mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
3a9358a410
This patch introduces a new way of handling UPDATE and DELETE commands at the top level after the parsing phase. This new way of processing update and delete statements can be seen in the implementation of the prepare() and execute() methods from the new Sql_cmd_dml class. This class derived from the Sql_cmd class can be considered as an interface class for processing such commands as SELECT, INSERT, UPDATE, DELETE and other comands manipulating data in tables. With this patch processing of update and delete statements after parsing proceeds by the following schema: - precheck of the access rights is performed for the used tables - the used tables are opened - context analysis phase is performed for the statement - the used tables are locked - the statement is optimized and executed - clean-up is performed for the statement The implementation of the method Sql_cmd_dml::execute() adheres this schema. The virtual functions of the class Sql_cmd_dml used for precheck of the access rights, context analysis, optimization and execution allow to adjust this schema for processing data manipulation statements of any types. This schema of processing data manipulation statements is taken from the current MySQL code. Moreover the definition the class Sql_cmd_dml introduced in this patch is almost a full replica of such class in the existing MySQL. However the implementation of the derived classes for update and delete statements is quite different. This implementation employs the JOIN class for all kinds of update and delete statements. It allows to perform main bulk of context analysis actions by the function JOIN::prepare(). This guarantees that characteristics and properties of the statement tree discovered for optimization phase when doing context analysis are the same for single-table and multi-table updates and deletes. With this patch the following functions are gone: mysql_prepare_update(), mysql_multi_update_prepare(), mysql_update(), mysql_multi_update(), mysql_prepare_delete(), mysql_multi_delete_prepare(), mysql_delete(). The code within these functions have been used as much as possible though. The functions mysql_test_update() and mysql_test_delete() are also not needed anymore. The method Sql_cmd_dml::prepare() serves processing - update/delete statement - PREPARE stmt FROM "<update/delete statement>" - EXECUTE stmt when stmt is prepared from update/delete statement. Approved by Oleksandr Byelkin <sanja@mariadb.com>
17115 lines
548 KiB
C++
17115 lines
548 KiB
C++
/* Copyright (c) 2000, 2015, Oracle and/or its affiliates.
|
|
Copyright (c) 2008, 2021, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
/*
|
|
TODO:
|
|
Fix that MAYBE_KEY are stored in the tree so that we can detect use
|
|
of full hash keys for queries like:
|
|
|
|
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and
|
|
kws.keyword_id in (204,205);
|
|
*/
|
|
|
|
/*
|
|
This file contains:
|
|
|
|
RangeAnalysisModule
|
|
A module that accepts a condition, index (or partitioning) description,
|
|
and builds lists of intervals (in index/partitioning space), such that
|
|
all possible records that match the condition are contained within the
|
|
intervals.
|
|
The entry point for the range analysis module is get_mm_tree() function.
|
|
|
|
The lists are returned in form of complicated structure of interlinked
|
|
SEL_TREE/SEL_IMERGE/SEL_ARG objects.
|
|
See quick_range_seq_next, find_used_partitions for examples of how to walk
|
|
this structure.
|
|
All direct "users" of this module are located within this file, too.
|
|
|
|
|
|
PartitionPruningModule
|
|
A module that accepts a partitioned table, condition, and finds which
|
|
partitions we will need to use in query execution. Search down for
|
|
"PartitionPruningModule" for description.
|
|
The module has single entry point - prune_partitions() function.
|
|
|
|
|
|
Range/index_merge/groupby-minmax optimizer module
|
|
A module that accepts a table, condition, and returns
|
|
- a QUICK_*_SELECT object that can be used to retrieve rows that match
|
|
the specified condition, or a "no records will match the condition"
|
|
statement.
|
|
|
|
The module entry points are
|
|
test_quick_select()
|
|
get_quick_select_for_ref()
|
|
|
|
|
|
Record retrieval code for range/index_merge/groupby-min-max.
|
|
Implementations of QUICK_*_SELECT classes.
|
|
|
|
KeyTupleFormat
|
|
~~~~~~~~~~~~~~
|
|
The code in this file (and elsewhere) makes operations on key value tuples.
|
|
Those tuples are stored in the following format:
|
|
|
|
The tuple is a sequence of key part values. The length of key part value
|
|
depends only on its type (and not depends on the what value is stored)
|
|
|
|
KeyTuple: keypart1-data, keypart2-data, ...
|
|
|
|
The value of each keypart is stored in the following format:
|
|
|
|
keypart_data: [isnull_byte] keypart-value-bytes
|
|
|
|
If a keypart may have a NULL value (key_part->field->real_maybe_null() can
|
|
be used to check this), then the first byte is a NULL indicator with the
|
|
following valid values:
|
|
1 - keypart has NULL value.
|
|
0 - keypart has non-NULL value.
|
|
|
|
<questionable-statement> If isnull_byte==1 (NULL value), then the following
|
|
keypart->length bytes must be 0.
|
|
</questionable-statement>
|
|
|
|
keypart-value-bytes holds the value. Its format depends on the field type.
|
|
The length of keypart-value-bytes may or may not depend on the value being
|
|
stored. The default is that length is static and equal to
|
|
KEY_PART_INFO::length.
|
|
|
|
Key parts with (key_part_flag & HA_BLOB_PART) have length depending of the
|
|
value:
|
|
|
|
keypart-value-bytes: value_length value_bytes
|
|
|
|
The value_length part itself occupies HA_KEY_BLOB_LENGTH=2 bytes.
|
|
|
|
See key_copy() and key_restore() for code to move data between index tuple
|
|
and table record
|
|
|
|
CAUTION: the above description is only sergefp's understanding of the
|
|
subject and may omit some details.
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mariadb.h"
|
|
#include "sql_priv.h"
|
|
#include "key.h" // is_key_used, key_copy, key_cmp, key_restore
|
|
#include "sql_parse.h" // check_stack_overrun
|
|
#include "sql_partition.h" // get_part_id_func, PARTITION_ITERATOR,
|
|
// struct partition_info, NOT_A_PARTITION_ID
|
|
#include "records.h" // init_read_record, end_read_record
|
|
#include <m_ctype.h>
|
|
#include "sql_select.h"
|
|
#include "sql_statistics.h"
|
|
#include "uniques.h"
|
|
#include "my_json_writer.h"
|
|
|
|
#ifndef EXTRA_DEBUG
|
|
#define test_rb_tree(A,B) {}
|
|
#define test_use_count(A) {}
|
|
#endif
|
|
|
|
/*
|
|
Convert double value to #rows. Currently this does floor(), and we
|
|
might consider using round() instead.
|
|
*/
|
|
#define double2rows(x) ((ha_rows)(x))
|
|
|
|
/*
|
|
this should be long enough so that any memcmp with a string that
|
|
starts from '\0' won't cross is_null_string boundaries, even
|
|
if the memcmp is optimized to compare 4- 8- or 16- bytes at once
|
|
*/
|
|
static uchar is_null_string[20]= {1,0};
|
|
|
|
/**
|
|
Helper function to compare two SEL_ARG's.
|
|
*/
|
|
static bool all_same(const SEL_ARG *sa1, const SEL_ARG *sa2)
|
|
{
|
|
if (sa1 == NULL && sa2 == NULL)
|
|
return true;
|
|
if ((sa1 != NULL && sa2 == NULL) || (sa1 == NULL && sa2 != NULL))
|
|
return false;
|
|
return sa1->all_same(sa2);
|
|
}
|
|
|
|
class SEL_IMERGE;
|
|
|
|
#define CLONE_KEY1_MAYBE 1
|
|
#define CLONE_KEY2_MAYBE 2
|
|
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
|
|
|
|
|
|
/*
|
|
While objects of the class SEL_ARG represent ranges for indexes or
|
|
index infixes (including ranges for index prefixes and index suffixes),
|
|
objects of the class SEL_TREE represent AND/OR formulas of such ranges.
|
|
Currently an AND/OR formula represented by a SEL_TREE object can have
|
|
at most three levels:
|
|
|
|
<SEL_TREE formula> ::=
|
|
[ <SEL_RANGE_TREE formula> AND ]
|
|
[ <SEL_IMERGE formula> [ AND <SEL_IMERGE formula> ...] ]
|
|
|
|
<SEL_RANGE_TREE formula> ::=
|
|
<SEL_ARG formula> [ AND <SEL_ARG_formula> ... ]
|
|
|
|
<SEL_IMERGE formula> ::=
|
|
<SEL_RANGE_TREE formula> [ OR <SEL_RANGE_TREE formula> ]
|
|
|
|
As we can see from the above definitions:
|
|
- SEL_RANGE_TREE formula is a conjunction of SEL_ARG formulas
|
|
- SEL_IMERGE formula is a disjunction of SEL_RANGE_TREE formulas
|
|
- SEL_TREE formula is a conjunction of a SEL_RANGE_TREE formula
|
|
and SEL_IMERGE formulas.
|
|
It's required above that a SEL_TREE formula has at least one conjunct.
|
|
|
|
Usually we will consider normalized SEL_RANGE_TREE formulas where we use
|
|
TRUE as conjunct members for those indexes whose SEL_ARG trees are empty.
|
|
|
|
We will call an SEL_TREE object simply 'tree'.
|
|
The part of a tree that represents SEL_RANGE_TREE formula is called
|
|
'range part' of the tree while the remaining part is called 'imerge part'.
|
|
If a tree contains only a range part then we call such a tree 'range tree'.
|
|
Components of a range tree that represent SEL_ARG formulas are called ranges.
|
|
If a tree does not contain any range part we call such a tree 'imerge tree'.
|
|
Components of the imerge part of a tree that represent SEL_IMERGE formula
|
|
are called imerges.
|
|
|
|
Usually we'll designate:
|
|
SEL_TREE formulas by T_1,...,T_k
|
|
SEL_ARG formulas by R_1,...,R_k
|
|
SEL_RANGE_TREE formulas by RT_1,...,RT_k
|
|
SEL_IMERGE formulas by M_1,...,M_k
|
|
Accordingly we'll use:
|
|
t_1,...,t_k - to designate trees representing T_1,...,T_k
|
|
r_1,...,r_k - to designate ranges representing R_1,...,R_k
|
|
rt_1,...,r_tk - to designate range trees representing RT_1,...,RT_k
|
|
m_1,...,m_k - to designate imerges representing M_1,...,M_k
|
|
|
|
SEL_TREE objects are usually built from WHERE conditions or
|
|
ON expressions.
|
|
A SEL_TREE object always represents an inference of the condition it is
|
|
built from. Therefore, if a row satisfies a SEL_TREE formula it also
|
|
satisfies the condition it is built from.
|
|
|
|
The following transformations of tree t representing SEL_TREE formula T
|
|
yield a new tree t1 thar represents an inference of T: T=>T1.
|
|
(1) remove any of SEL_ARG tree from the range part of t
|
|
(2) remove any imerge from the tree t
|
|
(3) remove any of SEL_ARG tree from any range tree contained
|
|
in any imerge of tree
|
|
|
|
Since the basic blocks of any SEL_TREE objects are ranges, SEL_TREE
|
|
objects in many cases can be effectively used to filter out a big part
|
|
of table rows that do not satisfy WHERE/IN conditions utilizing
|
|
only single or multiple range index scans.
|
|
|
|
A single range index scan is constructed for a range tree that contains
|
|
only one SEL_ARG object for an index or an index prefix.
|
|
An index intersection scan can be constructed for a range tree
|
|
that contains several SEL_ARG objects. Currently index intersection
|
|
scans are constructed only for single-point ranges.
|
|
An index merge scan is constructed for a imerge tree that contains only
|
|
one imerge. If range trees of this imerge contain only single-point merges
|
|
than a union of index intersections can be built.
|
|
|
|
Usually the tree built by the range optimizer for a query table contains
|
|
more than one range in the range part, and additionally may contain some
|
|
imerges in the imerge part. The range optimizer evaluates all of them one
|
|
by one and chooses the range or the imerge that provides the cheapest
|
|
single or multiple range index scan of the table. According to rules
|
|
(1)-(3) this scan always filter out only those rows that do not satisfy
|
|
the query conditions.
|
|
|
|
For any condition the SEL_TREE object for it is built in a bottom up
|
|
manner starting from the range trees for the predicates. The tree_and
|
|
function builds a tree for any conjunction of formulas from the trees
|
|
for its conjuncts. The tree_or function builds a tree for any disjunction
|
|
of formulas from the trees for its disjuncts.
|
|
*/
|
|
|
|
class SEL_TREE :public Sql_alloc
|
|
{
|
|
public:
|
|
/*
|
|
Starting an effort to document this field:
|
|
(for some i, keys[i]->type == SEL_ARG::IMPOSSIBLE) =>
|
|
(type == SEL_TREE::IMPOSSIBLE)
|
|
*/
|
|
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
|
|
|
|
SEL_TREE(enum Type type_arg, MEM_ROOT *root, size_t num_keys)
|
|
: type(type_arg), keys(root, num_keys), n_ror_scans(0)
|
|
{
|
|
keys_map.clear_all();
|
|
}
|
|
|
|
SEL_TREE(MEM_ROOT *root, size_t num_keys) :
|
|
type(KEY), keys(root, num_keys), n_ror_scans(0)
|
|
{
|
|
keys_map.clear_all();
|
|
}
|
|
|
|
SEL_TREE(SEL_TREE *arg, bool without_merges, RANGE_OPT_PARAM *param);
|
|
/*
|
|
Note: there may exist SEL_TREE objects with sel_tree->type=KEY and
|
|
keys[i]=0 for all i. (SergeyP: it is not clear whether there is any
|
|
merit in range analyzer functions (e.g. get_mm_parts) returning a
|
|
pointer to such SEL_TREE instead of NULL)
|
|
*/
|
|
Mem_root_array<SEL_ARG *, true> keys;
|
|
key_map keys_map; /* bitmask of non-NULL elements in keys */
|
|
|
|
/*
|
|
Possible ways to read rows using index_merge. The list is non-empty only
|
|
if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
|
|
*/
|
|
List<SEL_IMERGE> merges;
|
|
|
|
/* The members below are filled/used only after get_mm_tree is done */
|
|
key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */
|
|
uint n_ror_scans; /* number of set bits in ror_scans_map */
|
|
|
|
struct st_index_scan_info **index_scans; /* list of index scans */
|
|
struct st_index_scan_info **index_scans_end; /* last index scan */
|
|
|
|
struct st_ror_scan_info **ror_scans; /* list of ROR key scans */
|
|
struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
|
|
/* Note that #records for each key scan is stored in table->quick_rows */
|
|
|
|
bool without_ranges() { return keys_map.is_clear_all(); }
|
|
bool without_imerges() { return merges.is_empty(); }
|
|
};
|
|
|
|
|
|
class PARAM : public RANGE_OPT_PARAM
|
|
{
|
|
public:
|
|
ha_rows quick_rows[MAX_KEY];
|
|
|
|
/*
|
|
This will collect 'possible keys' based on the range optimization.
|
|
|
|
Queries with a JOIN object actually use ref optimizer (see add_key_field)
|
|
to collect possible_keys. This is used by single table UPDATE/DELETE.
|
|
*/
|
|
key_map possible_keys;
|
|
longlong baseflag;
|
|
uint max_key_parts, range_count;
|
|
|
|
bool quick; // Don't calulate possible keys
|
|
|
|
uint fields_bitmap_size;
|
|
MY_BITMAP needed_fields; /* bitmask of fields needed by the query */
|
|
MY_BITMAP tmp_covered_fields;
|
|
|
|
key_map *needed_reg; /* ptr to SQL_SELECT::needed_reg */
|
|
|
|
uint *imerge_cost_buff; /* buffer for index_merge cost estimates */
|
|
uint imerge_cost_buff_size; /* size of the buffer */
|
|
|
|
/* Number of ranges in the last checked tree->key */
|
|
uint n_ranges;
|
|
uint8 first_null_comp; /* first null component if any, 0 - otherwise */
|
|
};
|
|
|
|
|
|
class TABLE_READ_PLAN;
|
|
class TRP_RANGE;
|
|
class TRP_ROR_INTERSECT;
|
|
class TRP_ROR_UNION;
|
|
class TRP_INDEX_INTERSECT;
|
|
class TRP_INDEX_MERGE;
|
|
class TRP_GROUP_MIN_MAX;
|
|
|
|
struct st_index_scan_info;
|
|
struct st_ror_scan_info;
|
|
|
|
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
|
|
static ha_rows check_quick_select(PARAM *param, uint idx, ha_rows limit,
|
|
bool index_only,
|
|
SEL_ARG *tree, bool update_tbl_stats,
|
|
uint *mrr_flags, uint *bufsize,
|
|
Cost_estimate *cost, bool *is_ror_scan);
|
|
|
|
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
|
|
SEL_ARG *key_tree, uint mrr_flags,
|
|
uint mrr_buf_size, MEM_ROOT *alloc);
|
|
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
|
|
bool index_read_must_be_used,
|
|
bool for_range_access,
|
|
double read_time, ha_rows limit,
|
|
bool using_table_scan);
|
|
static
|
|
TRP_INDEX_INTERSECT *get_best_index_intersect(PARAM *param, SEL_TREE *tree,
|
|
double read_time);
|
|
static
|
|
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
|
|
double read_time,
|
|
bool *are_all_covering);
|
|
static
|
|
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
|
|
SEL_TREE *tree,
|
|
double read_time);
|
|
static
|
|
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
|
|
double read_time, ha_rows limit,
|
|
bool named_trace,
|
|
bool using_table_scan);
|
|
static
|
|
TABLE_READ_PLAN *merge_same_index_scans(PARAM *param, SEL_IMERGE *imerge,
|
|
TRP_INDEX_MERGE *imerge_trp,
|
|
double read_time);
|
|
static
|
|
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree,
|
|
double read_time);
|
|
|
|
#ifndef DBUG_OFF
|
|
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
|
|
const char *msg);
|
|
static void print_ror_scans_arr(TABLE *table, const char *msg,
|
|
struct st_ror_scan_info **start,
|
|
struct st_ror_scan_info **end);
|
|
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
|
|
#endif
|
|
|
|
static SEL_TREE *tree_and(RANGE_OPT_PARAM *param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2);
|
|
static SEL_TREE *tree_or(RANGE_OPT_PARAM *param,
|
|
SEL_TREE *tree1,SEL_TREE *tree2);
|
|
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
|
|
static SEL_ARG *key_or(RANGE_OPT_PARAM *param,
|
|
SEL_ARG *key1, SEL_ARG *key2);
|
|
static SEL_ARG *key_and(RANGE_OPT_PARAM *param,
|
|
SEL_ARG *key1, SEL_ARG *key2,
|
|
uint clone_flag);
|
|
static SEL_ARG *key_or_with_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *key1, SEL_ARG *key2);
|
|
static SEL_ARG *key_and_with_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *key1, SEL_ARG *key2,
|
|
uint clone_flag);
|
|
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
|
|
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
|
|
uchar *max_key,uint max_key_flag);
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
|
|
|
|
SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
|
|
static bool null_part_in_key(KEY_PART *key_part, const uchar *key,
|
|
uint length);
|
|
|
|
static
|
|
SEL_ARG *enforce_sel_arg_weight_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *sel_arg);
|
|
static
|
|
bool sel_arg_and_weight_heuristic(RANGE_OPT_PARAM *param, SEL_ARG *key1,
|
|
SEL_ARG *key2);
|
|
|
|
#include "opt_range_mrr.cc"
|
|
|
|
static bool sel_trees_have_common_keys(SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map *common_keys);
|
|
static void eliminate_single_tree_imerges(RANGE_OPT_PARAM *param,
|
|
SEL_TREE *tree);
|
|
|
|
static bool sel_trees_can_be_ored(RANGE_OPT_PARAM* param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map *common_keys);
|
|
static bool sel_trees_must_be_ored(RANGE_OPT_PARAM* param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map common_keys);
|
|
static int and_range_trees(RANGE_OPT_PARAM *param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2,
|
|
SEL_TREE *result);
|
|
static bool remove_nonrange_trees(PARAM *param, SEL_TREE *tree);
|
|
static void restore_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree,
|
|
SEL_ARG **backup);
|
|
static void print_key_value(String *out, const KEY_PART_INFO *key_part,
|
|
const uchar* key, uint length);
|
|
static void print_keyparts_name(String *out, const KEY_PART_INFO *key_part,
|
|
uint n_keypart, key_part_map keypart_map);
|
|
|
|
static void trace_ranges(Json_writer_array *range_trace,
|
|
PARAM *param, uint idx,
|
|
SEL_ARG *keypart,
|
|
const KEY_PART_INFO *key_parts);
|
|
|
|
static
|
|
void print_range(String *out, const KEY_PART_INFO *key_part,
|
|
KEY_MULTI_RANGE *range, uint n_key_parts);
|
|
|
|
static
|
|
void print_range_for_non_indexed_field(String *out, Field *field,
|
|
KEY_MULTI_RANGE *range);
|
|
|
|
static void print_min_range_operator(String *out, const ha_rkey_function flag);
|
|
static void print_max_range_operator(String *out, const ha_rkey_function flag);
|
|
|
|
static bool is_field_an_unique_index(RANGE_OPT_PARAM *param, Field *field);
|
|
|
|
/*
|
|
SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
|
|
a condition in the following form:
|
|
(t_1||t_2||...||t_N) && (next)
|
|
|
|
where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
|
|
(t_i,t_j) contains SEL_ARGS for the same index.
|
|
|
|
SEL_TREE contained in SEL_IMERGE always has merges=NULL.
|
|
|
|
This class relies on memory manager to do the cleanup.
|
|
*/
|
|
|
|
class SEL_IMERGE : public Sql_alloc
|
|
{
|
|
enum { PREALLOCED_TREES= 10};
|
|
public:
|
|
SEL_TREE *trees_prealloced[PREALLOCED_TREES];
|
|
SEL_TREE **trees; /* trees used to do index_merge */
|
|
SEL_TREE **trees_next; /* last of these trees */
|
|
SEL_TREE **trees_end; /* end of allocated space */
|
|
|
|
SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */
|
|
|
|
SEL_IMERGE() :
|
|
trees(&trees_prealloced[0]),
|
|
trees_next(trees),
|
|
trees_end(trees + PREALLOCED_TREES)
|
|
{}
|
|
SEL_IMERGE (SEL_IMERGE *arg, uint cnt, RANGE_OPT_PARAM *param);
|
|
int or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree);
|
|
bool have_common_keys(RANGE_OPT_PARAM *param, SEL_TREE *tree);
|
|
int and_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree,
|
|
SEL_IMERGE *new_imerge);
|
|
int or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
|
|
uint n_init_trees,
|
|
SEL_TREE *new_tree,
|
|
bool is_first_check_pass,
|
|
bool *is_last_check_pass);
|
|
int or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
|
|
uint n_init_trees,
|
|
SEL_IMERGE* imerge,
|
|
bool is_first_check_pass,
|
|
bool *is_last_check_pass);
|
|
};
|
|
|
|
|
|
/*
|
|
Add a range tree to the range trees of this imerge
|
|
|
|
SYNOPSIS
|
|
or_sel_tree()
|
|
param Context info for the operation
|
|
tree SEL_TREE to add to this imerge
|
|
|
|
DESCRIPTION
|
|
The function just adds the range tree 'tree' to the range trees
|
|
of this imerge.
|
|
|
|
RETURN
|
|
0 if the operation is success
|
|
-1 if the function runs out memory
|
|
*/
|
|
|
|
int SEL_IMERGE::or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree)
|
|
{
|
|
if (trees_next == trees_end)
|
|
{
|
|
const int realloc_ratio= 2; /* Double size for next round */
|
|
size_t old_elements= (trees_end - trees);
|
|
size_t old_size= sizeof(SEL_TREE**) * old_elements;
|
|
size_t new_size= old_size * realloc_ratio;
|
|
SEL_TREE **new_trees;
|
|
if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
|
|
return -1;
|
|
memcpy(new_trees, trees, old_size);
|
|
trees= new_trees;
|
|
trees_next= trees + old_elements;
|
|
trees_end= trees + old_elements * realloc_ratio;
|
|
}
|
|
*(trees_next++)= tree;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if any of the range trees of this imerge intersects with a given tree
|
|
|
|
SYNOPSIS
|
|
have_common_keys()
|
|
param Context info for the function
|
|
tree SEL_TREE intersection with the imerge range trees is checked for
|
|
|
|
DESCRIPTION
|
|
The function checks whether there is any range tree rt_i in this imerge
|
|
such that there are some indexes for which ranges are defined in both
|
|
rt_i and the range part of the SEL_TREE tree.
|
|
To check this the function calls the function sel_trees_have_common_keys.
|
|
|
|
RETURN
|
|
TRUE if there are such range trees in this imerge
|
|
FALSE otherwise
|
|
*/
|
|
|
|
bool SEL_IMERGE::have_common_keys(RANGE_OPT_PARAM *param, SEL_TREE *tree)
|
|
{
|
|
for (SEL_TREE** or_tree= trees, **bound= trees_next;
|
|
or_tree != bound; or_tree++)
|
|
{
|
|
key_map common_keys;
|
|
if (sel_trees_have_common_keys(*or_tree, tree, &common_keys))
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Perform AND operation for this imerge and the range part of a tree
|
|
|
|
SYNOPSIS
|
|
and_sel_tree()
|
|
param Context info for the operation
|
|
tree SEL_TREE for the second operand of the operation
|
|
new_imerge OUT imerge for the result of the operation
|
|
|
|
DESCRIPTION
|
|
This function performs AND operation for this imerge m and the
|
|
range part of the SEL_TREE tree rt. In other words the function
|
|
pushes rt into this imerge. The resulting imerge is returned in
|
|
the parameter new_imerge.
|
|
If this imerge m represent the formula
|
|
RT_1 OR ... OR RT_k
|
|
then the resulting imerge of the function represents the formula
|
|
(RT_1 AND RT) OR ... OR (RT_k AND RT)
|
|
The function calls the function and_range_trees to construct the
|
|
range tree representing (RT_i AND RT).
|
|
|
|
NOTE
|
|
The function may return an empty imerge without any range trees.
|
|
This happens when each call of and_range_trees returns an
|
|
impossible range tree (SEL_TREE::IMPOSSIBLE).
|
|
Example: (key1 < 2 AND key2 > 10) AND (key1 > 4 OR key2 < 6).
|
|
|
|
RETURN
|
|
0 if the operation is a success
|
|
-1 otherwise: there is not enough memory to perform the operation
|
|
*/
|
|
|
|
int SEL_IMERGE::and_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree,
|
|
SEL_IMERGE *new_imerge)
|
|
{
|
|
for (SEL_TREE** or_tree= trees; or_tree != trees_next; or_tree++)
|
|
{
|
|
SEL_TREE *res_or_tree= 0;
|
|
SEL_TREE *and_tree= 0;
|
|
if (!(res_or_tree= new SEL_TREE(param->mem_root, param->keys)) ||
|
|
!(and_tree= new SEL_TREE(tree, TRUE, param)))
|
|
return (-1);
|
|
if (!and_range_trees(param, *or_tree, and_tree, res_or_tree))
|
|
{
|
|
if (new_imerge->or_sel_tree(param, res_or_tree))
|
|
return (-1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Perform OR operation on this imerge and the range part of a tree
|
|
|
|
SYNOPSIS
|
|
or_sel_tree_with_checks()
|
|
param Context info for the operation
|
|
n_trees Number of trees in this imerge to check for oring
|
|
tree SEL_TREE whose range part is to be ored
|
|
is_first_check_pass <=> the first call of the function for this imerge
|
|
is_last_check_pass OUT <=> no more calls of the function for this imerge
|
|
|
|
DESCRIPTION
|
|
The function performs OR operation on this imerge m and the range part
|
|
of the SEL_TREE tree rt. It always replaces this imerge with the result
|
|
of the operation.
|
|
|
|
The operation can be performed in two different modes: with
|
|
is_first_check_pass==TRUE and is_first_check_pass==FALSE, transforming
|
|
this imerge differently.
|
|
|
|
Given this imerge represents the formula
|
|
RT_1 OR ... OR RT_k:
|
|
|
|
1. In the first mode, when is_first_check_pass==TRUE :
|
|
1.1. If rt must be ored(see the function sel_trees_must_be_ored) with
|
|
some rt_j (there may be only one such range tree in the imerge)
|
|
then the function produces an imerge representing the formula
|
|
RT_1 OR ... OR (RT_j OR RT) OR ... OR RT_k,
|
|
where the tree for (RT_j OR RT) is built by oring the pairs
|
|
of SEL_ARG trees for the corresponding indexes
|
|
1.2. Otherwise the function produces the imerge representing the formula:
|
|
RT_1 OR ... OR RT_k OR RT.
|
|
|
|
2. In the second mode, when is_first_check_pass==FALSE :
|
|
2.1. For each rt_j in the imerge that can be ored (see the function
|
|
sel_trees_can_be_ored) with rt the function replaces rt_j for a
|
|
range tree such that for each index for which ranges are defined
|
|
in both in rt_j and rt the tree contains the result of oring of
|
|
these ranges.
|
|
2.2. In other cases the function does not produce any imerge.
|
|
|
|
When is_first_check==TRUE the function returns FALSE in the parameter
|
|
is_last_check_pass if there is no rt_j such that rt_j can be ored with rt,
|
|
but, at the same time, it's not true that rt_j must be ored with rt.
|
|
When is_first_check==FALSE the function always returns FALSE in the
|
|
parameter is_last_check_pass.
|
|
|
|
RETURN
|
|
1 The result of oring of rt_j and rt that must be ored returns the
|
|
the range tree with type==SEL_TREE::ALWAYS
|
|
(in this case the imerge m should be discarded)
|
|
-1 The function runs out of memory
|
|
0 in all other cases
|
|
*/
|
|
|
|
int SEL_IMERGE::or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
|
|
uint n_trees,
|
|
SEL_TREE *tree,
|
|
bool is_first_check_pass,
|
|
bool *is_last_check_pass)
|
|
{
|
|
bool was_ored= FALSE;
|
|
*is_last_check_pass= is_first_check_pass;
|
|
SEL_TREE** or_tree= trees;
|
|
for (uint i= 0; i < n_trees; i++, or_tree++)
|
|
{
|
|
SEL_TREE *result= 0;
|
|
key_map result_keys;
|
|
key_map ored_keys;
|
|
if (sel_trees_can_be_ored(param, *or_tree, tree, &ored_keys))
|
|
{
|
|
bool must_be_ored= sel_trees_must_be_ored(param, *or_tree, tree,
|
|
ored_keys);
|
|
if (must_be_ored || !is_first_check_pass)
|
|
{
|
|
result_keys.clear_all();
|
|
result= *or_tree;
|
|
for (uint key_no= 0; key_no < param->keys; key_no++)
|
|
{
|
|
if (!ored_keys.is_set(key_no))
|
|
{
|
|
result->keys[key_no]= 0;
|
|
continue;
|
|
}
|
|
SEL_ARG *key1= (*or_tree)->keys[key_no];
|
|
SEL_ARG *key2= tree->keys[key_no];
|
|
key2->incr_refs();
|
|
if ((result->keys[key_no]= key_or_with_limit(param, key_no, key1,
|
|
key2)))
|
|
{
|
|
|
|
result_keys.set_bit(key_no);
|
|
#ifdef EXTRA_DEBUG
|
|
if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
|
|
{
|
|
key1= result->keys[key_no];
|
|
(key1)->test_use_count(key1);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
else if(is_first_check_pass)
|
|
*is_last_check_pass= FALSE;
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
result->keys_map= result_keys;
|
|
if (result_keys.is_clear_all())
|
|
result->type= SEL_TREE::ALWAYS;
|
|
if ((result->type == SEL_TREE::MAYBE) ||
|
|
(result->type == SEL_TREE::ALWAYS))
|
|
return 1;
|
|
/* SEL_TREE::IMPOSSIBLE is impossible here */
|
|
*or_tree= result;
|
|
was_ored= TRUE;
|
|
}
|
|
}
|
|
if (was_ored)
|
|
return 0;
|
|
|
|
if (is_first_check_pass && !*is_last_check_pass &&
|
|
!(tree= new SEL_TREE(tree, FALSE, param)))
|
|
return (-1);
|
|
return or_sel_tree(param, tree);
|
|
}
|
|
|
|
|
|
/*
|
|
Perform OR operation on this imerge and and another imerge
|
|
|
|
SYNOPSIS
|
|
or_sel_imerge_with_checks()
|
|
param Context info for the operation
|
|
n_trees Number of trees in this imerge to check for oring
|
|
imerge The second operand of the operation
|
|
is_first_check_pass <=> the first call of the function for this imerge
|
|
is_last_check_pass OUT <=> no more calls of the function for this imerge
|
|
|
|
DESCRIPTION
|
|
For each range tree rt from 'imerge' the function calls the method
|
|
SEL_IMERGE::or_sel_tree_with_checks that performs OR operation on this
|
|
SEL_IMERGE object m and the tree rt. The mode of the operation is
|
|
specified by the parameter is_first_check_pass. Each call of
|
|
SEL_IMERGE::or_sel_tree_with_checks transforms this SEL_IMERGE object m.
|
|
The function returns FALSE in the prameter is_last_check_pass if
|
|
at least one of the calls of SEL_IMERGE::or_sel_tree_with_checks
|
|
returns FALSE as the value of its last parameter.
|
|
|
|
RETURN
|
|
1 One of the calls of SEL_IMERGE::or_sel_tree_with_checks returns 1.
|
|
(in this case the imerge m should be discarded)
|
|
-1 The function runs out of memory
|
|
0 in all other cases
|
|
*/
|
|
|
|
int SEL_IMERGE::or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
|
|
uint n_trees,
|
|
SEL_IMERGE* imerge,
|
|
bool is_first_check_pass,
|
|
bool *is_last_check_pass)
|
|
{
|
|
*is_last_check_pass= TRUE;
|
|
SEL_TREE** tree= imerge->trees;
|
|
SEL_TREE** tree_end= imerge->trees_next;
|
|
for ( ; tree < tree_end; tree++)
|
|
{
|
|
uint rc;
|
|
bool is_last= TRUE;
|
|
rc= or_sel_tree_with_checks(param, n_trees, *tree,
|
|
is_first_check_pass, &is_last);
|
|
if (!is_last)
|
|
*is_last_check_pass= FALSE;
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Copy constructor for SEL_TREE objects
|
|
|
|
SYNOPSIS
|
|
SEL_TREE
|
|
arg The source tree for the constructor
|
|
without_merges <=> only the range part of the tree arg is copied
|
|
param Context info for the operation
|
|
|
|
DESCRIPTION
|
|
The constructor creates a full copy of the SEL_TREE arg if
|
|
the prameter without_merges==FALSE. Otherwise a tree is created
|
|
that contains the copy only of the range part of the tree arg.
|
|
*/
|
|
|
|
SEL_TREE::SEL_TREE(SEL_TREE *arg, bool without_merges,
|
|
RANGE_OPT_PARAM *param)
|
|
: Sql_alloc(),
|
|
keys(param->mem_root, param->keys),
|
|
n_ror_scans(0)
|
|
{
|
|
keys_map= arg->keys_map;
|
|
type= arg->type;
|
|
MEM_ROOT *mem_root;
|
|
|
|
for (uint idx= 0; idx < param->keys; idx++)
|
|
{
|
|
if ((keys[idx]= arg->keys[idx]))
|
|
keys[idx]->incr_refs_all();
|
|
}
|
|
|
|
if (without_merges)
|
|
return;
|
|
|
|
mem_root= current_thd->mem_root;
|
|
List_iterator<SEL_IMERGE> it(arg->merges);
|
|
for (SEL_IMERGE *el= it++; el; el= it++)
|
|
{
|
|
SEL_IMERGE *merge= new (mem_root) SEL_IMERGE(el, 0, param);
|
|
if (!merge || merge->trees == merge->trees_next)
|
|
{
|
|
merges.empty();
|
|
return;
|
|
}
|
|
merges.push_back(merge, mem_root);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Copy constructor for SEL_IMERGE objects
|
|
|
|
SYNOPSIS
|
|
SEL_IMERGE
|
|
arg The source imerge for the constructor
|
|
cnt How many trees from arg are to be copied
|
|
param Context info for the operation
|
|
|
|
DESCRIPTION
|
|
The cnt==0 then the constructor creates a full copy of the
|
|
imerge arg. Otherwise only the first cnt trees of the imerge
|
|
are copied.
|
|
*/
|
|
|
|
SEL_IMERGE::SEL_IMERGE(SEL_IMERGE *arg, uint cnt,
|
|
RANGE_OPT_PARAM *param) : Sql_alloc()
|
|
{
|
|
size_t elements= (arg->trees_end - arg->trees);
|
|
if (elements > PREALLOCED_TREES)
|
|
{
|
|
size_t size= elements * sizeof (SEL_TREE **);
|
|
if (!(trees= (SEL_TREE **)alloc_root(param->mem_root, size)))
|
|
goto mem_err;
|
|
}
|
|
else
|
|
trees= &trees_prealloced[0];
|
|
|
|
trees_next= trees + (cnt ? cnt : arg->trees_next-arg->trees);
|
|
trees_end= trees + elements;
|
|
|
|
for (SEL_TREE **tree= trees, **arg_tree= arg->trees; tree < trees_next;
|
|
tree++, arg_tree++)
|
|
{
|
|
if (!(*tree= new SEL_TREE(*arg_tree, TRUE, param)))
|
|
goto mem_err;
|
|
}
|
|
|
|
return;
|
|
|
|
mem_err:
|
|
trees= &trees_prealloced[0];
|
|
trees_next= trees;
|
|
trees_end= trees;
|
|
}
|
|
|
|
|
|
/*
|
|
Perform AND operation on two imerge lists
|
|
|
|
SYNOPSIS
|
|
imerge_list_and_list()
|
|
param Context info for the operation
|
|
im1 The first imerge list for the operation
|
|
im2 The second imerge list for the operation
|
|
|
|
DESCRIPTION
|
|
The function just appends the imerge list im2 to the imerge list im1
|
|
|
|
RETURN VALUE
|
|
none
|
|
*/
|
|
|
|
inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
|
|
{
|
|
im1->append(im2);
|
|
}
|
|
|
|
|
|
/*
|
|
Perform OR operation on two imerge lists
|
|
|
|
SYNOPSIS
|
|
imerge_list_or_list()
|
|
param Context info for the operation
|
|
im1 The first imerge list for the operation
|
|
im2 The second imerge list for the operation
|
|
|
|
DESCRIPTION
|
|
Assuming that the first imerge list represents the formula
|
|
F1= M1_1 AND ... AND M1_k1
|
|
while the second imerge list represents the formula
|
|
F2= M2_1 AND ... AND M2_k2,
|
|
where M1_i= RT1_i_1 OR ... OR RT1_i_l1i (i in [1..k1])
|
|
and M2_i = RT2_i_1 OR ... OR RT2_i_l2i (i in [1..k2]),
|
|
the function builds a list of imerges for some formula that can be
|
|
inferred from the formula (F1 OR F2).
|
|
|
|
More exactly the function builds imerges for the formula (M1_1 OR M2_1).
|
|
Note that
|
|
(F1 OR F2) = (M1_1 AND ... AND M1_k1) OR (M2_1 AND ... AND M2_k2) =
|
|
AND (M1_i OR M2_j) (i in [1..k1], j in [1..k2]) =>
|
|
M1_1 OR M2_1.
|
|
So (M1_1 OR M2_1) is indeed an inference formula for (F1 OR F2).
|
|
|
|
To build imerges for the formula (M1_1 OR M2_1) the function invokes,
|
|
possibly twice, the method SEL_IMERGE::or_sel_imerge_with_checks
|
|
for the imerge m1_1.
|
|
At its first invocation the method SEL_IMERGE::or_sel_imerge_with_checks
|
|
performs OR operation on the imerge m1_1 and the range tree rt2_1_1 by
|
|
calling SEL_IMERGE::or_sel_tree_with_checks with is_first_pass_check==TRUE.
|
|
The resulting imerge of the operation is ored with the next range tree of
|
|
the imerge m2_1. This oring continues until the last range tree from
|
|
m2_1 has been ored.
|
|
At its second invocation the method SEL_IMERGE::or_sel_imerge_with_checks
|
|
performs the same sequence of OR operations, but now calling
|
|
SEL_IMERGE::or_sel_tree_with_checks with is_first_pass_check==FALSE.
|
|
|
|
The imerges that the operation produces replace those in the list im1
|
|
|
|
RETURN
|
|
0 if the operation is a success
|
|
-1 if the function has run out of memory
|
|
*/
|
|
|
|
int imerge_list_or_list(RANGE_OPT_PARAM *param,
|
|
List<SEL_IMERGE> *im1,
|
|
List<SEL_IMERGE> *im2)
|
|
{
|
|
|
|
uint rc;
|
|
bool is_last_check_pass= FALSE;
|
|
SEL_IMERGE *imerge= im1->head();
|
|
uint elems= (uint)(imerge->trees_next-imerge->trees);
|
|
MEM_ROOT *mem_root= current_thd->mem_root;
|
|
|
|
im1->empty();
|
|
im1->push_back(imerge, mem_root);
|
|
|
|
rc= imerge->or_sel_imerge_with_checks(param, elems, im2->head(),
|
|
TRUE, &is_last_check_pass);
|
|
if (rc)
|
|
{
|
|
if (rc == 1)
|
|
{
|
|
im1->empty();
|
|
rc= 0;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
if (!is_last_check_pass)
|
|
{
|
|
SEL_IMERGE* new_imerge= new (mem_root) SEL_IMERGE(imerge, elems, param);
|
|
if (new_imerge)
|
|
{
|
|
is_last_check_pass= TRUE;
|
|
rc= new_imerge->or_sel_imerge_with_checks(param, elems, im2->head(),
|
|
FALSE, &is_last_check_pass);
|
|
if (!rc)
|
|
im1->push_back(new_imerge, mem_root);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
Perform OR operation for each imerge from a list and the range part of a tree
|
|
|
|
SYNOPSIS
|
|
imerge_list_or_tree()
|
|
param Context info for the operation
|
|
merges The list of imerges to be ored with the range part of tree
|
|
tree SEL_TREE whose range part is to be ored with the imerges
|
|
|
|
DESCRIPTION
|
|
For each imerge mi from the list 'merges' the function performes OR
|
|
operation with mi and the range part of 'tree' rt, producing one or
|
|
two imerges.
|
|
|
|
Given the merge mi represent the formula RTi_1 OR ... OR RTi_k,
|
|
the function forms the merges by the following rules:
|
|
|
|
1. If rt cannot be ored with any of the trees rti the function just
|
|
produces an imerge that represents the formula
|
|
RTi_1 OR ... RTi_k OR RT.
|
|
2. If there exist a tree rtj that must be ored with rt the function
|
|
produces an imerge the represents the formula
|
|
RTi_1 OR ... OR (RTi_j OR RT) OR ... OR RTi_k,
|
|
where the range tree for (RTi_j OR RT) is constructed by oring the
|
|
SEL_ARG trees that must be ored.
|
|
3. For each rti_j that can be ored with rt the function produces
|
|
the new tree rti_j' and substitutes rti_j for this new range tree.
|
|
|
|
In any case the function removes mi from the list and then adds all
|
|
produced imerges.
|
|
|
|
To build imerges by rules 1-3 the function calls the method
|
|
SEL_IMERGE::or_sel_tree_with_checks, possibly twice. With the first
|
|
call it passes TRUE for the third parameter of the function.
|
|
At this first call imerges by rules 1-2 are built. If the call
|
|
returns FALSE as the return value of its fourth parameter then the
|
|
function are called for the second time. At this call the imerge
|
|
of rule 3 is produced.
|
|
|
|
If a call of SEL_IMERGE::or_sel_tree_with_checks returns 1 then
|
|
then it means that the produced tree contains an always true
|
|
range tree and the whole imerge can be discarded.
|
|
|
|
RETURN
|
|
1 if no imerges are produced
|
|
0 otherwise
|
|
*/
|
|
|
|
static
|
|
int imerge_list_or_tree(RANGE_OPT_PARAM *param,
|
|
List<SEL_IMERGE> *merges,
|
|
SEL_TREE *tree)
|
|
{
|
|
SEL_IMERGE *imerge;
|
|
List<SEL_IMERGE> additional_merges;
|
|
List_iterator<SEL_IMERGE> it(*merges);
|
|
MEM_ROOT *mem_root= current_thd->mem_root;
|
|
|
|
while ((imerge= it++))
|
|
{
|
|
bool is_last_check_pass;
|
|
int rc= 0;
|
|
int rc1= 0;
|
|
SEL_TREE *or_tree= new (mem_root) SEL_TREE (tree, FALSE, param);
|
|
if (or_tree)
|
|
{
|
|
uint elems= (uint)(imerge->trees_next-imerge->trees);
|
|
rc= imerge->or_sel_tree_with_checks(param, elems, or_tree,
|
|
TRUE, &is_last_check_pass);
|
|
if (!is_last_check_pass)
|
|
{
|
|
SEL_IMERGE *new_imerge= new (mem_root) SEL_IMERGE(imerge, elems,
|
|
param);
|
|
if (new_imerge)
|
|
{
|
|
rc1= new_imerge->or_sel_tree_with_checks(param, elems, or_tree,
|
|
FALSE, &is_last_check_pass);
|
|
if (!rc1)
|
|
additional_merges.push_back(new_imerge, mem_root);
|
|
}
|
|
}
|
|
}
|
|
if (rc || rc1 || !or_tree)
|
|
it.remove();
|
|
}
|
|
|
|
merges->append(&additional_merges);
|
|
return merges->is_empty();
|
|
}
|
|
|
|
|
|
/*
|
|
Perform pushdown operation of the range part of a tree into given imerges
|
|
|
|
SYNOPSIS
|
|
imerge_list_and_tree()
|
|
param Context info for the operation
|
|
merges IN/OUT List of imerges to push the range part of 'tree' into
|
|
tree SEL_TREE whose range part is to be pushed into imerges
|
|
replace if the pushdow operation for a imerge is a success
|
|
then the original imerge is replaced for the result
|
|
of the pushdown
|
|
|
|
DESCRIPTION
|
|
For each imerge from the list merges the function pushes the range part
|
|
rt of 'tree' into the imerge.
|
|
More exactly if the imerge mi from the list represents the formula
|
|
RTi_1 OR ... OR RTi_k
|
|
the function bulds a new imerge that represents the formula
|
|
(RTi_1 AND RT) OR ... OR (RTi_k AND RT)
|
|
and adds this imerge to the list merges.
|
|
To perform this pushdown operation the function calls the method
|
|
SEL_IMERGE::and_sel_tree.
|
|
For any imerge mi the new imerge is not created if for each pair of
|
|
trees rti_j and rt the intersection of the indexes with defined ranges
|
|
is empty.
|
|
If the result of the pushdown operation for the imerge mi returns an
|
|
imerge with no trees then then not only nothing is added to the list
|
|
merges but mi itself is removed from the list.
|
|
|
|
TODO
|
|
Optimize the code in order to not create new SEL_IMERGE and new SER_TREE
|
|
objects when 'replace' is TRUE. (Currently this function is called always
|
|
with this parameter equal to TRUE.)
|
|
|
|
RETURN
|
|
1 if no imerges are left in the list merges
|
|
0 otherwise
|
|
*/
|
|
|
|
static
|
|
int imerge_list_and_tree(RANGE_OPT_PARAM *param,
|
|
List<SEL_IMERGE> *merges,
|
|
SEL_TREE *tree,
|
|
bool replace)
|
|
{
|
|
SEL_IMERGE *imerge;
|
|
SEL_IMERGE *new_imerge= NULL;
|
|
List<SEL_IMERGE> new_merges;
|
|
List_iterator<SEL_IMERGE> it(*merges);
|
|
MEM_ROOT *mem_root= current_thd->mem_root;
|
|
|
|
while ((imerge= it++))
|
|
{
|
|
if (!new_imerge)
|
|
new_imerge= new (mem_root) SEL_IMERGE();
|
|
if (imerge->have_common_keys(param, tree) &&
|
|
new_imerge && !imerge->and_sel_tree(param, tree, new_imerge))
|
|
{
|
|
if (new_imerge->trees == new_imerge->trees_next)
|
|
it.remove();
|
|
else
|
|
{
|
|
if (replace)
|
|
it.replace(new_imerge);
|
|
else
|
|
new_merges.push_back(new_imerge, mem_root);
|
|
new_imerge= NULL;
|
|
}
|
|
}
|
|
}
|
|
imerge_list_and_list(&new_merges, merges);
|
|
*merges= new_merges;
|
|
return merges->is_empty();
|
|
}
|
|
|
|
|
|
/***************************************************************************
|
|
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
|
|
***************************************************************************/
|
|
|
|
/* make a select from mysql info
|
|
Error is set as following:
|
|
0 = ok
|
|
1 = Got some error (out of memory?)
|
|
*/
|
|
|
|
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
|
|
table_map read_tables, COND *conds,
|
|
SORT_INFO *filesort,
|
|
bool allow_null_cond,
|
|
int *error)
|
|
{
|
|
SQL_SELECT *select;
|
|
DBUG_ENTER("make_select");
|
|
|
|
*error=0;
|
|
|
|
if (!conds && !allow_null_cond)
|
|
DBUG_RETURN(0);
|
|
if (!(select= new (head->in_use->mem_root) SQL_SELECT))
|
|
{
|
|
*error= 1; // out of memory
|
|
DBUG_RETURN(0); /* purecov: inspected */
|
|
}
|
|
select->read_tables=read_tables;
|
|
select->const_tables=const_tables;
|
|
select->head=head;
|
|
select->cond= conds;
|
|
|
|
if (filesort && my_b_inited(&filesort->io_cache))
|
|
{
|
|
/*
|
|
Hijack the filesort io_cache for make_select
|
|
SQL_SELECT will be responsible for ensuring that it's properly freed.
