor)) {
return (!btr_pcur_is_before_first_in_tree(cursor)
&& !btr_pcur_move_backward_from_page(cursor, mtr));
}
return btr_pcur_move_to_prev_on_page(cursor) != nullptr;
}