|
|
*/
|
|
select->file= filesort->io_cache;
|
|
select->records=(ha_rows) (select->file.end_of_file/
|
|
head->file->ref_length);
|
|
my_b_clear(&filesort->io_cache);
|
|
}
|
|
DBUG_RETURN(select);
|
|
}
|
|
|
|
|
|
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),pre_idx_push_select_cond(NULL),free_cond(0)
|
|
{
|
|
quick_keys.clear_all(); needed_reg.clear_all();
|
|
my_b_clear(&file);
|
|
}
|
|
|
|
|
|
void SQL_SELECT::cleanup()
|
|
{
|
|
delete quick;
|
|
quick= 0;
|
|
if (free_cond)
|
|
{
|
|
free_cond=0;
|
|
delete cond;
|
|
cond= 0;
|
|
}
|
|
close_cached_file(&file);
|
|
}
|
|
|
|
|
|
SQL_SELECT::~SQL_SELECT()
|
|
{
|
|
cleanup();
|
|
}
|
|
|
|
#undef index // Fix for Unixware 7
|
|
|
|
QUICK_SELECT_I::QUICK_SELECT_I()
|
|
:max_used_key_length(0),
|
|
used_key_parts(0)
|
|
{}
|
|
|
|
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
|
|
bool no_alloc, MEM_ROOT *parent_alloc,
|
|
bool *create_error)
|
|
:thd(thd), no_alloc(no_alloc), parent_alloc(parent_alloc),
|
|
free_file(0),cur_range(NULL),last_range(0),dont_free(0)
|
|
{
|
|
my_bitmap_map *bitmap;
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::QUICK_RANGE_SELECT");
|
|
|
|
in_ror_merged_scan= 0;
|
|
index= key_nr;
|
|
head= table;
|
|
key_part_info= head->key_info[index].key_part;
|
|
|
|
/* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
|
|
mrr_buf_size= thd->variables.mrr_buff_size;
|
|
mrr_buf_desc= NULL;
|
|
|
|
if (!no_alloc && !parent_alloc)
|
|
{
|
|
// Allocates everything through the internal memroot
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
thd->mem_root= &alloc;
|
|
}
|
|
else
|
|
bzero((char*) &alloc,sizeof(alloc));
|
|
file= head->file;
|
|
record= head->record[0];
|
|
|
|
my_init_dynamic_array2(PSI_INSTRUMENT_ME, &ranges, sizeof(QUICK_RANGE*),
|
|
thd->alloc(sizeof(QUICK_RANGE*) * 16), 16, 16,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
|
|
/* Allocate a bitmap for used columns */
|
|
if (!(bitmap= (my_bitmap_map*) thd->alloc(head->s->column_bitmap_size)))
|
|
{
|
|
column_bitmap.bitmap= 0;
|
|
*create_error= 1;
|
|
}
|
|
else
|
|
my_bitmap_init(&column_bitmap, bitmap, head->s->fields);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
void QUICK_RANGE_SELECT::need_sorted_output()
|
|
{
|
|
if (!(mrr_flags & HA_MRR_SORTED))
|
|
{
|
|
/*
|
|
Native implementation can't produce sorted output. We'll have to
|
|
switch to default
|
|
*/
|
|
mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
}
|
|
mrr_flags |= HA_MRR_SORTED;
|
|
}
|
|
|
|
|
|
int QUICK_RANGE_SELECT::init()
|
|
{
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::init");
|
|
|
|
if (file->inited != handler::NONE)
|
|
file->ha_index_or_rnd_end();
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
void QUICK_RANGE_SELECT::range_end()
|
|
{
|
|
if (file->inited != handler::NONE)
|
|
file->ha_index_or_rnd_end();
|
|
}
|
|
|
|
|
|
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
|
|
{
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
|
|
if (!dont_free)
|
|
{
|
|
/* file is NULL for CPK scan on covering ROR-intersection */
|
|
if (file)
|
|
{
|
|
range_end();
|
|
file->ha_end_keyread();
|
|
if (free_file)
|
|
{
|
|
DBUG_PRINT("info", ("Freeing separate handler %p (free: %d)", file,
|
|
free_file));
|
|
file->ha_external_unlock(current_thd);
|
|
file->ha_close();
|
|
delete file;
|
|
}
|
|
}
|
|
delete_dynamic(&ranges); /* ranges are allocated in alloc */
|
|
free_root(&alloc,MYF(0));
|
|
}
|
|
my_free(mrr_buf_desc);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
QUICK_INDEX_SORT_SELECT works as follows:
|
|
- Do index scans, accumulate rowids in the Unique object
|
|
(Unique will also sort and de-duplicate rowids)
|
|
- Use rowids from unique to run a disk-ordered sweep
|
|
*/
|
|
|
|
QUICK_INDEX_SORT_SELECT::QUICK_INDEX_SORT_SELECT(THD *thd_param, TABLE *table)
|
|
:unique(NULL), pk_quick_select(NULL), thd(thd_param)
|
|
{
|
|
DBUG_ENTER("QUICK_INDEX_SORT_SELECT::QUICK_INDEX_SORT_SELECT");
|
|
index= MAX_KEY;
|
|
head= table;
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
int QUICK_INDEX_SORT_SELECT::init()
|
|
{
|
|
DBUG_ENTER("QUICK_INDEX_SORT_SELECT::init");
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
int QUICK_INDEX_SORT_SELECT::reset()
|
|
{
|
|
DBUG_ENTER("QUICK_INDEX_SORT_SELECT::reset");
|
|
const int retval= read_keys_and_merge();
|
|
DBUG_RETURN(retval);
|
|
}
|
|
|
|
bool
|
|
QUICK_INDEX_SORT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
|
|
{
|
|
DBUG_ENTER("QUICK_INDEX_SORT_SELECT::push_quick_back");
|
|
if (head->file->is_clustering_key(quick_sel_range->index))
|
|
{
|
|
/*
|
|
A quick_select over a clustered primary key is handled specifically
|
|
Here we assume:
|
|
- PK columns are included in any other merged index
|
|
- Scan on the PK is disk-ordered.
|
|
(not meeting #2 will only cause performance degradation)
|
|
|
|
We could treat clustered PK as any other index, but that would
|
|
be inefficient. There is no point in doing scan on
|
|
CPK, remembering the rowid, then making rnd_pos() call with
|
|
that rowid.
|
|
*/
|
|
pk_quick_select= quick_sel_range;
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(quick_selects.push_back(quick_sel_range, thd->mem_root));
|
|
}
|
|
|
|
QUICK_INDEX_SORT_SELECT::~QUICK_INDEX_SORT_SELECT()
|
|
{
|
|
List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
|
|
QUICK_RANGE_SELECT* quick;
|
|
DBUG_ENTER("QUICK_INDEX_SORT_SELECT::~QUICK_INDEX_SORT_SELECT");
|
|
delete unique;
|
|
quick_it.rewind();
|
|
while ((quick= quick_it++))
|
|
quick->file= NULL;
|
|
quick_selects.delete_elements();
|
|
delete pk_quick_select;
|
|
/* It's ok to call the next two even if they are already deinitialized */
|
|
end_read_record(&read_record);
|
|
free_root(&alloc,MYF(0));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
|
|
TABLE *table,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
: cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
|
|
scans_inited(FALSE)
|
|
{
|
|
index= MAX_KEY;
|
|
head= table;
|
|
record= head->record[0];
|
|
if (!parent_alloc)
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
else
|
|
bzero(&alloc, sizeof(MEM_ROOT));
|
|
last_rowid= (uchar*) alloc_root(parent_alloc? parent_alloc : &alloc,
|
|
head->file->ref_length);
|
|
}
|
|
|
|
|
|
/*
|
|
Do post-constructor initialization.
|
|
SYNOPSIS
|
|
QUICK_ROR_INTERSECT_SELECT::init()
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_ROR_INTERSECT_SELECT::init()
|
|
{
|
|
DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
|
|
/* Check if last_rowid was successfully allocated in ctor */
|
|
DBUG_RETURN(!last_rowid);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize this quick select to be a ROR-merged scan.
|
|
|
|
SYNOPSIS
|
|
QUICK_RANGE_SELECT::init_ror_merged_scan()
|
|
reuse_handler If TRUE, use head->file, otherwise create a separate
|
|
handler object
|
|
|
|
NOTES
|
|
This function creates and prepares for subsequent use a separate handler
|
|
object if it can't reuse head->file. The reason for this is that during
|
|
ROR-merge several key scans are performed simultaneously, and a single
|
|
handler is only capable of preserving context of a single key scan.
|
|
|
|
In ROR-merge the quick select doing merge does full records retrieval,
|
|
merged quick selects read only keys.
|
|
|
|
RETURN
|
|
0 ROR child scan initialized, ok to use.
|
|
1 error
|
|
*/
|
|
|
|
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler,
|
|
MEM_ROOT *local_alloc)
|
|
{
|
|
handler *save_file= file, *org_file;
|
|
THD *thd= head->in_use;
|
|
MY_BITMAP * const save_read_set= head->read_set;
|
|
MY_BITMAP * const save_write_set= head->write_set;
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
|
|
|
|
in_ror_merged_scan= 1;
|
|
if (reuse_handler)
|
|
{
|
|
DBUG_PRINT("info", ("Reusing handler %p", file));
|
|
if (init())
|
|
{
|
|
DBUG_RETURN(1);
|
|
}
|
|
goto end;
|
|
}
|
|
|
|
/* Create a separate handler object for this quick select */
|
|
if (free_file)
|
|
{
|
|
/* already have own 'handler' object. */
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
if (!(file= head->file->clone(head->s->normalized_path.str, local_alloc)))
|
|
{
|
|
/*
|
|
Manually set the error flag. Note: there seems to be quite a few
|
|
places where a failure could cause the server to "hang" the client by
|
|
sending no response to a query. ATM those are not real errors because
|
|
the storage engine calls in question happen to never fail with the
|
|
existing storage engines.
|
|
*/
|
|
my_error(ER_OUT_OF_RESOURCES, MYF(0)); /* purecov: inspected */
|
|
/* Caller will free the memory */
|
|
goto failure; /* purecov: inspected */
|
|
}
|
|
|
|
if (file->ha_external_lock(thd, F_RDLCK))
|
|
goto failure;
|
|
|
|
if (init())
|
|
{
|
|
file->ha_external_unlock(thd);
|
|
file->ha_close();
|
|
goto failure;
|
|
}
|
|
free_file= TRUE;
|
|
last_rowid= file->ref;
|
|
|
|
end:
|
|
/*
|
|
We are only going to read key fields and call position() on 'file'
|
|
The following sets head->read_set (== column_bitmap) to only use this
|
|
key. The 'column_bitmap' is used in ::get_next()
|
|
*/
|
|
org_file= head->file;
|
|
head->file= file;
|
|
|
|
head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
|
|
head->prepare_for_keyread(index, &column_bitmap);
|
|
head->prepare_for_position();
|
|
|
|
head->file= org_file;
|
|
|
|
/* Restore head->read_set (and write_set) to what they had before the call */
|
|
head->column_bitmaps_set(save_read_set, save_write_set);
|
|
|
|
if (reset())
|
|
{
|
|
if (!reuse_handler)
|
|
{
|
|
file->ha_external_unlock(thd);
|
|
file->ha_close();
|
|
goto failure;
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
|
|
failure:
|
|
head->column_bitmaps_set(save_read_set, save_write_set);
|
|
delete file;
|
|
file= save_file;
|
|
free_file= false;
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize this quick select to be a part of a ROR-merged scan.
|
|
SYNOPSIS
|
|
QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
|
|
reuse_handler If TRUE, use head->file, otherwise create separate
|
|
handler object.
|
|
RETURN
|
|
0 OK
|
|
other error code
|
|
*/
|
|
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler,
|
|
MEM_ROOT *local_alloc)
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> quick_it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *cur;
|
|
QUICK_RANGE_SELECT *quick;
|
|
DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
|
|
|
|
/* Initialize all merged "children" quick selects */
|
|
DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
|
|
if (!need_to_fetch_row && reuse_handler)
|
|
{
|
|
cur= quick_it++;
|
|
quick= cur->quick;
|
|
/*
|
|
There is no use of this->file. Use it for the first of merged range
|
|
selects.
|
|
*/
|
|
int error= quick->init_ror_merged_scan(TRUE, local_alloc);
|
|
if (unlikely(error))
|
|
DBUG_RETURN(error);
|
|
quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
|
|
}
|
|
while ((cur= quick_it++))
|
|
{
|
|
quick= cur->quick;
|
|
#ifndef DBUG_OFF
|
|
const MY_BITMAP * const save_read_set= quick->head->read_set;
|
|
const MY_BITMAP * const save_write_set= quick->head->write_set;
|
|
#endif
|
|
if (quick->init_ror_merged_scan(FALSE, local_alloc))
|
|
DBUG_RETURN(1);
|
|
quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
|
|
|
|
// Sets are shared by all members of "quick_selects" so must not change
|
|
#ifndef DBUG_OFF
|
|
DBUG_ASSERT(quick->head->read_set == save_read_set);
|
|
DBUG_ASSERT(quick->head->write_set == save_write_set);
|
|
#endif
|
|
/* All merged scans share the same record buffer in intersection. */
|
|
quick->record= head->record[0];
|
|
}
|
|
|
|
if (need_to_fetch_row &&
|
|
unlikely(head->file->ha_rnd_init_with_error(false)))
|
|
{
|
|
DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
|
|
DBUG_RETURN(1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize quick select for row retrieval.
|
|
SYNOPSIS
|
|
reset()
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_ROR_INTERSECT_SELECT::reset()
|
|
{
|
|
DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
|
|
if (!scans_inited && init_ror_merged_scan(TRUE, &alloc))
|
|
DBUG_RETURN(1);
|
|
scans_inited= TRUE;
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
while ((qr= it++))
|
|
qr->quick->reset();
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Add a merged quick select to this ROR-intersection quick select.
|
|
|
|
SYNOPSIS
|
|
QUICK_ROR_INTERSECT_SELECT::push_quick_back()
|
|
alloc Mem root to create auxiliary structures on
|
|
quick Quick select to be added. The quick select must return
|
|
rows in rowid order.
|
|
NOTES
|
|
This call can only be made before init() is called.
|
|
|
|
RETURN
|
|
FALSE OK
|
|
TRUE Out of memory.
|
|
*/
|
|
|
|
bool
|
|
QUICK_ROR_INTERSECT_SELECT::push_quick_back(MEM_ROOT *local_alloc,
|
|
QUICK_RANGE_SELECT *quick)
|
|
{
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
if (!(qr= new QUICK_SELECT_WITH_RECORD) ||
|
|
!(qr->key_tuple= (uchar*)alloc_root(local_alloc,
|
|
quick->max_used_key_length)))
|
|
return TRUE;
|
|
qr->quick= quick;
|
|
return quick_selects.push_back(qr);
|
|
}
|
|
|
|
|
|
QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
|
|
{
|
|
DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
|
|
quick_selects.delete_elements();
|
|
delete cpk_quick;
|
|
free_root(&alloc,MYF(0));
|
|
if (need_to_fetch_row && head->file->inited != handler::NONE)
|
|
head->file->ha_rnd_end();
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
|
|
TABLE *table)
|
|
: thd(thd_param), scans_inited(FALSE)
|
|
{
|
|
index= MAX_KEY;
|
|
head= table;
|
|
rowid_length= table->file->ref_length;
|
|
record= head->record[0];
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
thd_param->mem_root= &alloc;
|
|
}
|
|
|
|
|
|
/*
|
|
Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
|
|
queue.
|
|
|
|
SYNPOSIS
|
|
QUICK_ROR_UNION_SELECT_queue_cmp()
|
|
arg Pointer to QUICK_ROR_UNION_SELECT
|
|
val1 First merged select
|
|
val2 Second merged select
|
|
*/
|
|
|
|
C_MODE_START
|
|
|
|
static int QUICK_ROR_UNION_SELECT_queue_cmp(void *arg, uchar *val1, uchar *val2)
|
|
{
|
|
QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
|
|
return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
|
|
((QUICK_SELECT_I*)val2)->last_rowid);
|
|
}
|
|
|
|
C_MODE_END
|
|
|
|
|
|
/*
|
|
Do post-constructor initialization.
|
|
SYNOPSIS
|
|
QUICK_ROR_UNION_SELECT::init()
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_ROR_UNION_SELECT::init()
|
|
{
|
|
DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
|
|
if (init_queue(&queue, quick_selects.elements, 0,
|
|
FALSE , QUICK_ROR_UNION_SELECT_queue_cmp,
|
|
(void*) this, 0, 0))
|
|
{
|
|
bzero(&queue, sizeof(QUEUE));
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
if (!(cur_rowid= (uchar*) alloc_root(&alloc, 2*head->file->ref_length)))
|
|
DBUG_RETURN(1);
|
|
prev_rowid= cur_rowid + head->file->ref_length;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize quick select for row retrieval.
|
|
SYNOPSIS
|
|
reset()
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_ROR_UNION_SELECT::reset()
|
|
{
|
|
QUICK_SELECT_I *quick;
|
|
int error;
|
|
DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
|
|
have_prev_rowid= FALSE;
|
|
if (!scans_inited)
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if (quick->init_ror_merged_scan(FALSE, &alloc))
|
|
DBUG_RETURN(1);
|
|
}
|
|
scans_inited= TRUE;
|
|
}
|
|
queue_remove_all(&queue);
|
|
/*
|
|
Initialize scans for merged quick selects and put all merged quick
|
|
selects into the queue.
|
|
*/
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if (unlikely((error= quick->reset())))
|
|
DBUG_RETURN(error);
|
|
if (unlikely((error= quick->get_next())))
|
|
{
|
|
if (error == HA_ERR_END_OF_FILE)
|
|
continue;
|
|
DBUG_RETURN(error);
|
|
}
|
|
quick->save_last_pos();
|
|
queue_insert(&queue, (uchar*)quick);
|
|
}
|
|
/* Prepare for ha_rnd_pos calls. */
|
|
if (head->file->inited && unlikely((error= head->file->ha_rnd_end())))
|
|
{
|
|
DBUG_PRINT("error", ("ROR index_merge rnd_end call failed"));
|
|
DBUG_RETURN(error);
|
|
}
|
|
if (unlikely((error= head->file->ha_rnd_init(false))))
|
|
{
|
|
DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
bool
|
|
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
|
|
{
|
|
return quick_selects.push_back(quick_sel_range);
|
|
}
|
|
|
|
QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
|
|
{
|
|
DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
|
|
delete_queue(&queue);
|
|
quick_selects.delete_elements();
|
|
if (head->file->inited != handler::NONE)
|
|
head->file->ha_rnd_end();
|
|
free_root(&alloc,MYF(0));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
QUICK_RANGE::QUICK_RANGE()
|
|
:min_key(0),max_key(0),min_length(0),max_length(0),
|
|
flag(NO_MIN_RANGE | NO_MAX_RANGE),
|
|
min_keypart_map(0), max_keypart_map(0)
|
|
{}
|
|
|
|
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
|
|
{
|
|
type=arg.type;
|
|
min_flag=arg.min_flag;
|
|
max_flag=arg.max_flag;
|
|
maybe_flag=arg.maybe_flag;
|
|
maybe_null=arg.maybe_null;
|
|
part=arg.part;
|
|
field=arg.field;
|
|
min_value=arg.min_value;
|
|
max_value=arg.max_value;
|
|
next_key_part=arg.next_key_part;
|
|
max_part_no= arg.max_part_no;
|
|
use_count=1; elements=1;
|
|
weight=1;
|
|
next= 0;
|
|
if (next_key_part)
|
|
{
|
|
next_key_part->increment_use_count(1);
|
|
weight += next_key_part->weight;
|
|
}
|
|
}
|
|
|
|
|
|
inline void SEL_ARG::make_root()
|
|
{
|
|
left=right= &null_element;
|
|
color=BLACK;
|
|
next=prev=0;
|
|
use_count=0;
|
|
elements=1;
|
|
weight= 1 + (next_key_part? next_key_part->weight : 0);
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *f, const uchar *min_value_arg,
|
|
const uchar *max_value_arg)
|
|
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
|
|
elements(1), use_count(1), field(f), min_value((uchar*) min_value_arg),
|
|
max_value((uchar*) max_value_arg), next(0),prev(0),
|
|
next_key_part(0), color(BLACK), type(KEY_RANGE), weight(1)
|
|
{
|
|
left=right= &null_element;
|
|
max_part_no= 1;
|
|
}
|
|
|
|
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,
|
|
uchar *min_value_, uchar *max_value_,
|
|
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
|
|
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
|
|
part(part_),maybe_null(field_->real_maybe_null()),
|
|
elements(1),use_count(1),
|
|
field(field_), min_value(min_value_), max_value(max_value_),
|
|
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE), weight(1)
|
|
{
|
|
max_part_no= part+1;
|
|
left=right= &null_element;
|
|
}
|
|
|
|
|
|
/*
|
|
A number of helper classes:
|
|
SEL_ARG_LE, SEL_ARG_LT, SEL_ARG_GT, SEL_ARG_GE,
|
|
to share the code between:
|
|
Field::stored_field_make_mm_leaf()
|
|
Field::stored_field_make_mm_leaf_exact()
|
|
*/
|
|
class SEL_ARG_LE: public SEL_ARG
|
|
{
|
|
public:
|
|
SEL_ARG_LE(const uchar *key, Field *field)
|
|
:SEL_ARG(field, key, key)
|
|
{
|
|
if (!field->real_maybe_null())
|
|
min_flag= NO_MIN_RANGE; // From start
|
|
else
|
|
{
|
|
min_value= is_null_string;
|
|
min_flag= NEAR_MIN; // > NULL
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
class SEL_ARG_LT: public SEL_ARG_LE
|
|
{
|
|
public:
|
|
/*
|
|
Use this constructor if value->save_in_field() went precisely,
|
|
without any data rounding or truncation.
|
|
*/
|
|
SEL_ARG_LT(const uchar *key, Field *field)
|
|
:SEL_ARG_LE(key, field)
|
|
{ max_flag= NEAR_MAX; }
|
|
/*
|
|
Use this constructor if value->save_in_field() returned success,
|
|
but we don't know if rounding or truncation happened
|
|
(as some Field::store() do not report minor data changes).
|
|
*/
|
|
SEL_ARG_LT(THD *thd, const uchar *key, Field *field,
|
|
Item *value)
|
|
:SEL_ARG_LE(key, field)
|
|
{
|
|
if (stored_field_cmp_to_item(thd, field, value) == 0)
|
|
max_flag= NEAR_MAX;
|
|
}
|
|
};
|
|
|
|
|
|
class SEL_ARG_GT: public SEL_ARG
|
|
{
|
|
public:
|
|
/*
|
|
Use this constructor if value->save_in_field() went precisely,
|
|
without any data rounding or truncation.
|
|
*/
|
|
SEL_ARG_GT(const uchar *key, const KEY_PART *key_part, Field *field)
|
|
:SEL_ARG(field, key, key)
|
|
{
|
|
// Don't use open ranges for partial key_segments
|
|
if (!(key_part->flag & HA_PART_KEY_SEG))
|
|
min_flag= NEAR_MIN;
|
|
max_flag= NO_MAX_RANGE;
|
|
}
|
|
/*
|
|
Use this constructor if value->save_in_field() returned success,
|
|
but we don't know if rounding or truncation happened
|
|
(as some Field::store() do not report minor data changes).
|
|
*/
|
|
SEL_ARG_GT(THD *thd, const uchar *key,
|
|
const KEY_PART *key_part, Field *field, Item *value)
|
|
:SEL_ARG(field, key, key)
|
|
{
|
|
// Don't use open ranges for partial key_segments
|
|
if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
|
|
(stored_field_cmp_to_item(thd, field, value) <= 0))
|
|
min_flag= NEAR_MIN;
|
|
max_flag= NO_MAX_RANGE;
|
|
}
|
|
};
|
|
|
|
|
|
class SEL_ARG_GE: public SEL_ARG
|
|
{
|
|
public:
|
|
/*
|
|
Use this constructor if value->save_in_field() went precisely,
|
|
without any data rounding or truncation.
|
|
*/
|
|
SEL_ARG_GE(const uchar *key, Field *field)
|
|
:SEL_ARG(field, key, key)
|
|
{
|
|
max_flag= NO_MAX_RANGE;
|
|
}
|
|
/*
|
|
Use this constructor if value->save_in_field() returned success,
|
|
but we don't know if rounding or truncation happened
|
|
(as some Field::store() do not report minor data changes).
|
|
*/
|
|
SEL_ARG_GE(THD *thd, const uchar *key,
|
|
const KEY_PART *key_part, Field *field, Item *value)
|
|
:SEL_ARG(field, key, key)
|
|
{
|
|
// Don't use open ranges for partial key_segments
|
|
if ((!(key_part->flag & HA_PART_KEY_SEG)) &&
|
|
(stored_field_cmp_to_item(thd, field, value) < 0))
|
|
min_flag= NEAR_MIN;
|
|
max_flag= NO_MAX_RANGE;
|
|
}
|
|
};
|
|
|
|
|
|
SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent,
|
|
SEL_ARG **next_arg)
|
|
{
|
|
SEL_ARG *tmp;
|
|
|
|
/* Bail out if we have already generated too many SEL_ARGs */
|
|
if (++param->alloced_sel_args > MAX_SEL_ARGS)
|
|
return 0;
|
|
|
|
if (type != KEY_RANGE)
|
|
{
|
|
if (!(tmp= new (param->mem_root) SEL_ARG(type)))
|
|
return 0; // out of memory
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
tmp->part= this->part;
|
|
}
|
|
else
|
|
{
|
|
if (!(tmp= new (param->mem_root) SEL_ARG(field, part,
|
|
min_value, max_value,
|
|
min_flag, max_flag, maybe_flag)))
|
|
return 0; // OOM
|
|
tmp->parent=new_parent;
|
|
tmp->next_key_part=next_key_part;
|
|
if (left != &null_element)
|
|
if (!(tmp->left=left->clone(param, tmp, next_arg)))
|
|
return 0; // OOM
|
|
|
|
tmp->prev= *next_arg; // Link into next/prev chain
|
|
(*next_arg)->next=tmp;
|
|
(*next_arg)= tmp;
|
|
|
|
if (right != &null_element)
|
|
if (!(tmp->right= right->clone(param, tmp, next_arg)))
|
|
return 0; // OOM
|
|
}
|
|
increment_use_count(1);
|
|
tmp->color= color;
|
|
tmp->elements= this->elements;
|
|
tmp->max_part_no= max_part_no;
|
|
tmp->weight= weight;
|
|
return tmp;
|
|
}
|
|
|
|
/**
|
|
This gives the first SEL_ARG in the interval list, and the minimal element
|
|
in the red-black tree
|
|
|
|
@return
|
|
SEL_ARG first SEL_ARG in the interval list
|
|
*/
|
|
SEL_ARG *SEL_ARG::first()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->left)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->left != &null_element)
|
|
next_arg=next_arg->left;
|
|
return next_arg;
|
|
}
|
|
|
|
const SEL_ARG *SEL_ARG::first() const
|
|
{
|
|
return const_cast<SEL_ARG*>(this)->first();
|
|
}
|
|
|
|
SEL_ARG *SEL_ARG::last()
|
|
{
|
|
SEL_ARG *next_arg=this;
|
|
if (!next_arg->right)
|
|
return 0; // MAYBE_KEY
|
|
while (next_arg->right != &null_element)
|
|
next_arg=next_arg->right;
|
|
return next_arg;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if a compare is ok, when one takes ranges in account
|
|
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
|
|
*/
|
|
|
|
int SEL_ARG::sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
|
|
uint8 b_flag)
|
|
{
|
|
int cmp;
|
|
/* First check if there was a compare to a min or max element */
|
|
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
{
|
|
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
|
|
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
|
|
return 0;
|
|
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
|
|
}
|
|
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
|
|
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
|
|
|
|
if (field->real_maybe_null()) // If null is part of key
|
|
{
|
|
if (*a != *b)
|
|
{
|
|
return *a ? -1 : 1;
|
|
}
|
|
if (*a)
|
|
goto end; // NULL where equal
|
|
a++; b++; // Skip NULL marker
|
|
}
|
|
cmp=field->key_cmp(a , b);
|
|
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
|
|
|
|
// Check if the compared equal arguments was defined with open/closed range
|
|
end:
|
|
if (a_flag & (NEAR_MIN | NEAR_MAX))
|
|
{
|
|
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return 0;
|
|
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
|
|
return (a_flag & NEAR_MIN) ? 2 : -2;
|
|
return (a_flag & NEAR_MIN) ? 1 : -1;
|
|
}
|
|
if (b_flag & (NEAR_MIN | NEAR_MAX))
|
|
return (b_flag & NEAR_MIN) ? -2 : 2;
|
|
return 0; // The elements where equal
|
|
}
|
|
|
|
|
|
/*
|
|
Check if min and values are equal
|
|
|
|
@return 1 if equal
|
|
*/
|
|
|
|
bool SEL_ARG::min_max_are_equal() const
|
|
{
|
|
uint offset= 0;
|
|
if (field->real_maybe_null()) // If null is part of key
|
|
{
|
|
if (*min_value != *max_value)
|
|
return 0;
|
|
if (*min_value)
|
|
return 1; // NULL where equal
|
|
offset= 1; // Skip NULL marker
|
|
}
|
|
return field->key_cmp(min_value+offset, max_value+offset) == 0;
|
|
}
|
|
|
|
|
|
SEL_ARG *SEL_ARG::clone_tree(RANGE_OPT_PARAM *param)
|
|
{
|
|
SEL_ARG tmp_link,*next_arg,*root;
|
|
next_arg= &tmp_link;
|
|
if (!(root= clone(param, (SEL_ARG *) 0, &next_arg)))
|
|
return 0;
|
|
next_arg->next=0; // Fix last link
|
|
tmp_link.next->prev=0; // Fix first link
|
|
if (root) // If not OOM
|
|
root->use_count= 0;
|
|
return root;
|
|
}
|
|
|
|
|
|
/*
|
|
Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
|
|
objects from table read plans.
|
|
*/
|
|
class TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
/*
|
|
Plan read cost, with or without cost of full row retrieval, depending
|
|
on plan creation parameters.
|
|
*/
|
|
double read_cost;
|
|
ha_rows records; /* estimate of #rows to be examined */
|
|
|
|
/*
|
|
If TRUE, the scan returns rows in rowid order. This is used only for
|
|
scans that can be both ROR and non-ROR.
|
|
*/
|
|
bool is_ror;
|
|
|
|
/*
|
|
Create quick select for this plan.
|
|
SYNOPSIS
|
|
make_quick()
|
|
param Parameter from test_quick_select
|
|
retrieve_full_rows If TRUE, created quick select will do full record
|
|
retrieval.
|
|
parent_alloc Memory pool to use, if any.
|
|
|
|
NOTES
|
|
retrieve_full_rows is ignored by some implementations.
|
|
|
|
RETURN
|
|
created quick select
|
|
NULL on any error.
|
|
*/
|
|
virtual QUICK_SELECT_I *make_quick(PARAM *param,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc=NULL) = 0;
|
|
|
|
/* Table read plans are allocated on MEM_ROOT and are never deleted */
|
|
static void *operator new(size_t size, MEM_ROOT *mem_root)
|
|
{ return (void*) alloc_root(mem_root, (uint) size); }
|
|
static void operator delete(void *ptr,size_t size) { TRASH_FREE(ptr, size); }
|
|
static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
|
|
virtual ~TABLE_READ_PLAN() = default; /* Remove gcc warning */
|
|
/**
|
|
Add basic info for this TABLE_READ_PLAN to the optimizer trace.
|
|
|
|
@param param Parameters for range analysis of this table
|
|
@param trace_object The optimizer trace object the info is appended to
|
|
*/
|
|
virtual void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const= 0;
|
|
|
|
};
|
|
|
|
class TRP_ROR_INTERSECT;
|
|
class TRP_ROR_UNION;
|
|
class TRP_INDEX_MERGE;
|
|
|
|
|
|
/*
|
|
Plan for a QUICK_RANGE_SELECT scan.
|
|
TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
|
|
QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
|
|
record retrieval scans.
|
|
*/
|
|
|
|
class TRP_RANGE : public TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
|
|
uint key_idx; /* key number in PARAM::key */
|
|
uint mrr_flags;
|
|
uint mrr_buf_size;
|
|
|
|
TRP_RANGE(SEL_ARG *key_arg, uint idx_arg, uint mrr_flags_arg)
|
|
: key(key_arg), key_idx(idx_arg), mrr_flags(mrr_flags_arg)
|
|
{}
|
|
virtual ~TRP_RANGE() = default; /* Remove gcc warning */
|
|
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
DBUG_ENTER("TRP_RANGE::make_quick");
|
|
QUICK_RANGE_SELECT *quick;
|
|
if ((quick= get_quick_select(param, key_idx, key, mrr_flags,
|
|
mrr_buf_size, parent_alloc)))
|
|
{
|
|
quick->records= records;
|
|
quick->read_time= read_cost;
|
|
}
|
|
DBUG_RETURN(quick);
|
|
}
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
};
|
|
|
|
void TRP_RANGE::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
DBUG_ASSERT(param->using_real_indexes);
|
|
const uint keynr_in_table= param->real_keynr[key_idx];
|
|
|
|
const KEY &cur_key= param->table->key_info[keynr_in_table];
|
|
const KEY_PART_INFO *key_part= cur_key.key_part;
|
|
|
|
if (unlikely(trace_object->trace_started()))
|
|
trace_object->
|
|
add("type", "range_scan").
|
|
add("index", cur_key.name).
|
|
add("rows", records);
|
|
|
|
Json_writer_array trace_range(param->thd, "ranges");
|
|
|
|
// TRP_RANGE should not be created if there are no range intervals
|
|
DBUG_ASSERT(key);
|
|
|
|
trace_ranges(&trace_range, param, key_idx, key, key_part);
|
|
}
|
|
|
|
|
|
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */
|
|
|
|
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
TRP_ROR_INTERSECT() = default; /* Remove gcc warning */
|
|
virtual ~TRP_ROR_INTERSECT() = default; /* Remove gcc warning */
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
|
|
/* Array of pointers to ROR range scans used in this intersection */
|
|
struct st_ror_scan_info **first_scan;
|
|
struct st_ror_scan_info **last_scan; /* End of the above array */
|
|
struct st_ror_scan_info *cpk_scan; /* Clustered PK scan, if there is one */
|
|
bool is_covering; /* TRUE if no row retrieval phase is necessary */
|
|
double index_scan_costs; /* SUM(cost(index_scan)) */
|
|
double cmp_cost; // Cost of out rows with WHERE clause
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
Plan for QUICK_ROR_UNION_SELECT scan.
|
|
QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
|
|
is ignored by make_quick.
|
|
*/
|
|
|
|
class TRP_ROR_UNION : public TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
TRP_ROR_UNION() = default; /* Remove gcc warning */
|
|
virtual ~TRP_ROR_UNION() = default; /* Remove gcc warning */
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
|
|
TABLE_READ_PLAN **last_ror; /* end of the above array */
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
};
|
|
|
|
void TRP_ROR_UNION::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
THD *thd= param->thd;
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
trace_object->add("type", "index_roworder_union");
|
|
Json_writer_array smth_trace(thd, "union_of");
|
|
for (TABLE_READ_PLAN **current= first_ror; current != last_ror; current++)
|
|
{
|
|
Json_writer_object trp_info(thd);
|
|
(*current)->trace_basic_info(param, &trp_info);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Plan for QUICK_INDEX_INTERSECT_SELECT scan.
|
|
QUICK_INDEX_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
|
|
is ignored by make_quick.
|
|
*/
|
|
|
|
class TRP_INDEX_INTERSECT : public TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
TRP_INDEX_INTERSECT() = default; /* Remove gcc warning */
|
|
virtual ~TRP_INDEX_INTERSECT() = default; /* Remove gcc warning */
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
TRP_RANGE **range_scans; /* array of ptrs to plans of intersected scans */
|
|
TRP_RANGE **range_scans_end; /* end of the array */
|
|
/* keys whose scans are to be filtered by cpk conditions */
|
|
key_map filtered_scans;
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
|
|
};
|
|
|
|
void TRP_INDEX_INTERSECT::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
THD *thd= param->thd;
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
trace_object->add("type", "index_sort_intersect");
|
|
Json_writer_array smth_trace(thd, "index_sort_intersect_of");
|
|
for (TRP_RANGE **current= range_scans; current != range_scans_end;
|
|
current++)
|
|
{
|
|
Json_writer_object trp_info(thd);
|
|
(*current)->trace_basic_info(param, &trp_info);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Plan for QUICK_INDEX_MERGE_SELECT scan.
|
|
QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
|
|
is ignored by make_quick.
|
|
*/
|
|
|
|
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
|
|
{
|
|
public:
|
|
TRP_INDEX_MERGE() = default; /* Remove gcc warning */
|
|
virtual ~TRP_INDEX_MERGE() = default; /* Remove gcc warning */
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
|
|
TRP_RANGE **range_scans_end; /* end of the array */
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
};
|
|
|
|
void TRP_INDEX_MERGE::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
THD *thd= param->thd;
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
trace_object->add("type", "index_merge");
|
|
Json_writer_array smth_trace(thd, "index_merge_of");
|
|
for (TRP_RANGE **current= range_scans; current != range_scans_end; current++)
|
|
{
|
|
Json_writer_object trp_info(thd);
|
|
(*current)->trace_basic_info(param, &trp_info);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Plan for a QUICK_GROUP_MIN_MAX_SELECT scan.
|
|
*/
|
|
|
|
class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
|
|
{
|
|
private:
|
|
uint group_prefix_len;
|
|
uint used_key_parts;
|
|
uint group_key_parts;
|
|
uint index;
|
|
uint key_infix_len;
|
|
uint param_idx; /* Index of used key in param->key. */
|
|
uchar key_infix[MAX_KEY_LENGTH];
|
|
KEY *index_info;
|
|
KEY_PART_INFO *min_max_arg_part;
|
|
SEL_TREE *range_tree; /* Represents all range predicates in the query. */
|
|
SEL_ARG *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
|
|
bool have_min, have_max;
|
|
public:
|
|
bool have_agg_distinct;
|
|
bool is_index_scan; /* Use index_next() instead of random read */
|
|
/* Number of records selected by the ranges in index_tree. */
|
|
ha_rows quick_prefix_records;
|
|
public:
|
|
TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
|
|
bool have_agg_distinct_arg,
|
|
KEY_PART_INFO *min_max_arg_part_arg,
|
|
uint group_prefix_len_arg, uint used_key_parts_arg,
|
|
uint group_key_parts_arg, KEY *index_info_arg,
|
|
uint index_arg, uint key_infix_len_arg,
|
|
uchar *key_infix_arg,
|
|
SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
|
|
uint param_idx_arg, ha_rows quick_prefix_records_arg)
|
|
: group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
|
|
group_key_parts(group_key_parts_arg),
|
|
index(index_arg), key_infix_len(key_infix_len_arg), param_idx(param_idx_arg),
|
|
index_info(index_info_arg),min_max_arg_part(min_max_arg_part_arg),
|
|
range_tree(tree_arg), index_tree(index_tree_arg),
|
|
have_min(have_min_arg), have_max(have_max_arg),
|
|
have_agg_distinct(have_agg_distinct_arg),
|
|
is_index_scan(FALSE),
|
|
quick_prefix_records(quick_prefix_records_arg)
|
|
{
|
|
if (key_infix_len)
|
|
memcpy(this->key_infix, key_infix_arg, key_infix_len);
|
|
}
|
|
virtual ~TRP_GROUP_MIN_MAX() = default; /* Remove gcc warning */
|
|
|
|
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc);
|
|
void use_index_scan() { is_index_scan= TRUE; }
|
|
void trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const;
|
|
};
|
|
|
|
|
|
void TRP_GROUP_MIN_MAX::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
THD *thd= param->thd;
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
|
|
trace_object->add("type", "index_group").add("index", index_info->name);
|
|
|
|
if (min_max_arg_part)
|
|
trace_object->add("min_max_arg", min_max_arg_part->field->field_name);
|
|
else
|
|
trace_object->add_null("min_max_arg");
|
|
|
|
if (unlikely(trace_object->trace_started()))
|
|
trace_object->
|
|
add("min_aggregate", have_min).
|
|
add("max_aggregate", have_max).
|
|
add("distinct_aggregate", have_agg_distinct).
|
|
add("rows", records).
|
|
add("cost", read_cost);
|
|
|
|
const KEY_PART_INFO *key_part= index_info->key_part;
|
|
{
|
|
Json_writer_array trace_keyparts(thd, "key_parts_used_for_access");
|
|
for (uint partno= 0; partno < used_key_parts; partno++)
|
|
{
|
|
const KEY_PART_INFO *cur_key_part= key_part + partno;
|
|
trace_keyparts.add(cur_key_part->field->field_name);
|
|
}
|
|
}
|
|
|
|
Json_writer_array trace_range(thd, "ranges");
|
|
|
|
// can have group quick without ranges
|
|
if (index_tree)
|
|
{
|
|
trace_ranges(&trace_range, param, param_idx,
|
|
index_tree, key_part);
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct st_index_scan_info
|
|
{
|
|
uint idx; /* # of used key in param->keys */
|
|
uint keynr; /* # of used key in table */
|
|
uint range_count;
|
|
ha_rows records; /* estimate of # records this scan will return */
|
|
|
|
/* Set of intervals over key fields that will be used for row retrieval. */
|
|
SEL_ARG *sel_arg;
|
|
|
|
KEY *key_info;
|
|
uint used_key_parts;
|
|
|
|
/* Estimate of # records filtered out by intersection with cpk */
|
|
ha_rows filtered_out;
|
|
/* Bitmap of fields used in index intersection */
|
|
MY_BITMAP used_fields;
|
|
|
|
/* Fields used in the query and covered by ROR scan. */
|
|
MY_BITMAP covered_fields;
|
|
uint used_fields_covered; /* # of set bits in covered_fields */
|
|
int key_rec_length; /* length of key record (including rowid) */
|
|
|
|
/*
|
|
Cost of reading all index records with values in sel_arg intervals set
|
|
(assuming there is no need to access full table records)
|
|
*/
|
|
double index_read_cost;
|
|
uint first_uncovered_field; /* first unused bit in covered_fields */
|
|
uint key_components; /* # of parts in the key */
|
|
} INDEX_SCAN_INFO;
|
|
|
|
/*
|
|
Fill param->needed_fields with bitmap of fields used in the query.
|
|
SYNOPSIS
|
|
fill_used_fields_bitmap()
|
|
param Parameter from test_quick_select function.
|
|
|
|
NOTES
|
|
Clustered PK members are not put into the bitmap as they are implicitly
|
|
present in all keys (and it is impossible to avoid reading them).
|
|
RETURN
|
|
0 Ok
|
|
1 Out of memory.
|
|
*/
|
|
|
|
static int fill_used_fields_bitmap(PARAM *param)
|
|
{
|
|
TABLE *table= param->table;
|
|
my_bitmap_map *tmp;
|
|
uint pk;
|
|
param->tmp_covered_fields.bitmap= 0;
|
|
param->fields_bitmap_size= table->s->column_bitmap_size;
|
|
if (!(tmp= (my_bitmap_map*) alloc_root(param->mem_root,
|
|
param->fields_bitmap_size)) ||
|
|
my_bitmap_init(¶m->needed_fields, tmp, table->s->fields))
|
|
return 1;
|
|
|
|
bitmap_copy(¶m->needed_fields, table->read_set);
|
|
bitmap_union(¶m->needed_fields, table->write_set);
|
|
|
|
pk= param->table->s->primary_key;
|
|
if (param->table->file->pk_is_clustering_key(pk))
|
|
{
|
|
/* The table uses clustered PK and it is not internally generated */
|
|
KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
|
|
KEY_PART_INFO *key_part_end= key_part +
|
|
param->table->key_info[pk].user_defined_key_parts;
|
|
for (;key_part != key_part_end; ++key_part)
|
|
bitmap_clear_bit(¶m->needed_fields, key_part->fieldnr-1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Test if a key can be used in different ranges
|
|
|
|
SYNOPSIS
|
|
SQL_SELECT::test_quick_select()
|
|
thd Current thread
|
|
keys_to_use Keys to use for range retrieval
|
|
prev_tables Tables assumed to be already read when the scan is
|
|
performed (but not read at the moment of this call)
|
|
limit Query limit
|
|
force_quick_range Prefer to use range (instead of full table scan) even
|
|
if it is more expensive.
|
|
remove_false_parts_of_where Remove parts of OR-clauses for which range
|
|
analysis produced SEL_TREE(IMPOSSIBLE)
|
|
only_single_index_range_scan Evaluate only single index range scans
|
|
|
|
NOTES
|
|
Updates the following in the select parameter:
|
|
needed_reg - Bits for keys with may be used if all prev regs are read
|
|
quick - Parameter to use when reading records.
|
|
|
|
In the table struct the following information is updated:
|
|
quick_keys - Which keys can be used
|
|
quick_rows - How many rows the key matches
|
|
opt_range_condition_rows - E(# rows that will satisfy the table
|
|
condition)
|
|
|
|
IMPLEMENTATION
|
|
opt_range_condition_rows value is obtained as follows:
|
|
|
|
It is a minimum of E(#output rows) for all considered table access
|
|
methods (range and index_merge accesses over various indexes).
|
|
|
|
The obtained value is not a true E(#rows that satisfy table condition)
|
|
but rather a pessimistic estimate. To obtain a true E(#...) one would
|
|
need to combine estimates of various access methods, taking into account
|
|
correlations between sets of rows they will return.
|
|
|
|
For example, if values of tbl.key1 and tbl.key2 are independent (a right
|
|
assumption if we have no information about their correlation) then the
|
|
correct estimate will be:
|
|
|
|
E(#rows("tbl.key1 < c1 AND tbl.key2 < c2")) =
|
|
= E(#rows(tbl.key1 < c1)) / total_rows(tbl) * E(#rows(tbl.key2 < c2)
|
|
|
|
which is smaller than
|
|
|
|
MIN(E(#rows(tbl.key1 < c1), E(#rows(tbl.key2 < c2)))
|
|
|
|
which is currently produced.
|
|
|
|
TODO
|
|
* Change the value returned in opt_range_condition_rows from a pessimistic
|
|
estimate to true E(#rows that satisfy table condition).
|
|
(we can re-use some of E(#rows) calcuation code from
|
|
index_merge/intersection for this)
|
|
|
|
* Check if this function really needs to modify keys_to_use, and change the
|
|
code to pass it by reference if it doesn't.
|
|
|
|
* In addition to force_quick_range other means can be (an usually are) used
|
|
to make this function prefer range over full table scan. Figure out if
|
|
force_quick_range is really needed.
|
|
|
|
RETURN
|
|
-1 if error or impossible select (i.e. certainly no rows will be selected)
|
|
0 if can't use quick_select
|
|
1 if found usable ranges and quick select has been successfully created.
|
|
*/
|
|
|
|
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
|
|
table_map prev_tables,
|
|
ha_rows limit, bool force_quick_range,
|
|
bool ordered_output,
|
|
bool remove_false_parts_of_where,
|
|
bool only_single_index_range_scan)
|
|
{
|
|
uint idx;
|
|
Item *notnull_cond= NULL;
|
|
TABLE_READ_PLAN *best_trp= NULL;
|
|
SEL_ARG **backup_keys= 0;
|
|
ha_rows table_records= head->stat_records();
|
|
handler *file= head->file;
|
|
bool impossible_range= 0;
|
|
DBUG_ENTER("SQL_SELECT::test_quick_select");
|
|
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
|
|
(ulong) keys_to_use.to_ulonglong(), (ulong) prev_tables,
|
|
(ulong) const_tables));
|
|
DBUG_PRINT("info", ("records: %llu", (ulonglong) table_records));
|
|
DBUG_ASSERT(table_records || !head->file->stats.records);
|
|
|
|
delete quick;
|
|
quick=0;
|
|
needed_reg.clear_all();
|
|
quick_keys.clear_all();
|
|
head->with_impossible_ranges.clear_all();
|
|
DBUG_ASSERT(!head->is_filled_at_execution());
|
|
if (keys_to_use.is_clear_all() || head->is_filled_at_execution())
|
|
DBUG_RETURN(0);
|
|
records= table_records;
|
|
notnull_cond= head->notnull_cond;
|
|
if (file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
|
|
only_single_index_range_scan= 1;
|
|
|
|
if (head->force_index || force_quick_range)
|
|
read_time= DBL_MAX;
|
|
else
|
|
{
|
|
read_time= file->cost(file->ha_scan_and_compare_time(records));
|
|
if (limit < records)
|
|
notnull_cond= NULL;
|
|
}
|
|
|
|
possible_keys.clear_all();
|
|
|
|
DBUG_PRINT("info",("Time to scan table: %g", read_time));
|
|
|
|
Json_writer_object table_info(thd);
|
|
table_info.add_table_name(head);
|
|
|
|
Json_writer_object trace_range(thd, "range_analysis");
|
|
if (unlikely(thd->trace_started()) && read_time != DBL_MAX)
|
|
{
|
|
Json_writer_object table_rec(thd, "table_scan");
|
|
table_rec.add("rows", records).add("cost", read_time);
|
|
}
|
|
|
|
keys_to_use.intersect(head->keys_in_use_for_query);
|
|
if (!keys_to_use.is_clear_all())
|
|
{
|
|
uchar buff[STACK_BUFF_ALLOC];
|
|
MEM_ROOT alloc;
|
|
SEL_TREE *tree= NULL;
|
|
SEL_TREE *notnull_cond_tree= NULL;
|
|
KEY_PART *key_parts;
|
|
KEY *key_info;
|
|
PARAM param;
|
|
bool force_group_by= false, group_by_optimization_used= false;
|
|
|
|
if (check_stack_overrun(thd, 2*STACK_MIN_SIZE + sizeof(PARAM), buff))
|
|
DBUG_RETURN(0); // Fatal error flag is set
|
|
|
|
/* set up parameter that is passed to all functions */
|
|
param.thd= thd;
|
|
param.baseflag= file->ha_table_flags();
|
|
param.prev_tables=prev_tables | const_tables;
|
|
param.read_tables=read_tables;
|
|
param.current_table= head->map;
|
|
param.table=head;
|
|
param.keys=0;
|
|
param.mem_root= &alloc;
|
|
param.old_root= thd->mem_root;
|
|
param.needed_reg= &needed_reg;
|
|
param.imerge_cost_buff_size= 0;
|
|
param.using_real_indexes= TRUE;
|
|
param.remove_jump_scans= TRUE;
|
|
param.max_key_parts= 0;
|
|
param.remove_false_where_parts= remove_false_parts_of_where;
|
|
param.force_default_mrr= ordered_output;
|
|
param.possible_keys.clear_all();
|
|
|
|
thd->no_errors=1; // Don't warn about NULL
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
if (!(param.key_parts=
|
|
(KEY_PART*) alloc_root(&alloc,
|
|
sizeof(KEY_PART) *
|
|
head->s->actual_n_key_parts(thd))) ||
|
|
fill_used_fields_bitmap(¶m))
|
|
{
|
|
thd->no_errors=0;
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
DBUG_RETURN(-1); // Error
|
|
}
|
|
key_parts= param.key_parts;
|
|
|
|
/*
|
|
Make an array with description of all key parts of all table keys.
|
|
This is used in get_mm_parts function.
|
|
*/
|
|
key_info= head->key_info;
|
|
uint max_key_len= 0;
|
|
|
|
Json_writer_array trace_idx(thd, "potential_range_indexes");
|
|
|
|
for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
|
|
{
|
|
Json_writer_object trace_idx_details(thd);
|
|
trace_idx_details.add("index", key_info->name);
|
|
KEY_PART_INFO *key_part_info;
|
|
uint n_key_parts= head->actual_n_key_parts(key_info);
|
|
|
|
if (!keys_to_use.is_set(idx))
|
|
{
|
|
if (unlikely(trace_idx_details.trace_started()))
|
|
trace_idx_details.
|
|
add("usable", false).
|
|
add("cause", "not applicable");
|
|
continue;
|
|
}
|
|
if (key_info->flags & HA_FULLTEXT)
|
|
{
|
|
trace_idx_details.add("usable", false).add("cause", "fulltext");
|
|
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
|
|
}
|
|
trace_idx_details.add("usable", true);
|
|
param.key[param.keys]=key_parts;
|
|
key_part_info= key_info->key_part;
|
|
uint cur_key_len= 0;
|
|
Json_writer_array trace_keypart(thd, "key_parts");
|
|
for (uint part= 0 ; part < n_key_parts ;
|
|
part++, key_parts++, key_part_info++)
|
|
{
|
|
key_parts->key= param.keys;
|
|
key_parts->part= part;
|
|
key_parts->length= key_part_info->length;
|
|
key_parts->store_length= key_part_info->store_length;
|
|
cur_key_len += key_part_info->store_length;
|
|
key_parts->field= key_part_info->field;
|
|
key_parts->null_bit= key_part_info->null_bit;
|
|
key_parts->image_type =
|
|
(key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
|
|
/* Only HA_PART_KEY_SEG is used */
|
|
key_parts->flag= (uint8) key_part_info->key_part_flag;
|
|
trace_keypart.add(key_parts->field->field_name);
|
|
}
|
|
trace_keypart.end();
|
|
param.real_keynr[param.keys++]=idx;
|
|
if (cur_key_len > max_key_len)
|
|
max_key_len= cur_key_len;
|
|
}
|
|
trace_idx.end();
|
|
|
|
param.key_parts_end=key_parts;
|
|
param.alloced_sel_args= 0;
|
|
|
|
max_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
|
|
if (!(param.min_key= (uchar*)alloc_root(&alloc,max_key_len)) ||
|
|
!(param.max_key= (uchar*)alloc_root(&alloc,max_key_len)))
|
|
{
|
|
thd->no_errors=0;
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
DBUG_RETURN(-1); // Error
|
|
}
|
|
|
|
thd->mem_root= &alloc;
|
|
/* Calculate cost of full index read for the shortest covering index */
|
|
if (!force_quick_range && !head->covering_keys.is_clear_all() &&
|
|
!head->no_keyread)
|
|
{
|
|
double key_read_time;
|
|
uint key_for_use= find_shortest_key(head, &head->covering_keys);
|
|
key_read_time= file->cost(file->
|
|
ha_key_scan_and_compare_time(key_for_use,
|
|
records));
|
|
DBUG_PRINT("info", ("'all'+'using index' scan will be using key %d, "
|
|
"read time %g", key_for_use, key_read_time));
|
|
|
|
Json_writer_object trace_cov(thd, "best_covering_index_scan");
|
|
bool chosen= FALSE;
|
|
if (key_read_time < read_time)
|
|
{
|
|
read_time= key_read_time;
|
|
chosen= TRUE;
|
|
}
|
|
if (unlikely(trace_cov.trace_started()))
|
|
{
|
|
trace_cov.
|
|
add("index", head->key_info[key_for_use].name).
|
|
add("cost", key_read_time).add("chosen", chosen);
|
|
if (!chosen)
|
|
trace_cov.add("cause", "cost");
|
|
}
|
|
}
|
|
|
|
double best_read_time= read_time;
|
|
|
|
if (notnull_cond)
|
|
notnull_cond_tree= notnull_cond->get_mm_tree(¶m, ¬null_cond);
|
|
|
|
if (cond || notnull_cond_tree)
|
|
{
|
|
{
|
|
Json_writer_array trace_range_summary(thd,
|
|
"setup_range_conditions");
|
|
if (cond)
|
|
tree= cond->get_mm_tree(¶m, &cond);
|
|
if (notnull_cond_tree)
|
|
tree= tree_and(¶m, tree, notnull_cond_tree);
|
|
}
|
|
if (tree)
|
|
{
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
records= 0;
|
|
impossible_range= 1; /* Return -1 from this function. */
|
|
read_time= (double) HA_POS_ERROR;
|
|
trace_range.add("impossible_range", true);
|
|
goto free_mem;
|
|
}
|
|
/*
|
|
If the tree can't be used for range scans, proceed anyway, as we
|
|
can construct a group-min-max quick select
|
|
*/
|
|
if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
|
|
{
|
|
trace_range.add("range_scan_possible", false);
|
|
tree= NULL;
|
|
}
|
|
}
|
|
else if (thd->is_error())
|
|
{
|
|
thd->no_errors=0;
|
|
thd->mem_root= param.old_root;
|
|
free_root(&alloc, MYF(0));
|
|
DBUG_RETURN(-1);
|
|
}
|
|
}
|
|
|
|
if (tree)
|
|
{
|
|
/*
|
|
It is possible to use a range-based quick select (but it might be
|
|
slower than 'all' table scan).
|
|
*/
|
|
TRP_ROR_INTERSECT *rori_trp;
|
|
TRP_INDEX_INTERSECT *intersect_trp;
|
|
bool can_build_covering= FALSE;
|
|
Json_writer_object trace_range(thd, "analyzing_range_alternatives");
|
|
TABLE_READ_PLAN *range_trp;
|
|
|
|
backup_keys= (SEL_ARG**) alloca(sizeof(backup_keys[0])*param.keys);
|
|
memcpy(&backup_keys[0], &tree->keys[0],
|
|
sizeof(backup_keys[0])*param.keys);
|
|
|
|
remove_nonrange_trees(¶m, tree);
|
|
|
|
/* Get best 'range' plan and prepare data for making other plans */
|
|
if ((range_trp= get_key_scans_params(¶m, tree,
|
|
only_single_index_range_scan,
|
|
true, best_read_time, limit,
|
|
1)))
|
|
{
|
|
best_trp= range_trp;
|
|
best_read_time= best_trp->read_cost;
|
|
}
|
|
|
|
/*
|
|
Simultaneous key scans and row deletes on several handler
|
|
objects are not allowed so don't use ROR-intersection for
|
|
table deletes.
|
|
*/
|
|
if ((thd->lex->sql_command != SQLCOM_DELETE) &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
|
|
!only_single_index_range_scan)
|
|
{
|
|
/*
|
|
Get best non-covering ROR-intersection plan and prepare data for
|
|
building covering ROR-intersection.
|
|
*/
|
|
if ((rori_trp= get_best_ror_intersect(¶m, tree, best_read_time,
|
|
&can_build_covering)))
|
|
{
|
|
best_trp= rori_trp;
|
|
best_read_time= rori_trp->read_cost;
|
|
/*
|
|
Try constructing covering ROR-intersect only if it looks possible
|
|
and worth doing.
|
|
*/
|
|
if (!rori_trp->is_covering && can_build_covering &&
|
|
(rori_trp= get_best_covering_ror_intersect(¶m, tree,
|
|
best_read_time)))
|
|
best_trp= rori_trp;
|
|
}
|
|
}
|
|
/*
|
|
Do not look for an index intersection plan if there is a covering
|
|
index. The scan by this covering index will be always cheaper than
|
|
any index intersection.
|
|
*/
|
|
if (param.table->covering_keys.is_clear_all() &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
|
|
optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE_SORT_INTERSECT) &&
|
|
!only_single_index_range_scan)
|
|
{
|
|
if ((intersect_trp= get_best_index_intersect(¶m, tree,
|
|
best_read_time)))
|
|
{
|
|
best_trp= intersect_trp;
|
|
best_read_time= intersect_trp->read_cost;
|
|
param.table->set_opt_range_condition_rows(intersect_trp->records);
|
|
}
|
|
}
|
|
|
|
if (optimizer_flag(thd, OPTIMIZER_SWITCH_INDEX_MERGE) &&
|
|
table_records != 0 && !only_single_index_range_scan)
|
|
{
|
|
/* Try creating index_merge/ROR-union scan. */
|
|
SEL_IMERGE *imerge;
|
|
TABLE_READ_PLAN *best_conj_trp= NULL,
|
|
*UNINIT_VAR(new_conj_trp); /* no empty index_merge lists possible */
|
|
DBUG_PRINT("info",("No range reads possible,"
|
|
" trying to construct index_merge"));
|
|
List_iterator_fast<SEL_IMERGE> it(tree->merges);
|
|
Json_writer_array trace_idx_merge(thd, "analyzing_index_merge_union");
|
|
while ((imerge= it++))
|
|
{
|
|
new_conj_trp= get_best_disjunct_quick(¶m, imerge, best_read_time,
|
|
limit, 0, 1);
|
|
if (new_conj_trp)
|
|
param.table->set_opt_range_condition_rows(new_conj_trp->records);
|
|
if (new_conj_trp &&
|
|
(!best_conj_trp ||
|
|
new_conj_trp->read_cost < best_conj_trp->read_cost))
|
|
{
|
|
best_conj_trp= new_conj_trp;
|
|
best_read_time= best_conj_trp->read_cost;
|
|
}
|
|
}
|
|
if (best_conj_trp)
|
|
best_trp= best_conj_trp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
|
|
Notice that it can be constructed no matter if there is a range tree.
|
|
*/
|
|
DBUG_EXECUTE_IF("force_group_by", force_group_by = true; );
|
|
if (!only_single_index_range_scan)
|
|
{
|
|
TRP_GROUP_MIN_MAX *group_trp;
|
|
double duplicate_removal_cost= 0;
|
|
if (tree)
|
|
restore_nonrange_trees(¶m, tree, backup_keys);
|
|
if ((group_trp= get_best_group_min_max(¶m, tree, read_time)))
|
|
{
|
|
/* mark that we are changing opt_range_condition_rows */
|
|
group_by_optimization_used= 1;
|
|
param.table->set_opt_range_condition_rows(group_trp->records);
|
|
DBUG_PRINT("info", ("table_rows: %llu opt_range_condition_rows: %llu "
|
|
"group_trp->records: %ull",
|
|
table_records,
|
|
param.table->opt_range_condition_rows,
|
|
group_trp->records));
|
|
|
|
Json_writer_object grp_summary(thd, "best_group_range_summary");
|
|
|
|
if (unlikely(thd->trace_started()))
|
|
group_trp->trace_basic_info(¶m, &grp_summary);
|
|
|
|
if (group_trp->have_agg_distinct && group_trp->is_index_scan)
|
|
{
|
|
/*
|
|
We are optimization a distinct aggregate, like
|
|
SELECT count(DISTINCT a,b,c) FROM ...
|
|
|
|
The group cost includes removal of the distinct, so to be
|
|
able to compare costs, we add small cost to the original cost
|
|
that stands for the extra work we have to do on the outside of
|
|
the engine to do duplicate elimination for each output row if
|
|
we are not using the grouping code.
|
|
*/
|
|
duplicate_removal_cost= (DUPLICATE_REMOVAL_COST *
|
|
(best_trp ? best_trp->records :
|
|
table_records));
|
|
}
|
|
if (group_trp->read_cost < best_read_time + duplicate_removal_cost ||
|
|
force_group_by)
|
|
{
|
|
if (thd->trace_started())
|
|
{
|
|
if (duplicate_removal_cost)
|
|
grp_summary.add("duplicate_removal_cost", duplicate_removal_cost);
|
|
grp_summary.add("chosen", true);
|
|
}
|
|
best_trp= group_trp;
|
|
}
|
|
else
|
|
grp_summary.add("chosen", false).add("cause", "cost");
|
|
}
|
|
if (tree)
|
|
remove_nonrange_trees(¶m, tree);
|
|
}
|
|
|
|
thd->mem_root= param.old_root;
|
|
|
|
/* If we got a read plan, create a quick select from it. */
|
|
if (best_trp)
|
|
{
|
|
records= best_trp->records;
|
|
impossible_range= records == 0; // No matching rows
|
|
if (!(quick= best_trp->make_quick(¶m, TRUE)) || quick->init())
|
|
{
|
|
delete quick;
|
|
quick= NULL;
|
|
}
|
|
else
|
|
quick->group_by_optimization_used= group_by_optimization_used;
|
|
}
|
|
possible_keys= param.possible_keys;
|
|
|
|
free_mem:
|
|
if (unlikely(quick && best_trp && thd->trace_started()))
|
|
{
|
|
Json_writer_object trace_range_summary(thd,
|
|
"chosen_range_access_summary");
|
|
{
|
|
Json_writer_object trace_range_plan(thd, "range_access_plan");
|
|
best_trp->trace_basic_info(¶m, &trace_range_plan);
|
|
}
|
|
trace_range_summary.
|
|
add("rows_for_plan", quick->records).
|
|
add("cost_for_plan", quick->read_time).
|
|
add("chosen", true);
|
|
}
|
|
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
thd->mem_root= param.old_root;
|
|
thd->no_errors=0;
|
|
}
|
|
|
|
DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
|
|
|
|
/*
|
|
Assume that if the user is using 'limit' we will only need to scan
|
|
limit rows if we are using a key
|
|
*/
|
|
set_if_smaller(records, table_records);
|
|
DBUG_RETURN(impossible_range ? -1 : MY_TEST(quick));
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Condition selectivity module
|
|
****************************************************************************/
|
|
|
|
|
|
/*
|
|
Build descriptors of pseudo-indexes over columns to perform range analysis
|
|
|
|
SYNOPSIS
|
|
create_key_parts_for_pseudo_indexes()
|
|
param IN/OUT data structure for the descriptors to be built
|
|
used_fields bitmap of columns for which the descriptors are to be built
|
|
|
|
DESCRIPTION
|
|
For each column marked in the bitmap used_fields the function builds
|
|
a descriptor of a single-component pseudo-index over this column that
|
|
can be used for the range analysis of the predicates over this columns.
|
|
The descriptors are created in the memory of param->mem_root.
|
|
|
|
RETURN
|
|
FALSE in the case of success
|
|
TRUE otherwise
|
|
*/
|
|
|
|
static
|
|
bool create_key_parts_for_pseudo_indexes(RANGE_OPT_PARAM *param,
|
|
MY_BITMAP *used_fields)
|
|
{
|
|
Field **field_ptr;
|
|
TABLE *table= param->table;
|
|
uint parts= 0;
|
|
|
|
for (field_ptr= table->field; *field_ptr; field_ptr++)
|
|
{
|
|
Field *field= *field_ptr;
|
|
if (bitmap_is_set(used_fields, field->field_index) &&
|
|
is_eits_usable(field))
|
|
parts++;
|
|
}
|
|
|
|
KEY_PART *key_part;
|
|
uint keys= 0;
|
|
|
|
if (!parts)
|
|
return TRUE;
|
|
|
|
if (!(key_part= (KEY_PART *) alloc_root(param->mem_root,
|
|
sizeof(KEY_PART) * parts)))
|
|
return TRUE;
|
|
|
|
param->key_parts= key_part;
|
|
uint max_key_len= 0;
|
|
for (field_ptr= table->field; *field_ptr; field_ptr++)
|
|
{
|
|
Field *field= *field_ptr;
|
|
if (bitmap_is_set(used_fields, field->field_index))
|
|
{
|
|
if (!is_eits_usable(field))
|
|
continue;
|
|
|
|
uint16 store_length;
|
|
uint16 max_key_part_length= (uint16) table->file->max_key_part_length();
|
|
key_part->key= keys;
|
|
key_part->part= 0;
|
|
if (field->flags & BLOB_FLAG)
|
|
key_part->length= max_key_part_length;
|
|
else
|
|
{
|
|
key_part->length= (uint16) field->key_length();
|
|
set_if_smaller(key_part->length, max_key_part_length);
|
|
}
|
|
store_length= key_part->length;
|
|
if (field->real_maybe_null())
|
|
store_length+= HA_KEY_NULL_LENGTH;
|
|
if (field->real_type() == MYSQL_TYPE_VARCHAR)
|
|
store_length+= HA_KEY_BLOB_LENGTH;
|
|
if (max_key_len < store_length)
|
|
max_key_len= store_length;
|
|
key_part->store_length= store_length;
|
|
key_part->field= field;
|
|
key_part->image_type= Field::itRAW;
|
|
key_part->flag= 0;
|
|
param->key[keys]= key_part;
|
|
keys++;
|
|
key_part++;
|
|
}
|
|
}
|
|
|
|
max_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
|
|
if (!(param->min_key= (uchar*)alloc_root(param->mem_root, max_key_len)) ||
|
|
!(param->max_key= (uchar*)alloc_root(param->mem_root, max_key_len)))
|
|
{
|
|
return true;
|
|
}
|
|
param->keys= keys;
|
|
param->key_parts_end= key_part;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Estimate the number of rows in all ranges built for a column
|
|
by the range optimizer
|
|
|
|
SYNOPSIS
|
|
records_in_column_ranges()
|
|
param the data structure to access descriptors of pseudo indexes
|
|
built over columns used in the condition of the processed
|
|
query
|
|
idx the index of the descriptor of interest in param
|
|
tree the tree representing ranges built for the interesting column
|
|
|
|
DESCRIPTION
|
|
This function retrieves the ranges represented by the SEL_ARG 'tree' and
|
|
for each of them r it calls the function get_column_range_cardinality()
|
|
that estimates the number of expected rows in r. It is assumed that param
|
|
is the data structure containing the descriptors of pseudo-indexes that
|
|
has been built to perform range analysis of the range conditions imposed
|
|
on the columns used in the processed query, while idx is the index of the
|
|
descriptor created in 'param' exactly for the column for which 'tree'
|
|
has been built by the range optimizer.
|
|
|
|
RETURN
|
|
the number of rows in the retrieved ranges
|
|
*/
|
|
|
|
static
|
|
double records_in_column_ranges(PARAM *param, uint idx,
|
|
SEL_ARG *tree)
|
|
{
|
|
THD *thd= param->thd;
|
|
SEL_ARG_RANGE_SEQ seq;
|
|
KEY_MULTI_RANGE range;
|
|
range_seq_t seq_it;
|
|
double rows, table_records;
|
|
Field *field;
|
|
uint flags= 0;
|
|
double total_rows= 0;
|
|
RANGE_SEQ_IF seq_if = {NULL, sel_arg_range_seq_init,
|
|
sel_arg_range_seq_next, 0, 0};
|
|
|
|
/* Handle cases when we don't have a valid non-empty list of range */
|
|
if (!tree)
|
|
return DBL_MAX;
|
|
if (tree->type == SEL_ARG::IMPOSSIBLE)
|
|
return (0L);
|
|
|
|
field= tree->field;
|
|
|
|
seq.keyno= idx;
|
|
seq.real_keyno= MAX_KEY;
|
|
seq.key_parts= param->key[idx];
|
|
seq.param= param;
|
|
seq.start= tree;
|
|
seq.is_ror_scan= FALSE;
|
|
|
|
seq_it= seq_if.init((void *) &seq, 0, flags);
|
|
|
|
Json_writer_array range_trace(thd, "ranges");
|
|
|
|
while (!seq_if.next(seq_it, &range))
|
|
{
|
|
key_range *min_endp, *max_endp;
|
|
min_endp= range.start_key.length? &range.start_key : NULL;
|
|
max_endp= range.end_key.length? &range.end_key : NULL;
|
|
int range_flag= range.range_flag;
|
|
|
|
if (!range.start_key.length)
|
|
range_flag |= NO_MIN_RANGE;
|
|
if (!range.end_key.length)
|
|
range_flag |= NO_MAX_RANGE;
|
|
if (range.start_key.flag == HA_READ_AFTER_KEY)
|
|
range_flag |= NEAR_MIN;
|
|
if (range.start_key.flag == HA_READ_BEFORE_KEY)
|
|
range_flag |= NEAR_MAX;
|
|
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
StringBuffer<128> range_info(system_charset_info);
|
|
print_range_for_non_indexed_field(&range_info, field, &range);
|
|
range_trace.add(range_info.c_ptr_safe(), range_info.length());
|
|
}
|
|
|
|
rows= get_column_range_cardinality(field, min_endp, max_endp, range_flag);
|
|
if (DBL_MAX == rows)
|
|
{
|
|
total_rows= DBL_MAX;
|
|
break;
|
|
}
|
|
total_rows+= rows;
|
|
}
|
|
if (total_rows == 0)
|
|
total_rows= MY_MIN(1, rows2double(param->table->stat_records()));
|
|
|
|
table_records= rows2double(param->table->stat_records());
|
|
if (total_rows > table_records)
|
|
DBUG_PRINT("error", ("table_records: %g < total_records: %g",
|
|
table_records, total_rows));
|
|
return MY_MIN(total_rows, table_records);
|
|
}
|
|
|
|
|
|
/*
|
|
Compare quick select ranges according to number of found rows
|
|
If there is equal amounts of rows, use the long key part.
|
|
The idea is that if we have keys (a),(a,b) and (a,b,c) and we have
|
|
a query like WHERE a=1 and b=1 and c=1,
|
|
it is better to use key (a,b,c) than (a) as it will ensure we don't also
|
|
use histograms for columns b and c
|
|
*/
|
|
|
|
static
|
|
int cmp_quick_ranges(TABLE::OPT_RANGE **a, TABLE::OPT_RANGE **b)
|
|
{
|
|
int tmp=CMP_NUM((*a)->rows, (*b)->rows);
|
|
if (tmp)
|
|
return tmp;
|
|
return -CMP_NUM((*a)->key_parts, (*b)->key_parts);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate the selectivity of the condition imposed on the rows of a table
|
|
|
|
SYNOPSIS
|
|
calculate_cond_selectivity_for_table()
|
|
thd the context handle
|
|
table the table of interest
|
|
cond conditions imposed on the rows of the table
|
|
|
|
DESCRIPTION
|
|
This function calculates the selectivity of range conditions cond imposed
|
|
on the rows of 'table' in the processed query.
|
|
The calculated selectivity is assigned to the field
|
|
table->cond_selectivity.
|
|
|
|
Selectivity is calculated as a product of selectivities imposed by:
|
|
|
|
1. possible range accesses. (if multiple range accesses use the same
|
|
restrictions on the same field, we make adjustments for that)
|
|
2. Sargable conditions on fields for which we have column statistics (if
|
|
a field is used in a possible range access, we assume that selectivity
|
|
is already provided by the range access' estimates)
|
|
3. Reading a few records from the table pages and checking the condition
|
|
selectivity (this is used for conditions like "column LIKE '%val%'"
|
|
where approaches #1 and #2 do not provide selectivity data).
|
|
4. If the selectivity calculated by get_best_ror_intersect() is smaller,
|
|
use this instead.
|
|
|
|
NOTE
|
|
Currently the selectivities of range conditions over different columns are
|
|
considered independent.
|
|
|
|
RETURN
|
|
FALSE on success
|
|
TRUE otherwise
|
|
*/
|
|
|
|
bool calculate_cond_selectivity_for_table(THD *thd, TABLE *table, Item **cond)
|
|
{
|
|
uint keynr, range_index, ranges;
|
|
MY_BITMAP *used_fields= &table->cond_set;
|
|
double table_records= (double)table->stat_records(), original_selectivity;
|
|
TABLE::OPT_RANGE *optimal_key_order[MAX_KEY];
|
|
MY_BITMAP handled_columns;
|
|
my_bitmap_map *buf;
|
|
QUICK_SELECT_I *quick;
|
|
DBUG_ENTER("calculate_cond_selectivity_for_table");
|
|
|
|
table->set_cond_selectivity(1.0);
|
|
|
|
if (table_records == 0)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if ((quick=table->reginfo.join_tab->quick) &&
|
|
quick->get_type() == QUICK_SELECT_I::QS_TYPE_GROUP_MIN_MAX)
|
|
{
|
|
DBUG_ASSERT(table->opt_range_condition_rows <= quick->records);
|
|
table->set_cond_selectivity(MY_MIN(quick->records,
|
|
table->opt_range_condition_rows)/
|
|
table_records);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
if (!*cond || table->pos_in_table_list->schema_table)
|
|
{
|
|
table->set_cond_selectivity(table->opt_range_condition_rows /
|
|
table_records);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
This should be pre-alloced so that we could use the same bitmap for all
|
|
tables. Would also avoid extra memory allocations if this function would
|
|
be called multiple times per query.
|
|
*/
|
|
if (!(buf= (my_bitmap_map*)thd->alloc(table->s->column_bitmap_size)))
|
|
DBUG_RETURN(TRUE);
|
|
my_bitmap_init(&handled_columns, buf, table->s->fields);
|
|
|
|
/*
|
|
Calculate the selectivity of the range conditions supported by indexes.
|
|
|
|
First, take into account possible range accesses.
|
|
range access estimates are the most precise, we prefer them to any other
|
|
estimate sources.
|
|
*/
|
|
|
|
Json_writer_object trace_wrapper(thd);
|
|
Json_writer_array selectivity_for_indexes(thd, "selectivity_for_indexes");
|
|
|
|
/*
|
|
Walk through all quick ranges in the order of least found rows.
|
|
*/
|
|
for (ranges= keynr= 0 ; keynr < table->s->keys; keynr++)
|
|
if (table->opt_range_keys.is_set(keynr))
|
|
optimal_key_order[ranges++]= table->opt_range + keynr;
|
|
|
|
my_qsort(optimal_key_order, ranges,
|
|
sizeof(optimal_key_order[0]),
|
|
(qsort_cmp) cmp_quick_ranges);
|
|
|
|
for (range_index= 0 ; range_index < ranges ; range_index++)
|
|
{
|
|
TABLE::OPT_RANGE *range= optimal_key_order[range_index];
|
|
uint keynr= (uint)(range - table->opt_range);
|
|
uint i;
|
|
uint used_key_parts= range->key_parts;
|
|
double quick_cond_selectivity= (range->rows / table_records);
|
|
KEY *key_info= table->key_info + keynr;
|
|
KEY_PART_INFO* key_part= key_info->key_part;
|
|
DBUG_ASSERT(quick_cond_selectivity <= 1.0);
|
|
|
|
/*
|
|
Suppose, there are range conditions on these keys
|
|
KEY1 (col1, col2)
|
|
KEY2 (col2, col6)
|
|
KEY3 (col3, col2)
|
|
KEY4 (col4, col5)
|
|
|
|
We don't want to count selectivity for ranges that uses a column
|
|
that was used before.
|
|
If the first column of an index was not used before, we can use the
|
|
key part statistics to calculate selectivity for this column. We cannot
|
|
calculate statistics for any other columns as the key part statistics
|
|
is also depending on the values of the previous key parts and not only
|
|
the last key part.
|
|
|
|
In other words, if KEY1 has the smallest range, we will only use first
|
|
part of KEY3 and range of KEY4 to calculate selectivity.
|
|
*/
|
|
for (i= 0; i < used_key_parts; i++)
|
|
{
|
|
if (bitmap_is_set(&handled_columns, key_part[i].fieldnr-1))
|
|
{
|
|
double rec_per_key;
|
|
if (!i)
|
|
{
|
|
/*
|
|
We cannot use this key part for selectivity calculation as
|
|
key_info->actual_rec_per_key for later keys are depending on the
|
|
distribution of the previous key parts.
|
|
*/
|
|
goto end_of_range_loop;
|
|
}
|
|
/*
|
|
A later key part was already used. We can still use key
|
|
statistics for the first key part to get some approximation
|
|
of the selectivity of this key. This can be done if the
|
|
first key part is a constant:
|
|
WHERE key1_part1=1 and key2_part1=5 and key2_part2 BETWEEN 0 and 10
|
|
Even if key1 is used and it also includes the field for key2_part1
|
|
as a key part, we can still use selectivity for key2_part1
|
|
*/
|
|
if ((rec_per_key= key_info->actual_rec_per_key(0)) == 0.0 ||
|
|
!range->first_key_part_has_only_one_value)
|
|
goto end_of_range_loop;
|
|
/*
|
|
Use key distribution statistics, except if range selectivity
|
|
is bigger. This can happen if the used key value has more
|
|
than an average number of instances.
|
|
*/
|
|
set_if_smaller(rec_per_key, rows2double(table->file->stats.records));
|
|
set_if_bigger(quick_cond_selectivity,
|
|
rec_per_key / table->file->stats.records);
|
|
used_key_parts= 1;
|
|
break;
|
|
}
|
|
}
|
|
/* Set bits only after we have checked the used columns */
|
|
for (i= 0; i < used_key_parts; i++, key_part++)
|
|
bitmap_set_bit(&handled_columns, key_part->fieldnr-1);
|
|
|
|
/*
|
|
There is at least 1-column prefix of columns whose selectivity has
|
|
not yet been accounted for.
|
|
*/
|
|
table->multiply_cond_selectivity(quick_cond_selectivity);
|
|
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
Json_writer_object selectivity_for_index(thd);
|
|
selectivity_for_index.
|
|
add("index_name", key_info->name).
|
|
add("selectivity_from_index", quick_cond_selectivity);
|
|
}
|
|
/*
|
|
We need to set selectivity for fields supported by indexes.
|
|
For single-component indexes and for some first components
|
|
of other indexes we do it here. For the remaining fields
|
|
we do it later in this function, in the same way as for the
|
|
fields not used in any indexes.
|
|
*/
|
|
if (used_key_parts == 1)
|
|
{
|
|
uint fieldnr= key_info->key_part[0].fieldnr;
|
|
table->field[fieldnr-1]->cond_selectivity= quick_cond_selectivity;
|
|
DBUG_ASSERT(table->field[fieldnr-1]->cond_selectivity <= 1.0);
|
|
/*
|
|
Reset bit in used_fields to ensure this field is ignored in the loop
|
|
below.
|
|
*/
|
|
bitmap_clear_bit(used_fields, fieldnr-1);
|
|
}
|
|
end_of_range_loop:
|
|
continue;
|
|
}
|
|
/*
|
|
Take into account number of matching rows calculated by
|
|
get_best_ror_intersect() stored in table->opt_range_condition_rows
|
|
Use the smaller found selectivity.
|
|
*/
|
|
original_selectivity= (table->opt_range_condition_rows /
|
|
table_records);
|
|
if (original_selectivity < table->cond_selectivity)
|
|
{
|
|
table->cond_selectivity= original_selectivity;
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
Json_writer_object selectivity_for_index(thd);
|
|
selectivity_for_index.add("use_opt_range_condition_rows_selectivity",
|
|
original_selectivity);
|
|
}
|
|
}
|
|
selectivity_for_indexes.end();
|
|
|
|
/*
|
|
Second step: calculate the selectivity of the range conditions not
|
|
supported by any index and selectivity of the range condition
|
|
over the fields whose selectivity has not been set yet.
|
|
*/
|
|
Json_writer_array selectivity_for_columns(thd, "selectivity_for_columns");
|
|
|
|
if (thd->variables.optimizer_use_condition_selectivity > 2 &&
|
|
!bitmap_is_clear_all(used_fields) &&
|
|
thd->variables.use_stat_tables > 0 && table->stats_is_read)
|
|
{
|
|
PARAM param;
|
|
MEM_ROOT alloc;
|
|
SEL_TREE *tree;
|
|
double rows;
|
|
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0,
|
|
MYF(MY_THREAD_SPECIFIC));
|
|
param.thd= thd;
|
|
param.mem_root= &alloc;
|
|
param.old_root= thd->mem_root;
|
|
param.table= table;
|
|
param.remove_false_where_parts= true;
|
|
|
|
if (create_key_parts_for_pseudo_indexes(¶m, used_fields))
|
|
goto free_alloc;
|
|
|
|
param.prev_tables= param.read_tables= 0;
|
|
param.current_table= table->map;
|
|
param.using_real_indexes= FALSE;
|
|
param.real_keynr[0]= 0;
|
|
param.alloced_sel_args= 0;
|
|
param.max_key_parts= 0;
|
|
|
|
thd->no_errors=1;
|
|
|
|
if (!(tree= cond[0]->get_mm_tree(¶m, cond)))
|
|
goto free_alloc;
|
|
|
|
table->reginfo.impossible_range= 0;
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
rows= 0;
|
|
table->reginfo.impossible_range= 1;
|
|
goto free_alloc;
|
|
}
|
|
else if (tree->type == SEL_TREE::ALWAYS)
|
|
{
|
|
rows= table_records;
|
|
goto free_alloc;
|
|
}
|
|
else if (tree->type == SEL_TREE::MAYBE)
|
|
{
|
|
rows= table_records;
|
|
goto free_alloc;
|
|
}
|
|
|
|
for (uint idx= 0; idx < param.keys; idx++)
|
|
{
|
|
SEL_ARG *key= tree->keys[idx];
|
|
if (key) // Quick range found for key
|
|
{
|
|
Json_writer_object selectivity_for_column(thd);
|
|
selectivity_for_column.add("column_name", key->field->field_name);
|
|
if (key->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
rows= 0;
|
|
table->reginfo.impossible_range= 1;
|
|
if (unlikely(selectivity_for_column.trace_started()))
|
|
selectivity_for_column.
|
|
add("selectivity_from_histogram", rows).
|
|
add("cause", "impossible range");
|
|
goto free_alloc;
|
|
}
|
|
else
|
|
{
|
|
rows= records_in_column_ranges(¶m, idx, key);
|
|
if (rows != DBL_MAX)
|
|
{
|
|
key->field->cond_selectivity= rows/table_records;
|
|
DBUG_ASSERT(key->field->cond_selectivity <= 1.0);
|
|
selectivity_for_column.add("selectivity_from_histogram",
|
|
key->field->cond_selectivity);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Field **field_ptr= table->field; *field_ptr; field_ptr++)
|
|
{
|
|
Field *table_field= *field_ptr;
|
|
if (bitmap_is_set(used_fields, table_field->field_index) &&
|
|
table_field->cond_selectivity < 1.0)
|
|
{
|
|
if (!bitmap_is_set(&handled_columns, table_field->field_index))
|
|
table->multiply_cond_selectivity(table_field->cond_selectivity);
|
|
}
|
|
}
|
|
|
|
free_alloc:
|
|
thd->no_errors= 0;
|
|
thd->mem_root= param.old_root;
|
|
free_root(&alloc, MYF(0));
|
|
|
|
}
|
|
selectivity_for_columns.end();
|
|
|
|
bitmap_union(used_fields, &handled_columns);
|
|
|
|
/* Check if we can improve selectivity estimates by using sampling */
|
|
ulong check_rows=
|
|
MY_MIN(thd->variables.optimizer_selectivity_sampling_limit,
|
|
(ulong) (table_records * SELECTIVITY_SAMPLING_SHARE));
|
|
if (*cond && check_rows > SELECTIVITY_SAMPLING_THRESHOLD &&
|
|
thd->variables.optimizer_use_condition_selectivity > 4)
|
|
{
|
|
find_selective_predicates_list_processor_data *dt=
|
|
(find_selective_predicates_list_processor_data *)
|
|
alloc_root(thd->mem_root,
|
|
sizeof(find_selective_predicates_list_processor_data));
|
|
if (!dt)
|
|
DBUG_RETURN(TRUE);
|
|
dt->list.empty();
|
|
dt->table= table;
|
|
if ((*cond)->walk(&Item::find_selective_predicates_list_processor, 0, dt))
|
|
DBUG_RETURN(TRUE);
|
|
if (dt->list.elements > 0)
|
|
{
|
|
check_rows= check_selectivity(thd, check_rows, table, &dt->list);
|
|
if (check_rows > SELECTIVITY_SAMPLING_THRESHOLD)
|
|
{
|
|
COND_STATISTIC *stat;
|
|
List_iterator_fast<COND_STATISTIC> it(dt->list);
|
|
double examined_rows= check_rows;
|
|
while ((stat= it++))
|
|
{
|
|
if (!stat->positive)
|
|
{
|
|
DBUG_PRINT("info", ("To avoid 0 assigned 1 to the counter"));
|
|
stat->positive= 1; // avoid 0
|
|
}
|
|
DBUG_PRINT("info", ("The predicate selectivity : %g",
|
|
(double)stat->positive / examined_rows));
|
|
double selectivity= ((double)stat->positive) / examined_rows;
|
|
table->multiply_cond_selectivity(selectivity);
|
|
/*
|
|
If a field is involved then we register its selectivity in case
|
|
there in an equality with the field.
|
|
For example in case
|
|
t1.a LIKE "%bla%" and t1.a = t2.b
|
|
the selectivity we have found could be used also for t2.
|
|
*/
|
|
if (stat->field_arg)
|
|
{
|
|
stat->field_arg->cond_selectivity*= selectivity;
|
|
|
|
if (stat->field_arg->next_equal_field)
|
|
{
|
|
for (Field *next_field= stat->field_arg->next_equal_field;
|
|
next_field != stat->field_arg;
|
|
next_field= next_field->next_equal_field)
|
|
{
|
|
next_field->cond_selectivity*= selectivity;
|
|
next_field->table->cond_selectivity*= selectivity;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
/* This list and its elements put to mem_root so should not be freed */
|
|
table->cond_selectivity_sampling_explain= &dt->list;
|
|
}
|
|
}
|
|
trace_wrapper.add("cond_selectivity", table->cond_selectivity);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/****************************************************************************
|
|
* Condition selectivity code ends
|
|
****************************************************************************/
|
|
|
|
/****************************************************************************
|
|
* Partition pruning module
|
|
****************************************************************************/
|
|
|
|
/*
|
|
Store field key image to table record
|
|
|
|
SYNOPSIS
|
|
store_key_image_to_rec()
|
|
field Field which key image should be stored
|
|
ptr Field value in key format
|
|
len Length of the value, in bytes
|
|
|
|
ATTENTION
|
|
len is the length of the value not counting the NULL-byte (at the same
|
|
time, ptr points to the key image, which starts with NULL-byte for
|
|
nullable columns)
|
|
|
|
DESCRIPTION
|
|
Copy the field value from its key image to the table record. The source
|
|
is the value in key image format, occupying len bytes in buffer pointed
|
|
by ptr. The destination is table record, in "field value in table record"
|
|
format.
|
|
*/
|
|
|
|
void store_key_image_to_rec(Field *field, uchar *ptr, uint len)
|
|
{
|
|
/* Do the same as print_key() does */
|
|
|
|
if (field->real_maybe_null())
|
|
{
|
|
if (*ptr)
|
|
{
|
|
field->set_null();
|
|
return;
|
|
}
|
|
field->set_notnull();
|
|
ptr++;
|
|
}
|
|
MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table,
|
|
&field->table->write_set);
|
|
field->set_key_image(ptr, len);
|
|
dbug_tmp_restore_column_map(&field->table->write_set, old_map);
|
|
}
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
|
|
/*
|
|
PartitionPruningModule
|
|
|
|
This part of the code does partition pruning. Partition pruning solves the
|
|
following problem: given a query over partitioned tables, find partitions
|
|
that we will not need to access (i.e. partitions that we can assume to be
|
|
empty) when executing the query.
|
|
The set of partitions to prune doesn't depend on which query execution
|
|
plan will be used to execute the query.
|
|
|
|
HOW IT WORKS
|
|
|
|
Partition pruning module makes use of RangeAnalysisModule. The following
|
|
examples show how the problem of partition pruning can be reduced to the
|
|
range analysis problem:
|
|
|
|
EXAMPLE 1
|
|
Consider a query:
|
|
|
|
SELECT * FROM t1 WHERE (t1.a < 5 OR t1.a = 10) AND t1.a > 3 AND t1.b='z'
|
|
|
|
where table t1 is partitioned using PARTITION BY RANGE(t1.a). An apparent
|
|
way to find the used (i.e. not pruned away) partitions is as follows:
|
|
|
|
1. analyze the WHERE clause and extract the list of intervals over t1.a
|
|
for the above query we will get this list: {(3 < t1.a < 5), (t1.a=10)}
|
|
|
|
2. for each interval I
|
|
{
|
|
find partitions that have non-empty intersection with I;
|
|
mark them as used;
|
|
}
|
|
|
|
EXAMPLE 2
|
|
Suppose the table is partitioned by HASH(part_func(t1.a, t1.b)). Then
|
|
we need to:
|
|
|
|
1. Analyze the WHERE clause and get a list of intervals over (t1.a, t1.b).
|
|
The list of intervals we'll obtain will look like this:
|
|
((t1.a, t1.b) = (1,'foo')),
|
|
((t1.a, t1.b) = (2,'bar')),
|
|
((t1,a, t1.b) > (10,'zz'))
|
|
|
|
2. for each interval I
|
|
{
|
|
if (the interval has form "(t1.a, t1.b) = (const1, const2)" )
|
|
{
|
|
calculate HASH(part_func(t1.a, t1.b));
|
|
find which partition has records with this hash value and mark
|
|
it as used;
|
|
}
|
|
else
|
|
{
|
|
mark all partitions as used;
|
|
break;
|
|
}
|
|
}
|
|
|
|
For both examples the step #1 is exactly what RangeAnalysisModule could
|
|
be used to do, if it was provided with appropriate index description
|
|
(array of KEY_PART structures).
|
|
In example #1, we need to provide it with description of index(t1.a),
|
|
in example #2, we need to provide it with description of index(t1.a, t1.b).
|
|
|
|
These index descriptions are further called "partitioning index
|
|
descriptions". Note that it doesn't matter if such indexes really exist,
|
|
as range analysis module only uses the description.
|
|
|
|
Putting it all together, partitioning module works as follows:
|
|
|
|
prune_partitions() {
|
|
call create_partition_index_description();
|
|
|
|
call get_mm_tree(); // invoke the RangeAnalysisModule
|
|
|
|
// analyze the obtained interval list and get used partitions
|
|
call find_used_partitions();
|
|
}
|
|
|
|
*/
|
|
|
|
struct st_part_prune_param;
|
|
struct st_part_opt_info;
|
|
|
|
typedef void (*mark_full_part_func)(partition_info*, uint32);
|
|
|
|
/*
|
|
Partition pruning operation context
|
|
*/
|
|
typedef struct st_part_prune_param
|
|
{
|
|
RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
|
|
|
|
/***************************************************************
|
|
Following fields are filled in based solely on partitioning
|
|
definition and not modified after that:
|
|
**************************************************************/
|
|
partition_info *part_info; /* Copy of table->part_info */
|
|
/* Function to get partition id from partitioning fields only */
|
|
get_part_id_func get_top_partition_id_func;
|
|
/* Function to mark a partition as used (w/all subpartitions if they exist)*/
|
|
mark_full_part_func mark_full_partition_used;
|
|
|
|
/* Partitioning 'index' description, array of key parts */
|
|
KEY_PART *key;
|
|
|
|
/*
|
|
Number of fields in partitioning 'index' definition created for
|
|
partitioning (0 if partitioning 'index' doesn't include partitioning
|
|
fields)
|
|
*/
|
|
uint part_fields;
|
|
uint subpart_fields; /* Same as above for subpartitioning */
|
|
|
|
/*
|
|
Number of the last partitioning field keypart in the index, or -1 if
|
|
partitioning index definition doesn't include partitioning fields.
|
|
*/
|
|
int last_part_partno;
|
|
int last_subpart_partno; /* Same as above for supartitioning */
|
|
|
|
/*
|
|
is_part_keypart[i] == MY_TEST(keypart #i in partitioning index is a member
|
|
used in partitioning)
|
|
Used to maintain current values of cur_part_fields and cur_subpart_fields
|
|
*/
|
|
my_bool *is_part_keypart;
|
|
/* Same as above for subpartitioning */
|
|
my_bool *is_subpart_keypart;
|
|
|
|
my_bool ignore_part_fields; /* Ignore rest of partioning fields */
|
|
|
|
/***************************************************************
|
|
Following fields form find_used_partitions() recursion context:
|
|
**************************************************************/
|
|
SEL_ARG **arg_stack; /* "Stack" of SEL_ARGs */
|
|
SEL_ARG **arg_stack_end; /* Top of the stack */
|
|
/* Number of partitioning fields for which we have a SEL_ARG* in arg_stack */
|
|
uint cur_part_fields;
|
|
/* Same as cur_part_fields, but for subpartitioning */
|
|
uint cur_subpart_fields;
|
|
|
|
/* Iterator to be used to obtain the "current" set of used partitions */
|
|
PARTITION_ITERATOR part_iter;
|
|
|
|
/* Initialized bitmap of num_subparts size */
|
|
MY_BITMAP subparts_bitmap;
|
|
|
|
uchar *cur_min_key;
|
|
uchar *cur_max_key;
|
|
|
|
uint cur_min_flag, cur_max_flag;
|
|
} PART_PRUNE_PARAM;
|
|
|
|
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
|
|
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
|
|
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
|
|
SEL_IMERGE *imerge);
|
|
static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
|
|
List<SEL_IMERGE> &merges);
|
|
static void mark_all_partitions_as_used(partition_info *part_info);
|
|
|
|
#ifndef DBUG_OFF
|
|
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
|
|
static void dbug_print_field(Field *field);
|
|
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
|
|
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
|
|
#endif
|
|
|
|
|
|
/**
|
|
Perform partition pruning for a given table and condition.
|
|
|
|
@param thd Thread handle
|
|
@param table Table to perform partition pruning for
|
|
@param pprune_cond Condition to use for partition pruning
|
|
|
|
@note This function assumes that lock_partitions are setup when it
|
|
is invoked. The function analyzes the condition, finds partitions that
|
|
need to be used to retrieve the records that match the condition, and
|
|
marks them as used by setting appropriate bit in part_info->read_partitions
|
|
In the worst case all partitions are marked as used. If the table is not
|
|
yet locked, it will also unset bits in part_info->lock_partitions that is
|
|
not set in read_partitions.
|
|
|
|
This function returns promptly if called for non-partitioned table.
|
|
|
|
@return Operation status
|
|
@retval true Failure
|
|
@retval false Success
|
|
*/
|
|
|
|
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
|
|
{
|
|
bool retval= FALSE;
|
|
partition_info *part_info = table->part_info;
|
|
DBUG_ENTER("prune_partitions");
|
|
|
|
if (!part_info)
|
|
DBUG_RETURN(FALSE); /* not a partitioned table */
|
|
|
|
if (!pprune_cond)
|
|
{
|
|
mark_all_partitions_as_used(part_info);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
PART_PRUNE_PARAM prune_param;
|
|
MEM_ROOT alloc;
|
|
RANGE_OPT_PARAM *range_par= &prune_param.range_param;
|
|
MY_BITMAP *old_sets[2];
|
|
|
|
prune_param.part_info= part_info;
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
range_par->mem_root= &alloc;
|
|
range_par->old_root= thd->mem_root;
|
|
|
|
if (create_partition_index_description(&prune_param))
|
|
{
|
|
mark_all_partitions_as_used(part_info);
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
dbug_tmp_use_all_columns(table, old_sets,
|
|
&table->read_set, &table->write_set);
|
|
range_par->thd= thd;
|
|
range_par->table= table;
|
|
/* range_par->cond doesn't need initialization */
|
|
range_par->prev_tables= range_par->read_tables= 0;
|
|
range_par->current_table= table->map;
|
|
/* It should be possible to switch the following ON: */
|
|
range_par->remove_false_where_parts= false;
|
|
|
|
range_par->keys= 1; // one index
|
|
range_par->using_real_indexes= FALSE;
|
|
range_par->remove_jump_scans= FALSE;
|
|
range_par->real_keynr[0]= 0;
|
|
range_par->alloced_sel_args= 0;
|
|
|
|
thd->no_errors=1; // Don't warn about NULL
|
|
thd->mem_root=&alloc;
|
|
|
|
bitmap_clear_all(&part_info->read_partitions);
|
|
|
|
prune_param.key= prune_param.range_param.key_parts;
|
|
SEL_TREE *tree;
|
|
int res;
|
|
|
|
tree= pprune_cond->get_mm_tree(range_par, &pprune_cond);
|
|
if (!tree)
|
|
goto all_used;
|
|
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
retval= TRUE;
|
|
goto end;
|
|
}
|
|
|
|
if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
|
|
goto all_used;
|
|
|
|
if (tree->merges.is_empty())
|
|
{
|
|
/* Range analysis has produced a single list of intervals. */
|
|
prune_param.arg_stack_end= prune_param.arg_stack;
|
|
prune_param.cur_part_fields= 0;
|
|
prune_param.cur_subpart_fields= 0;
|
|
|
|
prune_param.cur_min_key= prune_param.range_param.min_key;
|
|
prune_param.cur_max_key= prune_param.range_param.max_key;
|
|
prune_param.cur_min_flag= prune_param.cur_max_flag= 0;
|
|
|
|
init_all_partitions_iterator(part_info, &prune_param.part_iter);
|
|
if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
|
|
tree->keys[0]))))
|
|
goto all_used;
|
|
}
|
|
else
|
|
{
|
|
if (tree->merges.elements == 1)
|
|
{
|
|
/*
|
|
Range analysis has produced a "merge" of several intervals lists, a
|
|
SEL_TREE that represents an expression in form
|
|
sel_imerge = (tree1 OR tree2 OR ... OR treeN)
|
|
that cannot be reduced to one tree. This can only happen when
|
|
partitioning index has several keyparts and the condition is OR of
|
|
conditions that refer to different key parts. For example, we'll get
|
|
here for "partitioning_field=const1 OR subpartitioning_field=const2"
|
|
*/
|
|
if (-1 == (res= find_used_partitions_imerge(&prune_param,
|
|
tree->merges.head())))
|
|
goto all_used;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Range analysis has produced a list of several imerges, i.e. a
|
|
structure that represents a condition in form
|
|
imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
|
|
This is produced for complicated WHERE clauses that range analyzer
|
|
can't really analyze properly.
|
|
*/
|
|
if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
|
|
tree->merges)))
|
|
goto all_used;
|
|
}
|
|
}
|
|
|
|
/*
|
|
res == 0 => no used partitions => retval=TRUE
|
|
res == 1 => some used partitions => retval=FALSE
|
|
res == -1 - we jump over this line to all_used:
|
|
*/
|
|
retval= MY_TEST(!res);
|
|
goto end;
|
|
|
|
all_used:
|
|
retval= FALSE; // some partitions are used
|
|
mark_all_partitions_as_used(prune_param.part_info);
|
|
end:
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
thd->no_errors=0;
|
|
thd->mem_root= range_par->old_root;
|
|
free_root(&alloc,MYF(0)); // Return memory & allocator
|
|
/*
|
|
Must be a subset of the locked partitions.
|
|
lock_partitions contains the partitions marked by explicit partition
|
|
selection (... t PARTITION (pX) ...) and we must only use partitions
|
|
within that set.
|
|
*/
|
|
bitmap_intersect(&prune_param.part_info->read_partitions,
|
|
&prune_param.part_info->lock_partitions);
|
|
/*
|
|
If not yet locked, also prune partitions to lock if not UPDATEing
|
|
partition key fields. This will also prune lock_partitions if we are under
|
|
LOCK TABLES, so prune away calls to start_stmt().
|
|
TODO: enhance this prune locking to also allow pruning of
|
|
'UPDATE t SET part_key = const WHERE cond_is_prunable' so it adds
|
|
a lock for part_key partition.
|
|
*/
|
|
if (table->file->get_lock_type() == F_UNLCK &&
|
|
!partition_key_modified(table, table->write_set))
|
|
{
|
|
bitmap_copy(&prune_param.part_info->lock_partitions,
|
|
&prune_param.part_info->read_partitions);
|
|
}
|
|
if (bitmap_is_clear_all(&(prune_param.part_info->read_partitions)))
|
|
{
|
|
table->all_partitions_pruned_away= true;
|
|
retval= TRUE;
|
|
}
|
|
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
String parts;
|
|
String_list parts_list;
|
|
|
|
make_used_partitions_str(thd->mem_root, prune_param.part_info, &parts,
|
|
parts_list);
|
|
Json_writer_object trace_wrapper(thd);
|
|
Json_writer_object trace_prune(thd, "prune_partitions");
|
|
trace_prune.add_table_name(table);
|
|
trace_prune.add("used_partitions", parts.c_ptr());
|
|
}
|
|
|
|
DBUG_RETURN(retval);
|
|
}
|
|
|
|
|
|
/*
|
|
For SEL_ARG* array, store sel_arg->min values into table record buffer
|
|
|
|
SYNOPSIS
|
|
store_selargs_to_rec()
|
|
ppar Partition pruning context
|
|
start Array of SEL_ARG* for which the minimum values should be stored
|
|
num Number of elements in the array
|
|
|
|
DESCRIPTION
|
|
For each SEL_ARG* interval in the specified array, store the left edge
|
|
field value (sel_arg->min, key image format) into the table record.
|
|
*/
|
|
|
|
static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
|
|
int num)
|
|
{
|
|
KEY_PART *parts= ppar->range_param.key_parts;
|
|
for (SEL_ARG **end= start + num; start != end; start++)
|
|
{
|
|
SEL_ARG *sel_arg= (*start);
|
|
store_key_image_to_rec(sel_arg->field, sel_arg->min_value,
|
|
parts[sel_arg->part].length);
|
|
}
|
|
}
|
|
|
|
|
|
/* Mark a partition as used in the case when there are no subpartitions */
|
|
static void mark_full_partition_used_no_parts(partition_info* part_info,
|
|
uint32 part_id)
|
|
{
|
|
DBUG_ENTER("mark_full_partition_used_no_parts");
|
|
DBUG_PRINT("enter", ("Mark partition %u as used", part_id));
|
|
bitmap_set_bit(&part_info->read_partitions, part_id);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/* Mark a partition as used in the case when there are subpartitions */
|
|
static void mark_full_partition_used_with_parts(partition_info *part_info,
|
|
uint32 part_id)
|
|
{
|
|
uint32 start= part_id * part_info->num_subparts;
|
|
uint32 end= start + part_info->num_subparts;
|
|
DBUG_ENTER("mark_full_partition_used_with_parts");
|
|
|
|
for (; start != end; start++)
|
|
{
|
|
DBUG_PRINT("info", ("1:Mark subpartition %u as used", start));
|
|
bitmap_set_bit(&part_info->read_partitions, start);
|
|
}
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/*
|
|
Find the set of used partitions for List<SEL_IMERGE>
|
|
SYNOPSIS
|
|
find_used_partitions_imerge_list
|
|
ppar Partition pruning context.
|
|
key_tree Intervals tree to perform pruning for.
|
|
|
|
DESCRIPTION
|
|
List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
|
|
The set of used partitions is an intersection of used partitions sets
|
|
for imerge_{i}.
|
|
We accumulate this intersection in a separate bitmap.
|
|
|
|
RETURN
|
|
See find_used_partitions()
|
|
*/
|
|
|
|
static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
|
|
List<SEL_IMERGE> &merges)
|
|
{
|
|
MY_BITMAP all_merges;
|
|
uint bitmap_bytes;
|
|
my_bitmap_map *bitmap_buf;
|
|
uint n_bits= ppar->part_info->read_partitions.n_bits;
|
|
bitmap_bytes= bitmap_buffer_size(n_bits);
|
|
if (!(bitmap_buf= (my_bitmap_map*) alloc_root(ppar->range_param.mem_root,
|
|
bitmap_bytes)))
|
|
{
|
|
/*
|
|
Fallback, process just the first SEL_IMERGE. This can leave us with more
|
|
partitions marked as used then actually needed.
|
|
*/
|
|
return find_used_partitions_imerge(ppar, merges.head());
|
|
}
|
|
my_bitmap_init(&all_merges, bitmap_buf, n_bits);
|
|
bitmap_set_prefix(&all_merges, n_bits);
|
|
|
|
List_iterator<SEL_IMERGE> it(merges);
|
|
SEL_IMERGE *imerge;
|
|
while ((imerge=it++))
|
|
{
|
|
int res= find_used_partitions_imerge(ppar, imerge);
|
|
if (!res)
|
|
{
|
|
/* no used partitions on one ANDed imerge => no used partitions at all */
|
|
return 0;
|
|
}
|
|
|
|
if (res != -1)
|
|
bitmap_intersect(&all_merges, &ppar->part_info->read_partitions);
|
|
|
|
|
|
if (bitmap_is_clear_all(&all_merges))
|
|
return 0;
|
|
|
|
bitmap_clear_all(&ppar->part_info->read_partitions);
|
|
}
|
|
memcpy(ppar->part_info->read_partitions.bitmap, all_merges.bitmap,
|
|
bitmap_bytes);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Find the set of used partitions for SEL_IMERGE structure
|
|
SYNOPSIS
|
|
find_used_partitions_imerge()
|
|
ppar Partition pruning context.
|
|
key_tree Intervals tree to perform pruning for.
|
|
|
|
DESCRIPTION
|
|
SEL_IMERGE represents "tree1 OR tree2 OR ...". The implementation is
|
|
trivial - just use mark used partitions for each tree and bail out early
|
|
if for some tree_{i} all partitions are used.
|
|
|
|
RETURN
|
|
See find_used_partitions().
|
|
*/
|
|
|
|
static
|
|
int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
|
|
{
|
|
int res= 0;
|
|
for (SEL_TREE **ptree= imerge->trees; ptree < imerge->trees_next; ptree++)
|
|
{
|
|
ppar->arg_stack_end= ppar->arg_stack;
|
|
ppar->cur_part_fields= 0;
|
|
ppar->cur_subpart_fields= 0;
|
|
|
|
ppar->cur_min_key= ppar->range_param.min_key;
|
|
ppar->cur_max_key= ppar->range_param.max_key;
|
|
ppar->cur_min_flag= ppar->cur_max_flag= 0;
|
|
|
|
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
|
SEL_ARG *key_tree= (*ptree)->keys[0];
|
|
if (!key_tree || (-1 == (res |= find_used_partitions(ppar, key_tree))))
|
|
return -1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
|
|
|
|
SYNOPSIS
|
|
find_used_partitions()
|
|
ppar Partition pruning context.
|
|
key_tree SEL_ARG range tree to perform pruning for
|
|
|
|
DESCRIPTION
|
|
This function
|
|
* recursively walks the SEL_ARG* tree collecting partitioning "intervals"
|
|
* finds the partitions one needs to use to get rows in these intervals
|
|
* marks these partitions as used.
|
|
The next session desribes the process in greater detail.
|
|
|
|
IMPLEMENTATION
|
|
TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
|
|
We can find out which [sub]partitions to use if we obtain restrictions on
|
|
[sub]partitioning fields in the following form:
|
|
1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
|
|
1.1 Same as (1) but for subpartition fields
|
|
|
|
If partitioning supports interval analysis (i.e. partitioning is a
|
|
function of a single table field, and partition_info::
|
|
get_part_iter_for_interval != NULL), then we can also use condition in
|
|
this form:
|
|
2. "const1 <=? partition_field <=? const2"
|
|
2.1 Same as (2) but for subpartition_field
|
|
|
|
INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
|
|
|
|
The below is an example of what SEL_ARG tree may represent:
|
|
|
|
(start)
|
|
| $
|
|
| Partitioning keyparts $ subpartitioning keyparts
|
|
| $
|
|
| ... ... $
|
|
| | | $
|
|
| +---------+ +---------+ $ +-----------+ +-----------+
|
|
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
|
|
+---------+ +---------+ $ +-----------+ +-----------+
|
|
| $ | |
|
|
| $ | +-----------+
|
|
| $ | | subpar2=c6|
|
|
| $ | +-----------+
|
|
| $ |
|
|
| $ +-----------+ +-----------+
|
|
| $ | subpar1=c4|--| subpar2=c8|
|
|
| $ +-----------+ +-----------+
|
|
| $
|
|
| $
|
|
+---------+ $ +------------+ +------------+
|
|
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
|
|
+---------+ $ +------------+ +------------+
|
|
| $
|
|
... $
|
|
|
|
The up-down connections are connections via SEL_ARG::left and
|
|
SEL_ARG::right. A horizontal connection to the right is the
|
|
SEL_ARG::next_key_part connection.
|
|
|
|
find_used_partitions() traverses the entire tree via recursion on
|
|
* SEL_ARG::next_key_part (from left to right on the picture)
|
|
* SEL_ARG::left|right (up/down on the pic). Left-right recursion is
|
|
performed for each depth level.
|
|
|
|
Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
|
|
ppar->arg_stack) constraints on partitioning and subpartitioning fields.
|
|
For the example in the above picture, one of stack states is:
|
|
in find_used_partitions(key_tree = "subpar2=c5") (***)
|
|
in find_used_partitions(key_tree = "subpar1=c3")
|
|
in find_used_partitions(key_tree = "par2=c2") (**)
|
|
in find_used_partitions(key_tree = "par1=c1")
|
|
in prune_partitions(...)
|
|
We apply partitioning limits as soon as possible, e.g. when we reach the
|
|
depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
|
|
and save them in ppar->part_iter.
|
|
When we reach the depth (***), we find which subpartition(s) correspond to
|
|
"subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
|
|
appropriate subpartitions as used.
|
|
|
|
It is possible that constraints on some partitioning fields are missing.
|
|
For the above example, consider this stack state:
|
|
in find_used_partitions(key_tree = "subpar2=c12") (***)
|
|
in find_used_partitions(key_tree = "subpar1=c10")
|
|
in find_used_partitions(key_tree = "par1=c2")
|
|
in prune_partitions(...)
|
|
Here we don't have constraints for all partitioning fields. Since we've
|
|
never set the ppar->part_iter to contain used set of partitions, we use
|
|
its default "all partitions" value. We get subpartition id for
|
|
"subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
|
|
partition.
|
|
|
|
The inverse is also possible: we may get constraints on partitioning
|
|
fields, but not constraints on subpartitioning fields. In that case,
|
|
calls to find_used_partitions() with depth below (**) will return -1,
|
|
and we will mark entire partition as used.
|
|
|
|
TODO
|
|
Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
|
|
|
|
RETURN
|
|
1 OK, one or more [sub]partitions are marked as used.
|
|
0 The passed condition doesn't match any partitions
|
|
-1 Couldn't infer any partition pruning "intervals" from the passed
|
|
SEL_ARG* tree (which means that all partitions should be marked as
|
|
used) Marking partitions as used is the responsibility of the caller.
|
|
*/
|
|
|
|
static
|
|
int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
|
|
{
|
|
int res, left_res=0, right_res=0;
|
|
int key_tree_part= (int)key_tree->part;
|
|
bool set_full_part_if_bad_ret= FALSE;
|
|
bool ignore_part_fields= ppar->ignore_part_fields;
|
|
bool did_set_ignore_part_fields= FALSE;
|
|
RANGE_OPT_PARAM *range_par= &(ppar->range_param);
|
|
|
|
if (check_stack_overrun(range_par->thd, 3*STACK_MIN_SIZE, NULL))
|
|
return -1;
|
|
|
|
if (key_tree->left != &null_element)
|
|
{
|
|
if (-1 == (left_res= find_used_partitions(ppar,key_tree->left)))
|
|
return -1;
|
|
}
|
|
|
|
/* Push SEL_ARG's to stack to enable looking backwards as well */
|
|
ppar->cur_part_fields+= ppar->is_part_keypart[key_tree_part];
|
|
ppar->cur_subpart_fields+= ppar->is_subpart_keypart[key_tree_part];
|
|
*(ppar->arg_stack_end++)= key_tree;
|
|
|
|
if (ignore_part_fields)
|
|
{
|
|
/*
|
|
We come here when a condition on the first partitioning
|
|
fields led to evaluating the partitioning condition
|
|
(due to finding a condition of the type a < const or
|
|
b > const). Thus we must ignore the rest of the
|
|
partitioning fields but we still want to analyse the
|
|
subpartitioning fields.
|
|
*/
|
|
if (key_tree->next_key_part)
|
|
res= find_used_partitions(ppar, key_tree->next_key_part);
|
|
else
|
|
res= -1;
|
|
goto pop_and_go_right;
|
|
}
|
|
|
|
if (key_tree->type == SEL_ARG::KEY_RANGE)
|
|
{
|
|
if (ppar->part_info->get_part_iter_for_interval &&
|
|
key_tree->part <= ppar->last_part_partno)
|
|
{
|
|
/* Collect left and right bound, their lengths and flags */
|
|
uchar *min_key= ppar->cur_min_key;
|
|
uchar *max_key= ppar->cur_max_key;
|
|
uchar *tmp_min_key= min_key;
|
|
uchar *tmp_max_key= max_key;
|
|
key_tree->store_min(ppar->key[key_tree->part].store_length,
|
|
&tmp_min_key, ppar->cur_min_flag);
|
|
key_tree->store_max(ppar->key[key_tree->part].store_length,
|
|
&tmp_max_key, ppar->cur_max_flag);
|
|
uint flag;
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->part == key_tree->part+1 &&
|
|
key_tree->next_key_part->part <= ppar->last_part_partno &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
|
|
{
|
|
/*
|
|
There are more key parts for partition pruning to handle
|
|
This mainly happens when the condition is an equality
|
|
condition.
|
|
*/
|
|
if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
|
|
(memcmp(min_key, max_key, (uint)(tmp_max_key - max_key)) == 0) &&
|
|
!key_tree->min_flag && !key_tree->max_flag)
|
|
{
|
|
/* Set 'parameters' */
|
|
ppar->cur_min_key= tmp_min_key;
|
|
ppar->cur_max_key= tmp_max_key;
|
|
uint save_min_flag= ppar->cur_min_flag;
|
|
uint save_max_flag= ppar->cur_max_flag;
|
|
|
|
ppar->cur_min_flag|= key_tree->min_flag;
|
|
ppar->cur_max_flag|= key_tree->max_flag;
|
|
|
|
res= find_used_partitions(ppar, key_tree->next_key_part);
|
|
|
|
/* Restore 'parameters' back */
|
|
ppar->cur_min_key= min_key;
|
|
ppar->cur_max_key= max_key;
|
|
|
|
ppar->cur_min_flag= save_min_flag;
|
|
ppar->cur_max_flag= save_max_flag;
|
|
goto pop_and_go_right;
|
|
}
|
|
/* We have arrived at the last field in the partition pruning */
|
|
uint tmp_min_flag= key_tree->min_flag,
|
|
tmp_max_flag= key_tree->max_flag;
|
|
if (!tmp_min_flag)
|
|
key_tree->next_key_part->store_min_key(ppar->key,
|
|
&tmp_min_key,
|
|
&tmp_min_flag,
|
|
ppar->last_part_partno,
|
|
true);
|
|
if (!tmp_max_flag)
|
|
key_tree->next_key_part->store_max_key(ppar->key,
|
|
&tmp_max_key,
|
|
&tmp_max_flag,
|
|
ppar->last_part_partno,
|
|
false);
|
|
flag= tmp_min_flag | tmp_max_flag;
|
|
}
|
|
else
|
|
flag= key_tree->min_flag | key_tree->max_flag;
|
|
|
|
if (tmp_min_key != range_par->min_key)
|
|
flag&= ~NO_MIN_RANGE;
|
|
else
|
|
flag|= NO_MIN_RANGE;
|
|
if (tmp_max_key != range_par->max_key)
|
|
flag&= ~NO_MAX_RANGE;
|
|
else
|
|
flag|= NO_MAX_RANGE;
|
|
|
|
/*
|
|
We need to call the interval mapper if we have a condition which
|
|
makes sense to prune on. In the example of COLUMNS on a and
|
|
b it makes sense if we have a condition on a, or conditions on
|
|
both a and b. If we only have conditions on b it might make sense
|
|
but this is a harder case we will solve later. For the harder case
|
|
this clause then turns into use of all partitions and thus we
|
|
simply set res= -1 as if the mapper had returned that.
|
|
TODO: What to do here is defined in WL#4065.
|
|
*/
|
|
if (ppar->arg_stack[0]->part == 0 || ppar->part_info->part_type == VERSIONING_PARTITION)
|
|
{
|
|
uint32 i;
|
|
uint32 store_length_array[MAX_KEY];
|
|
uint32 num_keys= ppar->part_fields;
|
|
|
|
for (i= 0; i < num_keys; i++)
|
|
store_length_array[i]= ppar->key[i].store_length;
|
|
res= ppar->part_info->
|
|
get_part_iter_for_interval(ppar->part_info,
|
|
FALSE,
|
|
store_length_array,
|
|
range_par->min_key,
|
|
range_par->max_key,
|
|
(uint)(tmp_min_key - range_par->min_key),
|
|
(uint)(tmp_max_key - range_par->max_key),
|
|
flag,
|
|
&ppar->part_iter);
|
|
if (!res)
|
|
goto pop_and_go_right; /* res==0 --> no satisfying partitions */
|
|
}
|
|
else
|
|
res= -1;
|
|
|
|
if (res == -1)
|
|
{
|
|
/* get a full range iterator */
|
|
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
|
}
|
|
/*
|
|
Save our intent to mark full partition as used if we will not be able
|
|
to obtain further limits on subpartitions
|
|
*/
|
|
if (key_tree_part < ppar->last_part_partno)
|
|
{
|
|
/*
|
|
We need to ignore the rest of the partitioning fields in all
|
|
evaluations after this
|
|
*/
|
|
did_set_ignore_part_fields= TRUE;
|
|
ppar->ignore_part_fields= TRUE;
|
|
}
|
|
set_full_part_if_bad_ret= TRUE;
|
|
goto process_next_key_part;
|
|
}
|
|
|
|
if (key_tree_part == ppar->last_subpart_partno &&
|
|
(NULL != ppar->part_info->get_subpart_iter_for_interval))
|
|
{
|
|
PARTITION_ITERATOR subpart_iter;
|
|
DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
|
|
range_par->key_parts););
|
|
res= ppar->part_info->
|
|
get_subpart_iter_for_interval(ppar->part_info,
|
|
TRUE,
|
|
NULL, /* Currently not used here */
|
|
key_tree->min_value,
|
|
key_tree->max_value,
|
|
0, 0, /* Those are ignored here */
|
|
key_tree->min_flag |
|
|
key_tree->max_flag,
|
|
&subpart_iter);
|
|
if (res == 0)
|
|
{
|
|
/*
|
|
The only case where we can get "no satisfying subpartitions"
|
|
returned from the above call is when an error has occurred.
|
|
*/
|
|
DBUG_ASSERT(range_par->thd->is_error());
|
|
return 0;
|
|
}
|
|
|
|
if (res == -1)
|
|
goto pop_and_go_right; /* all subpartitions satisfy */
|
|
|
|
uint32 subpart_id;
|
|
bitmap_clear_all(&ppar->subparts_bitmap);
|
|
while ((subpart_id= subpart_iter.get_next(&subpart_iter)) !=
|
|
NOT_A_PARTITION_ID)
|
|
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
|
|
|
|
/* Mark each partition as used in each subpartition. */
|
|
uint32 part_id;
|
|
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
|
NOT_A_PARTITION_ID)
|
|
{
|
|
for (uint i= 0; i < ppar->part_info->num_subparts; i++)
|
|
if (bitmap_is_set(&ppar->subparts_bitmap, i))
|
|
bitmap_set_bit(&ppar->part_info->read_partitions,
|
|
part_id * ppar->part_info->num_subparts + i);
|
|
}
|
|
goto pop_and_go_right;
|
|
}
|
|
|
|
if (key_tree->is_singlepoint())
|
|
{
|
|
if (key_tree_part == ppar->last_part_partno &&
|
|
ppar->cur_part_fields == ppar->part_fields &&
|
|
ppar->part_info->get_part_iter_for_interval == NULL)
|
|
{
|
|
/*
|
|
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all partitioning
|
|
fields. Save all constN constants into table record buffer.
|
|
*/
|
|
store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
|
|
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
|
|
ppar->part_fields););
|
|
uint32 part_id;
|
|
longlong func_value;
|
|
/* Find in which partition the {const1, ...,constN} tuple goes */
|
|
if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
|
|
&func_value))
|
|
{
|
|
res= 0; /* No satisfying partitions */
|
|
goto pop_and_go_right;
|
|
}
|
|
/* Rembember the limit we got - single partition #part_id */
|
|
init_single_partition_iterator(part_id, &ppar->part_iter);
|
|
|
|
/*
|
|
If there are no subpartitions/we fail to get any limit for them,
|
|
then we'll mark full partition as used.
|
|
*/
|
|
set_full_part_if_bad_ret= TRUE;
|
|
goto process_next_key_part;
|
|
}
|
|
|
|
if (key_tree_part == ppar->last_subpart_partno &&
|
|
ppar->cur_subpart_fields == ppar->subpart_fields)
|
|
{
|
|
/*
|
|
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
|
|
fields. Save all constN constants into table record buffer.
|
|
*/
|
|
store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
|
|
ppar->subpart_fields);
|
|
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end-
|
|
ppar->subpart_fields,
|
|
ppar->subpart_fields););
|
|
/* Find the subpartition (it's HASH/KEY so we always have one) */
|
|
partition_info *part_info= ppar->part_info;
|
|
uint32 part_id, subpart_id;
|
|
|
|
if (part_info->get_subpartition_id(part_info, &subpart_id))
|
|
return 0;
|
|
|
|
/* Mark this partition as used in each subpartition. */
|
|
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
|
NOT_A_PARTITION_ID)
|
|
{
|
|
bitmap_set_bit(&part_info->read_partitions,
|
|
part_id * part_info->num_subparts + subpart_id);
|
|
}
|
|
res= 1; /* Some partitions were marked as used */
|
|
goto pop_and_go_right;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Can't handle condition on current key part. If we're that deep that
|
|
we're processing subpartititoning's key parts, this means we'll not be
|
|
able to infer any suitable condition, so bail out.
|
|
*/
|
|
if (key_tree_part >= ppar->last_part_partno)
|
|
{
|
|
res= -1;
|
|
goto pop_and_go_right;
|
|
}
|
|
/*
|
|
No meaning in continuing with rest of partitioning key parts.
|
|
Will try to continue with subpartitioning key parts.
|
|
*/
|
|
ppar->ignore_part_fields= true;
|
|
did_set_ignore_part_fields= true;
|
|
goto process_next_key_part;
|
|
}
|
|
}
|
|
|
|
process_next_key_part:
|
|
if (key_tree->next_key_part)
|
|
res= find_used_partitions(ppar, key_tree->next_key_part);
|
|
else
|
|
res= -1;
|
|
|
|
if (did_set_ignore_part_fields)
|
|
{
|
|
/*
|
|
We have returned from processing all key trees linked to our next
|
|
key part. We are ready to be moving down (using right pointers) and
|
|
this tree is a new evaluation requiring its own decision on whether
|
|
to ignore partitioning fields.
|
|
*/
|
|
ppar->ignore_part_fields= FALSE;
|
|
}
|
|
if (set_full_part_if_bad_ret)
|
|
{
|
|
if (res == -1)
|
|
{
|
|
/* Got "full range" for subpartitioning fields */
|
|
uint32 part_id;
|
|
bool found= FALSE;
|
|
while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
|
|
NOT_A_PARTITION_ID)
|
|
{
|
|
ppar->mark_full_partition_used(ppar->part_info, part_id);
|
|
found= TRUE;
|
|
}
|
|
res= MY_TEST(found);
|
|
}
|
|
/*
|
|
Restore the "used partitions iterator" to the default setting that
|
|
specifies iteration over all partitions.
|
|
*/
|
|
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
|
|
}
|
|
|
|
pop_and_go_right:
|
|
/* Pop this key part info off the "stack" */
|
|
ppar->arg_stack_end--;
|
|
ppar->cur_part_fields-= ppar->is_part_keypart[key_tree_part];
|
|
ppar->cur_subpart_fields-= ppar->is_subpart_keypart[key_tree_part];
|
|
|
|
if (res == -1)
|
|
return -1;
|
|
if (key_tree->right != &null_element)
|
|
{
|
|
if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
|
|
return -1;
|
|
}
|
|
return (left_res || right_res || res);
|
|
}
|
|
|
|
|
|
static void mark_all_partitions_as_used(partition_info *part_info)
|
|
{
|
|
bitmap_copy(&(part_info->read_partitions),
|
|
&(part_info->lock_partitions));
|
|
}
|
|
|
|
|
|
/*
|
|
Check if field types allow to construct partitioning index description
|
|
|
|
SYNOPSIS
|
|
fields_ok_for_partition_index()
|
|
pfield NULL-terminated array of pointers to fields.
|
|
|
|
DESCRIPTION
|
|
For an array of fields, check if we can use all of the fields to create
|
|
partitioning index description.
|
|
|
|
We can't process GEOMETRY fields - for these fields singlepoint intervals
|
|
cant be generated, and non-singlepoint are "special" kinds of intervals
|
|
to which our processing logic can't be applied.
|
|
|
|
It is not known if we could process ENUM fields, so they are disabled to be
|
|
on the safe side.
|
|
|
|
RETURN
|
|
TRUE Yes, fields can be used in partitioning index
|
|
FALSE Otherwise
|
|
*/
|
|
|
|
static bool fields_ok_for_partition_index(Field **pfield)
|
|
{
|
|
if (!pfield)
|
|
return FALSE;
|
|
for (; (*pfield); pfield++)
|
|
{
|
|
enum_field_types ftype= (*pfield)->real_type();
|
|
if (ftype == MYSQL_TYPE_ENUM || ftype == MYSQL_TYPE_GEOMETRY)
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Create partition index description and fill related info in the context
|
|
struct
|
|
|
|
SYNOPSIS
|
|
create_partition_index_description()
|
|
prune_par INOUT Partition pruning context
|
|
|
|
DESCRIPTION
|
|
Create partition index description. Partition index description is:
|
|
|
|
part_index(used_fields_list(part_expr), used_fields_list(subpart_expr))
|
|
|
|
If partitioning/sub-partitioning uses BLOB or Geometry fields, then
|
|
corresponding fields_list(...) is not included into index description
|
|
and we don't perform partition pruning for partitions/subpartitions.
|
|
|
|
RETURN
|
|
TRUE Out of memory or can't do partition pruning at all
|
|
FALSE OK
|
|
*/
|
|
|
|
static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
|
|
{
|
|
RANGE_OPT_PARAM *range_par= &(ppar->range_param);
|
|
partition_info *part_info= ppar->part_info;
|
|
uint used_part_fields, used_subpart_fields;
|
|
|
|
used_part_fields= fields_ok_for_partition_index(part_info->part_field_array) ?
|
|
part_info->num_part_fields : 0;
|
|
used_subpart_fields=
|
|
fields_ok_for_partition_index(part_info->subpart_field_array)?
|
|
part_info->num_subpart_fields : 0;
|
|
|
|
uint total_parts= used_part_fields + used_subpart_fields;
|
|
|
|
ppar->ignore_part_fields= FALSE;
|
|
ppar->part_fields= used_part_fields;
|
|
ppar->last_part_partno= (int)used_part_fields - 1;
|
|
|
|
ppar->subpart_fields= used_subpart_fields;
|
|
ppar->last_subpart_partno=
|
|
used_subpart_fields?(int)(used_part_fields + used_subpart_fields - 1): -1;
|
|
|
|
if (part_info->is_sub_partitioned())
|
|
{
|
|
ppar->mark_full_partition_used= mark_full_partition_used_with_parts;
|
|
ppar->get_top_partition_id_func= part_info->get_part_partition_id;
|
|
}
|
|
else
|
|
{
|
|
ppar->mark_full_partition_used= mark_full_partition_used_no_parts;
|
|
ppar->get_top_partition_id_func= part_info->get_partition_id;
|
|
}
|
|
|
|
KEY_PART *key_part;
|
|
MEM_ROOT *alloc= range_par->mem_root;
|
|
if (!total_parts ||
|
|
!(key_part= (KEY_PART*)alloc_root(alloc, sizeof(KEY_PART)*
|
|
total_parts)) ||
|
|
!(ppar->arg_stack= (SEL_ARG**)alloc_root(alloc, sizeof(SEL_ARG*)*
|
|
total_parts)) ||
|
|
!(ppar->is_part_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
|
|
total_parts)) ||
|
|
!(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
|
|
total_parts)))
|
|
return TRUE;
|
|
|
|
if (ppar->subpart_fields)
|
|
{
|
|
my_bitmap_map *buf;
|
|
uint32 bufsize= bitmap_buffer_size(ppar->part_info->num_subparts);
|
|
if (!(buf= (my_bitmap_map*) alloc_root(alloc, bufsize)))
|
|
return TRUE;
|
|
my_bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->num_subparts);
|
|
}
|
|
range_par->key_parts= key_part;
|
|
Field **field= (ppar->part_fields)? part_info->part_field_array :
|
|
part_info->subpart_field_array;
|
|
bool in_subpart_fields= FALSE;
|
|
uint total_key_len= 0;
|
|
for (uint part= 0; part < total_parts; part++, key_part++)
|
|
{
|
|
key_part->key= 0;
|
|
key_part->part= part;
|
|
key_part->length= (uint16)(*field)->key_length();
|
|
key_part->store_length= (uint16)get_partition_field_store_length(*field);
|
|
total_key_len += key_part->store_length;
|
|
|
|
DBUG_PRINT("info", ("part %u length %u store_length %u", part,
|
|
key_part->length, key_part->store_length));
|
|
|
|
key_part->field= (*field);
|
|
key_part->image_type = Field::itRAW;
|
|
/*
|
|
We set keypart flag to 0 here as the only HA_PART_KEY_SEG is checked
|
|
in the RangeAnalysisModule.
|
|
*/
|
|
key_part->flag= 0;
|
|
/* We don't set key_parts->null_bit as it will not be used */
|
|
|
|
ppar->is_part_keypart[part]= !in_subpart_fields;
|
|
ppar->is_subpart_keypart[part]= in_subpart_fields;
|
|
|
|
/*
|
|
Check if this was last field in this array, in this case we
|
|
switch to subpartitioning fields. (This will only happens if
|
|
there are subpartitioning fields to cater for).
|
|
*/
|
|
if (!*(++field))
|
|
{
|
|
field= part_info->subpart_field_array;
|
|
in_subpart_fields= TRUE;
|
|
}
|
|
}
|
|
range_par->key_parts_end= key_part;
|
|
|
|
total_key_len++; /* Take into account the "+1" in QUICK_RANGE::QUICK_RANGE */
|
|
if (!(range_par->min_key= (uchar*)alloc_root(alloc,total_key_len)) ||
|
|
!(range_par->max_key= (uchar*)alloc_root(alloc,total_key_len)))
|
|
{
|
|
return true;
|
|
}
|
|
|
|
DBUG_EXECUTE("info", print_partitioning_index(range_par->key_parts,
|
|
range_par->key_parts_end););
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end)
|
|
{
|
|
DBUG_ENTER("print_partitioning_index");
|
|
DBUG_LOCK_FILE;
|
|
fprintf(DBUG_FILE, "partitioning INDEX(");
|
|
for (KEY_PART *p=parts; p != parts_end; p++)
|
|
{
|
|
fprintf(DBUG_FILE, "%s%s", p==parts?"":" ,", p->field->field_name.str);
|
|
}
|
|
fputs(");\n", DBUG_FILE);
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/* Print field value into debug trace, in NULL-aware way. */
|
|
static void dbug_print_field(Field *field)
|
|
{
|
|
if (field->is_real_null())
|
|
fprintf(DBUG_FILE, "NULL");
|
|
else
|
|
{
|
|
char buf[256];
|
|
String str(buf, sizeof(buf), &my_charset_bin);
|
|
str.length(0);
|
|
String *pstr;
|
|
pstr= field->val_str(&str);
|
|
fprintf(DBUG_FILE, "'%s'", pstr->c_ptr_safe());
|
|
}
|
|
}
|
|
|
|
|
|
/* Print a "c1 < keypartX < c2" - type interval into debug trace. */
|
|
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
|
|
{
|
|
DBUG_ENTER("dbug_print_segment_range");
|
|
DBUG_LOCK_FILE;
|
|
if (!(arg->min_flag & NO_MIN_RANGE))
|
|
{
|
|
store_key_image_to_rec(part->field, arg->min_value, part->length);
|
|
dbug_print_field(part->field);
|
|
if (arg->min_flag & NEAR_MIN)
|
|
fputs(" < ", DBUG_FILE);
|
|
else
|
|
fputs(" <= ", DBUG_FILE);
|
|
}
|
|
|
|
fprintf(DBUG_FILE, "%s", part->field->field_name.str);
|
|
|
|
if (!(arg->max_flag & NO_MAX_RANGE))
|
|
{
|
|
if (arg->max_flag & NEAR_MAX)
|
|
fputs(" < ", DBUG_FILE);
|
|
else
|
|
fputs(" <= ", DBUG_FILE);
|
|
store_key_image_to_rec(part->field, arg->max_value, part->length);
|
|
dbug_print_field(part->field);
|
|
}
|
|
fputs("\n", DBUG_FILE);
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Print a singlepoint multi-keypart range interval to debug trace
|
|
|
|
SYNOPSIS
|
|
dbug_print_singlepoint_range()
|
|
start Array of SEL_ARG* ptrs representing conditions on key parts
|
|
num Number of elements in the array.
|
|
|
|
DESCRIPTION
|
|
This function prints a "keypartN=constN AND ... AND keypartK=constK"-type
|
|
interval to debug trace.
|
|
*/
|
|
|
|
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
|
|
{
|
|
DBUG_ENTER("dbug_print_singlepoint_range");
|
|
DBUG_LOCK_FILE;
|
|
SEL_ARG **end= start + num;
|
|
|
|
for (SEL_ARG **arg= start; arg != end; arg++)
|
|
{
|
|
Field *field= (*arg)->field;
|
|
fprintf(DBUG_FILE, "%s%s=", (arg==start)?"":", ", field->field_name.str);
|
|
dbug_print_field(field);
|
|
}
|
|
fputs("\n", DBUG_FILE);
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
#endif
|
|
|
|
/****************************************************************************
|
|
* Partition pruning code ends
|
|
****************************************************************************/
|
|
#endif
|
|
|
|
|
|
/*
|
|
Get cost of 'sweep' full records retrieval.
|
|
SYNOPSIS
|
|
get_sweep_read_cost()
|
|
param Parameter from test_quick_select
|
|
records # of records to be retrieved
|
|
add_time_for_compare If set, add cost of WHERE clause (WHERE_COST)
|
|
RETURN
|
|
cost of sweep
|
|
*/
|
|
|
|
static double get_sweep_read_cost(const PARAM *param, double records,
|
|
bool add_time_for_compare)
|
|
{
|
|
DBUG_ENTER("get_sweep_read_cost");
|
|
#ifndef OLD_SWEEP_COST
|
|
handler *file= param->table->file;
|
|
IO_AND_CPU_COST engine_cost= file->ha_rnd_pos_call_time(double2rows(ceil(records)));
|
|
double cost;
|
|
if (add_time_for_compare)
|
|
{
|
|
engine_cost.cpu+= records * param->thd->variables.optimizer_where_cost;
|
|
}
|
|
cost= file->cost(engine_cost);
|
|
|
|
DBUG_PRINT("return", ("cost: %g", cost));
|
|
DBUG_RETURN(cost);
|
|
#else
|
|
double result;
|
|
uint pk= param->table->s->primary_key;
|
|
|
|
if (param->table->file->pk_is_clustering_key(pk) ||
|
|
param->table->file->stats.block_size == 0 /* HEAP */)
|
|
{
|
|
/*
|
|
We are using the primary key to find the rows.
|
|
Calculate the cost for this.
|
|
*/
|
|
result= table->file->ha_rnd_pos_call_time(records);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Rows will be retreived with rnd_pos(). Calculate the expected
|
|
cost for this.
|
|
*/
|
|
double n_blocks=
|
|
ceil(ulonglong2double(param->table->file->stats.data_file_length) /
|
|
IO_SIZE);
|
|
double busy_blocks=
|
|
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
|
|
if (busy_blocks < 1.0)
|
|
busy_blocks= 1.0;
|
|
DBUG_PRINT("info",("sweep: nblocks: %g, busy_blocks: %g", n_blocks,
|
|
busy_blocks));
|
|
/*
|
|
Disabled: Bail out if # of blocks to read is bigger than # of blocks in
|
|
table data file.
|
|
if (max_cost != DBL_MAX && (busy_blocks+index_reads_cost) >= n_blocks)
|
|
return 1;
|
|
*/
|
|
JOIN *join= param->thd->lex->first_select_lex()->join;
|
|
if (!join || join->table_count == 1)
|
|
{
|
|
/* No join, assume reading is done in one 'sweep' */
|
|
result= busy_blocks*(DISK_SEEK_BASE_COST +
|
|
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
Possibly this is a join with source table being non-last table, so
|
|
assume that disk seeks are random here.
|
|
*/
|
|
result= busy_blocks;
|
|
}
|
|
result+= rows2double(n_rows) * param->table->file->ROW_COPY_COST);
|
|
}
|
|
DBUG_PRINT("return",("cost: %g", result));
|
|
DBUG_RETURN(result);
|
|
#endif /* OLD_SWEEP_COST */
|
|
}
|
|
|
|
|
|
/*
|
|
Get best plan for a SEL_IMERGE disjunctive expression.
|
|
SYNOPSIS
|
|
get_best_disjunct_quick()
|
|
param Parameter from check_quick_select function
|
|
imerge Expression to use
|
|
read_time Don't create scans with cost > read_time
|
|
|
|
NOTES
|
|
index_merge cost is calculated as follows:
|
|
index_merge_cost =
|
|
cost(index_reads) + (see #1)
|
|
cost(rowid_to_row_scan) + (see #2)
|
|
cost(unique_use) (see #3)
|
|
|
|
1. cost(index_reads) =SUM_i(cost(index_read_i))
|
|
For non-CPK scans,
|
|
cost(index_read_i) = {cost of ordinary 'index only' scan}
|
|
For CPK scan,
|
|
cost(index_read_i) = {cost of non-'index only' scan}
|
|
|
|
2. cost(rowid_to_row_scan)
|
|
If table PK is clustered then
|
|
cost(rowid_to_row_scan) =
|
|
{cost of ordinary clustered PK scan with n_ranges=n_rows}
|
|
|
|
Otherwise, we use the following model to calculate costs:
|
|
We need to retrieve n_rows rows from file that occupies n_blocks blocks.
|
|
We assume that offsets of rows we need are independent variates with
|
|
uniform distribution in [0..max_file_offset] range.
|
|
|
|
We'll denote block as "busy" if it contains row(s) we need to retrieve
|
|
and "empty" if doesn't contain rows we need.
|
|
|
|
Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
|
|
applies to any block in file). Let x_i be a variate taking value 1 if
|
|
block #i is empty and 0 otherwise.
|
|
|
|
Then E(x_i) = (1 - 1/n_blocks)^n_rows;
|
|
|
|
E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
|
|
= n_blocks * ((1 - 1/n_blocks)^n_rows) =
|
|
~= n_blocks * exp(-n_rows/n_blocks).
|
|
|
|
E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
|
|
~= n_blocks * (1 - exp(-n_rows/n_blocks)).
|
|
|
|
Average size of "hole" between neighbor non-empty blocks is
|
|
E(hole_size) = n_blocks/E(n_busy_blocks).
|
|
|
|
The total cost of reading all needed blocks in one "sweep" is:
|
|
|
|
E(n_busy_blocks)*
|
|
(DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).
|
|
|
|
3. Cost of Unique use is calculated in Unique::get_use_cost function.
|
|
|
|
ROR-union cost is calculated in the same way index_merge, but instead of
|
|
Unique a priority queue is used.
|
|
|
|
RETURN
|
|
Created read plan
|
|
NULL - Out of memory or no read scan could be built.
|
|
*/
|
|
|
|
static
|
|
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
|
|
double read_time, ha_rows limit,
|
|
bool named_trace,
|
|
bool using_table_scan)
|
|
{
|
|
SEL_TREE **ptree;
|
|
TRP_INDEX_MERGE *imerge_trp= NULL;
|
|
TRP_RANGE **range_scans;
|
|
TRP_RANGE **cur_child;
|
|
TRP_RANGE **cpk_scan= NULL;
|
|
bool imerge_too_expensive= FALSE;
|
|
double imerge_cost= 0.0;
|
|
ha_rows cpk_scan_records= 0;
|
|
ha_rows non_cpk_scan_records= 0;
|
|
bool all_scans_ror_able= TRUE;
|
|
bool all_scans_rors= TRUE;
|
|
uint unique_calc_buff_size;
|
|
TABLE_READ_PLAN **roru_read_plans;
|
|
TABLE_READ_PLAN **cur_roru_plan;
|
|
double roru_index_costs;
|
|
ha_rows roru_total_records;
|
|
double roru_intersect_part= 1.0;
|
|
size_t n_child_scans;
|
|
double limit_read_time= read_time;
|
|
THD *thd= param->thd;
|
|
DBUG_ENTER("get_best_disjunct_quick");
|
|
DBUG_PRINT("info", ("Full table scan cost: %g", read_time));
|
|
|
|
/*
|
|
In every tree of imerge remove SEL_ARG trees that do not make ranges.
|
|
If after this removal some SEL_ARG tree becomes empty discard imerge.
|
|
*/
|
|
for (ptree= imerge->trees; ptree != imerge->trees_next; ptree++)
|
|
{
|
|
if (remove_nonrange_trees(param, *ptree))
|
|
{
|
|
imerge->trees_next= imerge->trees;
|
|
break;
|
|
}
|
|
}
|
|
|
|
n_child_scans= imerge->trees_next - imerge->trees;
|
|
|
|
if (!n_child_scans)
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
|
|
sizeof(TRP_RANGE*)*
|
|
n_child_scans)))
|
|
DBUG_RETURN(NULL);
|
|
|
|
const char* trace_best_disjunct_obj_name= named_trace ? "best_disjunct_quick" : nullptr;
|
|
Json_writer_object trace_best_disjunct(thd, trace_best_disjunct_obj_name);
|
|
Json_writer_array to_merge(thd, "indexes_to_merge");
|
|
/*
|
|
Collect best 'range' scan for each of disjuncts, and, while doing so,
|
|
analyze possibility of ROR scans. Also calculate some values needed by
|
|
other parts of the code.
|
|
*/
|
|
for (ptree= imerge->trees, cur_child= range_scans;
|
|
ptree != imerge->trees_next;
|
|
ptree++, cur_child++)
|
|
{
|
|
DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
|
|
"tree in SEL_IMERGE"););
|
|
Json_writer_object trace_idx(thd);
|
|
if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, FALSE,
|
|
read_time, limit, using_table_scan)))
|
|
{
|
|
/*
|
|
One of index scans in this index_merge is more expensive than entire
|
|
table read for another available option. The entire index_merge (and
|
|
any possible ROR-union) will be more expensive then, too. We continue
|
|
here only to update SQL_SELECT members.
|
|
*/
|
|
imerge_too_expensive= TRUE;
|
|
}
|
|
if (imerge_too_expensive)
|
|
{
|
|
trace_idx.add("chosen", false).add("cause", "cost");
|
|
continue;
|
|
}
|
|
const uint keynr_in_table= param->real_keynr[(*cur_child)->key_idx];
|
|
imerge_cost += (*cur_child)->read_cost;
|
|
all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
|
|
all_scans_rors &= (*cur_child)->is_ror;
|
|
if (param->table->file->is_clustering_key(keynr_in_table))
|
|
{
|
|
cpk_scan= cur_child;
|
|
cpk_scan_records= (*cur_child)->records;
|
|
}
|
|
else
|
|
non_cpk_scan_records += (*cur_child)->records;
|
|
if (unlikely(trace_idx.trace_started()))
|
|
trace_idx.
|
|
add("index_to_merge", param->table->key_info[keynr_in_table].name).
|
|
add("cumulated_cost", imerge_cost);
|
|
}
|
|
|
|
to_merge.end();
|
|
|
|
DBUG_PRINT("info", ("index_merge scans cost %g", imerge_cost));
|
|
trace_best_disjunct.add("cost_of_reading_ranges", imerge_cost);
|
|
|
|
if (imerge_too_expensive || (imerge_cost > read_time) ||
|
|
((non_cpk_scan_records+cpk_scan_records >=
|
|
param->table->stat_records()) &&
|
|
read_time != DBL_MAX))
|
|
{
|
|
/*
|
|
Bail out if it is obvious that both index_merge and ROR-union will be
|
|
more expensive
|
|
*/
|
|
DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
|
|
"full table scan, bailing out"));
|
|
trace_best_disjunct.add("chosen", false).add("cause", "cost");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/*
|
|
If all scans happen to be ROR, proceed to generate a ROR-union plan (it's
|
|
guaranteed to be cheaper than non-ROR union), unless ROR-unions are
|
|
disabled in @@optimizer_switch
|
|
*/
|
|
if (all_scans_rors &&
|
|
optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_UNION))
|
|
{
|
|
roru_read_plans= (TABLE_READ_PLAN**)range_scans;
|
|
if (unlikely(trace_best_disjunct.trace_started()))
|
|
trace_best_disjunct.
|
|
add("use_roworder_union", true).
|
|
add("cause", "always cheaper than non roworder retrieval");
|
|
goto skip_to_ror_scan;
|
|
}
|
|
|
|
if (cpk_scan)
|
|
{
|
|
/*
|
|
Add one ROWID comparison for each row retrieved on non-CPK scan. (it
|
|
is done in QUICK_RANGE_SELECT::row_in_ranges)
|
|
*/
|
|
double rid_comp_cost= (rows2double(non_cpk_scan_records) *
|
|
default_optimizer_costs.rowid_cmp_cost);
|
|
imerge_cost+= rid_comp_cost;
|
|
trace_best_disjunct.add("cost_of_mapping_rowid_in_non_clustered_pk_scan",
|
|
rid_comp_cost);
|
|
}
|
|
|
|
/* Calculate cost(rowid_to_row_scan) */
|
|
{
|
|
/* imerge_cost already includes WHERE_COST */
|
|
double sweep_cost= get_sweep_read_cost(param, rows2double(non_cpk_scan_records), 0);
|
|
imerge_cost+= sweep_cost;
|
|
trace_best_disjunct.
|
|
add("rows", non_cpk_scan_records).
|
|
add("cost_sort_rowid_and_read_disk", sweep_cost).
|
|
add("cost", imerge_cost);
|
|
}
|
|
DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
|
|
imerge_cost));
|
|
if (imerge_cost > read_time ||
|
|
!optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION))
|
|
{
|
|
if (unlikely(trace_best_disjunct.trace_started()))
|
|
trace_best_disjunct.
|
|
add("use_sort_index_merge", false).
|
|
add("cause", imerge_cost > read_time ? "cost" : "disabled");
|
|
goto build_ror_index_merge; // Try roworder_index_merge
|
|
}
|
|
|
|
/* Add Unique operations cost */
|
|
unique_calc_buff_size=
|
|
Unique::get_cost_calc_buff_size((ulong)non_cpk_scan_records,
|
|
param->table->file->ref_length,
|
|
(size_t)param->thd->variables.sortbuff_size);
|
|
if (param->imerge_cost_buff_size < unique_calc_buff_size)
|
|
{
|
|
if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
|
|
unique_calc_buff_size)))
|
|
DBUG_RETURN(NULL);
|
|
param->imerge_cost_buff_size= unique_calc_buff_size;
|
|
}
|
|
|
|
{
|
|
const double dup_removal_cost= Unique::get_use_cost(thd,
|
|
param->imerge_cost_buff, (uint)non_cpk_scan_records,
|
|
param->table->file->ref_length,
|
|
(size_t)param->thd->variables.sortbuff_size,
|
|
ROWID_COMPARE_COST_THD(param->thd),
|
|
FALSE, NULL);
|
|
imerge_cost+= dup_removal_cost;
|
|
if (unlikely(trace_best_disjunct.trace_started()))
|
|
trace_best_disjunct.
|
|
add("cost_duplicate_removal", dup_removal_cost).
|
|
add("total_cost", imerge_cost);
|
|
}
|
|
|
|
DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
|
|
imerge_cost, read_time));
|
|
if (imerge_cost < read_time)
|
|
{
|
|
if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
|
|
{
|
|
imerge_trp->read_cost= imerge_cost;
|
|
imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
|
|
imerge_trp->records= MY_MIN(imerge_trp->records,
|
|
param->table->stat_records());
|
|
imerge_trp->range_scans= range_scans;
|
|
imerge_trp->range_scans_end= range_scans + n_child_scans;
|
|
read_time= imerge_cost;
|
|
}
|
|
if (imerge_trp)
|
|
{
|
|
TABLE_READ_PLAN *trp= merge_same_index_scans(param, imerge, imerge_trp,
|
|
limit_read_time);
|
|
if (trp != imerge_trp)
|
|
DBUG_RETURN(trp);
|
|
}
|
|
}
|
|
|
|
build_ror_index_merge:
|
|
if (!all_scans_ror_able ||
|
|
param->thd->lex->sql_command == SQLCOM_DELETE ||
|
|
!optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_UNION))
|
|
DBUG_RETURN(imerge_trp);
|
|
|
|
/* Ok, it is possible to build a ROR-union, try it. */
|
|
bool dummy;
|
|
if (!(roru_read_plans=
|
|
(TABLE_READ_PLAN**)alloc_root(param->mem_root,
|
|
sizeof(TABLE_READ_PLAN*)*
|
|
n_child_scans)))
|
|
DBUG_RETURN(imerge_trp);
|
|
|
|
skip_to_ror_scan:
|
|
roru_index_costs= 0.0;
|
|
roru_total_records= 0;
|
|
cur_roru_plan= roru_read_plans;
|
|
|
|
Json_writer_array trace_analyze_ror(thd, "analyzing_roworder_scans");
|
|
|
|
/* Find 'best' ROR scan for each of trees in disjunction */
|
|
for (ptree= imerge->trees, cur_child= range_scans;
|
|
ptree != imerge->trees_next;
|
|
ptree++, cur_child++, cur_roru_plan++)
|
|
{
|
|
Json_writer_object trp_info(thd);
|
|
if (unlikely(thd->trace_started()))
|
|
(*cur_child)->trace_basic_info(param, &trp_info);
|
|
/*
|
|
Assume the best ROR scan is the one that has cheapest full-row-retrieval
|
|
scan cost.
|
|
Also accumulate index_only scan costs as we'll need them to calculate
|
|
overall index_intersection cost.
|
|
*/
|
|
double cost;
|
|
if ((*cur_child)->is_ror)
|
|
{
|
|
handler *file= param->table->file;
|
|
/* Ok, we have index_only cost, now get full rows scan cost */
|
|
cost= file->cost(file->ha_rnd_pos_call_and_compare_time((*cur_child)->records));
|
|
}
|
|
else
|
|
cost= read_time;
|
|
|
|
TABLE_READ_PLAN *prev_plan= *cur_child;
|
|
TRP_ROR_INTERSECT *ror_trp;
|
|
if (!(*cur_roru_plan= ror_trp= get_best_ror_intersect(param, *ptree, cost,
|
|
&dummy)))
|
|
{
|
|
if (!prev_plan->is_ror)
|
|
DBUG_RETURN(imerge_trp);
|
|
*cur_roru_plan= prev_plan;
|
|
roru_index_costs += (*cur_roru_plan)->read_cost;
|
|
}
|
|
else
|
|
roru_index_costs += ror_trp->index_scan_costs;
|
|
roru_total_records += (*cur_roru_plan)->records;
|
|
roru_intersect_part *= ((*cur_roru_plan)->records /
|
|
param->table->stat_records());
|
|
}
|
|
trace_analyze_ror.end();
|
|
/*
|
|
rows to retrieve=
|
|
SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
|
|
This is valid because index_merge construction guarantees that conditions
|
|
in disjunction do not share key parts.
|
|
*/
|
|
roru_total_records -= (ha_rows)(roru_intersect_part*
|
|
param->table->stat_records());
|
|
/* ok, got a ROR read plan for each of the disjuncts
|
|
Calculate cost:
|
|
cost(index_union_scan(scan_1, ... scan_n)) =
|
|
SUM_i(cost_of_index_only_scan(scan_i)) +
|
|
queue_use_cost(rowid_len, n) +
|
|
cost_of_row_retrieval
|
|
See get_merge_buffers_cost function for queue_use_cost formula derivation.
|
|
*/
|
|
|
|
double roru_total_cost;
|
|
roru_total_cost= (roru_index_costs +
|
|
rows2double(roru_total_records)*log((double)n_child_scans) *
|
|
ROWID_COMPARE_COST_THD(param->thd) / M_LN2 +
|
|
get_sweep_read_cost(param, rows2double(roru_total_records), 0));
|
|
|
|
DBUG_PRINT("info", ("ROR-union: cost %g, %zu members",
|
|
roru_total_cost, n_child_scans));
|
|
if (unlikely(trace_best_disjunct.trace_started()))
|
|
trace_best_disjunct.
|
|
add("index_roworder_union_cost", roru_total_cost).
|
|
add("members", n_child_scans);
|
|
TRP_ROR_UNION* roru;
|
|
if (roru_total_cost < read_time)
|
|
{
|
|
if ((roru= new (param->mem_root) TRP_ROR_UNION))
|
|
{
|
|
trace_best_disjunct.add("chosen", true);
|
|
roru->first_ror= roru_read_plans;
|
|
roru->last_ror= roru_read_plans + n_child_scans;
|
|
roru->read_cost= roru_total_cost;
|
|
roru->records= roru_total_records;
|
|
DBUG_RETURN(roru);
|
|
}
|
|
}
|
|
else
|
|
trace_best_disjunct.add("chosen", false);
|
|
DBUG_RETURN(imerge_trp);
|
|
}
|
|
|
|
|
|
/*
|
|
Merge index scans for the same indexes in an index merge plan
|
|
|
|
SYNOPSIS
|
|
merge_same_index_scans()
|
|
param Context info for the operation
|
|
imerge IN/OUT SEL_IMERGE from which imerge_trp has been extracted
|
|
imerge_trp The index merge plan where index scans for the same
|
|
indexes are to be merges
|
|
read_time The upper bound for the cost of the plan to be evaluated
|
|
|
|
DESRIPTION
|
|
For the given index merge plan imerge_trp extracted from the SEL_MERGE
|
|
imerge the function looks for range scans with the same indexes and merges
|
|
them into SEL_ARG trees. Then for each such SEL_ARG tree r_i the function
|
|
creates a range tree rt_i that contains only r_i. All rt_i are joined
|
|
into one index merge that replaces the original index merge imerge.
|
|
The function calls get_best_disjunct_quick for the new index merge to
|
|
get a new index merge plan that contains index scans only for different
|
|
indexes.
|
|
If there are no index scans for the same index in the original index
|
|
merge plan the function does not change the original imerge and returns
|
|
imerge_trp as its result.
|
|
|
|
RETURN
|
|
The original or or improved index merge plan
|
|
*/
|
|
|
|
static
|
|
TABLE_READ_PLAN *merge_same_index_scans(PARAM *param, SEL_IMERGE *imerge,
|
|
TRP_INDEX_MERGE *imerge_trp,
|
|
double read_time)
|
|
{
|
|
uint16 first_scan_tree_idx[MAX_KEY];
|
|
SEL_TREE **tree;
|
|
TRP_RANGE **cur_child;
|
|
uint removed_cnt= 0;
|
|
|
|
DBUG_ENTER("merge_same_index_scans");
|
|
|
|
bzero(first_scan_tree_idx, sizeof(first_scan_tree_idx[0])*param->keys);
|
|
|
|
for (tree= imerge->trees, cur_child= imerge_trp->range_scans;
|
|
tree != imerge->trees_next;
|
|
tree++, cur_child++)
|
|
{
|
|
DBUG_ASSERT(tree);
|
|
uint key_idx= (*cur_child)->key_idx;
|
|
uint16 *tree_idx_ptr= &first_scan_tree_idx[key_idx];
|
|
if (!*tree_idx_ptr)
|
|
*tree_idx_ptr= (uint16) (tree-imerge->trees+1);
|
|
else
|
|
{
|
|
SEL_TREE **changed_tree= imerge->trees+(*tree_idx_ptr-1);
|
|
SEL_ARG *key= (*changed_tree)->keys[key_idx];
|
|
for (uint i= 0; i < param->keys; i++)
|
|
(*changed_tree)->keys[i]= NULL;
|
|
(*changed_tree)->keys_map.clear_all();
|
|
if (key)
|
|
key->incr_refs();
|
|
if ((*tree)->keys[key_idx])
|
|
(*tree)->keys[key_idx]->incr_refs();
|
|
if (((*changed_tree)->keys[key_idx]=
|
|
key_or_with_limit(param, key_idx, key, (*tree)->keys[key_idx])))
|
|
(*changed_tree)->keys_map.set_bit(key_idx);
|
|
*tree= NULL;
|
|
removed_cnt++;
|
|
}
|
|
}
|
|
if (!removed_cnt)
|
|
DBUG_RETURN(imerge_trp);
|
|
|
|
TABLE_READ_PLAN *trp= NULL;
|
|
SEL_TREE **new_trees_next= imerge->trees;
|
|
for (tree= new_trees_next; tree != imerge->trees_next; tree++)
|
|
{
|
|
if (!*tree)
|
|
continue;
|
|
if (tree > new_trees_next)
|
|
*new_trees_next= *tree;
|
|
new_trees_next++;
|
|
}
|
|
imerge->trees_next= new_trees_next;
|
|
|
|
DBUG_ASSERT(imerge->trees_next>imerge->trees);
|
|
|
|
if (imerge->trees_next-imerge->trees > 1)
|
|
trp= get_best_disjunct_quick(param, imerge, read_time, HA_POS_ERROR, true,
|
|
0);
|
|
else
|
|
{
|
|
/*
|
|
This alternative theoretically can be reached when the cost
|
|
of the index merge for such a formula as
|
|
(key1 BETWEEN c1_1 AND c1_2) AND key2 > c2 OR
|
|
(key1 BETWEEN c1_3 AND c1_4) AND key3 > c3
|
|
is estimated as being cheaper than the cost of index scan for
|
|
the formula
|
|
(key1 BETWEEN c1_1 AND c1_2) OR (key1 BETWEEN c1_3 AND c1_4)
|
|
|
|
In the current code this may happen for two reasons:
|
|
1. for a single index range scan data records are accessed in
|
|
a random order
|
|
2. the functions that estimate the cost of a range scan and an
|
|
index merge retrievals are not well calibrated
|
|
|
|
As the best range access has been already chosen it does not
|
|
make sense to evaluate the one obtained from a degenerated
|
|
index merge.
|
|
*/
|
|
trp= 0;
|
|
}
|
|
|
|
DBUG_RETURN(trp);
|
|
}
|
|
|
|
|
|
/*
|
|
This structure contains the info common for all steps of a partial
|
|
index intersection plan. Morever it contains also the info common
|
|
for index intersect plans. This info is filled in by the function
|
|
prepare_search_best just before searching for the best index
|
|
intersection plan.
|
|
*/
|
|
|
|
typedef struct st_common_index_intersect_info
|
|
{
|
|
PARAM *param; /* context info for range optimizations */
|
|
uint key_size; /* size of a ROWID element stored in Unique object */
|
|
double compare_factor; /* cost to compare two ROWIDs */
|
|
size_t max_memory_size; /* maximum space allowed for Unique objects */
|
|
ha_rows table_cardinality; /* estimate of the number of records in table */
|
|
double cutoff_cost; /* discard index intersects with greater costs */
|
|
INDEX_SCAN_INFO *cpk_scan; /* clustered primary key used in intersection */
|
|
|
|
bool in_memory; /* unique object for intersection is completely in memory */
|
|
|
|
INDEX_SCAN_INFO **search_scans; /* scans possibly included in intersect */
|
|
uint n_search_scans; /* number of elements in search_scans */
|
|
|
|
bool best_uses_cpk; /* current best intersect uses clustered primary key */
|
|
double best_cost; /* cost of the current best index intersection */
|
|
/* estimate of the number of records in the current best intersection */
|
|
ha_rows best_records;
|
|
uint best_length; /* number of indexes in the current best intersection */
|
|
INDEX_SCAN_INFO **best_intersect; /* the current best index intersection */
|
|
/* scans from the best intersect to be filtrered by cpk conditions */
|
|
key_map filtered_scans;
|
|
|
|
uint *buff_elems; /* buffer to calculate cost of index intersection */
|
|
|
|
} COMMON_INDEX_INTERSECT_INFO;
|
|
|
|
|
|
/*
|
|
This structure contains the info specific for one step of an index
|
|
intersection plan. The structure is filled in by the function
|
|
check_index_intersect_extension.
|
|
*/
|
|
|
|
typedef struct st_partial_index_intersect_info
|
|
{
|
|
COMMON_INDEX_INTERSECT_INFO *common_info; /* shared by index intersects */
|
|
uint length; /* number of index scans in the partial intersection */
|
|
ha_rows records; /* estimate of the number of records in intersection */
|
|
double cost; /* cost of the partial index intersection */
|
|
|
|
/* estimate of total number of records of all scans of the partial index
|
|
intersect sent to the Unique object used for the intersection */
|
|
ha_rows records_sent_to_unique;
|
|
|
|
/* total cost of the scans of indexes from the partial index intersection */
|
|
double index_read_cost;
|
|
|
|
bool use_cpk_filter; /* cpk filter is to be used for this scan */
|
|
bool in_memory; /* uses unique object in memory */
|
|
double in_memory_cost; /* cost of using unique object in memory */
|
|
|
|
key_map filtered_scans; /* scans to be filtered by cpk conditions */
|
|
|
|
MY_BITMAP *intersect_fields; /* bitmap of fields used in intersection */
|
|
|
|
void init()
|
|
{
|
|
common_info= NULL;
|
|
intersect_fields= NULL;
|
|
records_sent_to_unique= records= length= in_memory= use_cpk_filter= 0;
|
|
cost= index_read_cost= in_memory_cost= 0.0;
|
|
filtered_scans.clear_all();
|
|
}
|
|
} PARTIAL_INDEX_INTERSECT_INFO;
|
|
|
|
|
|
/* Check whether two indexes have the same first n components */
|
|
|
|
static
|
|
bool same_index_prefix(KEY *key1, KEY *key2, uint used_parts)
|
|
{
|
|
KEY_PART_INFO *part1= key1->key_part;
|
|
KEY_PART_INFO *part2= key2->key_part;
|
|
for(uint i= 0; i < used_parts; i++, part1++, part2++)
|
|
{
|
|
if (part1->fieldnr != part2->fieldnr)
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/* Create a bitmap for all fields of a table */
|
|
|
|
static
|
|
bool create_fields_bitmap(PARAM *param, MY_BITMAP *fields_bitmap)
|
|
{
|
|
my_bitmap_map *bitmap_buf;
|
|
|
|
if (!(bitmap_buf= (my_bitmap_map *) alloc_root(param->mem_root,
|
|
param->fields_bitmap_size)))
|
|
return TRUE;
|
|
if (my_bitmap_init(fields_bitmap, bitmap_buf, param->table->s->fields))
|
|
return TRUE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* Compare two indexes scans for sort before search for the best intersection */
|
|
|
|
static
|
|
int cmp_intersect_index_scan(INDEX_SCAN_INFO **a, INDEX_SCAN_INFO **b)
|
|
{
|
|
return CMP_NUM((*a)->records, (*b)->records);
|
|
}
|
|
|
|
|
|
static inline
|
|
void set_field_bitmap_for_index_prefix(MY_BITMAP *field_bitmap,
|
|
KEY_PART_INFO *key_part,
|
|
uint used_key_parts)
|
|
{
|
|
bitmap_clear_all(field_bitmap);
|
|
for (KEY_PART_INFO *key_part_end= key_part+used_key_parts;
|
|
key_part < key_part_end; key_part++)
|
|
{
|
|
bitmap_set_bit(field_bitmap, key_part->fieldnr-1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Round up table cardinality read from statistics provided by engine.
|
|
This function should go away when mysql test will allow to handle
|
|
more or less easily in the test suites deviations of InnoDB
|
|
statistical data.
|
|
*/
|
|
|
|
static inline
|
|
ha_rows get_table_cardinality_for_index_intersect(TABLE *table)
|
|
{
|
|
if (table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)
|
|
return table->stat_records();
|
|
else
|
|
{
|
|
ha_rows d;
|
|
double q;
|
|
for (q= (double)table->stat_records(), d= 1 ; q >= 10; q/= 10, d*= 10 ) ;
|
|
return (ha_rows) (floor(q+0.5) * d);
|
|
}
|
|
}
|
|
|
|
static
|
|
void print_keyparts(THD *thd, KEY *key, uint key_parts)
|
|
{
|
|
DBUG_ASSERT(thd->trace_started());
|
|
|
|
KEY_PART_INFO *part= key->key_part;
|
|
Json_writer_array keyparts(thd, "keyparts");
|
|
for(uint i= 0; i < key_parts; i++, part++)
|
|
keyparts.add(part->field->field_name);
|
|
}
|
|
|
|
|
|
static
|
|
ha_rows records_in_index_intersect_extension(PARTIAL_INDEX_INTERSECT_INFO *curr,
|
|
INDEX_SCAN_INFO *ext_index_scan);
|
|
|
|
/*
|
|
Prepare to search for the best index intersection
|
|
|
|
SYNOPSIS
|
|
prepare_search_best_index_intersect()
|
|
param common info about index ranges
|
|
tree tree of ranges for indexes than can be intersected
|
|
common OUT info needed for search to be filled by the function
|
|
init OUT info for an initial pseudo step of the intersection plans
|
|
cutoff_cost cut off cost of the interesting index intersection
|
|
|
|
DESCRIPTION
|
|
The function initializes all fields of the structure 'common' to be used
|
|
when searching for the best intersection plan. It also allocates
|
|
memory to store the most cheap index intersection.
|
|
|
|
NOTES
|
|
When selecting candidates for index intersection we always take only
|
|
one representative out of any set of indexes that share the same range
|
|
conditions. These indexes always have the same prefixes and the
|
|
components of this prefixes are exactly those used in these range
|
|
conditions.
|
|
Range conditions over clustered primary key (cpk) is always used only
|
|
as the condition that filters out some rowids retrieved by the scans
|
|
for secondary indexes. The cpk index will be handled in special way by
|
|
the function that search for the best index intersection.
|
|
|
|
RETURN
|
|
FALSE in the case of success
|
|
TRUE otherwise
|
|
*/
|
|
|
|
static
|
|
bool prepare_search_best_index_intersect(PARAM *param,
|
|
SEL_TREE *tree,
|
|
COMMON_INDEX_INTERSECT_INFO *common,
|
|
PARTIAL_INDEX_INTERSECT_INFO *init,
|
|
double cutoff_cost)
|
|
{
|
|
uint i;
|
|
uint n_search_scans;
|
|
double cost;
|
|
INDEX_SCAN_INFO **index_scan;
|
|
INDEX_SCAN_INFO **scan_ptr;
|
|
INDEX_SCAN_INFO *cpk_scan= NULL;
|
|
TABLE *table= param->table;
|
|
uint n_index_scans= (uint)(tree->index_scans_end - tree->index_scans);
|
|
THD *thd= param->thd;
|
|
|
|
if (n_index_scans <= 1)
|
|
return 1;
|
|
|
|
init->init();
|
|
init->common_info= common;
|
|
init->cost= cutoff_cost;
|
|
|
|
common->param= param;
|
|
common->key_size= table->file->ref_length;
|
|
common->compare_factor= ROWID_COMPARE_COST_THD(param->thd);
|
|
common->max_memory_size= (size_t)param->thd->variables.sortbuff_size;
|
|
common->cutoff_cost= cutoff_cost;
|
|
common->cpk_scan= NULL;
|
|
common->table_cardinality=
|
|
get_table_cardinality_for_index_intersect(table);
|
|
|
|
if (table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX)
|
|
{
|
|
INDEX_SCAN_INFO **index_scan_end;
|
|
index_scan= tree->index_scans;
|
|
index_scan_end= index_scan+n_index_scans;
|
|
for ( ; index_scan < index_scan_end; index_scan++)
|
|
{
|
|
if (table->file->is_clustering_key((*index_scan)->keynr))
|
|
{
|
|
common->cpk_scan= cpk_scan= *index_scan;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
i= n_index_scans - MY_TEST(cpk_scan != NULL) + 1;
|
|
|
|
if (!(common->search_scans =
|
|
(INDEX_SCAN_INFO **) alloc_root (param->mem_root,
|
|
sizeof(INDEX_SCAN_INFO *) * i)))
|
|
return TRUE;
|
|
bzero(common->search_scans, sizeof(INDEX_SCAN_INFO *) * i);
|
|
|
|
INDEX_SCAN_INFO **selected_index_scans= common->search_scans;
|
|
Json_writer_array potential_idx_scans(thd, "potential_index_scans");
|
|
for (i=0, index_scan= tree->index_scans; i < n_index_scans; i++, index_scan++)
|
|
{
|
|
Json_writer_object idx_scan(thd);
|
|
uint used_key_parts= (*index_scan)->used_key_parts;
|
|
KEY *key_info= (*index_scan)->key_info;
|
|
idx_scan.add("index", key_info->name);
|
|
|
|
if (*index_scan == cpk_scan)
|
|
{
|
|
if (unlikely(idx_scan.trace_started()))
|
|
idx_scan.
|
|
add("chosen", "false").
|
|
add("cause", "clustered index used for filtering");
|
|
continue;
|
|
}
|
|
if (cpk_scan && cpk_scan->used_key_parts >= used_key_parts &&
|
|
same_index_prefix(cpk_scan->key_info, key_info, used_key_parts))
|
|
{
|
|
if (unlikely(idx_scan.trace_started()))
|
|
idx_scan.
|
|
add("chosen", "false").
|
|
add("cause", "clustered index used for filtering");
|
|
continue;
|
|
}
|
|
|
|
cost= table->opt_range[(*index_scan)->keynr].index_only_fetch_cost(table);
|
|
|
|
idx_scan.add("cost", cost);
|
|
|
|
if (cost + COST_EPS >= cutoff_cost)
|
|
{
|
|
if (unlikely(idx_scan.trace_started()))
|
|
idx_scan.add("chosen", false).add("cause", "cost");
|
|
continue;
|
|
}
|
|
|
|
for (scan_ptr= selected_index_scans; *scan_ptr ; scan_ptr++)
|
|
{
|
|
/*
|
|
When we have range conditions for two different indexes with the same
|
|
beginning it does not make sense to consider both of them for index
|
|
intersection if the range conditions are covered by common initial
|
|
components of the indexes. Actually in this case the indexes are
|
|
guaranteed to have the same range conditions.
|
|
*/
|
|
if ((*scan_ptr)->used_key_parts == used_key_parts &&
|
|
same_index_prefix((*scan_ptr)->key_info, key_info, used_key_parts))
|
|
break;
|
|
}
|
|
if (!*scan_ptr || cost < (*scan_ptr)->index_read_cost)
|
|
{
|
|
if (unlikely(idx_scan.trace_started()))
|
|
{
|
|
idx_scan.add("chosen", true);
|
|
if (!*scan_ptr)
|
|
idx_scan.add("cause", "first occurrence of index prefix");
|
|
else
|
|
idx_scan.add("cause", "better cost for same idx prefix");
|
|
}
|
|
*scan_ptr= *index_scan;
|
|
(*scan_ptr)->index_read_cost= cost;
|
|
}
|
|
else if (unlikely(idx_scan.trace_started()))
|
|
{
|
|
idx_scan.add("chosen", false).add("cause", "cost");
|
|
}
|
|
}
|
|
potential_idx_scans.end();
|
|
|
|
ha_rows records_in_scans= 0;
|
|
|
|
for (scan_ptr=selected_index_scans, i= 0; *scan_ptr; scan_ptr++, i++)
|
|
{
|
|
if (create_fields_bitmap(param, &(*scan_ptr)->used_fields))
|
|
return TRUE;
|
|
records_in_scans+= (*scan_ptr)->records;
|
|
}
|
|
|
|
n_search_scans= i;
|
|
|
|
if (cpk_scan && create_fields_bitmap(param, &cpk_scan->used_fields))
|
|
return TRUE;
|
|
|
|
if (!(common->n_search_scans= n_search_scans))
|
|
return TRUE;
|
|
|
|
common->best_uses_cpk= FALSE;
|
|
common->best_cost= cutoff_cost;
|
|
common->best_length= 0;
|
|
|
|
if (!(common->best_intersect=
|
|
(INDEX_SCAN_INFO **) alloc_root (param->mem_root,
|
|
sizeof(INDEX_SCAN_INFO *) *
|
|
(i + MY_TEST(cpk_scan != NULL)))))
|
|
return TRUE;
|
|
|
|
size_t calc_cost_buff_size=
|
|
Unique::get_cost_calc_buff_size((size_t)records_in_scans,
|
|
common->key_size,
|
|
common->max_memory_size);
|
|
if (!(common->buff_elems= (uint *) alloc_root(param->mem_root,
|
|
calc_cost_buff_size)))
|
|
return TRUE;
|
|
|
|
my_qsort(selected_index_scans, n_search_scans, sizeof(INDEX_SCAN_INFO *),
|
|
(qsort_cmp) cmp_intersect_index_scan);
|
|
|
|
Json_writer_array selected_idx_scans(thd, "selected_index_scans");
|
|
if (cpk_scan)
|
|
{
|
|
PARTIAL_INDEX_INTERSECT_INFO curr;
|
|
set_field_bitmap_for_index_prefix(&cpk_scan->used_fields,
|
|
cpk_scan->key_info->key_part,
|
|
cpk_scan->used_key_parts);
|
|
curr.common_info= common;
|
|
curr.intersect_fields= &cpk_scan->used_fields;
|
|
curr.records= cpk_scan->records;
|
|
curr.length= 1;
|
|
for (scan_ptr=selected_index_scans; *scan_ptr; scan_ptr++)
|
|
{
|
|
KEY *key_info= (*scan_ptr)->key_info;
|
|
ha_rows scan_records= (*scan_ptr)->records;
|
|
ha_rows records= records_in_index_intersect_extension(&curr, *scan_ptr);
|
|
(*scan_ptr)->filtered_out= records >= scan_records ?
|
|
0 : scan_records-records;
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
Json_writer_object selected_idx(thd);
|
|
selected_idx.add("index", key_info->name);
|
|
print_keyparts(thd, key_info, (*scan_ptr)->used_key_parts);
|
|
selected_idx.
|
|
add("rows", (*scan_ptr)->records).
|
|
add("filtered_records", (*scan_ptr)->filtered_out);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (scan_ptr=selected_index_scans; *scan_ptr; scan_ptr++)
|
|
{
|
|
KEY *key_info= (*scan_ptr)->key_info;
|
|
(*scan_ptr)->filtered_out= 0;
|
|
if (unlikely(thd->trace_started()))
|
|
{
|
|
Json_writer_object selected_idx(thd);
|
|
selected_idx.add("index", key_info->name);
|
|
print_keyparts(thd, key_info, (*scan_ptr)->used_key_parts);
|
|
selected_idx.
|
|
add("rows", (*scan_ptr)->records).
|
|
add("filtered_records", (*scan_ptr)->filtered_out);
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
On Estimation of the Number of Records in an Index Intersection
|
|
===============================================================
|
|
|
|
Consider query Q over table t. Let C be the WHERE condition of this query,
|
|
and, idx1(a1_1,...,a1_k1) and idx2(a2_1,...,a2_k2) be some indexes defined
|
|
on table t.
|
|
Let rt1 and rt2 be the range trees extracted by the range optimizer from C
|
|
for idx1 and idx2 respectively.
|
|
Let #t be the estimate of the number of records in table t provided for the
|
|
optimizer.
|
|
Let #r1 and #r2 be the estimates of the number of records in the range trees
|
|
rt1 and rt2, respectively, obtained by the range optimizer.
|
|
|
|
We need to get an estimate for the number of records in the index
|
|
intersection of rt1 and rt2. In other words, we need to estimate the
|
|
cardinality of the set of records that are in both trees. Let's designate
|
|
this number by #r.
|
|
|
|
If we do not make any assumptions then we can only state that
|
|
#r<=MY_MIN(#r1,#r2).
|
|
With this estimate we can't say that the index intersection scan will be
|
|
cheaper than the cheapest index scan.
|
|
|
|
Let Rt1 and Rt2 be AND/OR conditions representing rt and rt2 respectively.
|
|
The probability that a record belongs to rt1 is sel(Rt1)=#r1/#t.
|
|
The probability that a record belongs to rt2 is sel(Rt2)=#r2/#t.
|
|
|
|
If we assume that the values in columns of idx1 and idx2 are independent
|
|
then #r/#t=sel(Rt1&Rt2)=sel(Rt1)*sel(Rt2)=(#r1/#t)*(#r2/#t).
|
|
So in this case we have: #r=#r1*#r2/#t.
|
|
|
|
The above assumption of independence of the columns in idx1 and idx2 means
|
|
that:
|
|
- all columns are different
|
|
- values from one column do not correlate with values from any other column.
|
|
|
|
We can't help with the case when column correlate with each other.
|
|
Yet, if they are assumed to be uncorrelated the value of #r theoretically can
|
|
be evaluated . Unfortunately this evaluation, in general, is rather complex.
|
|
|
|
Let's consider two indexes idx1:(dept, manager), idx2:(dept, building)
|
|
over table 'employee' and two range conditions over these indexes:
|
|
Rt1: dept=10 AND manager LIKE 'S%'
|
|
Rt2: dept=10 AND building LIKE 'L%'.
|
|
We can state that:
|
|
sel(Rt1&Rt2)=sel(dept=10)*sel(manager LIKE 'S%')*sel(building LIKE 'L%')
|
|
=sel(Rt1)*sel(Rt2)/sel(dept=10).
|
|
sel(Rt1/2_0:dept=10) can be estimated if we know the cardinality #r1_0 of
|
|
the range for sub-index idx1_0 (dept) of the index idx1 or the cardinality
|
|
#rt2_0 of the same range for sub-index idx2_0(dept) of the index idx2.
|
|
The current code does not make an estimate either for #rt1_0, or for #rt2_0,
|
|
but it can be adjusted to provide those numbers.
|
|
Alternatively, MY_MIN(rec_per_key) for (dept) could be used to get an upper
|
|
bound for the value of sel(Rt1&Rt2). Yet this statistics is not provided
|
|
now.
|
|
|
|
Let's consider two other indexes idx1:(dept, last_name),
|
|
idx2:(first_name, last_name) and two range conditions over these indexes:
|
|
Rt1: dept=5 AND last_name='Sm%'
|
|
Rt2: first_name='Robert' AND last_name='Sm%'.
|
|
|
|
sel(Rt1&Rt2)=sel(dept=5)*sel(last_name='Sm5')*sel(first_name='Robert')
|
|
=sel(Rt2)*sel(dept=5)
|
|
Here MY_MAX(rec_per_key) for (dept) could be used to get an upper bound for
|
|
the value of sel(Rt1&Rt2).
|
|
|
|
When the intersected indexes have different major columns, but some
|
|
minor column are common the picture may be more complicated.
|
|
|
|
Let's consider the following range conditions for the same indexes as in
|
|
the previous example:
|
|
Rt1: (Rt11: dept=5 AND last_name='So%')
|
|
OR
|
|
(Rt12: dept=7 AND last_name='Saw%')
|
|
Rt2: (Rt21: first_name='Robert' AND last_name='Saw%')
|
|
OR
|
|
(Rt22: first_name='Bob' AND last_name='So%')
|
|
Here we have:
|
|
sel(Rt1&Rt2)= sel(Rt11)*sel(Rt21)+sel(Rt22)*sel(dept=5) +
|
|
sel(Rt21)*sel(dept=7)+sel(Rt12)*sel(Rt22)
|
|
Now consider the range condition:
|
|
Rt1_0: (dept=5 OR dept=7)
|
|
For this condition we can state that:
|
|
sel(Rt1_0&Rt2)=(sel(dept=5)+sel(dept=7))*(sel(Rt21)+sel(Rt22))=
|
|
sel(dept=5)*sel(Rt21)+sel(dept=7)*sel(Rt21)+
|
|
sel(dept=5)*sel(Rt22)+sel(dept=7)*sel(Rt22)=
|
|
sel(dept=5)*sel(Rt21)+sel(Rt21)*sel(dept=7)+
|
|
sel(Rt22)*sel(dept=5)+sel(dept=7)*sel(Rt22) >
|
|
sel(Rt11)*sel(Rt21)+sel(Rt22)*sel(dept=5)+
|
|
sel(Rt21)*sel(dept=7)+sel(Rt12)*sel(Rt22) >
|
|
sel(Rt1 & Rt2)
|
|
|
|
We've just demonstrated for an example what is intuitively almost obvious
|
|
in general. We can remove the ending parts fromrange trees getting less
|
|
selective range conditions for sub-indexes.
|
|
So if not a most major component with the number k of an index idx is
|
|
encountered in the index with which we intersect we can use the sub-index
|
|
idx_k-1 that includes the components of idx up to the i-th component and
|
|
the range tree for idx_k-1 to make an upper bound estimate for the number
|
|
of records in the index intersection.
|
|
The range tree for idx_k-1 we use here is the subtree of the original range
|
|
tree for idx that contains only parts from the first k-1 components.
|
|
|
|
As it was mentioned above the range optimizer currently does not provide
|
|
an estimate for the number of records in the ranges for sub-indexes.
|
|
However, some reasonable upper bound estimate can be obtained.
|
|
|
|
Let's consider the following range tree:
|
|
Rt: (first_name='Robert' AND last_name='Saw%')
|
|
OR
|
|
(first_name='Bob' AND last_name='So%')
|
|
Let #r be the number of records in Rt. Let f_1 be the fan-out of column
|
|
last_name:
|
|
f_1 = rec_per_key[first_name]/rec_per_key[last_name].
|
|
The the number of records in the range tree:
|
|
Rt_0: (first_name='Robert' OR first_name='Bob')
|
|
for the sub-index (first_name) is not greater than MY_MAX(#r*f_1, #t).
|
|
Strictly speaking, we can state only that it's not greater than
|
|
MY_MAX(#r*max_f_1, #t), where
|
|
max_f_1= max_rec_per_key[first_name]/min_rec_per_key[last_name].
|
|
Yet, if #r/#t is big enough (and this is the case of an index intersection,
|
|
because using this index range with a single index scan is cheaper than
|
|
the cost of the intersection when #r/#t is small) then almost safely we
|
|
can use here f_1 instead of max_f_1.
|
|
|
|
The above considerations can be used in future development. Now, they are
|
|
used partly in the function that provides a rough upper bound estimate for
|
|
the number of records in an index intersection that follow below.
|
|
*/
|
|
|
|
/*
|
|
Estimate the number of records selected by an extension a partial intersection
|
|
|
|
SYNOPSIS
|
|
records_in_index_intersect_extension()
|
|
curr partial intersection plan to be extended
|
|
ext_index_scan the evaluated extension of this partial plan
|
|
|
|
DESCRIPTION
|
|
The function provides an estimate for the number of records in the
|
|
intersection of the partial index intersection curr with the index
|
|
ext_index_scan. If all intersected indexes does not have common columns
|
|
then the function returns an exact estimate (assuming there are no
|
|
correlations between values in the columns). If the intersected indexes
|
|
have common columns the function returns an upper bound for the number
|
|
of records in the intersection provided that the intersection of curr
|
|
with ext_index_scan can is expected to have less records than the expected
|
|
number of records in the partial intersection curr. In this case the
|
|
function also assigns the bitmap of the columns in the extended
|
|
intersection to ext_index_scan->used_fields.
|
|
If the function cannot expect that the number of records in the extended
|
|
intersection is less that the expected number of records #r in curr then
|
|
the function returns a number bigger than #r.
|
|
|
|
NOTES
|
|
See the comment before the desription of the function that explains the
|
|
reasoning used by this function.
|
|
|
|
RETURN
|
|
The expected number of rows in the extended index intersection
|
|
*/
|
|
|
|
static
|
|
ha_rows records_in_index_intersect_extension(PARTIAL_INDEX_INTERSECT_INFO *curr,
|
|
INDEX_SCAN_INFO *ext_index_scan)
|
|
{
|
|
KEY *key_info= ext_index_scan->key_info;
|
|
KEY_PART_INFO* key_part= key_info->key_part;
|
|
uint used_key_parts= ext_index_scan->used_key_parts;
|
|
MY_BITMAP *used_fields= &ext_index_scan->used_fields;
|
|
|
|
if (!curr->length)
|
|
{
|
|
/*
|
|
If this the first index in the intersection just mark the
|
|
fields in the used_fields bitmap and return the expected
|
|
number of records in the range scan for the index provided
|
|
by the range optimizer.
|
|
*/
|
|
set_field_bitmap_for_index_prefix(used_fields, key_part, used_key_parts);
|
|
return ext_index_scan->records;
|
|
}
|
|
|
|
uint i;
|
|
bool better_selectivity= FALSE;
|
|
ha_rows records= curr->records;
|
|
MY_BITMAP *curr_intersect_fields= curr->intersect_fields;
|
|
for (i= 0; i < used_key_parts; i++, key_part++)
|
|
{
|
|
if (bitmap_is_set(curr_intersect_fields, key_part->fieldnr-1))
|
|
break;
|
|
}
|
|
if (i)
|
|
{
|
|
ha_rows table_cardinality= curr->common_info->table_cardinality;
|
|
ha_rows ext_records= ext_index_scan->records;
|
|
if (i < used_key_parts)
|
|
{
|
|
double f1= key_info->actual_rec_per_key(i-1);
|
|
double f2= key_info->actual_rec_per_key(i);
|
|
ext_records= (ha_rows) ((double) ext_records / f2 * f1);
|
|
}
|
|
if (ext_records < table_cardinality)
|
|
{
|
|
better_selectivity= TRUE;
|
|
records= (ha_rows) ((double) records / table_cardinality *
|
|
ext_records);
|
|
bitmap_copy(used_fields, curr_intersect_fields);
|
|
key_part= key_info->key_part;
|
|
for (uint j= 0; j < used_key_parts; j++, key_part++)
|
|
bitmap_set_bit(used_fields, key_part->fieldnr-1);
|
|
}
|
|
}
|
|
return !better_selectivity ? records+1 :
|
|
!records ? 1 : records;
|
|
}
|
|
|
|
|
|
/*
|
|
Estimate the cost a binary search within disjoint cpk range intervals
|
|
|
|
Number of comparisons to check whether a cpk value satisfies
|
|
the cpk range condition = log2(cpk_scan->range_count).
|
|
*/
|
|
|
|
static inline
|
|
double get_cpk_filter_cost(ha_rows filtered_records,
|
|
INDEX_SCAN_INFO *cpk_scan,
|
|
double compare_factor)
|
|
{
|
|
return (log((double) (cpk_scan->range_count+1)) * compare_factor / M_LN2 *
|
|
filtered_records);
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether a patial index intersection plan can be extended
|
|
|
|
SYNOPSIS
|
|
check_index_intersect_extension()
|
|
curr partial intersection plan to be extended
|
|
ext_index_scan a possible extension of this plan to be checked
|
|
next OUT the structure to be filled for the extended plan
|
|
|
|
DESCRIPTION
|
|
The function checks whether it makes sense to extend the index
|
|
intersection plan adding the index ext_index_scan, and, if this
|
|
the case, the function fills in the structure for the extended plan.
|
|
|
|
RETURN
|
|
TRUE if it makes sense to extend the given plan
|
|
FALSE otherwise
|
|
*/
|
|
|
|
static
|
|
bool check_index_intersect_extension(THD *thd,
|
|
PARTIAL_INDEX_INTERSECT_INFO *curr,
|
|
INDEX_SCAN_INFO *ext_index_scan,
|
|
PARTIAL_INDEX_INTERSECT_INFO *next)
|
|
{
|
|
ha_rows records;
|
|
ha_rows records_sent_to_unique;
|
|
double cost;
|
|
ha_rows ext_index_scan_records= ext_index_scan->records;
|
|
ha_rows records_filtered_out_by_cpk= ext_index_scan->filtered_out;
|
|
COMMON_INDEX_INTERSECT_INFO *common_info= curr->common_info;
|
|
double cutoff_cost= common_info->cutoff_cost;
|
|
uint idx= curr->length;
|
|
Json_writer_object trace(thd, "check_index_intersect_extension");
|
|
|
|
next->index_read_cost= curr->index_read_cost+ext_index_scan->index_read_cost;
|
|
if (next->index_read_cost > cutoff_cost)
|
|
{
|
|
if (unlikely(trace.trace_started()))
|
|
trace.
|
|
add("index", ext_index_scan->key_info->name.str).
|
|
add("cost", next->index_read_cost).
|
|
add("chosen", false).
|
|
add("cause", "cost");
|
|
return FALSE;
|
|
}
|
|
|
|
if ((next->in_memory= curr->in_memory))
|
|
next->in_memory_cost= curr->in_memory_cost;
|
|
|
|
next->intersect_fields= &ext_index_scan->used_fields;
|
|
next->filtered_scans= curr->filtered_scans;
|
|
|
|
records_sent_to_unique= curr->records_sent_to_unique;
|
|
|
|
next->use_cpk_filter= FALSE;
|
|
|
|
/* Calculate the cost of using a Unique object for index intersection */
|
|
if (idx && next->in_memory)
|
|
{
|
|
/*
|
|
All rowids received from the first scan are expected in one unique tree
|
|
*/
|
|
ha_rows elems_in_tree= common_info->search_scans[0]->records-
|
|
common_info->search_scans[0]->filtered_out ;
|
|
next->in_memory_cost+= Unique::get_search_cost(elems_in_tree,
|
|
common_info->compare_factor)*
|
|
ext_index_scan_records;
|
|
cost= next->in_memory_cost;
|
|
|
|
}
|
|
else
|
|
{
|
|
uint *buff_elems= common_info->buff_elems;
|
|
uint key_size= common_info->key_size;
|
|
double compare_factor= common_info->compare_factor;
|
|
size_t max_memory_size= common_info->max_memory_size;
|
|
|
|
records_sent_to_unique+= ext_index_scan_records;
|
|
cost= Unique::get_use_cost(thd, buff_elems, (size_t) records_sent_to_unique,
|
|
key_size,
|
|
max_memory_size, compare_factor, TRUE,
|
|
&next->in_memory);
|
|
if (records_filtered_out_by_cpk)
|
|
{
|
|
/* Check whether using cpk filter for this scan is beneficial */
|
|
|
|
double cost2;
|
|
bool in_memory2;
|
|
ha_rows records2= records_sent_to_unique-records_filtered_out_by_cpk;
|
|
cost2= Unique::get_use_cost(thd, buff_elems, (size_t) records2, key_size,
|
|
max_memory_size, compare_factor, TRUE,
|
|
&in_memory2);
|
|
cost2+= get_cpk_filter_cost(ext_index_scan_records, common_info->cpk_scan,
|
|
compare_factor);
|
|
if (cost > cost2 + COST_EPS)
|
|
{
|
|
cost= cost2;
|
|
next->in_memory= in_memory2;
|
|
next->use_cpk_filter= TRUE;
|
|
records_sent_to_unique= records2;
|
|
}
|
|
|
|
}
|
|
if (next->in_memory)
|
|
next->in_memory_cost= cost;
|
|
}
|
|
if (unlikely(trace.trace_started()))
|
|
{
|
|
trace.
|
|
add("index", ext_index_scan->key_info->name.str).
|
|
add("in_memory", next->in_memory).
|
|
add("range_rows", ext_index_scan_records).
|
|
add("rows_sent_to_unique", records_sent_to_unique).
|
|
add("unique_cost", cost).
|
|
add("index_read_cost", next->index_read_cost);
|
|
if (next->use_cpk_filter)
|
|
trace.add("rows_filtered_out_by_clustered_pk", records_filtered_out_by_cpk);
|
|
}
|
|
|
|
|
|
if (next->use_cpk_filter)
|
|
{
|
|
next->filtered_scans.set_bit(ext_index_scan->keynr);
|
|
bitmap_union(&ext_index_scan->used_fields,
|
|
&common_info->cpk_scan->used_fields);
|
|
}
|
|
next->records_sent_to_unique= records_sent_to_unique;
|
|
|
|
records= records_in_index_intersect_extension(curr, ext_index_scan);
|
|
if (idx && records > curr->records)
|
|
{
|
|
if (unlikely(trace.trace_started()))
|
|
trace.
|
|
add("rows", records).
|
|
add("chosen", false).
|
|
add("cause", "too many rows");
|
|
return FALSE;
|
|
}
|
|
if (next->use_cpk_filter && curr->filtered_scans.is_clear_all())
|
|
records-= records_filtered_out_by_cpk;
|
|
next->records= records;
|
|
|
|
cost+= next->index_read_cost;
|
|
if (cost >= cutoff_cost)
|
|
{
|
|
if (unlikely(trace.trace_started()))
|
|
trace.add("cost", cost).add("chosen", false).add("cause", "cost");
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
The cost after sweeep can be bigger than cutoff, but that is ok as the
|
|
end cost can decrease when we add the next index.
|
|
*/
|
|
cost+= get_sweep_read_cost(common_info->param, rows2double(records), 1);
|
|
|
|
next->cost= cost;
|
|
next->length= curr->length+1;
|
|
|
|
if (unlikely(trace.trace_started()))
|
|
trace.add("rows", records).add("cost", cost).add("chosen", true);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Search for the cheapest extensions of range scans used to access a table
|
|
|
|
SYNOPSIS
|
|
find_index_intersect_best_extension()
|
|
curr partial intersection to evaluate all possible extension for
|
|
|
|
DESCRIPTION
|
|
The function tries to extend the partial plan curr in all possible ways
|
|
to look for a cheapest index intersection whose cost less than the
|
|
cut off value set in curr->common_info.cutoff_cost.
|
|
*/
|
|
|
|
static
|
|
void find_index_intersect_best_extension(THD *thd,
|
|
PARTIAL_INDEX_INTERSECT_INFO *curr)
|
|
{
|
|
PARTIAL_INDEX_INTERSECT_INFO next;
|
|
COMMON_INDEX_INTERSECT_INFO *common_info= curr->common_info;
|
|
INDEX_SCAN_INFO **index_scans= common_info->search_scans;
|
|
uint idx= curr->length;
|
|
INDEX_SCAN_INFO **rem_first_index_scan_ptr= &index_scans[idx];
|
|
double cost= curr->cost;
|
|
|
|
if (cost + COST_EPS < common_info->best_cost)
|
|
{
|
|
common_info->best_cost= cost;
|
|
common_info->best_length= curr->length;
|
|
common_info->best_records= curr->records;
|
|
common_info->filtered_scans= curr->filtered_scans;
|
|
/* common_info->best_uses_cpk <=> at least one scan uses a cpk filter */
|
|
common_info->best_uses_cpk= !curr->filtered_scans.is_clear_all();
|
|
uint sz= sizeof(INDEX_SCAN_INFO *) * curr->length;
|
|
memcpy(common_info->best_intersect, common_info->search_scans, sz);
|
|
common_info->cutoff_cost= cost;
|
|
}
|
|
|
|
if (!(*rem_first_index_scan_ptr))
|
|
return;
|
|
|
|
next.common_info= common_info;
|
|
|
|
Json_writer_array potential_index_intersect(thd, "potential_index_intersect");
|
|
|
|
INDEX_SCAN_INFO *rem_first_index_scan= *rem_first_index_scan_ptr;
|
|
for (INDEX_SCAN_INFO **index_scan_ptr= rem_first_index_scan_ptr;
|
|
*index_scan_ptr; index_scan_ptr++)
|
|
{
|
|
Json_writer_object selected(thd);
|
|
*rem_first_index_scan_ptr= *index_scan_ptr;
|
|
*index_scan_ptr= rem_first_index_scan;
|
|
if (check_index_intersect_extension(thd, curr, *rem_first_index_scan_ptr,
|
|
&next))
|
|
find_index_intersect_best_extension(thd, &next);
|
|
*index_scan_ptr= *rem_first_index_scan_ptr;
|
|
*rem_first_index_scan_ptr= rem_first_index_scan;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Get the plan of the best intersection of range scans used to access a table
|
|
|
|
SYNOPSIS
|
|
get_best_index_intersect()
|
|
param common info about index ranges
|
|
tree tree of ranges for indexes than can be intersected
|
|
read_time cut off value for the evaluated plans
|
|
|
|
DESCRIPTION
|
|
The function looks for the cheapest index intersection of the range
|
|
scans to access a table. The info about the ranges for all indexes
|
|
is provided by the range optimizer and is passed through the
|
|
parameters param and tree. Any plan whose cost is greater than read_time
|
|
is rejected.
|
|
After the best index intersection is found the function constructs
|
|
the structure that manages the execution by the chosen plan.
|
|
|
|
RETURN
|
|
Pointer to the generated execution structure if a success,
|
|
0 - otherwise.
|
|
*/
|
|
|
|
static
|
|
TRP_INDEX_INTERSECT *get_best_index_intersect(PARAM *param, SEL_TREE *tree,
|
|
double read_time)
|
|
{
|
|
uint i;
|
|
uint count;
|
|
TRP_RANGE **cur_range;
|
|
TRP_RANGE **range_scans;
|
|
INDEX_SCAN_INFO *index_scan;
|
|
COMMON_INDEX_INTERSECT_INFO common;
|
|
PARTIAL_INDEX_INTERSECT_INFO init;
|
|
TRP_INDEX_INTERSECT *intersect_trp= NULL;
|
|
TABLE *table= param->table;
|
|
THD *thd= param->thd;
|
|
DBUG_ENTER("get_best_index_intersect");
|
|
|
|
Json_writer_object trace_idx_interect(thd, "analyzing_sort_intersect");
|
|
|
|
if (unlikely(trace_idx_interect.trace_started()))
|
|
trace_idx_interect.add("cutoff_cost", read_time);
|
|
|
|
if (prepare_search_best_index_intersect(param, tree, &common, &init,
|
|
read_time))
|
|
DBUG_RETURN(NULL);
|
|
|
|
find_index_intersect_best_extension(thd, &init);
|
|
|
|
if (common.best_length <= 1 && !common.best_uses_cpk)
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (common.best_uses_cpk)
|
|
{
|
|
memmove((char *) (common.best_intersect+1), (char *) common.best_intersect,
|
|
sizeof(INDEX_SCAN_INFO *) * common.best_length);
|
|
common.best_intersect[0]= common.cpk_scan;
|
|
common.best_length++;
|
|
}
|
|
|
|
count= common.best_length;
|
|
|
|
if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
|
|
sizeof(TRP_RANGE *)*
|
|
count)))
|
|
DBUG_RETURN(NULL);
|
|
|
|
for (i= 0, cur_range= range_scans; i < count; i++)
|
|
{
|
|
index_scan= common.best_intersect[i];
|
|
if ((*cur_range= new (param->mem_root) TRP_RANGE(index_scan->sel_arg,
|
|
index_scan->idx, 0)))
|
|
{
|
|
TRP_RANGE *trp= *cur_range;
|
|
trp->read_cost= index_scan->index_read_cost;
|
|
trp->records= index_scan->records;
|
|
trp->is_ror= FALSE;
|
|
trp->mrr_buf_size= 0;
|
|
table->intersect_keys.set_bit(index_scan->keynr);
|
|
cur_range++;
|
|
}
|
|
}
|
|
|
|
count= (uint)(tree->index_scans_end - tree->index_scans);
|
|
for (i= 0; i < count; i++)
|
|
{
|
|
index_scan= tree->index_scans[i];
|
|
if (!table->intersect_keys.is_set(index_scan->keynr))
|
|
{
|
|
for (uint j= 0; j < common.best_length; j++)
|
|
{
|
|
INDEX_SCAN_INFO *scan= common.best_intersect[j];
|
|
if (same_index_prefix(index_scan->key_info, scan->key_info,
|
|
scan->used_key_parts))
|
|
{
|
|
table->intersect_keys.set_bit(index_scan->keynr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((intersect_trp= new (param->mem_root)TRP_INDEX_INTERSECT))
|
|
{
|
|
|
|
intersect_trp->read_cost= common.best_cost;
|
|
intersect_trp->records= common.best_records;
|
|
intersect_trp->range_scans= range_scans;
|
|
intersect_trp->range_scans_end= cur_range;
|
|
intersect_trp->filtered_scans= common.filtered_scans;
|
|
if (unlikely(trace_idx_interect.trace_started()))
|
|
trace_idx_interect.
|
|
add("rows", intersect_trp->records).
|
|
add("cost", intersect_trp->read_cost).
|
|
add("chosen",true);
|
|
}
|
|
DBUG_RETURN(intersect_trp);
|
|
}
|
|
|
|
|
|
typedef struct st_ror_scan_info : INDEX_SCAN_INFO
|
|
{
|
|
} ROR_SCAN_INFO;
|
|
|
|
void TRP_ROR_INTERSECT::trace_basic_info(PARAM *param,
|
|
Json_writer_object *trace_object) const
|
|
{
|
|
THD *thd= param->thd;
|
|
DBUG_ASSERT(trace_object->trace_started());
|
|
|
|
trace_object->
|
|
add("type", "index_roworder_intersect").
|
|
add("rows", records).
|
|
add("cost", read_cost).
|
|
add("covering", is_covering).
|
|
add("clustered_pk_scan", cpk_scan != NULL);
|
|
|
|
Json_writer_array smth_trace(thd, "intersect_of");
|
|
for (ROR_SCAN_INFO **cur_scan= first_scan; cur_scan != last_scan;
|
|
cur_scan++)
|
|
{
|
|
const KEY &cur_key= param->table->key_info[(*cur_scan)->keynr];
|
|
const KEY_PART_INFO *key_part= cur_key.key_part;
|
|
|
|
Json_writer_object trace_isect_idx(thd);
|
|
trace_isect_idx.
|
|
add("type", "range_scan").
|
|
add("index", cur_key.name).
|
|
add("rows", (*cur_scan)->records);
|
|
|
|
Json_writer_array trace_range(thd, "ranges");
|
|
|
|
trace_ranges(&trace_range, param, (*cur_scan)->idx,
|
|
(*cur_scan)->sel_arg, key_part);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
|
|
sel_arg set of intervals.
|
|
|
|
SYNOPSIS
|
|
make_ror_scan()
|
|
param Parameter from test_quick_select function
|
|
idx Index of key in param->keys
|
|
sel_arg Set of intervals for a given key
|
|
|
|
RETURN
|
|
NULL - out of memory
|
|
ROR scan structure containing a scan for {idx, sel_arg}
|
|
*/
|
|
|
|
static
|
|
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
|
|
{
|
|
ROR_SCAN_INFO *ror_scan;
|
|
my_bitmap_map *bitmap_buf;
|
|
uint keynr;
|
|
handler *file= param->table->file;
|
|
DBUG_ENTER("make_ror_scan");
|
|
|
|
if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
|
|
sizeof(ROR_SCAN_INFO))))
|
|
DBUG_RETURN(NULL);
|
|
|
|
ror_scan->idx= idx;
|
|
ror_scan->keynr= keynr= param->real_keynr[idx];
|
|
ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
|
|
file->ref_length);
|
|
ror_scan->sel_arg= sel_arg;
|
|
ror_scan->records= param->quick_rows[keynr];
|
|
|
|
if (!(bitmap_buf= (my_bitmap_map*) alloc_root(param->mem_root,
|
|
param->fields_bitmap_size)))
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (my_bitmap_init(&ror_scan->covered_fields, bitmap_buf,
|
|
param->table->s->fields))
|
|
DBUG_RETURN(NULL);
|
|
bitmap_clear_all(&ror_scan->covered_fields);
|
|
|
|
KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
|
|
KEY_PART_INFO *key_part_end= key_part +
|
|
param->table->key_info[keynr].user_defined_key_parts;
|
|
for (;key_part != key_part_end; ++key_part)
|
|
{
|
|
if (bitmap_is_set(¶m->needed_fields, key_part->fieldnr-1))
|
|
bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr-1);
|
|
}
|
|
|
|
/*
|
|
Cost of reading the keys for the rows, which are later stored in the
|
|
ror queue.
|
|
*/
|
|
ror_scan->index_read_cost=
|
|
file->cost(file->ha_keyread_and_copy_time(ror_scan->keynr, 1,
|
|
ror_scan->records, 0));
|
|
DBUG_RETURN(ror_scan);
|
|
}
|
|
|
|
|
|
/*
|
|
Compare two ROR_SCAN_INFO** by E(#records_matched) * key_record_length.
|
|
SYNOPSIS
|
|
cmp_ror_scan_info()
|
|
a ptr to first compared value
|
|
b ptr to second compared value
|
|
|
|
RETURN
|
|
-1 a < b
|
|
0 a = b
|
|
1 a > b
|
|
*/
|
|
|
|
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
|
|
{
|
|
double val1= rows2double((*a)->records) * (*a)->key_rec_length;
|
|
double val2= rows2double((*b)->records) * (*b)->key_rec_length;
|
|
return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
|
|
}
|
|
|
|
/*
|
|
Compare two ROR_SCAN_INFO** by
|
|
(#covered fields in F desc,
|
|
#components asc,
|
|
number of first not covered component asc)
|
|
|
|
SYNOPSIS
|
|
cmp_ror_scan_info_covering()
|
|
a ptr to first compared value
|
|
b ptr to second compared value
|
|
|
|
RETURN
|
|
-1 a < b
|
|
0 a = b
|
|
1 a > b
|
|
*/
|
|
|
|
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
|
|
{
|
|
if ((*a)->used_fields_covered > (*b)->used_fields_covered)
|
|
return -1;
|
|
if ((*a)->used_fields_covered < (*b)->used_fields_covered)
|
|
return 1;
|
|
if ((*a)->key_components < (*b)->key_components)
|
|
return -1;
|
|
if ((*a)->key_components > (*b)->key_components)
|
|
return 1;
|
|
if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
|
|
return -1;
|
|
if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Auxiliary structure for incremental ROR-intersection creation */
|
|
typedef struct
|
|
{
|
|
const PARAM *param;
|
|
MY_BITMAP covered_fields; /* union of fields covered by all scans */
|
|
/*
|
|
Fraction of table records that satisfies conditions of all scans.
|
|
This is the number of full records that will be retrieved if a
|
|
non-index_only index intersection will be employed.
|
|
*/
|
|
double out_rows;
|
|
/* TRUE if covered_fields is a superset of needed_fields */
|
|
bool is_covering;
|
|
|
|
ha_rows index_records; /* sum(#records to look in indexes) */
|
|
double index_scan_costs; /* SUM(cost of 'index-only' scans) */
|
|
double total_cost;
|
|
} ROR_INTERSECT_INFO;
|
|
|
|
|
|
/*
|
|
Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.
|
|
|
|
SYNOPSIS
|
|
ror_intersect_init()
|
|
param Parameter from test_quick_select
|
|
|
|
RETURN
|
|
allocated structure
|
|
NULL on error
|
|
*/
|
|
|
|
static
|
|
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
|
|
{
|
|
ROR_INTERSECT_INFO *info;
|
|
my_bitmap_map* buf;
|
|
if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
|
|
sizeof(ROR_INTERSECT_INFO))))
|
|
return NULL;
|
|
info->param= param;
|
|
if (!(buf= (my_bitmap_map*) alloc_root(param->mem_root,
|
|
param->fields_bitmap_size)))
|
|
return NULL;
|
|
if (my_bitmap_init(&info->covered_fields, buf, param->table->s->fields))
|
|
return NULL;
|
|
info->is_covering= FALSE;
|
|
info->index_scan_costs= 0.0;
|
|
info->index_records= 0;
|
|
info->out_rows= (double) param->table->stat_records();
|
|
bitmap_clear_all(&info->covered_fields);
|
|
return info;
|
|
}
|
|
|
|
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
|
|
{
|
|
dst->param= src->param;
|
|
memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap,
|
|
no_bytes_in_map(&src->covered_fields));
|
|
dst->out_rows= src->out_rows;
|
|
dst->is_covering= src->is_covering;
|
|
dst->index_records= src->index_records;
|
|
dst->index_scan_costs= src->index_scan_costs;
|
|
dst->total_cost= src->total_cost;
|
|
}
|
|
|
|
|
|
/*
|
|
Get selectivity of a ROR scan wrt ROR-intersection.
|
|
|
|
SYNOPSIS
|
|
ror_scan_selectivity()
|
|
info ROR-interection
|
|
scan ROR scan
|
|
|
|
NOTES
|
|
Suppose we have a condition on several keys
|
|
cond=k_11=c_11 AND k_12=c_12 AND ... // parts of first key
|
|
k_21=c_21 AND k_22=c_22 AND ... // parts of second key
|
|
...
|
|
k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //parts of the key used by *scan
|
|
|
|
where k_ij may be the same as any k_pq (i.e. keys may have common parts).
|
|
|
|
A full row is retrieved if entire condition holds.
|
|
|
|
The recursive procedure for finding P(cond) is as follows:
|
|
|
|
First step:
|
|
Pick 1st part of 1st key and break conjunction (1) into two parts:
|
|
cond= (k_11=c_11 AND R)
|
|
|
|
Here R may still contain condition(s) equivalent to k_11=c_11.
|
|
Nevertheless, the following holds:
|
|
|
|
P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
|
|
|
|
Mark k_11 as fixed field (and satisfied condition) F, save P(F),
|
|
save R to be cond and proceed to recursion step.
|
|
|
|
Recursion step:
|
|
We have a set of fixed fields/satisfied conditions) F, probability P(F),
|
|
and remaining conjunction R
|
|
Pick next key part on current key and its condition "k_ij=c_ij".
|
|
We will add "k_ij=c_ij" into F and update P(F).
|
|
Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then
|
|
|
|
P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
|
|
|
|
(where '|' mean conditional probability, not "or")
|
|
|
|
Consider the first multiplier in (2). One of the following holds:
|
|
a) F contains condition on field used in t (i.e. t AND F = F).
|
|
Then P(t|F) = 1
|
|
|
|
b) F doesn't contain condition on field used in t. Then F and t are
|
|
considered independent.
|
|
|
|
P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
|
|
= P(t|fields_before_t_in_key).
|
|
|
|
P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
|
|
#records(fields_before_t_in_key, t)
|
|
|
|
The second multiplier is calculated by applying this step recursively.
|
|
|
|
IMPLEMENTATION
|
|
This function calculates the result of application of the "recursion step"
|
|
described above for all fixed key members of a single key, accumulating set
|
|
of covered fields, selectivity, etc.
|
|
|
|
The calculation is conducted as follows:
|
|
Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
|
|
|
|
n_{k1} n_{k2}
|
|
--------- * --------- * .... (3)
|
|
n_{k1-1} n_{k2-1}
|
|
|
|
where k1,k2,... are key parts which fields were not yet marked as fixed
|
|
( this is result of application of option b) of the recursion step for
|
|
parts of a single key).
|
|
Since it is reasonable to expect that most of the fields are not marked
|
|
as fixed, we calculate (3) as
|
|
|
|
n_{i1} n_{i2}
|
|
(3) = n_{max_key_part} / ( --------- * --------- * .... )
|
|
n_{i1-1} n_{i2-1}
|
|
|
|
where i1,i2, .. are key parts that were already marked as fixed.
|
|
|
|
In order to minimize number of expensive records_in_range calls we group
|
|
and reduce adjacent fractions.
|
|
|
|
RETURN
|
|
Selectivity of given ROR scan.
|
|
*/
|
|
|
|
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info,
|
|
const ROR_SCAN_INFO *scan)
|
|
{
|
|
double selectivity_mult= 1.0;
|
|
KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
|
|
uchar key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
|
|
uchar *key_ptr= key_val;
|
|
SEL_ARG *sel_arg, *tuple_arg= NULL;
|
|
key_part_map keypart_map= 0;
|
|
bool cur_covered;
|
|
bool prev_covered= MY_TEST(bitmap_is_set(&info->covered_fields,
|
|
key_part->fieldnr - 1));
|
|
key_range min_range;
|
|
key_range max_range;
|
|
min_range.key= key_val;
|
|
min_range.flag= HA_READ_KEY_EXACT;
|
|
max_range.key= key_val;
|
|
max_range.flag= HA_READ_AFTER_KEY;
|
|
ha_rows prev_records= info->param->table->stat_records();
|
|
DBUG_ENTER("ror_scan_selectivity");
|
|
|
|
for (sel_arg= scan->sel_arg; sel_arg;
|
|
sel_arg= sel_arg->next_key_part)
|
|
{
|
|
DBUG_PRINT("info",("sel_arg step"));
|
|
cur_covered= MY_TEST(bitmap_is_set(&info->covered_fields,
|
|
key_part[sel_arg->part].fieldnr - 1));
|
|
if (cur_covered != prev_covered)
|
|
{
|
|
/* create (part1val, ..., part{n-1}val) tuple. */
|
|
ha_rows records;
|
|
page_range pages;
|
|
if (!tuple_arg)
|
|
{
|
|
tuple_arg= scan->sel_arg;
|
|
/* Here we use the length of the first key part */
|
|
tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
|
|
keypart_map= 1;
|
|
}
|
|
while (tuple_arg->next_key_part != sel_arg)
|
|
{
|
|
tuple_arg= tuple_arg->next_key_part;
|
|
tuple_arg->store_min(key_part[tuple_arg->part].store_length,
|
|
&key_ptr, 0);
|
|
keypart_map= (keypart_map << 1) | 1;
|
|
}
|
|
min_range.length= max_range.length= (uint) (key_ptr - key_val);
|
|
min_range.keypart_map= max_range.keypart_map= keypart_map;
|
|
records= (info->param->table->file->
|
|
records_in_range(scan->keynr, &min_range, &max_range, &pages));
|
|
if (cur_covered)
|
|
{
|
|
/* uncovered -> covered */
|
|
double tmp= rows2double(records)/rows2double(prev_records);
|
|
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
|
|
selectivity_mult *= tmp;
|
|
prev_records= HA_POS_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* covered -> uncovered */
|
|
prev_records= records;
|
|
}
|
|
}
|
|
prev_covered= cur_covered;
|
|
}
|
|
if (!prev_covered)
|
|
{
|
|
double tmp= rows2double(info->param->quick_rows[scan->keynr]) /
|
|
rows2double(prev_records);
|
|
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
|
|
selectivity_mult *= tmp;
|
|
}
|
|
DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
|
|
DBUG_RETURN(selectivity_mult);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if adding a ROR scan to a ROR-intersection reduces its cost of
|
|
ROR-intersection and if yes, update parameters of ROR-intersection,
|
|
including its cost.
|
|
|
|
SYNOPSIS
|
|
ror_intersect_add()
|
|
param Parameter from test_quick_select
|
|
info ROR-intersection structure to add the scan to.
|
|
ror_scan ROR scan info to add.
|
|
is_cpk_scan If TRUE, add the scan as CPK scan (this can be inferred
|
|
from other parameters and is passed separately only to
|
|
avoid duplicating the inference code)
|
|
|
|
NOTES
|
|
Adding a ROR scan to ROR-intersect "makes sense" if the cost of ROR-
|
|
intersection decreases. The cost of ROR-intersection is calculated as
|
|
follows:
|
|
|
|
cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval
|
|
|
|
When we add a scan the first increases and the second decreases.
|
|
|
|
cost_of_full_rows_retrieval=
|
|
(union of indexes used covers all needed fields) ?
|
|
cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
|
|
0
|
|
|
|
E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
|
|
ror_scan_selectivity({scan1}, scan2) * ... *
|
|
ror_scan_selectivity({scan1,...}, scanN).
|
|
RETURN
|
|
TRUE ROR scan added to ROR-intersection, cost updated.
|
|
FALSE It doesn't make sense to add this ROR scan to this ROR-intersection.
|
|
*/
|
|
|
|
static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
|
|
ROR_SCAN_INFO* ror_scan,
|
|
Json_writer_object *trace_costs,
|
|
bool is_cpk_scan)
|
|
{
|
|
double selectivity_mult= 1.0;
|
|
|
|
DBUG_ENTER("ror_intersect_add");
|
|
DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
|
|
DBUG_PRINT("info", ("Adding scan on %s",
|
|
info->param->table->key_info[ror_scan->keynr].name.str));
|
|
DBUG_PRINT("info", ("is_cpk_scan: %d",is_cpk_scan));
|
|
|
|
selectivity_mult = ror_scan_selectivity(info, ror_scan);
|
|
if (selectivity_mult == 1.0)
|
|
{
|
|
/* Don't add this scan if it doesn't improve selectivity. */
|
|
DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
info->out_rows *= selectivity_mult;
|
|
|
|
if (is_cpk_scan)
|
|
{
|
|
/*
|
|
CPK scan is used to filter out rows. We apply filtering for
|
|
each record of every scan. Assuming ROWID_COMPARE_COST
|
|
per check this gives us:
|
|
*/
|
|
const double idx_cost= (rows2double(info->index_records) *
|
|
ROWID_COMPARE_COST_THD(info->param->thd));
|
|
info->index_scan_costs+= idx_cost;
|
|
trace_costs->add("index_scan_cost", idx_cost);
|
|
}
|
|
else
|
|
{
|
|
info->index_records += info->param->quick_rows[ror_scan->keynr];
|
|
info->index_scan_costs += ror_scan->index_read_cost;
|
|
trace_costs->add("index_scan_cost", ror_scan->index_read_cost);
|
|
bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
|
|
if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
|
|
&info->covered_fields))
|
|
{
|
|
DBUG_PRINT("info", ("ROR-intersect is covering now"));
|
|
info->is_covering= TRUE;
|
|
}
|
|
}
|
|
|
|
info->total_cost= info->index_scan_costs;
|
|
trace_costs->add("cumulated_index_scan_cost", info->index_scan_costs);
|
|
DBUG_PRINT("info", ("info->total_cost: %g", info->total_cost));
|
|
if (!info->is_covering)
|
|
{
|
|
double sweep_cost= get_sweep_read_cost(info->param, info->out_rows, 1);
|
|
info->total_cost+= sweep_cost;
|
|
trace_costs->add("disk_sweep_cost", sweep_cost);
|
|
DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
|
|
}
|
|
else
|
|
{
|
|
trace_costs->add("disk_sweep_cost", static_cast<longlong>(0));
|
|
}
|
|
|
|
DBUG_PRINT("info", ("New out_rows: %g", info->out_rows));
|
|
DBUG_PRINT("info", ("New cost: %g, %scovering", info->total_cost,
|
|
info->is_covering?"" : "non-"));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Get best ROR-intersection plan using non-covering ROR-intersection search
|
|
algorithm. The returned plan may be covering.
|
|
|
|
SYNOPSIS
|
|
get_best_ror_intersect()
|
|
param Parameter from test_quick_select function.
|
|
tree Transformed restriction condition to be used to look
|
|
for ROR scans.
|
|
read_time Do not return read plans with cost > read_time.
|
|
are_all_covering [out] set to TRUE if union of all scans covers all
|
|
fields needed by the query (and it is possible to build
|
|
a covering ROR-intersection)
|
|
|
|
NOTES
|
|
get_key_scans_params must be called before this function can be called.
|
|
|
|
When this function is called by ROR-union construction algorithm it
|
|
assumes it is building an uncovered ROR-intersection (and thus # of full
|
|
records to be retrieved is wrong here). This is a hack.
|
|
|
|
IMPLEMENTATION
|
|
The approximate best non-covering plan search algorithm is as follows:
|
|
|
|
find_min_ror_intersection_scan()
|
|
{
|
|
R= select all ROR scans;
|
|
order R by (E(#records_matched) * key_record_length).
|
|
|
|
S= first(R); -- set of scans that will be used for ROR-intersection
|
|
R= R-first(S);
|
|
min_cost= cost(S);
|
|
min_scan= make_scan(S);
|
|
while (R is not empty)
|
|
{
|
|
firstR= R - first(R);
|
|
if (!selectivity(S + firstR < selectivity(S)))
|
|
continue;
|
|
|
|
S= S + first(R);
|
|
if (cost(S) < min_cost)
|
|
{
|
|
min_cost= cost(S);
|
|
min_scan= make_scan(S);
|
|
}
|
|
}
|
|
return min_scan;
|
|
}
|
|
|
|
See ror_intersect_add function for ROR intersection costs.
|
|
|
|
Special handling for Clustered PK scans
|
|
Clustered PK contains all table fields, so using it as a regular scan in
|
|
index intersection doesn't make sense: a range scan on CPK will be less
|
|
expensive in this case.
|
|
Clustered PK scan has special handling in ROR-intersection: it is not used
|
|
to retrieve rows, instead its condition is used to filter row references
|
|
we get from scans on other keys.
|
|
|
|
RETURN
|
|
ROR-intersection table read plan
|
|
NULL if out of memory or no suitable plan found.
|
|
*/
|
|
|
|
static
|
|
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
|
|
double read_time,
|
|
bool *are_all_covering)
|
|
{
|
|
uint idx;
|
|
double min_cost= DBL_MAX, cmp_cost;
|
|
THD *thd= param->thd;
|
|
DBUG_ENTER("get_best_ror_intersect");
|
|
DBUG_PRINT("enter", ("opt_range_condition_rows: %llu cond_selectivity: %g",
|
|
(ulonglong) param->table->opt_range_condition_rows,
|
|
param->table->cond_selectivity));
|
|
|
|
Json_writer_object trace_ror(thd, "analyzing_roworder_intersect");
|
|
|
|
if ((tree->n_ror_scans < 2) || !param->table->stat_records() ||
|
|
!optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT))
|
|
{
|
|
if (tree->n_ror_scans < 2)
|
|
trace_ror.add("cause", "too few roworder scans");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/*
|
|
Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of
|
|
them. Also find and save clustered PK scan if there is one.
|
|
*/
|
|
ROR_SCAN_INFO **cur_ror_scan;
|
|
ROR_SCAN_INFO *cpk_scan= NULL;
|
|
uint cpk_no;
|
|
|
|
if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
|
|
sizeof(ROR_SCAN_INFO*)*
|
|
param->keys)))
|
|
return NULL;
|
|
cpk_no= (param->table->file->
|
|
pk_is_clustering_key(param->table->s->primary_key) ?
|
|
param->table->s->primary_key : MAX_KEY);
|
|
|
|
for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
|
|
{
|
|
ROR_SCAN_INFO *scan;
|
|
uint key_no;
|
|
if (!tree->ror_scans_map.is_set(idx))
|
|
continue;
|
|
key_no= param->real_keynr[idx];
|
|
if (key_no != cpk_no && param->table->file->is_clustering_key(key_no))
|
|
{
|
|
/* Ignore clustering keys */
|
|
tree->n_ror_scans--;
|
|
continue;
|
|
}
|
|
if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
|
|
return NULL;
|
|
if (key_no == cpk_no)
|
|
{
|
|
cpk_scan= scan;
|
|
tree->n_ror_scans--;
|
|
}
|
|
else
|
|
*(cur_ror_scan++)= scan;
|
|
}
|
|
|
|
tree->ror_scans_end= cur_ror_scan;
|
|
DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
|
|
tree->ror_scans,
|
|
tree->ror_scans_end););
|
|
/*
|
|
Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
|
|
ROR_SCAN_INFO's.
|
|
Step 2: Get best ROR-intersection using an approximate algorithm.
|
|
*/
|
|
my_qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
|
|
(qsort_cmp)cmp_ror_scan_info);
|
|
DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
|
|
tree->ror_scans,
|
|
tree->ror_scans_end););
|
|
|
|
ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
|
|
ROR_SCAN_INFO **intersect_scans_end;
|
|
if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
|
|
sizeof(ROR_SCAN_INFO*)*
|
|
tree->n_ror_scans)))
|
|
return NULL;
|
|
intersect_scans_end= intersect_scans;
|
|
|
|
/* Create and incrementally update ROR intersection. */
|
|
ROR_INTERSECT_INFO *intersect, *intersect_best;
|
|
if (!(intersect= ror_intersect_init(param)) ||
|
|
!(intersect_best= ror_intersect_init(param)))
|
|
return NULL;
|
|
|
|
/* [intersect_scans,intersect_scans_best) will hold the best intersection */
|
|
ROR_SCAN_INFO **intersect_scans_best;
|
|
cur_ror_scan= tree->ror_scans;
|
|
intersect_scans_best= intersect_scans;
|
|
Json_writer_array trace_isect_idx(thd, "intersecting_indexes");
|
|
while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
|
|
{
|
|
Json_writer_object trace_idx(thd);
|
|
trace_idx.add("index",
|
|
param->table->key_info[(*cur_ror_scan)->keynr].name);
|
|
|
|
/* S= S + first(R); R= R - first(R); */
|
|
if (!ror_intersect_add(intersect, *cur_ror_scan, &trace_idx, FALSE))
|
|
{
|
|
trace_idx.
|
|
add("usable", false).
|
|
add("cause", "does not reduce cost of intersect");
|
|
cur_ror_scan++;
|
|
continue;
|
|
}
|
|
|
|
trace_idx.
|
|
add("cumulative_total_cost", intersect->total_cost).
|
|
add("usable", true).
|
|
add("matching_rows_now", intersect->out_rows).
|
|
add("intersect_covering_with_this_index", intersect->is_covering);
|
|
|
|
*(intersect_scans_end++)= *(cur_ror_scan++);
|
|
|
|
/*
|
|
Check if intersect gives a lower cost.
|
|
The first ror scan is always accepted.
|
|
The next ror scan is only accepted if the total cost went down
|
|
(Enough rows where reject to offset the intersect cost)
|
|
*/
|
|
if (intersect->total_cost < min_cost)
|
|
{
|
|
/* Local minimum found, save it */
|
|
min_cost= intersect->total_cost;
|
|
ror_intersect_cpy(intersect_best, intersect);
|
|
intersect_scans_best= intersect_scans_end;
|
|
trace_idx.add("chosen", true);
|
|
}
|
|
else
|
|
{
|
|
trace_idx.
|
|
add("chosen", false).
|
|
add("cause", "does not reduce cost");
|
|
}
|
|
}
|
|
trace_isect_idx.end();
|
|
|
|
if (intersect_scans_best == intersect_scans)
|
|
{
|
|
DBUG_PRINT("info", ("None of scans increase selectivity"));
|
|
trace_ror.
|
|
add("chosen", false).
|
|
add("cause","does not increase selectivity");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
|
|
"best ROR-intersection",
|
|
intersect_scans,
|
|
intersect_scans_best););
|
|
|
|
*are_all_covering= intersect->is_covering;
|
|
uint best_num= (uint)(intersect_scans_best - intersect_scans);
|
|
ror_intersect_cpy(intersect, intersect_best);
|
|
|
|
/*
|
|
Ok, found the best ROR-intersection of non-CPK key scans.
|
|
Check if we should add a CPK scan. If the obtained ROR-intersection is
|
|
covering, it doesn't make sense to add CPK scan.
|
|
*/
|
|
Json_writer_object trace_cpk(thd, "clustered_pk");
|
|
if (cpk_scan && !intersect->is_covering)
|
|
{
|
|
if (ror_intersect_add(intersect, cpk_scan, &trace_cpk, TRUE) &&
|
|
(intersect->total_cost < min_cost))
|
|
{
|
|
min_cost= intersect->total_cost;
|
|
if (trace_cpk.trace_started())
|
|
trace_cpk.
|
|
add("clustered_pk_scan_added_to_intersect", true).
|
|
add("cumulated_cost", intersect->total_cost);
|
|
intersect_best= intersect; //just set pointer here
|
|
}
|
|
else
|
|
{
|
|
if (trace_cpk.trace_started())
|
|
trace_cpk.
|
|
add("clustered_pk_added_to_intersect", false).
|
|
add("cause", "cost");
|
|
cpk_scan= 0; // Don't use cpk_scan
|
|
}
|
|
}
|
|
else
|
|
{
|
|
trace_cpk.
|
|
add("clustered_pk_added_to_intersect", false).
|
|
add("cause", cpk_scan ? "roworder is covering"
|
|
: "no clustered pk index");
|
|
cpk_scan= 0; // Don't use cpk_scan
|
|
}
|
|
trace_cpk.end();
|
|
|
|
/*
|
|
Adjust row count and add the cost of comparing the final rows to the
|
|
WHERE clause
|
|
*/
|
|
cmp_cost= intersect_best->out_rows * thd->variables.optimizer_where_cost;
|
|
|
|
/* Ok, return ROR-intersect plan if we have found one */
|
|
TRP_ROR_INTERSECT *trp= NULL;
|
|
if (min_cost + cmp_cost < read_time && (cpk_scan || best_num > 1))
|
|
{
|
|
double best_rows= intersect_best->out_rows;
|
|
set_if_bigger(best_rows, 1);
|
|
if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
|
|
DBUG_RETURN(NULL);
|
|
if (!(trp->first_scan=
|
|
(ROR_SCAN_INFO**)alloc_root(param->mem_root,
|
|
sizeof(ROR_SCAN_INFO*)*best_num)))
|
|
DBUG_RETURN(NULL);
|
|
memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
|
|
trp->last_scan= trp->first_scan + best_num;
|
|
trp->is_covering= intersect_best->is_covering;
|
|
trp->read_cost= min_cost + cmp_cost;
|
|
param->table->set_opt_range_condition_rows((ha_rows)best_rows);
|
|
trp->records= (ha_rows)best_rows;
|
|
trp->index_scan_costs= intersect_best->index_scan_costs;
|
|
trp->cpk_scan= cpk_scan;
|
|
DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
|
|
"cost %g, records %lu",
|
|
trp->read_cost, (ulong) trp->records));
|
|
if (unlikely(trace_ror.trace_started()))
|
|
trace_ror.
|
|
add("rows", trp->records).
|
|
add("cost", trp->read_cost).
|
|
add("covering", trp->is_covering).
|
|
add("chosen", true);
|
|
}
|
|
else
|
|
{
|
|
trace_ror.
|
|
add("chosen", false).
|
|
add("cause", (min_cost + cmp_cost >= read_time) ?
|
|
"cost" : "too few indexes to merge");
|
|
}
|
|
DBUG_PRINT("exit", ("opt_range_condition_rows: %llu",
|
|
(ulonglong) param->table->opt_range_condition_rows));
|
|
DBUG_RETURN(trp);
|
|
}
|
|
|
|
|
|
/*
|
|
Get best covering ROR-intersection.
|
|
SYNOPSIS
|
|
get_best_ntersectcovering_ror_intersect()
|
|
param Parameter from test_quick_select function.
|
|
tree SEL_TREE with sets of intervals for different keys.
|
|
read_time Don't return table read plans with cost > read_time.
|
|
|
|
RETURN
|
|
Best covering ROR-intersection plan
|
|
NULL if no plan found.
|
|
|
|
NOTES
|
|
get_best_ror_intersect must be called for a tree before calling this
|
|
function for it.
|
|
This function invalidates tree->ror_scans member values.
|
|
|
|
The following approximate algorithm is used:
|
|
I=set of all covering indexes
|
|
F=set of all fields to cover
|
|
S={}
|
|
|
|
do
|
|
{
|
|
Order I by (#covered fields in F desc,
|
|
#components asc,
|
|
number of first not covered component asc);
|
|
F=F-covered by first(I);
|
|
S=S+first(I);
|
|
I=I-first(I);
|
|
} while F is not empty.
|
|
*/
|
|
|
|
static
|
|
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
|
|
SEL_TREE *tree,
|
|
double read_time)
|
|
{
|
|
ROR_SCAN_INFO **ror_scan_mark;
|
|
ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
|
|
DBUG_ENTER("get_best_covering_ror_intersect");
|
|
|
|
if (!optimizer_flag(param->thd, OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT))
|
|
DBUG_RETURN(NULL);
|
|
|
|
for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
|
|
(*scan)->key_components=
|
|
param->table->key_info[(*scan)->keynr].user_defined_key_parts;
|
|
|
|
/*
|
|
Run covering-ROR-search algorithm.
|
|
Assume set I is [ror_scan .. ror_scans_end)
|
|
*/
|
|
|
|
/*I=set of all covering indexes */
|
|
ror_scan_mark= tree->ror_scans;
|
|
|
|
MY_BITMAP *covered_fields= ¶m->tmp_covered_fields;
|
|
if (!covered_fields->bitmap)
|
|
covered_fields->bitmap= (my_bitmap_map*)alloc_root(param->mem_root,
|
|
param->fields_bitmap_size);
|
|
if (!covered_fields->bitmap ||
|
|
my_bitmap_init(covered_fields, covered_fields->bitmap,
|
|
param->table->s->fields))
|
|
DBUG_RETURN(0);
|
|
bitmap_clear_all(covered_fields);
|
|
|
|
double total_cost= 0.0;
|
|
ha_rows records=0;
|
|
bool all_covered;
|
|
|
|
DBUG_PRINT("info", ("Building covering ROR-intersection"));
|
|
DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
|
|
"building covering ROR-I",
|
|
ror_scan_mark, ror_scans_end););
|
|
do
|
|
{
|
|
/*
|
|
Update changed sorting info:
|
|
#covered fields,
|
|
number of first not covered component
|
|
Calculate and save these values for each of remaining scans.
|
|
*/
|
|
for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
|
|
{
|
|
bitmap_subtract(&(*scan)->covered_fields, covered_fields);
|
|
(*scan)->used_fields_covered=
|
|
bitmap_bits_set(&(*scan)->covered_fields);
|
|
(*scan)->first_uncovered_field=
|
|
bitmap_get_first(&(*scan)->covered_fields);
|
|
}
|
|
|
|
my_qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
|
|
(qsort_cmp)cmp_ror_scan_info_covering);
|
|
|
|
DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
|
|
"remaining scans",
|
|
ror_scan_mark, ror_scans_end););
|
|
|
|
/* I=I-first(I) */
|
|
total_cost += (*ror_scan_mark)->index_read_cost;
|
|
records += (*ror_scan_mark)->records;
|
|
DBUG_PRINT("info", ("Adding scan on %s",
|
|
param->table->key_info[(*ror_scan_mark)->keynr].name.str));
|
|
if (total_cost > read_time)
|
|
DBUG_RETURN(NULL);
|
|
/* F=F-covered by first(I) */
|
|
bitmap_union(covered_fields, &(*ror_scan_mark)->covered_fields);
|
|
all_covered= bitmap_is_subset(¶m->needed_fields, covered_fields);
|
|
} while ((++ror_scan_mark < ror_scans_end) && !all_covered);
|
|
|
|
if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
|
|
DBUG_RETURN(NULL);
|
|
|
|
/*
|
|
Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
|
|
cost total_cost.
|
|
*/
|
|
DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
|
|
DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
|
|
"creating covering ROR-intersect",
|
|
tree->ror_scans, ror_scan_mark););
|
|
|
|
/* Add priority queue use cost. */
|
|
total_cost += (rows2double(records) *
|
|
log((double)(ror_scan_mark - tree->ror_scans)) *
|
|
ROWID_COMPARE_COST_THD(param->thd) / M_LN2);
|
|
DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));
|
|
|
|
/* TODO: Add TIME_FOR_COMPARE cost to total_cost */
|
|
|
|
if (total_cost > read_time)
|
|
DBUG_RETURN(NULL);
|
|
|
|
TRP_ROR_INTERSECT *trp;
|
|
if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
|
|
DBUG_RETURN(trp);
|
|
uint best_num= (uint)(ror_scan_mark - tree->ror_scans);
|
|
if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
|
|
sizeof(ROR_SCAN_INFO*)*
|
|
best_num)))
|
|
DBUG_RETURN(NULL);
|
|
memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*));
|
|
trp->last_scan= trp->first_scan + best_num;
|
|
trp->is_covering= TRUE;
|
|
trp->read_cost= total_cost;
|
|
trp->records= records;
|
|
trp->cpk_scan= NULL;
|
|
param->table->set_opt_range_condition_rows(records);
|
|
|
|
DBUG_PRINT("exit",
|
|
("Returning covering ROR-intersect plan: cost %g, records %lu",
|
|
trp->read_cost, (ulong) trp->records));
|
|
DBUG_RETURN(trp);
|
|
}
|
|
|
|
|
|
/*
|
|
Get best "range" table read plan for given SEL_TREE.
|
|
Also update PARAM members and store ROR scans info in the SEL_TREE.
|
|
SYNOPSIS
|
|
get_key_scans_params
|
|
param parameters from test_quick_select
|
|
tree make range select for this SEL_TREE
|
|
index_read_must_be_used if TRUE, assume 'index only' option will be set
|
|
(except for clustered PK indexes)
|
|
for_range_access if TRUE the function is called to get the best range
|
|
plan for range access, not for index merge access
|
|
read_time don't create read plans with cost > read_time.
|
|
RETURN
|
|
Best range read plan
|
|
NULL if no plan found or error occurred
|
|
*/
|
|
|
|
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
|
|
bool index_read_must_be_used,
|
|
bool for_range_access,
|
|
double read_time, ha_rows limit,
|
|
bool using_table_scan)
|
|
{
|
|
uint idx, UNINIT_VAR(best_idx);
|
|
SEL_ARG *key_to_read= NULL;
|
|
ha_rows UNINIT_VAR(best_records); /* protected by key_to_read */
|
|
uint UNINIT_VAR(best_mrr_flags), /* protected by key_to_read */
|
|
UNINIT_VAR(best_buf_size); /* protected by key_to_read */
|
|
TRP_RANGE* read_plan= NULL;
|
|
DBUG_ENTER("get_key_scans_params");
|
|
THD *thd= param->thd;
|
|
/*
|
|
Note that there may be trees that have type SEL_TREE::KEY but contain no
|
|
key reads at all, e.g. tree for expression "key1 is not null" where key1
|
|
is defined as "not null".
|
|
*/
|
|
DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
|
|
"tree scans"););
|
|
Json_writer_array range_scan_alt(thd, "range_scan_alternatives");
|
|
|
|
tree->ror_scans_map.clear_all();
|
|
tree->n_ror_scans= 0;
|
|
tree->index_scans= 0;
|
|
if (!tree->keys_map.is_clear_all())
|
|
{
|
|
tree->index_scans=
|
|
(INDEX_SCAN_INFO **) alloc_root(param->mem_root,
|
|
sizeof(INDEX_SCAN_INFO *) * param->keys);
|
|
}
|
|
tree->index_scans_end= tree->index_scans;
|
|
|
|
for (idx= 0; idx < param->keys; idx++)
|
|
{
|
|
SEL_ARG *key= tree->keys[idx];
|
|
if (key)
|
|
{
|
|
ha_rows found_records;
|
|
Cost_estimate cost;
|
|
double found_read_time;
|
|
uint mrr_flags, buf_size;
|
|
bool is_ror_scan= FALSE;
|
|
INDEX_SCAN_INFO *index_scan;
|
|
uint keynr= param->real_keynr[idx];
|
|
if (key->type == SEL_ARG::MAYBE_KEY ||
|
|
key->maybe_flag)
|
|
param->needed_reg->set_bit(keynr);
|
|
|
|
bool read_index_only= index_read_must_be_used ? TRUE :
|
|
(bool) param->table->covering_keys.is_set(keynr);
|
|
|
|
Json_writer_object trace_idx(thd);
|
|
trace_idx.add("index", param->table->key_info[keynr].name);
|
|
|
|
found_records= check_quick_select(param, idx, limit, read_index_only,
|
|
key, for_range_access, &mrr_flags,
|
|
&buf_size, &cost, &is_ror_scan);
|
|
|
|
if (found_records == HA_POS_ERROR ||
|
|
(!for_range_access && !is_ror_scan &&
|
|
!optimizer_flag(param->thd,OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION)))
|
|
{
|
|
/* The scan is not a ROR-scan, just skip it */
|
|
continue;
|
|
}
|
|
found_read_time= cost.total_cost();
|
|
if (tree->index_scans &&
|
|
(index_scan= (INDEX_SCAN_INFO *)alloc_root(param->mem_root,
|
|
sizeof(INDEX_SCAN_INFO))))
|
|
{
|
|
Json_writer_array trace_range(thd, "ranges");
|
|
const KEY &cur_key= param->table->key_info[keynr];
|
|
const KEY_PART_INFO *key_part= cur_key.key_part;
|
|
|
|
index_scan->idx= idx;
|
|
index_scan->keynr= keynr;
|
|
index_scan->key_info= ¶m->table->key_info[keynr];
|
|
index_scan->used_key_parts= param->max_key_parts;
|
|
index_scan->range_count= param->range_count;
|
|
index_scan->records= found_records;
|
|
index_scan->sel_arg= key;
|
|
*tree->index_scans_end++= index_scan;
|
|
|
|
if (unlikely(thd->trace_started()))
|
|
trace_ranges(&trace_range, param, idx, key, key_part);
|
|
trace_range.end();
|
|
|
|
if (unlikely(trace_idx.trace_started()))
|
|
{
|
|
trace_idx.
|
|
add("rowid_ordered", is_ror_scan).
|
|
add("using_mrr", !(mrr_flags & HA_MRR_USE_DEFAULT_IMPL)).
|
|
add("index_only", read_index_only).
|
|
add("rows", found_records).
|
|
add("cost", found_read_time);
|
|
if (using_table_scan && cost.limit_cost != 0.0)
|
|
trace_idx.add("cost_with_limit", cost.limit_cost);
|
|
}
|
|
}
|
|
if (is_ror_scan)
|
|
{
|
|
tree->n_ror_scans++;
|
|
tree->ror_scans_map.set_bit(idx);
|
|
}
|
|
/*
|
|
Use range if best range so far or if we are comparing to a table scan
|
|
and the cost with limit approximation is better than the table scan
|
|
*/
|
|
if (read_time > found_read_time ||
|
|
(using_table_scan && cost.limit_cost != 0.0 &&
|
|
read_time > cost.limit_cost))
|
|
{
|
|
read_time= found_read_time;
|
|
best_records= found_records;
|
|
key_to_read= key;
|
|
best_idx= idx;
|
|
best_mrr_flags= mrr_flags;
|
|
best_buf_size= buf_size;
|
|
using_table_scan= 0;
|
|
trace_idx.add("chosen", true);
|
|
}
|
|
else if (unlikely(trace_idx.trace_started()))
|
|
{
|
|
trace_idx.add("chosen", false);
|
|
if (found_records == HA_POS_ERROR)
|
|
{
|
|
if (key->type == SEL_ARG::Type::MAYBE_KEY)
|
|
trace_idx.add("cause", "depends on unread values");
|
|
else
|
|
trace_idx.add("cause", "unknown");
|
|
}
|
|
else
|
|
trace_idx.add("cause", "cost");
|
|
}
|
|
}
|
|
}
|
|
|
|
DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
|
|
"ROR scans"););
|
|
if (key_to_read)
|
|
{
|
|
if ((read_plan= new (param->mem_root) TRP_RANGE(key_to_read, best_idx,
|
|
best_mrr_flags)))
|
|
{
|
|
read_plan->records= best_records;
|
|
read_plan->is_ror= tree->ror_scans_map.is_set(best_idx);
|
|
read_plan->read_cost= read_time;
|
|
read_plan->mrr_buf_size= best_buf_size;
|
|
DBUG_PRINT("info",
|
|
("Returning range plan for key %s, cost %g, records %lu",
|
|
param->table->key_info[param->real_keynr[best_idx]].name.str,
|
|
read_plan->read_cost, (ulong) read_plan->records));
|
|
}
|
|
}
|
|
else
|
|
DBUG_PRINT("info", ("No 'range' table read plan found"));
|
|
|
|
DBUG_RETURN(read_plan);
|
|
}
|
|
|
|
|
|
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_INDEX_MERGE_SELECT *quick_imerge;
|
|
QUICK_RANGE_SELECT *quick;
|
|
/* index_merge always retrieves full rows, ignore retrieve_full_rows */
|
|
if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
|
|
return NULL;
|
|
|
|
quick_imerge->records= records;
|
|
quick_imerge->read_time= read_cost;
|
|
for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
|
|
range_scan++)
|
|
{
|
|
if (!(quick= (QUICK_RANGE_SELECT*)
|
|
((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
|
|
quick_imerge->push_quick_back(quick))
|
|
{
|
|
delete quick;
|
|
delete quick_imerge;
|
|
return NULL;
|
|
}
|
|
}
|
|
return quick_imerge;
|
|
}
|
|
|
|
|
|
QUICK_SELECT_I *TRP_INDEX_INTERSECT::make_quick(PARAM *param,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_INDEX_INTERSECT_SELECT *quick_intersect;
|
|
QUICK_RANGE_SELECT *quick;
|
|
/* index_merge always retrieves full rows, ignore retrieve_full_rows */
|
|
if (!(quick_intersect= new QUICK_INDEX_INTERSECT_SELECT(param->thd, param->table)))
|
|
return NULL;
|
|
|
|
quick_intersect->records= records;
|
|
quick_intersect->read_time= read_cost;
|
|
quick_intersect->filtered_scans= filtered_scans;
|
|
for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
|
|
range_scan++)
|
|
{
|
|
if (!(quick= (QUICK_RANGE_SELECT*)
|
|
((*range_scan)->make_quick(param, FALSE, &quick_intersect->alloc)))||
|
|
quick_intersect->push_quick_back(quick))
|
|
{
|
|
delete quick;
|
|
delete quick_intersect;
|
|
return NULL;
|
|
}
|
|
}
|
|
return quick_intersect;
|
|
}
|
|
|
|
|
|
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
|
|
QUICK_RANGE_SELECT *quick;
|
|
DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
|
|
MEM_ROOT *alloc;
|
|
|
|
if ((quick_intrsect=
|
|
new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
|
|
(retrieve_full_rows? (!is_covering) :
|
|
FALSE),
|
|
parent_alloc)))
|
|
{
|
|
DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
|
|
"creating ROR-intersect",
|
|
first_scan, last_scan););
|
|
alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
|
|
for (ROR_SCAN_INFO **curr_scan= first_scan; curr_scan != last_scan;
|
|
++curr_scan)
|
|
{
|
|
if (!(quick= get_quick_select(param, (*curr_scan)->idx,
|
|
(*curr_scan)->sel_arg,
|
|
HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED,
|
|
0, alloc)) ||
|
|
quick_intrsect->push_quick_back(alloc, quick))
|
|
{
|
|
delete quick_intrsect;
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
}
|
|
if (cpk_scan)
|
|
{
|
|
if (!(quick= get_quick_select(param, cpk_scan->idx,
|
|
cpk_scan->sel_arg,
|
|
HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED,
|
|
0, alloc)))
|
|
{
|
|
delete quick_intrsect;
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
quick->file= NULL;
|
|
quick_intrsect->cpk_quick= quick;
|
|
}
|
|
quick_intrsect->records= records;
|
|
quick_intrsect->read_time= read_cost;
|
|
}
|
|
DBUG_RETURN(quick_intrsect);
|
|
}
|
|
|
|
|
|
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
|
|
bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_ROR_UNION_SELECT *quick_roru;
|
|
TABLE_READ_PLAN **scan;
|
|
QUICK_SELECT_I *quick;
|
|
DBUG_ENTER("TRP_ROR_UNION::make_quick");
|
|
/*
|
|
It is impossible to construct a ROR-union that will not retrieve full
|
|
rows, ignore retrieve_full_rows parameter.
|
|
*/
|
|
if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
|
|
{
|
|
for (scan= first_ror; scan != last_ror; scan++)
|
|
{
|
|
if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
|
|
quick_roru->push_quick_back(quick))
|
|
{
|
|
delete quick_roru;
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
}
|
|
quick_roru->records= records;
|
|
quick_roru->read_time= read_cost;
|
|
}
|
|
DBUG_RETURN(quick_roru);
|
|
}
|
|
|
|
|
|
/*
|
|
Build a SEL_TREE for <> or NOT BETWEEN predicate
|
|
|
|
SYNOPSIS
|
|
get_ne_mm_tree()
|
|
param PARAM from SQL_SELECT::test_quick_select
|
|
cond_func item for the predicate
|
|
field field in the predicate
|
|
lt_value constant that field should be smaller
|
|
gt_value constant that field should be greaterr
|
|
|
|
RETURN
|
|
# Pointer to tree built tree
|
|
0 on error
|
|
*/
|
|
|
|
SEL_TREE *Item_bool_func::get_ne_mm_tree(RANGE_OPT_PARAM *param,
|
|
Field *field,
|
|
Item *lt_value, Item *gt_value)
|
|
{
|
|
SEL_TREE *tree;
|
|
tree= get_mm_parts(param, field, Item_func::LT_FUNC, lt_value);
|
|
if (tree)
|
|
tree= tree_or(param, tree, get_mm_parts(param, field, Item_func::GT_FUNC,
|
|
gt_value));
|
|
return tree;
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_func_ne::get_func_mm_tree(RANGE_OPT_PARAM *param,
|
|
Field *field, Item *value)
|
|
{
|
|
DBUG_ENTER("Item_func_ne::get_func_mm_tree");
|
|
/*
|
|
If this condition is a "col1<>...", where there is a UNIQUE KEY(col1),
|
|
do not construct a SEL_TREE from it. A condition that excludes just one
|
|
row in the table is not selective (unless there are only a few rows)
|
|
*/
|
|
if (is_field_an_unique_index(param, field))
|
|
DBUG_RETURN(NULL);
|
|
DBUG_RETURN(get_ne_mm_tree(param, field, value, value));
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_func_between::get_func_mm_tree(RANGE_OPT_PARAM *param,
|
|
Field *field, Item *value)
|
|
{
|
|
SEL_TREE *tree;
|
|
DBUG_ENTER("Item_func_between::get_func_mm_tree");
|
|
if (!value)
|
|
{
|
|
if (negated)
|
|
{
|
|
tree= get_ne_mm_tree(param, field, args[1], args[2]);
|
|
}
|
|
else
|
|
{
|
|
tree= get_mm_parts(param, field, Item_func::GE_FUNC, args[1]);
|
|
if (tree)
|
|
{
|
|
tree= tree_and(param, tree, get_mm_parts(param, field,
|
|
Item_func::LE_FUNC,
|
|
args[2]));
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree= get_mm_parts(param, field,
|
|
(negated ?
|
|
(value == (Item*)1 ? Item_func::GT_FUNC :
|
|
Item_func::LT_FUNC):
|
|
(value == (Item*)1 ? Item_func::LE_FUNC :
|
|
Item_func::GE_FUNC)),
|
|
args[0]);
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_func_in::get_func_mm_tree(RANGE_OPT_PARAM *param,
|
|
Field *field, Item *value)
|
|
{
|
|
SEL_TREE *tree= 0;
|
|
DBUG_ENTER("Item_func_in::get_func_mm_tree");
|
|
/*
|
|
Array for IN() is constructed when all values have the same result
|
|
type. Tree won't be built for values with different result types,
|
|
so we check it here to avoid unnecessary work.
|
|
*/
|
|
if (!arg_types_compatible)
|
|
DBUG_RETURN(0);
|
|
|
|
if (negated)
|
|
{
|
|
if (array && array->type_handler()->result_type() != ROW_RESULT)
|
|
{
|
|
/*
|
|
We get here for conditions in form "t.key NOT IN (c1, c2, ...)",
|
|
where c{i} are constants. Our goal is to produce a SEL_TREE that
|
|
represents intervals:
|
|
|
|
($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ... (*)
|
|
|
|
where $MIN is either "-inf" or NULL.
|
|
|
|
The most straightforward way to produce it is to convert NOT IN
|
|
into "(t.key != c1) AND (t.key != c2) AND ... " and let the range
|
|
analyzer to build SEL_TREE from that. The problem is that the
|
|
range analyzer will use O(N^2) memory (which is probably a bug),
|
|
and people do use big NOT IN lists (e.g. see BUG#15872, BUG#21282),
|
|
will run out of memory.
|
|
|
|
Another problem with big lists like (*) is that a big list is
|
|
unlikely to produce a good "range" access, while considering that
|
|
range access will require expensive CPU calculations (and for
|
|
MyISAM even index accesses). In short, big NOT IN lists are rarely
|
|
worth analyzing.
|
|
|
|
Considering the above, we'll handle NOT IN as follows:
|
|
* if the number of entries in the NOT IN list is less than
|
|
NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*) manually.
|
|
* Otherwise, don't produce a SEL_TREE.
|
|
*/
|
|
#define NOT_IN_IGNORE_THRESHOLD 1000
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
/*
|
|
Create one Item_type constant object. We'll need it as
|
|
get_mm_parts only accepts constant values wrapped in Item_Type
|
|
objects.
|
|
We create the Item on param->mem_root which points to
|
|
per-statement mem_root (while thd->mem_root is currently pointing
|
|
to mem_root local to range optimizer).
|
|
*/
|
|
Item *value_item= array->create_item(param->thd);
|
|
param->thd->mem_root= tmp_root;
|
|
|
|
if (array->count > NOT_IN_IGNORE_THRESHOLD || !value_item)
|
|
DBUG_RETURN(0);
|
|
|
|
/*
|
|
if this is a "col1 NOT IN (...)", and there is a UNIQUE KEY(col1), do
|
|
not constuct a SEL_TREE from it. The rationale is as follows:
|
|
- if there are only a few constants, this condition is not selective
|
|
(unless the table is also very small in which case we won't gain
|
|
anything)
|
|
- if there are a lot of constants, the overhead of building and
|
|
processing enormous range list is not worth it.
|
|
*/
|
|
if (is_field_an_unique_index(param, field))
|
|
DBUG_RETURN(0);
|
|
|
|
/* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */
|
|
uint i=0;
|
|
do
|
|
{
|
|
array->value_to_item(i, value_item);
|
|
tree= get_mm_parts(param, field, Item_func::LT_FUNC, value_item);
|
|
if (!tree)
|
|
break;
|
|
i++;
|
|
} while (i < array->count && tree->type == SEL_TREE::IMPOSSIBLE);
|
|
|
|
if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
/* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
SEL_TREE *tree2;
|
|
for (; i < array->used_count; i++)
|
|
{
|
|
if (array->compare_elems(i, i-1))
|
|
{
|
|
/* Get a SEL_TREE for "-inf < X < c_i" interval */
|
|
array->value_to_item(i, value_item);
|
|
tree2= get_mm_parts(param, field, Item_func::LT_FUNC, value_item);
|
|
if (!tree2)
|
|
{
|
|
tree= NULL;
|
|
break;
|
|
}
|
|
|
|
/* Change all intervals to be "c_{i-1} < X < c_i" */
|
|
for (uint idx= 0; idx < param->keys; idx++)
|
|
{
|
|
SEL_ARG *new_interval, *last_val;
|
|
if (((new_interval= tree2->keys[idx])) &&
|
|
(tree->keys[idx]) &&
|
|
((last_val= tree->keys[idx]->last())))
|
|
{
|
|
new_interval->min_value= last_val->max_value;
|
|
new_interval->min_flag= NEAR_MIN;
|
|
|
|
/*
|
|
If the interval is over a partial keypart, the
|
|
interval must be "c_{i-1} <= X < c_i" instead of
|
|
"c_{i-1} < X < c_i". Reason:
|
|
|
|
Consider a table with a column "my_col VARCHAR(3)",
|
|
and an index with definition
|
|
"INDEX my_idx my_col(1)". If the table contains rows
|
|
with my_col values "f" and "foo", the index will not
|
|
distinguish the two rows.
|
|
|
|
Note that tree_or() below will effectively merge
|
|
this range with the range created for c_{i-1} and
|
|
we'll eventually end up with only one range:
|
|
"NULL < X".
|
|
|
|
Partitioning indexes are never partial.
|
|
*/
|
|
if (param->using_real_indexes)
|
|
{
|
|
const KEY key=
|
|
param->table->key_info[param->real_keynr[idx]];
|
|
const KEY_PART_INFO *kpi= key.key_part + new_interval->part;
|
|
|
|
if (kpi->key_part_flag & HA_PART_KEY_SEG)
|
|
new_interval->min_flag= 0;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
The following doesn't try to allocate memory so no need to
|
|
check for NULL.
|
|
*/
|
|
tree= tree_or(param, tree, tree2);
|
|
}
|
|
}
|
|
|
|
if (tree && tree->type != SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
/*
|
|
Get the SEL_TREE for the last "c_last < X < +inf" interval
|
|
(value_item cotains c_last already)
|
|
*/
|
|
tree2= get_mm_parts(param, field, Item_func::GT_FUNC, value_item);
|
|
tree= tree_or(param, tree, tree2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree= get_ne_mm_tree(param, field, args[1], args[1]);
|
|
if (tree)
|
|
{
|
|
Item **arg, **end;
|
|
for (arg= args + 2, end= arg + arg_count - 2; arg < end ; arg++)
|
|
{
|
|
tree= tree_and(param, tree, get_ne_mm_tree(param, field,
|
|
*arg, *arg));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tree= get_mm_parts(param, field, Item_func::EQ_FUNC, args[1]);
|
|
if (tree)
|
|
{
|
|
Item **arg, **end;
|
|
for (arg= args + 2, end= arg + arg_count - 2;
|
|
arg < end ; arg++)
|
|
{
|
|
tree= tree_or(param, tree, get_mm_parts(param, field,
|
|
Item_func::EQ_FUNC, *arg));
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
/*
|
|
The structure Key_col_info is purely auxiliary and is used
|
|
only in the method Item_func_in::get_func_row_mm_tree
|
|
*/
|
|
struct Key_col_info {
|
|
Field *field; /* If != NULL the column can be used for keys */
|
|
cmp_item *comparator; /* If != 0 the column can be evaluated */
|
|
};
|
|
|
|
/**
|
|
Build SEL_TREE for the IN predicate whose arguments are rows
|
|
|
|
@param param PARAM from SQL_SELECT::test_quick_select
|
|
@param key_row First operand of the IN predicate
|
|
|
|
@note
|
|
The function builds a SEL_TREE for in IN predicate in the case
|
|
when the predicate uses row arguments. First the function
|
|
detects among the components of the key_row (c[1],...,c[n]) taken
|
|
from in the left part the predicate those that can be usable
|
|
for building SEL_TREE (c[i1],...,c[ik]). They have to contain
|
|
items whose real items are field items referring to the current
|
|
table or equal to the items referring to the current table.
|
|
For the remaining components of the row it checks whether they
|
|
can be evaluated. The result of the analysis is put into the
|
|
array of structures of the type Key_row_col_info.
|
|
|
|
After this the function builds the SEL_TREE for the following
|
|
formula that can be inferred from the given IN predicate:
|
|
c[i11]=a[1][i11] AND ... AND c[i1k1]=a[1][i1k1]
|
|
OR
|
|
...
|
|
OR
|
|
c[im1]=a[m][im1] AND ... AND c[imkm]=a[m][imkm].
|
|
Here a[1],...,a[m] are all arguments of the IN predicate from
|
|
the right part and for each j ij1,...,ijkj is a subset of
|
|
i1,...,ik such that a[j][ij1],...,a[j][ijkj] can be evaluated.
|
|
|
|
If for some j there no a[j][i1],...,a[j][ik] can be evaluated
|
|
then no SEL_TREE can be built for this predicate and the
|
|
function immediately returns 0.
|
|
|
|
If for some j by using evaluated values of key_row it can be
|
|
proven that c[ij1]=a[j][ij1] AND ... AND c[ijkj]=a[j][ijkj]
|
|
is always FALSE then this disjunct is omitted.
|
|
|
|
@returns
|
|
the built SEL_TREE if it can be constructed
|
|
0 - otherwise.
|
|
*/
|
|
|
|
SEL_TREE *Item_func_in::get_func_row_mm_tree(RANGE_OPT_PARAM *param,
|
|
Item_row *key_row)
|
|
{
|
|
DBUG_ENTER("Item_func_in::get_func_row_mm_tree");
|
|
|
|
if (negated)
|
|
DBUG_RETURN(0);
|
|
|
|
SEL_TREE *res_tree= 0;
|
|
uint used_key_cols= 0;
|
|
uint col_comparators= 0;
|
|
table_map param_comp= ~(param->prev_tables | param->read_tables |
|
|
param->current_table);
|
|
uint row_cols= key_row->cols();
|
|
Dynamic_array <Key_col_info> key_cols_info(PSI_INSTRUMENT_MEM,row_cols);
|
|
cmp_item_row *row_cmp_item;
|
|
|
|
if (array)
|
|
{
|
|
in_row *row= static_cast<in_row*>(array);
|
|
row_cmp_item= static_cast<cmp_item_row*>(row->get_cmp_item());
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(get_comparator_type_handler(0) == &type_handler_row);
|
|
row_cmp_item= static_cast<cmp_item_row*>(get_comparator_cmp_item(0));
|
|
}
|
|
DBUG_ASSERT(row_cmp_item);
|
|
|
|
Item **key_col_ptr= key_row->addr(0);
|
|
for(uint i= 0; i < row_cols; i++, key_col_ptr++)
|
|
{
|
|
Key_col_info key_col_info= {0, NULL};
|
|
Item *key_col= *key_col_ptr;
|
|
if (key_col->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
/*
|
|
The i-th component of key_row can be used for key access if
|
|
key_col->real_item() points to a field of the current table or
|
|
if it is equal to a field item pointing to such a field.
|
|
*/
|
|
Item_field *col_field_item= (Item_field *) (key_col->real_item());
|
|
Field *key_col_field= col_field_item->field;
|
|
if (key_col_field->table->map != param->current_table)
|
|
{
|
|
Item_equal *item_equal= col_field_item->item_equal;
|
|
if (item_equal)
|
|
{
|
|
Item_equal_fields_iterator it(*item_equal);
|
|
while (it++)
|
|
{
|
|
key_col_field= it.get_curr_field();
|
|
if (key_col_field->table->map == param->current_table)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (key_col_field->table->map == param->current_table)
|
|
{
|
|
key_col_info.field= key_col_field;
|
|
used_key_cols++;
|
|
}
|
|
}
|
|
else if (!(key_col->used_tables() & (param_comp | param->current_table))
|
|
&& !key_col->is_expensive())
|
|
{
|
|
/* The i-th component of key_row can be evaluated */
|
|
|
|
/* See the comment in Item::get_mm_tree_for_const */
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
|
|
key_col->bring_value();
|
|
key_col_info.comparator= row_cmp_item->get_comparator(i);
|
|
DBUG_ASSERT(key_col_info.comparator);
|
|
key_col_info.comparator->store_value(key_col);
|
|
col_comparators++;
|
|
|
|
param->thd->mem_root= tmp_root;
|
|
}
|
|
key_cols_info.push(key_col_info);
|
|
}
|
|
|
|
if (!used_key_cols)
|
|
DBUG_RETURN(0);
|
|
|
|
uint omitted_tuples= 0;
|
|
Item **arg_start= arguments() + 1;
|
|
Item **arg_end= arg_start + argument_count() - 1;
|
|
for (Item **arg= arg_start ; arg < arg_end; arg++)
|
|
{
|
|
uint i;
|
|
|
|
/*
|
|
First check whether the disjunct constructed for *arg
|
|
is really needed
|
|
*/
|
|
Item_row *arg_tuple= (Item_row *) (*arg);
|
|
if (col_comparators)
|
|
{
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
for (i= 0; i < row_cols; i++)
|
|
{
|
|
Key_col_info *key_col_info= &key_cols_info.at(i);
|
|
if (key_col_info->comparator)
|
|
{
|
|
Item *arg_col= arg_tuple->element_index(i);
|
|
if (!(arg_col->used_tables() & (param_comp | param->current_table)) &&
|
|
!arg_col->is_expensive() &&
|
|
key_col_info->comparator->cmp(arg_col))
|
|
{
|
|
omitted_tuples++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
param->thd->mem_root= tmp_root;
|
|
if (i < row_cols)
|
|
continue;
|
|
}
|
|
|
|
/* The disjunct for *arg is needed: build it. */
|
|
SEL_TREE *and_tree= 0;
|
|
Item **arg_col_ptr= arg_tuple->addr(0);
|
|
for (uint i= 0; i < row_cols; i++, arg_col_ptr++)
|
|
{
|
|
Key_col_info *key_col_info= &key_cols_info.at(i);
|
|
if (!key_col_info->field)
|
|
continue;
|
|
Item *arg_col= *arg_col_ptr;
|
|
if (!(arg_col->used_tables() & (param_comp | param->current_table)) &&
|
|
!arg_col->is_expensive())
|
|
{
|
|
and_tree= tree_and(param, and_tree,
|
|
get_mm_parts(param,
|
|
key_col_info->field,
|
|
Item_func::EQ_FUNC,
|
|
arg_col->real_item()));
|
|
}
|
|
}
|
|
if (!and_tree)
|
|
{
|
|
res_tree= 0;
|
|
break;
|
|
}
|
|
/* Join the disjunct the the OR tree that is being constructed */
|
|
res_tree= !res_tree ? and_tree : tree_or(param, res_tree, and_tree);
|
|
}
|
|
if (omitted_tuples == argument_count() - 1)
|
|
{
|
|
/* It's turned out that all disjuncts are always FALSE */
|
|
res_tree= new (param->mem_root) SEL_TREE(SEL_TREE::IMPOSSIBLE,
|
|
param->mem_root, param->keys);
|
|
}
|
|
DBUG_RETURN(res_tree);
|
|
}
|
|
|
|
|
|
/*
|
|
Build conjunction of all SEL_TREEs for a simple predicate applying equalities
|
|
|
|
SYNOPSIS
|
|
get_full_func_mm_tree()
|
|
param PARAM from SQL_SELECT::test_quick_select
|
|
field_item field in the predicate
|
|
value constant in the predicate (or a field already read from
|
|
a table in the case of dynamic range access)
|
|
(for BETWEEN it contains the number of the field argument,
|
|
for IN it's always 0)
|
|
inv TRUE <> NOT cond_func is considered
|
|
(makes sense only when cond_func is BETWEEN or IN)
|
|
|
|
DESCRIPTION
|
|
For a simple SARGable predicate of the form (f op c), where f is a field and
|
|
c is a constant, the function builds a conjunction of all SEL_TREES that can
|
|
be obtained by the substitution of f for all different fields equal to f.
|
|
|
|
NOTES
|
|
If the WHERE condition contains a predicate (fi op c),
|
|
then not only SELL_TREE for this predicate is built, but
|
|
the trees for the results of substitution of fi for
|
|
each fj belonging to the same multiple equality as fi
|
|
are built as well.
|
|
E.g. for WHERE t1.a=t2.a AND t2.a > 10
|
|
a SEL_TREE for t2.a > 10 will be built for quick select from t2
|
|
and
|
|
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
|
|
|
|
A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
|
|
in a similar way: we build a conjuction of trees for the results
|
|
of all substitutions of fi for equal fj.
|
|
Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
|
|
differently. It is considered as a conjuction of two SARGable
|
|
predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
|
|
is called for each of them separately producing trees for
|
|
AND j (f1j <=c ) and AND j (f2j <= c)
|
|
After this these two trees are united in one conjunctive tree.
|
|
It's easy to see that the same tree is obtained for
|
|
AND j,k (f1j <=c AND f2k<=c)
|
|
which is equivalent to
|
|
AND j,k (c BETWEEN f1j AND f2k).
|
|
The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
|
|
which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
|
|
function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
|
|
producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
|
|
trees are united in one OR-tree. The expression
|
|
(AND j (f1j > c) OR AND j (f2j < c)
|
|
is equivalent to the expression
|
|
AND j,k (f1j > c OR f2k < c)
|
|
which is just a translation of
|
|
AND j,k (c NOT BETWEEN f1j AND f2k)
|
|
|
|
In the cases when one of the items f1, f2 is a constant c1 we do not create
|
|
a tree for it at all. It works for BETWEEN predicates but does not
|
|
work for NOT BETWEEN predicates as we have to evaluate the expression
|
|
with it. If it is TRUE then the other tree can be completely ignored.
|
|
We do not do it now and no trees are built in these cases for
|
|
NOT BETWEEN predicates.
|
|
|
|
As to IN predicates only ones of the form (f IN (c1,...,cn)),
|
|
where f1 is a field and c1,...,cn are constant, are considered as
|
|
SARGable. We never try to narrow the index scan using predicates of
|
|
the form (c IN (c1,...,f,...,cn)).
|
|
|
|
RETURN
|
|
Pointer to the tree representing the built conjunction of SEL_TREEs
|
|
*/
|
|
|
|
SEL_TREE *Item_bool_func::get_full_func_mm_tree(RANGE_OPT_PARAM *param,
|
|
Item_field *field_item,
|
|
Item *value)
|
|
{
|
|
DBUG_ENTER("Item_bool_func::get_full_func_mm_tree");
|
|
SEL_TREE *tree= 0;
|
|
SEL_TREE *ftree= 0;
|
|
table_map ref_tables= 0;
|
|
table_map param_comp= ~(param->prev_tables | param->read_tables |
|
|
param->current_table);
|
|
|
|
for (uint i= 0; i < arg_count; i++)
|
|
{
|
|
Item *arg= arguments()[i]->real_item();
|
|
if (arg != field_item)
|
|
ref_tables|= arg->used_tables();
|
|
}
|
|
Field *field= field_item->field;
|
|
if (!((ref_tables | field->table->map) & param_comp))
|
|
ftree= get_func_mm_tree(param, field, value);
|
|
Item_equal *item_equal= field_item->item_equal;
|
|
if (item_equal)
|
|
{
|
|
Item_equal_fields_iterator it(*item_equal);
|
|
while (it++)
|
|
{
|
|
Field *f= it.get_curr_field();
|
|
if (field->eq(f))
|
|
continue;
|
|
if (!((ref_tables | f->table->map) & param_comp))
|
|
{
|
|
tree= get_func_mm_tree(param, f, value);
|
|
ftree= !ftree ? tree : tree_and(param, ftree, tree);
|
|
}
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(ftree);
|
|
}
|
|
|
|
|
|
/*
|
|
make a select tree of all keys in condition
|
|
|
|
@param param Context
|
|
@param cond INOUT condition to perform range analysis on.
|
|
|
|
@detail
|
|
Range analysis may infer that some conditions are never true.
|
|
- If the condition is never true, SEL_TREE(type=IMPOSSIBLE) is returned
|
|
- if parts of condition are never true, the function may remove these parts
|
|
from the condition 'cond'. Sometimes, this will cause the condition to
|
|
be substituted for something else.
|
|
|
|
|
|
@return
|
|
NULL - Could not infer anything from condition cond.
|
|
SEL_TREE with type=IMPOSSIBLE - condition can never be true.
|
|
*/
|
|
SEL_TREE *Item_cond_and::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item_cond_and::get_mm_tree");
|
|
SEL_TREE *tree= NULL;
|
|
List_iterator<Item> li(*argument_list());
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
SEL_TREE *new_tree= li.ref()[0]->get_mm_tree(param,li.ref());
|
|
if (param->statement_should_be_aborted())
|
|
DBUG_RETURN(NULL);
|
|
tree= tree_and(param, tree, new_tree);
|
|
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
|
|
{
|
|
/*
|
|
Do not remove 'item' from 'cond'. We return a SEL_TREE::IMPOSSIBLE
|
|
and that is sufficient for the caller to see that the whole
|
|
condition is never true.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_cond::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item_cond::get_mm_tree");
|
|
List_iterator<Item> li(*argument_list());
|
|
bool replace_cond= false;
|
|
Item *replacement_item= li++;
|
|
SEL_TREE *tree= li.ref()[0]->get_mm_tree(param, li.ref());
|
|
if (param->statement_should_be_aborted())
|
|
DBUG_RETURN(NULL);
|
|
if (tree)
|
|
{
|
|
if (tree->type == SEL_TREE::IMPOSSIBLE &&
|
|
param->remove_false_where_parts)
|
|
{
|
|
/* See the other li.remove() call below */
|
|
li.remove();
|
|
if (argument_list()->elements <= 1)
|
|
replace_cond= true;
|
|
}
|
|
|
|
Item *item;
|
|
while ((item= li++))
|
|
{
|
|
SEL_TREE *new_tree= li.ref()[0]->get_mm_tree(param, li.ref());
|
|
if (new_tree == NULL || param->statement_should_be_aborted())
|
|
DBUG_RETURN(NULL);
|
|
tree= tree_or(param, tree, new_tree);
|
|
if (tree == NULL || tree->type == SEL_TREE::ALWAYS)
|
|
{
|
|
replacement_item= *li.ref();
|
|
break;
|
|
}
|
|
|
|
if (new_tree && new_tree->type == SEL_TREE::IMPOSSIBLE &&
|
|
param->remove_false_where_parts)
|
|
{
|
|
/*
|
|
This is a condition in form
|
|
|
|
cond = item1 OR ... OR item_i OR ... itemN
|
|
|
|
and item_i produces SEL_TREE(IMPOSSIBLE). We should remove item_i
|
|
from cond. This may cause 'cond' to become a degenerate,
|
|
one-way OR. In that case, we replace 'cond' with the remaining
|
|
item_i.
|
|
*/
|
|
li.remove();
|
|
if (argument_list()->elements <= 1)
|
|
replace_cond= true;
|
|
}
|
|
else
|
|
replacement_item= *li.ref();
|
|
}
|
|
|
|
if (replace_cond)
|
|
*cond_ptr= replacement_item;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item::get_mm_tree_for_const(RANGE_OPT_PARAM *param)
|
|
{
|
|
DBUG_ENTER("get_mm_tree_for_const");
|
|
if (is_expensive())
|
|
DBUG_RETURN(0);
|
|
/*
|
|
During the cond->val_int() evaluation we can come across a subselect
|
|
item which may allocate memory on the thd->mem_root and assumes
|
|
all the memory allocated has the same life span as the subselect
|
|
item itself. So we have to restore the thread's mem_root here.
|
|
*/
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
SEL_TREE *tree;
|
|
|
|
const SEL_TREE::Type type= val_int()? SEL_TREE::ALWAYS: SEL_TREE::IMPOSSIBLE;
|
|
param->thd->mem_root= tmp_root;
|
|
|
|
tree= new (tmp_root) SEL_TREE(type, tmp_root, param->keys);
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item::get_mm_tree");
|
|
if (const_item())
|
|
DBUG_RETURN(get_mm_tree_for_const(param));
|
|
|
|
/*
|
|
Here we have a not-constant non-function Item.
|
|
|
|
Item_field should not appear, as normalize_cond() replaces
|
|
"WHERE field" to "WHERE field<>0".
|
|
|
|
Item_exists_subselect is possible, e.g. in this query:
|
|
SELECT id, st FROM t1
|
|
WHERE st IN ('GA','FL') AND EXISTS (SELECT 1 FROM t2 WHERE t2.id=t1.id)
|
|
GROUP BY id;
|
|
*/
|
|
table_map ref_tables= used_tables();
|
|
if ((ref_tables & param->current_table) ||
|
|
(ref_tables & ~(param->prev_tables | param->read_tables)))
|
|
DBUG_RETURN(0);
|
|
DBUG_RETURN(new (param->mem_root) SEL_TREE(SEL_TREE::MAYBE, param->mem_root,
|
|
param->keys));
|
|
}
|
|
|
|
|
|
SEL_TREE *
|
|
Item_func_between::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item_func_between::get_mm_tree");
|
|
if (const_item())
|
|
DBUG_RETURN(get_mm_tree_for_const(param));
|
|
|
|
SEL_TREE *tree= 0;
|
|
SEL_TREE *ftree= 0;
|
|
|
|
if (arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
Item_field *field_item= (Item_field*) (arguments()[0]->real_item());
|
|
ftree= get_full_func_mm_tree(param, field_item, NULL);
|
|
}
|
|
|
|
/*
|
|
Concerning the code below see the NOTES section in
|
|
the comments for the function get_full_func_mm_tree()
|
|
*/
|
|
for (uint i= 1 ; i < arg_count ; i++)
|
|
{
|
|
if (arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
|
|
{
|
|
Item_field *field_item= (Item_field*) (arguments()[i]->real_item());
|
|
SEL_TREE *tmp= get_full_func_mm_tree(param, field_item,
|
|
(Item*)(intptr) i);
|
|
if (negated)
|
|
{
|
|
tree= !tree ? tmp : tree_or(param, tree, tmp);
|
|
if (tree == NULL)
|
|
break;
|
|
}
|
|
else
|
|
tree= tree_and(param, tree, tmp);
|
|
}
|
|
else if (negated)
|
|
{
|
|
tree= 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ftree= tree_and(param, ftree, tree);
|
|
DBUG_RETURN(ftree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_func_in::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item_func_in::get_mm_tree");
|
|
if (const_item())
|
|
DBUG_RETURN(get_mm_tree_for_const(param));
|
|
|
|
SEL_TREE *tree= 0;
|
|
switch (key_item()->real_item()->type()) {
|
|
case Item::FIELD_ITEM:
|
|
tree= get_full_func_mm_tree(param,
|
|
(Item_field*) (key_item()->real_item()),
|
|
NULL);
|
|
break;
|
|
case Item::ROW_ITEM:
|
|
tree= get_func_row_mm_tree(param,
|
|
(Item_row *) (key_item()->real_item()));
|
|
break;
|
|
default:
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_TREE *Item_equal::get_mm_tree(RANGE_OPT_PARAM *param, Item **cond_ptr)
|
|
{
|
|
DBUG_ENTER("Item_equal::get_mm_tree");
|
|
if (const_item())
|
|
DBUG_RETURN(get_mm_tree_for_const(param));
|
|
|
|
SEL_TREE *tree= 0;
|
|
SEL_TREE *ftree= 0;
|
|
|
|
Item *value;
|
|
if (!(value= get_const()) || value->is_expensive())
|
|
DBUG_RETURN(0);
|
|
|
|
Item_equal_fields_iterator it(*this);
|
|
table_map ref_tables= value->used_tables();
|
|
table_map param_comp= ~(param->prev_tables | param->read_tables |
|
|
param->current_table);
|
|
while (it++)
|
|
{
|
|
Field *field= it.get_curr_field();
|
|
if (!((ref_tables | field->table->map) & param_comp))
|
|
{
|
|
tree= get_mm_parts(param, field, Item_func::EQ_FUNC, value);
|
|
ftree= !ftree ? tree : tree_and(param, ftree, tree);
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(ftree);
|
|
}
|
|
|
|
|
|
/*
|
|
@brief
|
|
Check if there is an one-segment unique key that matches the field exactly
|
|
|
|
@detail
|
|
In the future we could also add "almost unique" indexes where any value is
|
|
present only in a few rows (but necessarily exactly one row)
|
|
*/
|
|
static bool is_field_an_unique_index(RANGE_OPT_PARAM *param, Field *field)
|
|
{
|
|
DBUG_ENTER("is_field_an_unique_index");
|
|
|
|
// The check for using_real_indexes is there because of the heuristics
|
|
// this function is used for.
|
|
if (param->using_real_indexes)
|
|
{
|
|
key_map::Iterator it(field->key_start);
|
|
uint key_no;
|
|
while ((key_no= it++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
KEY *key_info= &field->table->key_info[key_no];
|
|
if (key_info->user_defined_key_parts == 1 &&
|
|
(key_info->flags & HA_NOSAME))
|
|
{
|
|
DBUG_RETURN(true);
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
SEL_TREE *
|
|
Item_bool_func::get_mm_parts(RANGE_OPT_PARAM *param, Field *field,
|
|
Item_func::Functype type, Item *value)
|
|
{
|
|
DBUG_ENTER("get_mm_parts");
|
|
if (field->table != param->table)
|
|
DBUG_RETURN(0);
|
|
|
|
KEY_PART *key_part = param->key_parts;
|
|
KEY_PART *end = param->key_parts_end;
|
|
SEL_TREE *tree=0;
|
|
table_map value_used_tables= 0;
|
|
if (value &&
|
|
(value_used_tables= value->used_tables()) &
|
|
~(param->prev_tables | param->read_tables))
|
|
DBUG_RETURN(0);
|
|
for (; key_part != end ; key_part++)
|
|
{
|
|
if (field->eq(key_part->field))
|
|
{
|
|
SEL_ARG *sel_arg=0;
|
|
if (!tree && !(tree=new (param->thd->mem_root) SEL_TREE(param->mem_root,
|
|
param->keys)))
|
|
DBUG_RETURN(0); // OOM
|
|
if (!value || !(value_used_tables & ~param->read_tables))
|
|
{
|
|
/*
|
|
We need to restore the runtime mem_root of the thread in this
|
|
function because it evaluates the value of its argument, while
|
|
the argument can be any, e.g. a subselect. The subselect
|
|
items, in turn, assume that all the memory allocated during
|
|
the evaluation has the same life span as the item itself.
|
|
TODO: opt_range.cc should not reset thd->mem_root at all.
|
|
*/
|
|
MEM_ROOT *tmp_root= param->mem_root;
|
|
param->thd->mem_root= param->old_root;
|
|
sel_arg= get_mm_leaf(param, key_part->field, key_part, type, value);
|
|
param->thd->mem_root= tmp_root;
|
|
|
|
if (!sel_arg)
|
|
continue;
|
|
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
tree->type=SEL_TREE::IMPOSSIBLE;
|
|
DBUG_RETURN(tree);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// This key may be used later
|
|
if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
|
|
DBUG_RETURN(0); // OOM
|
|
}
|
|
sel_arg->part=(uchar) key_part->part;
|
|
sel_arg->max_part_no= sel_arg->part+1;
|
|
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
|
|
tree->keys_map.set_bit(key_part->key);
|
|
}
|
|
}
|
|
|
|
if (tree && tree->merges.is_empty() && tree->keys_map.is_clear_all())
|
|
tree= NULL;
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
Item_func_null_predicate::get_mm_leaf(RANGE_OPT_PARAM *param,
|
|
Field *field, KEY_PART *key_part,
|
|
Item_func::Functype type,
|
|
Item *value)
|
|
{
|
|
MEM_ROOT *alloc= param->mem_root;
|
|
DBUG_ENTER("Item_func_null_predicate::get_mm_leaf");
|
|
DBUG_ASSERT(!value);
|
|
/*
|
|
No check for field->table->maybe_null. It's perfecly fine to use range
|
|
access for cases like
|
|
|
|
SELECT * FROM t1 LEFT JOIN t2 ON t2.key IS [NOT] NULL
|
|
|
|
ON expression is evaluated before considering NULL-complemented rows, so
|
|
IS [NOT] NULL has regular semantics.
|
|
*/
|
|
if (!field->real_maybe_null())
|
|
DBUG_RETURN(type == ISNULL_FUNC ? &null_element : NULL);
|
|
SEL_ARG *tree;
|
|
if (!(tree= new (alloc) SEL_ARG(field, is_null_string, is_null_string)))
|
|
DBUG_RETURN(0);
|
|
if (type == Item_func::ISNOTNULL_FUNC)
|
|
{
|
|
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
|
|
tree->max_flag=NO_MAX_RANGE;
|
|
}
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
Item_func_like::get_mm_leaf(RANGE_OPT_PARAM *param,
|
|
Field *field, KEY_PART *key_part,
|
|
Item_func::Functype type, Item *value)
|
|
{
|
|
DBUG_ENTER("Item_func_like::get_mm_leaf");
|
|
DBUG_ASSERT(value);
|
|
|
|
if (key_part->image_type != Field::itRAW)
|
|
DBUG_RETURN(0);
|
|
|
|
if (param->using_real_indexes &&
|
|
!field->optimize_range(param->real_keynr[key_part->key],
|
|
key_part->part))
|
|
DBUG_RETURN(0);
|
|
|
|
if (field->result_type() == STRING_RESULT &&
|
|
field->charset() != compare_collation())
|
|
DBUG_RETURN(0);
|
|
|
|
StringBuffer<MAX_FIELD_WIDTH> tmp(value->collation.collation);
|
|
String *res;
|
|
|
|
if (!(res= value->val_str(&tmp)))
|
|
DBUG_RETURN(&null_element);
|
|
|
|
if (field->cmp_type() != STRING_RESULT ||
|
|
field->type_handler() == &type_handler_enum ||
|
|
field->type_handler() == &type_handler_set)
|
|
DBUG_RETURN(0);
|
|
|
|
/*
|
|
TODO:
|
|
Check if this was a function. This should have be optimized away
|
|
in the sql_select.cc
|
|
*/
|
|
if (res != &tmp)
|
|
{
|
|
tmp.copy(*res); // Get own copy
|
|
res= &tmp;
|
|
}
|
|
|
|
uint maybe_null= (uint) field->real_maybe_null();
|
|
size_t field_length= field->pack_length() + maybe_null;
|
|
size_t offset= maybe_null;
|
|
size_t length= key_part->store_length;
|
|
|
|
if (length != key_part->length + maybe_null)
|
|
{
|
|
/* key packed with length prefix */
|
|
offset+= HA_KEY_BLOB_LENGTH;
|
|
field_length= length - HA_KEY_BLOB_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(length < field_length))
|
|
{
|
|
/*
|
|
This can only happen in a table created with UNIREG where one key
|
|
overlaps many fields
|
|
*/
|
|
length= field_length;
|
|
}
|
|
else
|
|
field_length= length;
|
|
}
|
|
length+= offset;
|
|
uchar *min_str,*max_str;
|
|
if (!(min_str= (uchar*) alloc_root(param->mem_root, length*2)))
|
|
DBUG_RETURN(0);
|
|
max_str= min_str + length;
|
|
if (maybe_null)
|
|
max_str[0]= min_str[0]=0;
|
|
|
|
size_t min_length, max_length;
|
|
field_length-= maybe_null;
|
|
if (field->charset()->like_range(res->ptr(), res->length(),
|
|
escape, wild_one, wild_many,
|
|
field_length,
|
|
(char*) min_str + offset,
|
|
(char*) max_str + offset,
|
|
&min_length, &max_length))
|
|
DBUG_RETURN(0); // Can't optimize with LIKE
|
|
|
|
if (offset != maybe_null) // BLOB or VARCHAR
|
|
{
|
|
int2store(min_str + maybe_null, min_length);
|
|
int2store(max_str + maybe_null, max_length);
|
|
}
|
|
SEL_ARG *tree= new (param->mem_root) SEL_ARG(field, min_str, max_str);
|
|
DBUG_RETURN(tree);
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
Item_bool_func::get_mm_leaf(RANGE_OPT_PARAM *param,
|
|
Field *field, KEY_PART *key_part,
|
|
Item_func::Functype functype, Item *value)
|
|
{
|
|
DBUG_ENTER("Item_bool_func::get_mm_leaf");
|
|
DBUG_ASSERT(value); // IS NULL and IS NOT NULL are handled separately
|
|
if (key_part->image_type != Field::itRAW)
|
|
DBUG_RETURN(0); // e.g. SPATIAL index
|
|
DBUG_RETURN(field->get_mm_leaf(param, key_part, this,
|
|
functype_to_scalar_comparison_op(functype),
|
|
value));
|
|
}
|
|
|
|
|
|
bool Field::can_optimize_scalar_range(const RANGE_OPT_PARAM *param,
|
|
const KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op,
|
|
const Item *value) const
|
|
{
|
|
bool is_eq_func= op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL;
|
|
if ((param->using_real_indexes &&
|
|
!optimize_range(param->real_keynr[key_part->key],
|
|
key_part->part) && !is_eq_func) ||
|
|
!can_optimize_range(cond, value, is_eq_func))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
uchar *Field::make_key_image(MEM_ROOT *mem_root, const KEY_PART *key_part)
|
|
{
|
|
DBUG_ENTER("Field::make_key_image");
|
|
uint maybe_null= (uint) real_maybe_null();
|
|
uchar *str;
|
|
if (!(str= (uchar*) alloc_root(mem_root, key_part->store_length + 1)))
|
|
DBUG_RETURN(0);
|
|
if (maybe_null)
|
|
*str= (uchar) is_real_null(); // Set to 1 if null
|
|
get_key_image(str + maybe_null, key_part->length, key_part->image_type);
|
|
DBUG_RETURN(str);
|
|
}
|
|
|
|
|
|
SEL_ARG *Field::stored_field_make_mm_leaf_truncated(RANGE_OPT_PARAM *param,
|
|
scalar_comparison_op op,
|
|
Item *value)
|
|
{
|
|
DBUG_ENTER("Field::stored_field_make_mm_leaf_truncated");
|
|
if ((op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL) &&
|
|
value->result_type() == item_cmp_type(result_type(),
|
|
value->result_type()))
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
|
|
/*
|
|
TODO: We should return trees of the type SEL_ARG::IMPOSSIBLE
|
|
for the cases like int_field > 999999999999999999999999 as well.
|
|
*/
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
SEL_ARG *Field_num::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op, Item *value)
|
|
{
|
|
DBUG_ENTER("Field_num::get_mm_leaf");
|
|
if (!can_optimize_scalar_range(prm, key_part, cond, op, value))
|
|
DBUG_RETURN(0);
|
|
int err= value->save_in_field_no_warnings(this, 1);
|
|
if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
|
|
DBUG_RETURN(&null_element);
|
|
if (err > 0 && cmp_type() != value->result_type())
|
|
DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
}
|
|
|
|
|
|
SEL_ARG *Field_temporal::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op, Item *value)
|
|
{
|
|
DBUG_ENTER("Field_temporal::get_mm_leaf");
|
|
if (!can_optimize_scalar_range(prm, key_part, cond, op, value))
|
|
DBUG_RETURN(0);
|
|
int err= value->save_in_field_no_warnings(this, 1);
|
|
if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
|
|
DBUG_RETURN(&null_element);
|
|
if (err > 0)
|
|
DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
}
|
|
|
|
|
|
SEL_ARG *Field_date_common::get_mm_leaf(RANGE_OPT_PARAM *prm,
|
|
KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op,
|
|
Item *value)
|
|
{
|
|
DBUG_ENTER("Field_date_common::get_mm_leaf");
|
|
if (!can_optimize_scalar_range(prm, key_part, cond, op, value))
|
|
DBUG_RETURN(0);
|
|
int err= value->save_in_field_no_warnings(this, 1);
|
|
if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
|
|
DBUG_RETURN(&null_element);
|
|
if (err > 0)
|
|
{
|
|
if (err == 3)
|
|
{
|
|
/*
|
|
We were saving DATETIME into a DATE column, the conversion went ok
|
|
but a non-zero time part was cut off.
|
|
|
|
In MySQL's SQL dialect, DATE and DATETIME are compared as datetime
|
|
values. Index over a DATE column uses DATE comparison. Changing
|
|
from one comparison to the other is possible:
|
|
|
|
datetime(date_col)< '2007-12-10 12:34:55' -> date_col<='2007-12-10'
|
|
datetime(date_col)<='2007-12-10 12:34:55' -> date_col<='2007-12-10'
|
|
|
|
datetime(date_col)> '2007-12-10 12:34:55' -> date_col>='2007-12-10'
|
|
datetime(date_col)>='2007-12-10 12:34:55' -> date_col>='2007-12-10'
|
|
|
|
but we'll need to convert '>' to '>=' and '<' to '<='. This will
|
|
be done together with other types at the end of this function
|
|
(grep for stored_field_cmp_to_item)
|
|
*/
|
|
if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL)
|
|
DBUG_RETURN(new (prm->mem_root) SEL_ARG_IMPOSSIBLE(this));
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
}
|
|
DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
|
|
}
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
}
|
|
|
|
|
|
SEL_ARG *Field_str::get_mm_leaf(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op, Item *value)
|
|
{
|
|
DBUG_ENTER("Field_str::get_mm_leaf");
|
|
if (!can_optimize_scalar_range(prm, key_part, cond, op, value))
|
|
DBUG_RETURN(0);
|
|
int err= value->save_in_field_no_warnings(this, 1);
|
|
if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
|
|
DBUG_RETURN(&null_element);
|
|
if (err > 0)
|
|
{
|
|
if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL)
|
|
DBUG_RETURN(new (prm->mem_root) SEL_ARG_IMPOSSIBLE(this));
|
|
DBUG_RETURN(NULL); /* Cannot infer anything */
|
|
}
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
}
|
|
|
|
|
|
SEL_ARG *Field::get_mm_leaf_int(RANGE_OPT_PARAM *prm, KEY_PART *key_part,
|
|
const Item_bool_func *cond,
|
|
scalar_comparison_op op, Item *value,
|
|
bool unsigned_field)
|
|
{
|
|
DBUG_ENTER("Field::get_mm_leaf_int");
|
|
if (!can_optimize_scalar_range(prm, key_part, cond, op, value))
|
|
DBUG_RETURN(0);
|
|
int err= value->save_in_field_no_warnings(this, 1);
|
|
if ((op != SCALAR_CMP_EQUAL && is_real_null()) || err < 0)
|
|
DBUG_RETURN(&null_element);
|
|
if (err > 0)
|
|
{
|
|
if (value->result_type() != INT_RESULT)
|
|
DBUG_RETURN(stored_field_make_mm_leaf_truncated(prm, op, value));
|
|
else
|
|
DBUG_RETURN(stored_field_make_mm_leaf_bounded_int(prm, key_part,
|
|
op, value,
|
|
unsigned_field));
|
|
}
|
|
if (value->result_type() != INT_RESULT)
|
|
DBUG_RETURN(stored_field_make_mm_leaf(prm, key_part, op, value));
|
|
DBUG_RETURN(stored_field_make_mm_leaf_exact(prm, key_part, op, value));
|
|
}
|
|
|
|
|
|
/*
|
|
This method is called when:
|
|
- value->save_in_field_no_warnings() returned err > 0
|
|
- and both field and "value" are of integer data types
|
|
If an integer got bounded (e.g. to within 0..255 / -128..127)
|
|
for < or >, set flags as for <= or >= (no NEAR_MAX / NEAR_MIN)
|
|
*/
|
|
|
|
SEL_ARG *Field::stored_field_make_mm_leaf_bounded_int(RANGE_OPT_PARAM *param,
|
|
KEY_PART *key_part,
|
|
scalar_comparison_op op,
|
|
Item *value,
|
|
bool unsigned_field)
|
|
{
|
|
DBUG_ENTER("Field::stored_field_make_mm_leaf_bounded_int");
|
|
if (op == SCALAR_CMP_EQ || op == SCALAR_CMP_EQUAL) // e.g. tinyint = 200
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
|
|
longlong item_val= value->val_int();
|
|
|
|
if (op == SCALAR_CMP_LT && item_val > 0)
|
|
op= SCALAR_CMP_LE; // e.g. rewrite (tinyint < 200) to (tinyint <= 127)
|
|
else if (op == SCALAR_CMP_GT && !unsigned_field &&
|
|
!value->unsigned_flag && item_val < 0)
|
|
op= SCALAR_CMP_GE; // e.g. rewrite (tinyint > -200) to (tinyint >= -128)
|
|
|
|
/*
|
|
Check if we are comparing an UNSIGNED integer with a negative constant.
|
|
In this case we know that:
|
|
(a) (unsigned_int [< | <=] negative_constant) == FALSE
|
|
(b) (unsigned_int [> | >=] negative_constant) == TRUE
|
|
In case (a) the condition is false for all values, and in case (b) it
|
|
is true for all values, so we can avoid unnecessary retrieval and condition
|
|
testing, and we also get correct comparison of unsinged integers with
|
|
negative integers (which otherwise fails because at query execution time
|
|
negative integers are cast to unsigned if compared with unsigned).
|
|
*/
|
|
if (unsigned_field && !value->unsigned_flag && item_val < 0)
|
|
{
|
|
if (op == SCALAR_CMP_LT || op == SCALAR_CMP_LE) // e.g. uint < -1
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_IMPOSSIBLE(this));
|
|
if (op == SCALAR_CMP_GT || op == SCALAR_CMP_GE) // e.g. uint > -1
|
|
DBUG_RETURN(0);
|
|
}
|
|
DBUG_RETURN(stored_field_make_mm_leaf_exact(param, key_part, op, value));
|
|
}
|
|
|
|
|
|
SEL_ARG *Field::stored_field_make_mm_leaf(RANGE_OPT_PARAM *param,
|
|
KEY_PART *key_part,
|
|
scalar_comparison_op op,
|
|
Item *value)
|
|
{
|
|
DBUG_ENTER("Field::stored_field_make_mm_leaf");
|
|
THD *thd= param->thd;
|
|
MEM_ROOT *mem_root= param->mem_root;
|
|
uchar *str;
|
|
if (!(str= make_key_image(param->mem_root, key_part)))
|
|
DBUG_RETURN(0);
|
|
|
|
switch (op) {
|
|
case SCALAR_CMP_LE:
|
|
DBUG_RETURN(new (mem_root) SEL_ARG_LE(str, this));
|
|
case SCALAR_CMP_LT:
|
|
DBUG_RETURN(new (mem_root) SEL_ARG_LT(thd, str, this, value));
|
|
case SCALAR_CMP_GT:
|
|
DBUG_RETURN(new (mem_root) SEL_ARG_GT(thd, str, key_part, this, value));
|
|
case SCALAR_CMP_GE:
|
|
DBUG_RETURN(new (mem_root) SEL_ARG_GE(thd, str, key_part, this, value));
|
|
case SCALAR_CMP_EQ:
|
|
case SCALAR_CMP_EQUAL:
|
|
DBUG_RETURN(new (mem_root) SEL_ARG(this, str, str));
|
|
break;
|
|
}
|
|
DBUG_ASSERT(0);
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
|
|
SEL_ARG *Field::stored_field_make_mm_leaf_exact(RANGE_OPT_PARAM *param,
|
|
KEY_PART *key_part,
|
|
scalar_comparison_op op,
|
|
Item *value)
|
|
{
|
|
DBUG_ENTER("Field::stored_field_make_mm_leaf_exact");
|
|
uchar *str;
|
|
if (!(str= make_key_image(param->mem_root, key_part)))
|
|
DBUG_RETURN(0);
|
|
|
|
switch (op) {
|
|
case SCALAR_CMP_LE:
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_LE(str, this));
|
|
case SCALAR_CMP_LT:
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_LT(str, this));
|
|
case SCALAR_CMP_GT:
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_GT(str, key_part, this));
|
|
case SCALAR_CMP_GE:
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG_GE(str, this));
|
|
case SCALAR_CMP_EQ:
|
|
case SCALAR_CMP_EQUAL:
|
|
DBUG_RETURN(new (param->mem_root) SEL_ARG(this, str, str));
|
|
break;
|
|
}
|
|
DBUG_ASSERT(0);
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
** Tree manipulation functions
|
|
** If tree is 0 it means that the condition can't be tested. It refers
|
|
** to a non existent table or to a field in current table with isn't a key.
|
|
** The different tree flags:
|
|
** IMPOSSIBLE: Condition is never TRUE
|
|
** ALWAYS: Condition is always TRUE
|
|
** MAYBE: Condition may exists when tables are read
|
|
** MAYBE_KEY: Condition refers to a key that may be used in join loop
|
|
** KEY_RANGE: Condition uses a key
|
|
******************************************************************************/
|
|
|
|
/*
|
|
Update weights for SEL_ARG graph that is connected only via next_key_part
|
|
(and not left/right) links
|
|
*/
|
|
static uint update_weight_for_single_arg(SEL_ARG *arg)
|
|
{
|
|
if (arg->next_key_part)
|
|
return (arg->weight= 1 + update_weight_for_single_arg(arg->next_key_part));
|
|
else
|
|
return (arg->weight= 1);
|
|
}
|
|
|
|
|
|
/*
|
|
Add a new key test to a key when scanning through all keys
|
|
This will never be called for same key parts.
|
|
*/
|
|
|
|
static SEL_ARG *
|
|
sel_add(SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
SEL_ARG *root,**key_link;
|
|
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
|
|
key_link= &root;
|
|
while (key1 && key2)
|
|
{
|
|
if (key1->part < key2->part)
|
|
{
|
|
*key_link= key1;
|
|
key_link= &key1->next_key_part;
|
|
key1=key1->next_key_part;
|
|
}
|
|
else
|
|
{
|
|
*key_link= key2;
|
|
key_link= &key2->next_key_part;
|
|
key2=key2->next_key_part;
|
|
}
|
|
}
|
|
*key_link=key1 ? key1 : key2;
|
|
|
|
update_weight_for_single_arg(root);
|
|
return root;
|
|
}
|
|
|
|
|
|
/*
|
|
Build a range tree for the conjunction of the range parts of two trees
|
|
|
|
SYNOPSIS
|
|
and_range_trees()
|
|
param Context info for the operation
|
|
tree1 SEL_TREE for the first conjunct
|
|
tree2 SEL_TREE for the second conjunct
|
|
result SEL_TREE for the result
|
|
|
|
DESCRIPTION
|
|
This function takes range parts of two trees tree1 and tree2 and builds
|
|
a range tree for the conjunction of the formulas that these two range parts
|
|
represent.
|
|
More exactly:
|
|
if the range part of tree1 represents the normalized formula
|
|
R1_1 AND ... AND R1_k,
|
|
and the range part of tree2 represents the normalized formula
|
|
R2_1 AND ... AND R2_k,
|
|
then the range part of the result represents the formula:
|
|
RT = R_1 AND ... AND R_k, where R_i=(R1_i AND R2_i) for each i from [1..k]
|
|
|
|
The function assumes that tree1 is never equal to tree2. At the same
|
|
time the tree result can be the same as tree1 (but never as tree2).
|
|
If result==tree1 then rt replaces the range part of tree1 leaving
|
|
imerges as they are.
|
|
if result!=tree1 than it is assumed that the SEL_ARG trees in tree1 and
|
|
tree2 should be preserved. Otherwise they can be destroyed.
|
|
|
|
RETURN
|
|
1 if the type the result tree is SEL_TREE::IMPOSSIBLE
|
|
0 otherwise
|
|
*/
|
|
|
|
static
|
|
int and_range_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2,
|
|
SEL_TREE *result)
|
|
{
|
|
DBUG_ENTER("and_ranges");
|
|
key_map result_keys;
|
|
result_keys.clear_all();
|
|
key_map anded_keys= tree1->keys_map;
|
|
anded_keys.merge(tree2->keys_map);
|
|
int key_no;
|
|
key_map::Iterator it(anded_keys);
|
|
while ((key_no= it++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
uint flag=0;
|
|
SEL_ARG *key1= tree1->keys[key_no];
|
|
SEL_ARG *key2= tree2->keys[key_no];
|
|
if (key1 && !key1->simple_key())
|
|
flag|= CLONE_KEY1_MAYBE;
|
|
if (key2 && !key2->simple_key())
|
|
flag|=CLONE_KEY2_MAYBE;
|
|
if (result != tree1)
|
|
{
|
|
if (key1)
|
|
key1->incr_refs();
|
|
if (key2)
|
|
key2->incr_refs();
|
|
}
|
|
SEL_ARG *key;
|
|
if ((result->keys[key_no]= key= key_and_with_limit(param, key_no,
|
|
key1, key2, flag)))
|
|
{
|
|
if (key && key->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
result->type= SEL_TREE::IMPOSSIBLE;
|
|
if (param->using_real_indexes)
|
|
{
|
|
param->table->with_impossible_ranges.set_bit(param->
|
|
real_keynr[key_no]);
|
|
}
|
|
DBUG_RETURN(1);
|
|
}
|
|
result_keys.set_bit(key_no);
|
|
#ifdef EXTRA_DEBUG
|
|
if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS)
|
|
key->test_use_count(key);
|
|
#endif
|
|
}
|
|
}
|
|
result->keys_map= result_keys;
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Build a SEL_TREE for a conjunction out of such trees for the conjuncts
|
|
|
|
SYNOPSIS
|
|
tree_and()
|
|
param Context info for the operation
|
|
tree1 SEL_TREE for the first conjunct
|
|
tree2 SEL_TREE for the second conjunct
|
|
|
|
DESCRIPTION
|
|
This function builds a tree for the formula (A AND B) out of the trees
|
|
tree1 and tree2 that has been built for the formulas A and B respectively.
|
|
|
|
In a general case
|
|
tree1 represents the formula RT1 AND MT1,
|
|
where RT1 = R1_1 AND ... AND R1_k1, MT1=M1_1 AND ... AND M1_l1;
|
|
tree2 represents the formula RT2 AND MT2
|
|
where RT2 = R2_1 AND ... AND R2_k2, MT2=M2_1 AND ... AND M2_l2.
|
|
|
|
The result tree will represent the formula of the the following structure:
|
|
RT AND RT1MT2 AND RT2MT1, such that
|
|
rt is a tree obtained by range intersection of trees tree1 and tree2,
|
|
RT1MT2 = RT1M2_1 AND ... AND RT1M2_l2,
|
|
RT2MT1 = RT2M1_1 AND ... AND RT2M1_l1,
|
|
where rt1m2_i (i=1,...,l2) is the result of the pushdown operation
|
|
of range tree rt1 into imerge m2_i, while rt2m1_j (j=1,...,l1) is the
|
|
result of the pushdown operation of range tree rt2 into imerge m1_j.
|
|
|
|
RT1MT2/RT2MT is empty if MT2/MT1 is empty.
|
|
|
|
The range intersection of two range trees is produced by the function
|
|
and_range_trees. The pushdown of a range tree to a imerge is performed
|
|
by the function imerge_list_and_tree. This function may produce imerges
|
|
containing only one range tree. Such trees are intersected with rt and
|
|
the result of intersection is returned as the range part of the result
|
|
tree, while the corresponding imerges are removed altogether from its
|
|
imerge part.
|
|
|
|
NOTE
|
|
The pushdown operation of range trees into imerges is needed to be able
|
|
to construct valid imerges for the condition like this:
|
|
key1_p1=c1 AND (key1_p2 BETWEEN c21 AND c22 OR key2 < c2)
|
|
|
|
NOTE
|
|
Currently we do not support intersection between indexes and index merges.
|
|
When this will be supported the list of imerges for the result tree
|
|
should include also imerges from M1 and M2. That's why an extra parameter
|
|
is added to the function imerge_list_and_tree. If we call the function
|
|
with the last parameter equal to FALSE then MT1 and MT2 will be preserved
|
|
in the imerge list of the result tree. This can lead to the exponential
|
|
growth of the imerge list though.
|
|
Currently the last parameter of imerge_list_and_tree calls is always
|
|
TRUE.
|
|
|
|
RETURN
|
|
The result tree, if a success
|
|
0 - otherwise.
|
|
*/
|
|
|
|
static
|
|
SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1, SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_and");
|
|
if (!tree1)
|
|
DBUG_RETURN(tree2);
|
|
if (!tree2)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
{
|
|
if (tree2->type == SEL_TREE::KEY)
|
|
tree2->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree2);
|
|
}
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
{
|
|
tree1->type=SEL_TREE::KEY_SMALLER;
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
if (!tree1->merges.is_empty())
|
|
imerge_list_and_tree(param, &tree1->merges, tree2, TRUE);
|
|
if (!tree2->merges.is_empty())
|
|
imerge_list_and_tree(param, &tree2->merges, tree1, TRUE);
|
|
if (and_range_trees(param, tree1, tree2, tree1))
|
|
DBUG_RETURN(tree1);
|
|
imerge_list_and_list(&tree1->merges, &tree2->merges);
|
|
eliminate_single_tree_imerges(param, tree1);
|
|
DBUG_RETURN(tree1);
|
|
}
|
|
|
|
|
|
/*
|
|
Eliminate single tree imerges in a SEL_TREE objects
|
|
|
|
SYNOPSIS
|
|
eliminate_single_tree_imerges()
|
|
param Context info for the function
|
|
tree SEL_TREE where single tree imerges are to be eliminated
|
|
|
|
DESCRIPTION
|
|
For each imerge in 'tree' that contains only one disjunct tree, i.e.
|
|
for any imerge of the form m=rt, the function performs and operation
|
|
the range part of tree, replaces rt the with the result of anding and
|
|
removes imerge m from the the merge part of 'tree'.
|
|
|
|
RETURN VALUE
|
|
none
|
|
*/
|
|
|
|
static
|
|
void eliminate_single_tree_imerges(RANGE_OPT_PARAM *param, SEL_TREE *tree)
|
|
{
|
|
SEL_IMERGE *imerge;
|
|
List<SEL_IMERGE> merges= tree->merges;
|
|
List_iterator<SEL_IMERGE> it(merges);
|
|
tree->merges.empty();
|
|
while ((imerge= it++))
|
|
{
|
|
if (imerge->trees+1 == imerge->trees_next)
|
|
{
|
|
tree= tree_and(param, tree, *imerge->trees);
|
|
it.remove();
|
|
}
|
|
}
|
|
tree->merges= merges;
|
|
}
|
|
|
|
|
|
/*
|
|
For two trees check that there are indexes with ranges in both of them
|
|
|
|
SYNOPSIS
|
|
sel_trees_have_common_keys()
|
|
tree1 SEL_TREE for the first tree
|
|
tree2 SEL_TREE for the second tree
|
|
common_keys OUT bitmap of all indexes with ranges in both trees
|
|
|
|
DESCRIPTION
|
|
For two trees tree1 and tree1 the function checks if there are indexes
|
|
in their range parts such that SEL_ARG trees are defined for them in the
|
|
range parts of both trees. The function returns the bitmap of such
|
|
indexes in the parameter common_keys.
|
|
|
|
RETURN
|
|
TRUE if there are such indexes (common_keys is nor empty)
|
|
FALSE otherwise
|
|
*/
|
|
|
|
static
|
|
bool sel_trees_have_common_keys(SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map *common_keys)
|
|
{
|
|
*common_keys= tree1->keys_map;
|
|
common_keys->intersect(tree2->keys_map);
|
|
return !common_keys->is_clear_all();
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range parts of two trees can be ored for some indexes
|
|
|
|
SYNOPSIS
|
|
sel_trees_can_be_ored()
|
|
param Context info for the function
|
|
tree1 SEL_TREE for the first tree
|
|
tree2 SEL_TREE for the second tree
|
|
common_keys IN/OUT IN: bitmap of all indexes with SEL_ARG in both trees
|
|
OUT: bitmap of all indexes that can be ored
|
|
|
|
DESCRIPTION
|
|
For two trees tree1 and tree2 and the bitmap common_keys containing
|
|
bits for indexes that have SEL_ARG trees in range parts of both trees
|
|
the function checks if there are indexes for which SEL_ARG trees can
|
|
be ored. Two SEL_ARG trees for the same index can be ored if the most
|
|
major components of the index used in these trees coincide. If the
|
|
SEL_ARG trees for an index cannot be ored the function clears the bit
|
|
for this index in the bitmap common_keys.
|
|
|
|
The function does not verify that indexes marked in common_keys really
|
|
have SEL_ARG trees in both tree1 and tree2. It assumes that this is true.
|
|
|
|
NOTE
|
|
The function sel_trees_can_be_ored is usually used in pair with the
|
|
function sel_trees_have_common_keys.
|
|
|
|
RETURN
|
|
TRUE if there are indexes for which SEL_ARG trees can be ored
|
|
FALSE otherwise
|
|
*/
|
|
|
|
static
|
|
bool sel_trees_can_be_ored(RANGE_OPT_PARAM* param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map *common_keys)
|
|
{
|
|
DBUG_ENTER("sel_trees_can_be_ored");
|
|
if (!sel_trees_have_common_keys(tree1, tree2, common_keys))
|
|
DBUG_RETURN(FALSE);
|
|
int key_no;
|
|
key_map::Iterator it(*common_keys);
|
|
while ((key_no= it++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
DBUG_ASSERT(tree1->keys[key_no] && tree2->keys[key_no]);
|
|
/* Trees have a common key, check if they refer to the same key part */
|
|
if (tree1->keys[key_no]->part != tree2->keys[key_no]->part)
|
|
common_keys->clear_bit(key_no);
|
|
}
|
|
DBUG_RETURN(!common_keys->is_clear_all());
|
|
}
|
|
|
|
/*
|
|
Check whether the key parts inf_init..inf_end-1 of one index can compose
|
|
an infix for the key parts key_init..key_end-1 of another index
|
|
*/
|
|
|
|
static
|
|
bool is_key_infix(KEY_PART *key_init, KEY_PART *key_end,
|
|
KEY_PART *inf_init, KEY_PART *inf_end)
|
|
{
|
|
KEY_PART *key_part, *inf_part;
|
|
for (key_part= key_init; key_part < key_end; key_part++)
|
|
{
|
|
if (key_part->field->eq(inf_init->field))
|
|
break;
|
|
}
|
|
if (key_part == key_end)
|
|
return false;
|
|
for (key_part++, inf_part= inf_init + 1;
|
|
key_part < key_end && inf_part < inf_end;
|
|
key_part++, inf_part++)
|
|
{
|
|
if (!key_part->field->eq(inf_part->field))
|
|
return false;
|
|
}
|
|
return inf_part == inf_end;
|
|
}
|
|
|
|
|
|
/*
|
|
Check whether range parts of two trees must be ored for some indexes
|
|
|
|
SYNOPSIS
|
|
sel_trees_must_be_ored()
|
|
param Context info for the function
|
|
tree1 SEL_TREE for the first tree
|
|
tree2 SEL_TREE for the second tree
|
|
ordable_keys bitmap of SEL_ARG trees that can be ored
|
|
|
|
DESCRIPTION
|
|
For two trees tree1 and tree2 the function checks whether they must be
|
|
ored. The function assumes that the bitmap ordable_keys contains bits for
|
|
those corresponding pairs of SEL_ARG trees from tree1 and tree2 that can
|
|
be ored.
|
|
We believe that tree1 and tree2 must be ored if any pair of SEL_ARG trees
|
|
r1 and r2, such that r1 is from tree1 and r2 is from tree2 and both
|
|
of them are marked in ordable_keys, can be merged.
|
|
|
|
NOTE
|
|
The function sel_trees_must_be_ored as a rule is used in pair with the
|
|
function sel_trees_can_be_ored.
|
|
|
|
RETURN
|
|
TRUE if there are indexes for which SEL_ARG trees must be ored
|
|
FALSE otherwise
|
|
*/
|
|
|
|
static
|
|
bool sel_trees_must_be_ored(RANGE_OPT_PARAM* param,
|
|
SEL_TREE *tree1, SEL_TREE *tree2,
|
|
key_map oredable_keys)
|
|
{
|
|
key_map tmp;
|
|
DBUG_ENTER("sel_trees_must_be_ored");
|
|
|
|
tmp= tree1->keys_map;
|
|
tmp.merge(tree2->keys_map);
|
|
tmp.subtract(oredable_keys);
|
|
if (!tmp.is_clear_all())
|
|
DBUG_RETURN(FALSE);
|
|
|
|
int idx1, idx2;
|
|
key_map::Iterator it1(oredable_keys);
|
|
while ((idx1= it1++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
KEY_PART *key1_init= param->key[idx1]+tree1->keys[idx1]->part;
|
|
KEY_PART *key1_end= param->key[idx1]+tree1->keys[idx1]->max_part_no;
|
|
key_map::Iterator it2(oredable_keys);
|
|
while ((idx2= it2++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
if (idx2 <= idx1)
|
|
continue;
|
|
|
|
KEY_PART *key2_init= param->key[idx2]+tree2->keys[idx2]->part;
|
|
KEY_PART *key2_end= param->key[idx2]+tree2->keys[idx2]->max_part_no;
|
|
if (!is_key_infix(key1_init, key1_end, key2_init, key2_end) &&
|
|
!is_key_infix(key2_init, key2_end, key1_init, key1_end))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Remove the trees that are not suitable for record retrieval
|
|
|
|
SYNOPSIS
|
|
remove_nonrange_trees()
|
|
param Context info for the function
|
|
tree Tree to be processed, tree->type is KEY or KEY_SMALLER
|
|
|
|
DESCRIPTION
|
|
This function walks through tree->keys[] and removes the SEL_ARG* trees
|
|
that are not "maybe" trees (*) and cannot be used to construct quick range
|
|
selects.
|
|
(*) - have type MAYBE or MAYBE_KEY. Perhaps we should remove trees of
|
|
these types here as well.
|
|
|
|
A SEL_ARG* tree cannot be used to construct quick select if it has
|
|
tree->part != 0. (e.g. it could represent "keypart2 < const").
|
|
|
|
Normally we allow construction of SEL_TREE objects that have SEL_ARG
|
|
trees that do not allow quick range select construction.
|
|
For example:
|
|
for " keypart1=1 AND keypart2=2 " the execution will proceed as follows:
|
|
tree1= SEL_TREE { SEL_ARG{keypart1=1} }
|
|
tree2= SEL_TREE { SEL_ARG{keypart2=2} } -- can't make quick range select
|
|
from this
|
|
call tree_and(tree1, tree2) -- this joins SEL_ARGs into a usable SEL_ARG
|
|
tree.
|
|
|
|
Another example:
|
|
tree3= SEL_TREE { SEL_ARG{key1part1 = 1} }
|
|
tree4= SEL_TREE { SEL_ARG{key2part2 = 2} } -- can't make quick range select
|
|
from this
|
|
call tree_or(tree3, tree4) -- creates a SEL_MERGE ot of which no index
|
|
merge can be constructed, but it is potentially useful, as anding it with
|
|
tree5= SEL_TREE { SEL_ARG{key2part1 = 3} } creates an index merge that
|
|
represents the formula
|
|
key1part1=1 AND key2part1=3 OR key2part1=3 AND key2part2=2
|
|
for which an index merge can be built.
|
|
|
|
Any final SEL_TREE may contain SEL_ARG trees for which no quick select
|
|
can be built. Such SEL_ARG trees should be removed from the range part
|
|
before different range scans are evaluated. Such SEL_ARG trees also should
|
|
be removed from all range trees of each index merge before different
|
|
possible index merge plans are evaluated. If after this removal one
|
|
of the range trees in the index merge becomes empty the whole index merge
|
|
must be discarded.
|
|
|
|
RETURN
|
|
0 Ok, some suitable trees left
|
|
1 No tree->keys[] left.
|
|
*/
|
|
|
|
static bool remove_nonrange_trees(PARAM *param, SEL_TREE *tree)
|
|
{
|
|
bool res= FALSE;
|
|
for (uint i=0; i < param->keys; i++)
|
|
{
|
|
if (tree->keys[i])
|
|
{
|
|
if (tree->keys[i]->part)
|
|
{
|
|
tree->keys[i]= NULL;
|
|
/* Mark that records_in_range has not been called */
|
|
param->quick_rows[param->real_keynr[i]]= HA_POS_ERROR;
|
|
tree->keys_map.clear_bit(i);
|
|
}
|
|
else
|
|
res= TRUE;
|
|
}
|
|
}
|
|
return !res;
|
|
}
|
|
|
|
|
|
/*
|
|
Restore nonrange trees to their previous state
|
|
*/
|
|
|
|
static void restore_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree,
|
|
SEL_ARG **backup_keys)
|
|
{
|
|
for (uint i=0; i < param->keys; i++)
|
|
{
|
|
if (backup_keys[i])
|
|
{
|
|
tree->keys[i]= backup_keys[i];
|
|
tree->keys_map.set_bit(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Build a SEL_TREE for a disjunction out of such trees for the disjuncts
|
|
|
|
SYNOPSIS
|
|
tree_or()
|
|
param Context info for the operation
|
|
tree1 SEL_TREE for the first disjunct
|
|
tree2 SEL_TREE for the second disjunct
|
|
|
|
DESCRIPTION
|
|
This function builds a tree for the formula (A OR B) out of the trees
|
|
tree1 and tree2 that has been built for the formulas A and B respectively.
|
|
|
|
In a general case
|
|
tree1 represents the formula RT1 AND MT1,
|
|
where RT1=R1_1 AND ... AND R1_k1, MT1=M1_1 AND ... AND M1_l1;
|
|
tree2 represents the formula RT2 AND MT2
|
|
where RT2=R2_1 AND ... AND R2_k2, MT2=M2_1 and ... and M2_l2.
|
|
|
|
The function constructs the result tree according the formula
|
|
(RT1 OR RT2) AND (MT1 OR RT1) AND (MT2 OR RT2) AND (MT1 OR MT2)
|
|
that is equivalent to the formula (RT1 AND MT1) OR (RT2 AND MT2).
|
|
|
|
To limit the number of produced imerges the function considers
|
|
a weaker formula than the original one:
|
|
(RT1 AND M1_1) OR (RT2 AND M2_1)
|
|
that is equivalent to:
|
|
(RT1 OR RT2) (1)
|
|
AND
|
|
(M1_1 OR M2_1) (2)
|
|
AND
|
|
(M1_1 OR RT2) (3)
|
|
AND
|
|
(M2_1 OR RT1) (4)
|
|
|
|
For the first conjunct (1) the function builds a tree with a range part
|
|
and, possibly, one imerge. For the other conjuncts (2-4)the function
|
|
produces sets of imerges. All constructed imerges are included into the
|
|
result tree.
|
|
|
|
For the formula (1) the function produces the tree representing a formula
|
|
of the structure RT [AND M], such that:
|
|
- the range tree rt contains the result of oring SEL_ARG trees from rt1
|
|
and rt2
|
|
- the imerge m consists of two range trees rt1 and rt2.
|
|
The imerge m is added if it's not true that rt1 and rt2 must be ored
|
|
If rt1 and rt2 can't be ored rt is empty and only m is produced for (1).
|
|
|
|
To produce imerges for the formula (2) the function calls the function
|
|
imerge_list_or_list passing it the merge parts of tree1 and tree2 as
|
|
parameters.
|
|
|
|
To produce imerges for the formula (3) the function calls the function
|
|
imerge_list_or_tree passing it the imerge m1_1 and the range tree rt2 as
|
|
parameters. Similarly, to produce imerges for the formula (4) the function
|
|
calls the function imerge_list_or_tree passing it the imerge m2_1 and the
|
|
range tree rt1.
|
|
|
|
If rt1 is empty then the trees for (1) and (4) are empty.
|
|
If rt2 is empty then the trees for (1) and (3) are empty.
|
|
If mt1 is empty then the trees for (2) and (3) are empty.
|
|
If mt2 is empty then the trees for (2) and (4) are empty.
|
|
|
|
RETURN
|
|
The result tree for the operation if a success
|
|
0 - otherwise
|
|
*/
|
|
|
|
static SEL_TREE *
|
|
tree_or(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
|
|
{
|
|
DBUG_ENTER("tree_or");
|
|
if (!tree1 || !tree2)
|
|
DBUG_RETURN(0);
|
|
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree2);
|
|
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
|
|
DBUG_RETURN(tree1);
|
|
if (tree1->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree1); // Can't use this
|
|
if (tree2->type == SEL_TREE::MAYBE)
|
|
DBUG_RETURN(tree2);
|
|
|
|
SEL_TREE *result= NULL;
|
|
key_map ored_keys;
|
|
SEL_TREE *rtree[2]= {NULL,NULL};
|
|
SEL_IMERGE *imerge[2]= {NULL, NULL};
|
|
bool no_ranges1= tree1->without_ranges();
|
|
bool no_ranges2= tree2->without_ranges();
|
|
bool no_merges1= tree1->without_imerges();
|
|
bool no_merges2= tree2->without_imerges();
|
|
if (!no_ranges1 && !no_merges2)
|
|
{
|
|
rtree[0]= new SEL_TREE(tree1, TRUE, param);
|
|
imerge[1]= new SEL_IMERGE(tree2->merges.head(), 0, param);
|
|
}
|
|
if (!no_ranges2 && !no_merges1)
|
|
{
|
|
rtree[1]= new SEL_TREE(tree2, TRUE, param);
|
|
imerge[0]= new SEL_IMERGE(tree1->merges.head(), 0, param);
|
|
}
|
|
bool no_imerge_from_ranges= FALSE;
|
|
|
|
/* Build the range part of the tree for the formula (1) */
|
|
if (sel_trees_can_be_ored(param, tree1, tree2, &ored_keys))
|
|
{
|
|
bool must_be_ored= sel_trees_must_be_ored(param, tree1, tree2, ored_keys);
|
|
no_imerge_from_ranges= must_be_ored;
|
|
|
|
if (no_imerge_from_ranges && no_merges1 && no_merges2)
|
|
{
|
|
/*
|
|
Reuse tree1 as the result in simple cases. This reduces memory usage
|
|
for e.g. "key IN (c1, ..., cN)" which produces a lot of ranges.
|
|
*/
|
|
result= tree1;
|
|
result->keys_map.clear_all();
|
|
}
|
|
else
|
|
{
|
|
if (!(result= new (param->mem_root) SEL_TREE(param->mem_root,
|
|
param->keys)))
|
|
{
|
|
DBUG_RETURN(result);
|
|
}
|
|
}
|
|
|
|
key_map::Iterator it(ored_keys);
|
|
int key_no;
|
|
while ((key_no= it++) != key_map::Iterator::BITMAP_END)
|
|
{
|
|
SEL_ARG *key1= tree1->keys[key_no];
|
|
SEL_ARG *key2= tree2->keys[key_no];
|
|
if (!must_be_ored)
|
|
{
|
|
key1->incr_refs();
|
|
key2->incr_refs();
|
|
}
|
|
if ((result->keys[key_no]= key_or_with_limit(param, key_no, key1, key2)))
|
|
result->keys_map.set_bit(key_no);
|
|
}
|
|
result->type= tree1->type;
|
|
}
|
|
else
|
|
{
|
|
if (!result && !(result= new (param->mem_root) SEL_TREE(param->mem_root,
|
|
param->keys)))
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (no_imerge_from_ranges && no_merges1 && no_merges2)
|
|
{
|
|
if (result->keys_map.is_clear_all())
|
|
result->type= SEL_TREE::ALWAYS;
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
SEL_IMERGE *imerge_from_ranges;
|
|
if (!(imerge_from_ranges= new SEL_IMERGE()))
|
|
result= NULL;
|
|
else if (!no_ranges1 && !no_ranges2 && !no_imerge_from_ranges)
|
|
{
|
|
/* Build the imerge part of the tree for the formula (1) */
|
|
SEL_TREE *rt1= tree1;
|
|
SEL_TREE *rt2= tree2;
|
|
if (no_merges1)
|
|
rt1= new SEL_TREE(tree1, TRUE, param);
|
|
if (no_merges2)
|
|
rt2= new SEL_TREE(tree2, TRUE, param);
|
|
if (!rt1 || !rt2 ||
|
|
result->merges.push_back(imerge_from_ranges) ||
|
|
imerge_from_ranges->or_sel_tree(param, rt1) ||
|
|
imerge_from_ranges->or_sel_tree(param, rt2))
|
|
result= NULL;
|
|
}
|
|
if (!result)
|
|
DBUG_RETURN(result);
|
|
|
|
result->type= tree1->type;
|
|
|
|
if (!no_merges1 && !no_merges2 &&
|
|
!imerge_list_or_list(param, &tree1->merges, &tree2->merges))
|
|
{
|
|
/* Build the imerges for the formula (2) */
|
|
imerge_list_and_list(&result->merges, &tree1->merges);
|
|
}
|
|
|
|
/* Build the imerges for the formulas (3) and (4) */
|
|
for (uint i=0; i < 2; i++)
|
|
{
|
|
List<SEL_IMERGE> merges;
|
|
SEL_TREE *rt= rtree[i];
|
|
SEL_IMERGE *im= imerge[1-i];
|
|
|
|
if (rt && im && !merges.push_back(im) &&
|
|
!imerge_list_or_tree(param, &merges, rt))
|
|
imerge_list_and_list(&result->merges, &merges);
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/* And key trees where key1->part < key2 -> part */
|
|
|
|
static SEL_ARG *
|
|
and_all_keys(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2,
|
|
uint clone_flag)
|
|
{
|
|
SEL_ARG *next;
|
|
ulong use_count=key1->use_count;
|
|
|
|
if (sel_arg_and_weight_heuristic(param, key1, key2))
|
|
return key1;
|
|
|
|
if (key1->elements != 1)
|
|
{
|
|
key2->use_count+=key1->elements-1; //psergey: why we don't count that key1 has n-k-p?
|
|
key2->increment_use_count((int) key1->elements-1);
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
if (key2->type == SEL_ARG::KEY_RANGE)
|
|
return key2;
|
|
key1->right= key1->left= &null_element;
|
|
key1->next= key1->prev= 0;
|
|
key1->weight= 1 + (key1->next_key_part? key1->next_key_part->weight: 0);
|
|
}
|
|
|
|
for (next=key1->first(); next ; next=next->next)
|
|
{
|
|
if (next->next_key_part)
|
|
{
|
|
uint old_weight= next->next_key_part->weight;
|
|
SEL_ARG *tmp= key_and(param, next->next_key_part, key2, clone_flag);
|
|
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
key1=key1->tree_delete(next);
|
|
continue;
|
|
}
|
|
next->next_key_part=tmp;
|
|
key1->weight+= (tmp? tmp->weight: 0) - old_weight;
|
|
if (use_count)
|
|
next->increment_use_count(use_count);
|
|
if (param->alloced_sel_args > SEL_ARG::MAX_SEL_ARGS)
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
next->next_key_part=key2;
|
|
key1->weight += key2->weight;
|
|
}
|
|
}
|
|
if (!key1)
|
|
return &null_element; // Impossible ranges
|
|
key1->use_count++;
|
|
|
|
key1->max_part_no= MY_MAX(key2->max_part_no, key2->part+1);
|
|
return key1;
|
|
}
|
|
|
|
|
|
/*
|
|
Produce a SEL_ARG graph that represents "key1 AND key2"
|
|
|
|
SYNOPSIS
|
|
key_and()
|
|
param Range analysis context (needed to track if we have allocated
|
|
too many SEL_ARGs)
|
|
key1 First argument, root of its RB-tree
|
|
key2 Second argument, root of its RB-tree
|
|
|
|
RETURN
|
|
RB-tree root of the resulting SEL_ARG graph.
|
|
NULL if the result of AND operation is an empty interval {0}.
|
|
*/
|
|
|
|
static SEL_ARG *
|
|
key_and(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
|
|
{
|
|
if (!key1)
|
|
return key2;
|
|
if (!key2)
|
|
return key1;
|
|
if (key1->part != key2->part)
|
|
{
|
|
if (key1->part > key2->part)
|
|
{
|
|
swap_variables(SEL_ARG *, key1, key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
// key1->part < key2->part
|
|
|
|
if (sel_arg_and_weight_heuristic(param, key1, key2))
|
|
return key1;
|
|
|
|
key1->use_count--;
|
|
if (key1->use_count > 0)
|
|
if (!(key1= key1->clone_tree(param)))
|
|
return 0; // OOM
|
|
return and_all_keys(param, key1, key2, clone_flag);
|
|
}
|
|
|
|
if (((clone_flag & CLONE_KEY2_MAYBE) &&
|
|
!(clone_flag & CLONE_KEY1_MAYBE) &&
|
|
key2->type != SEL_ARG::MAYBE_KEY) ||
|
|
key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Put simple key in key2
|
|
swap_variables(SEL_ARG *, key1, key2);
|
|
clone_flag=swap_clone_flag(clone_flag);
|
|
}
|
|
|
|
/* If one of the key is MAYBE_KEY then the found region may be smaller */
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
if (key1->use_count > 1)
|
|
{
|
|
key1->use_count--;
|
|
if (!(key1=key1->clone_tree(param)))
|
|
return 0; // OOM
|
|
key1->use_count++;
|
|
}
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{ // Both are maybe key
|
|
key1->next_key_part=key_and(param, key1->next_key_part,
|
|
key2->next_key_part, clone_flag);
|
|
|
|
key1->weight= 1 + (key1->next_key_part? key1->next_key_part->weight : 0);
|
|
|
|
if (key1->next_key_part &&
|
|
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
|
|
return key1;
|
|
}
|
|
else
|
|
{
|
|
key1->maybe_smaller();
|
|
if (key2->next_key_part)
|
|
{
|
|
key1->use_count--; // Incremented in and_all_keys
|
|
return and_all_keys(param, key1, key2->next_key_part, clone_flag);
|
|
}
|
|
key2->use_count--; // Key2 doesn't have a tree
|
|
}
|
|
return key1;
|
|
}
|
|
|
|
if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
|
|
{
|
|
/* TODO: why not leave one of the trees? */
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
return 0; // Can't optimize this
|
|
}
|
|
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
|
|
uint max_part_no= MY_MAX(key1->max_part_no, key2->max_part_no);
|
|
|
|
while (e1 && e2)
|
|
{
|
|
int cmp=e1->cmp_min_to_min(e2);
|
|
if (cmp < 0)
|
|
{
|
|
if (get_range(&e1,&e2,key1))
|
|
continue;
|
|
}
|
|
else if (get_range(&e2,&e1,key2))
|
|
continue;
|
|
SEL_ARG *next=key_and(param, e1->next_key_part, e2->next_key_part,
|
|
clone_flag);
|
|
e1->incr_refs();
|
|
e2->incr_refs();
|
|
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
|
|
{
|
|
SEL_ARG *new_arg= e1->clone_and(param->thd, e2);
|
|
if (!new_arg)
|
|
return &null_element; // End of memory
|
|
new_arg->next_key_part=next;
|
|
if (new_arg->next_key_part)
|
|
new_arg->weight += new_arg->next_key_part->weight;
|
|
|
|
if (!new_tree)
|
|
{
|
|
new_tree=new_arg;
|
|
}
|
|
else
|
|
new_tree=new_tree->insert(new_arg);
|
|
}
|
|
if (e1->cmp_max_to_max(e2) < 0)
|
|
e1=e1->next; // e1 can't overlapp next e2
|
|
else
|
|
e2=e2->next;
|
|
}
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
if (!new_tree)
|
|
return &null_element; // Impossible range
|
|
new_tree->max_part_no= max_part_no;
|
|
return new_tree;
|
|
}
|
|
|
|
|
|
static bool
|
|
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
|
|
{
|
|
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
|
|
if ((*e1)->cmp_max_to_min(*e2) < 0)
|
|
{
|
|
if (!((*e1)=(*e1)->next))
|
|
return 1;
|
|
if ((*e1)->cmp_min_to_max(*e2) > 0)
|
|
{
|
|
(*e2)=(*e2)->next;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifndef DBUG_OFF
|
|
/*
|
|
Verify SEL_TREE's weight.
|
|
|
|
Recompute the weight and compare
|
|
*/
|
|
uint SEL_ARG::verify_weight()
|
|
{
|
|
uint computed_weight= 0;
|
|
SEL_ARG *first_arg= first();
|
|
|
|
if (first_arg)
|
|
{
|
|
for (SEL_ARG *arg= first_arg; arg; arg= arg->next)
|
|
{
|
|
computed_weight++;
|
|
if (arg->next_key_part)
|
|
computed_weight+= arg->next_key_part->verify_weight();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// first()=NULL means this is a special kind of SEL_ARG, e.g.
|
|
// SEL_ARG with type=MAYBE_KEY
|
|
computed_weight= 1;
|
|
if (next_key_part)
|
|
computed_weight += next_key_part->verify_weight();
|
|
}
|
|
|
|
if (computed_weight != weight)
|
|
{
|
|
sql_print_error("SEL_ARG weight mismatch: computed %u have %u\n",
|
|
computed_weight, weight);
|
|
DBUG_ASSERT(computed_weight == weight); // Fail an assertion
|
|
}
|
|
return computed_weight;
|
|
}
|
|
#endif
|
|
|
|
static
|
|
SEL_ARG *key_or_with_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *key1, SEL_ARG *key2)
|
|
{
|
|
#ifndef DBUG_OFF
|
|
if (key1)
|
|
key1->verify_weight();
|
|
if (key2)
|
|
key2->verify_weight();
|
|
#endif
|
|
|
|
SEL_ARG *res= key_or(param, key1, key2);
|
|
res= enforce_sel_arg_weight_limit(param, keyno, res);
|
|
#ifndef DBUG_OFF
|
|
if (res)
|
|
res->verify_weight();
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
|
|
static
|
|
SEL_ARG *key_and_with_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
|
|
{
|
|
#ifndef DBUG_OFF
|
|
if (key1)
|
|
key1->verify_weight();
|
|
if (key2)
|
|
key2->verify_weight();
|
|
#endif
|
|
SEL_ARG *res= key_and(param, key1, key2, clone_flag);
|
|
res= enforce_sel_arg_weight_limit(param, keyno, res);
|
|
#ifndef DBUG_OFF
|
|
if (res)
|
|
res->verify_weight();
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
|
|
/**
|
|
Combine two range expression under a common OR. On a logical level, the
|
|
transformation is key_or( expr1, expr2 ) => expr1 OR expr2.
|
|
|
|
Both expressions are assumed to be in the SEL_ARG format. In a logic sense,
|
|
theformat is reminiscent of DNF, since an expression such as the following
|
|
|
|
( 1 < kp1 < 10 AND p1 ) OR ( 10 <= kp2 < 20 AND p2 )
|
|
|
|
where there is a key consisting of keyparts ( kp1, kp2, ..., kpn ) and p1
|
|
and p2 are valid SEL_ARG expressions over keyparts kp2 ... kpn, is a valid
|
|
SEL_ARG condition. The disjuncts appear ordered by the minimum endpoint of
|
|
the first range and ranges must not overlap. It follows that they are also
|
|
ordered by maximum endpoints. Thus
|
|
|
|
( 1 < kp1 <= 2 AND ( kp2 = 2 OR kp2 = 3 ) ) OR kp1 = 3
|
|
|
|
Is a a valid SER_ARG expression for a key of at least 2 keyparts.
|
|
|
|
For simplicity, we will assume that expr2 is a single range predicate,
|
|
i.e. on the form ( a < x < b AND ... ). It is easy to generalize to a
|
|
disjunction of several predicates by subsequently call key_or for each
|
|
disjunct.
|
|
|
|
The algorithm iterates over each disjunct of expr1, and for each disjunct
|
|
where the first keypart's range overlaps with the first keypart's range in
|
|
expr2:
|
|
|
|
If the predicates are equal for the rest of the keyparts, or if there are
|
|
no more, the range in expr2 has its endpoints copied in, and the SEL_ARG
|
|
node in expr2 is deallocated. If more ranges became connected in expr1, the
|
|
surplus is also dealocated. If they differ, two ranges are created.
|
|
|
|
- The range leading up to the overlap. Empty if endpoints are equal.
|
|
|
|
- The overlapping sub-range. May be the entire range if they are equal.
|
|
|
|
Finally, there may be one more range if expr2's first keypart's range has a
|
|
greater maximum endpoint than the last range in expr1.
|
|
|
|
For the overlapping sub-range, we recursively call key_or. Thus in order to
|
|
compute key_or of
|
|
|
|
(1) ( 1 < kp1 < 10 AND 1 < kp2 < 10 )
|
|
|
|
(2) ( 2 < kp1 < 20 AND 4 < kp2 < 20 )
|
|
|
|
We create the ranges 1 < kp <= 2, 2 < kp1 < 10, 10 <= kp1 < 20. For the
|
|
first one, we simply hook on the condition for the second keypart from (1)
|
|
: 1 < kp2 < 10. For the second range 2 < kp1 < 10, key_or( 1 < kp2 < 10, 4
|
|
< kp2 < 20 ) is called, yielding 1 < kp2 < 20. For the last range, we reuse
|
|
the range 4 < kp2 < 20 from (2) for the second keypart. The result is thus
|
|
|
|
( 1 < kp1 <= 2 AND 1 < kp2 < 10 ) OR
|
|
( 2 < kp1 < 10 AND 1 < kp2 < 20 ) OR
|
|
( 10 <= kp1 < 20 AND 4 < kp2 < 20 )
|
|
*/
|
|
static SEL_ARG *
|
|
key_or(RANGE_OPT_PARAM *param, SEL_ARG *key1,SEL_ARG *key2)
|
|
{
|
|
if (!key1)
|
|
{
|
|
if (key2)
|
|
{
|
|
key2->use_count--;
|
|
key2->free_tree();
|
|
}
|
|
return 0;
|
|
}
|
|
if (!key2)
|
|
{
|
|
key1->use_count--;
|
|
key1->free_tree();
|
|
return 0;
|
|
}
|
|
key1->use_count--;
|
|
key2->use_count--;
|
|
|
|
if (key1->part != key2->part ||
|
|
(key1->min_flag | key2->min_flag) & GEOM_FLAG)
|
|
{
|
|
key1->free_tree();
|
|
key2->free_tree();
|
|
return 0; // Can't optimize this
|
|
}
|
|
|
|
// If one of the key is MAYBE_KEY then the found region may be bigger
|
|
if (key1->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key2->free_tree();
|
|
key1->use_count++;
|
|
return key1;
|
|
}
|
|
if (key2->type == SEL_ARG::MAYBE_KEY)
|
|
{
|
|
key1->free_tree();
|
|
key2->use_count++;
|
|
return key2;
|
|
}
|
|
|
|
if (key1->use_count > 0)
|
|
{
|
|
if (key2->use_count == 0 || key1->elements > key2->elements)
|
|
{
|
|
swap_variables(SEL_ARG *,key1,key2);
|
|
}
|
|
if (key1->use_count > 0 && !(key1=key1->clone_tree(param)))
|
|
return 0; // OOM
|
|
}
|
|
|
|
// Add tree at key2 to tree at key1
|
|
bool key2_shared=key2->use_count != 0;
|
|
key1->maybe_flag|=key2->maybe_flag;
|
|
|
|
/*
|
|
Notation for illustrations used in the rest of this function:
|
|
|
|
Range: [--------]
|
|
^ ^
|
|
start stop
|
|
|
|
Two overlapping ranges:
|
|
[-----] [----] [--]
|
|
[---] or [---] or [-------]
|
|
|
|
Ambiguity: ***
|
|
The range starts or stops somewhere in the "***" range.
|
|
Example: a starts before b and may end before/the same plase/after b
|
|
a: [----***]
|
|
b: [---]
|
|
|
|
Adjacent ranges:
|
|
Ranges that meet but do not overlap. Example: a = "x < 3", b = "x >= 3"
|
|
a: ----]
|
|
b: [----
|
|
*/
|
|
|
|
uint max_part_no= MY_MAX(key1->max_part_no, key2->max_part_no);
|
|
|
|
for (key2=key2->first(); ; )
|
|
{
|
|
/*
|
|
key1 consists of one or more ranges. tmp is the range currently
|
|
being handled.
|
|
|
|
initialize tmp to the latest range in key1 that starts the same
|
|
place or before the range in key2 starts
|
|
|
|
key2: [------]
|
|
key1: [---] [-----] [----]
|
|
^
|
|
tmp
|
|
*/
|
|
if (key1->min_flag & NO_MIN_RANGE &&
|
|
key1->max_flag & NO_MAX_RANGE)
|
|
{
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0; // Always true OR
|
|
}
|
|
if (!key2)
|
|
break;
|
|
|
|
SEL_ARG *tmp=key1->find_range(key2);
|
|
|
|
/*
|
|
Used to describe how two key values are positioned compared to
|
|
each other. Consider key_value_a.<cmp_func>(key_value_b):
|
|
|
|
-2: key_value_a is smaller than key_value_b, and they are adjacent
|
|
-1: key_value_a is smaller than key_value_b (not adjacent)
|
|
0: the key values are equal
|
|
1: key_value_a is bigger than key_value_b (not adjacent)
|
|
-2: key_value_a is bigger than key_value_b, and they are adjacent
|
|
|
|
Example: "cmp= tmp->cmp_max_to_min(key2)"
|
|
|
|
key2: [-------- (10 <= x ...)
|
|
tmp: -----] (... x < 10) => cmp==-2
|
|
tmp: ----] (... x <= 9) => cmp==-1
|
|
tmp: ------] (... x = 10) => cmp== 0
|
|
tmp: --------] (... x <= 12) => cmp== 1
|
|
(cmp == 2 does not make sense for cmp_max_to_min())
|
|
*/
|
|
int cmp= 0;
|
|
|
|
if (!tmp)
|
|
{
|
|
/*
|
|
The range in key2 starts before the first range in key1. Use
|
|
the first range in key1 as tmp.
|
|
|
|
key2: [--------]
|
|
key1: [****--] [----] [-------]
|
|
^
|
|
tmp
|
|
*/
|
|
tmp=key1->first();
|
|
cmp= -1;
|
|
}
|
|
else if ((cmp= tmp->cmp_max_to_min(key2)) < 0)
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2: [-------]
|
|
tmp: [----**]
|
|
*/
|
|
SEL_ARG *next=tmp->next;
|
|
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
/*
|
|
Adjacent (cmp==-2) and equal next_key_parts => ranges can be merged
|
|
|
|
This is the case:
|
|
key2: [-------]
|
|
tmp: [----]
|
|
|
|
Result:
|
|
key2: [-------------] => inserted into key1 below
|
|
tmp: => deleted
|
|
*/
|
|
SEL_ARG *key2_next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
if (!(key2=new SEL_ARG(*key2)))
|
|
return 0; // out of memory
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key2->next=key2_next; // New copy of key2
|
|
}
|
|
|
|
key2->copy_min(tmp);
|
|
if (!(key1=key1->tree_delete(tmp)))
|
|
{ // Only one key in tree
|
|
if (key2->min_flag & NO_MIN_RANGE &&
|
|
key2->max_flag & NO_MAX_RANGE)
|
|
{
|
|
if (key2->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0; // Always true OR
|
|
}
|
|
key1=key2;
|
|
key1->make_root();
|
|
key2=key2_next;
|
|
break;
|
|
}
|
|
}
|
|
if (!(tmp=next)) // Move to next range in key1. Now tmp.min > key2.min
|
|
break; // No more ranges in key1. Copy rest of key2
|
|
}
|
|
|
|
if (cmp < 0)
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2: [--***]
|
|
tmp: [----]
|
|
*/
|
|
int tmp_cmp;
|
|
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0)
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2: [------**]
|
|
tmp: [----]
|
|
*/
|
|
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
/*
|
|
Adjacent ranges with equal next_key_part. Merge like this:
|
|
|
|
This is the case:
|
|
key2: [------]
|
|
tmp: [-----]
|
|
|
|
Result:
|
|
key2: [------]
|
|
tmp: [-------------]
|
|
|
|
Then move on to next key2 range.
|
|
*/
|
|
tmp->copy_min_to_min(key2);
|
|
key1->merge_flags(key2);
|
|
if (tmp->min_flag & NO_MIN_RANGE &&
|
|
tmp->max_flag & NO_MAX_RANGE)
|
|
{
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
key2=key2->next;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
key2 not adjacent to tmp or has different next_key_part.
|
|
Insert into key1 and move to next range in key2
|
|
|
|
This is the case:
|
|
key2: [------**]
|
|
tmp: [----]
|
|
|
|
Result:
|
|
key1_ [------**][----]
|
|
^ ^
|
|
insert tmp
|
|
*/
|
|
SEL_ARG *next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
SEL_ARG *cpy= new SEL_ARG(*key2); // Must make copy
|
|
if (!cpy)
|
|
return 0; // OOM
|
|
key1=key1->insert(cpy);
|
|
key2->increment_use_count(key1->use_count+1);
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
The ranges in tmp and key2 are overlapping:
|
|
|
|
key2: [----------]
|
|
tmp: [*****-----*****]
|
|
|
|
Corollary: tmp.min <= key2.max
|
|
*/
|
|
if (eq_tree(tmp->next_key_part,key2->next_key_part))
|
|
{
|
|
// Merge overlapping ranges with equal next_key_part
|
|
if (tmp->is_same(key2))
|
|
{
|
|
/*
|
|
Found exact match of key2 inside key1.
|
|
Use the relevant range in key1.
|
|
*/
|
|
tmp->merge_flags(key2); // Copy maybe flags
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *last= tmp;
|
|
SEL_ARG *first= tmp;
|
|
|
|
/*
|
|
Find the last range in key1 that overlaps key2 and
|
|
where all ranges first...last have the same next_key_part as
|
|
key2.
|
|
|
|
key2: [****----------------------*******]
|
|
key1: [--] [----] [---] [-----] [xxxx]
|
|
^ ^ ^
|
|
first last different next_key_part
|
|
|
|
Since key2 covers them, the ranges between first and last
|
|
are merged into one range by deleting first...last-1 from
|
|
the key1 tree. In the figure, this applies to first and the
|
|
two consecutive ranges. The range of last is then extended:
|
|
* last.min: Set to MY_MIN(key2.min, first.min)
|
|
* last.max: If there is a last->next that overlaps key2 (i.e.,
|
|
last->next has a different next_key_part):
|
|
Set adjacent to last->next.min
|
|
Otherwise: Set to MY_MAX(key2.max, last.max)
|
|
|
|
Result:
|
|
key2: [****----------------------*******]
|
|
[--] [----] [---] => deleted from key1
|
|
key1: [**------------------------***][xxxx]
|
|
^ ^
|
|
tmp=last different next_key_part
|
|
*/
|
|
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
|
|
eq_tree(last->next->next_key_part,key2->next_key_part))
|
|
{
|
|
/*
|
|
last->next is covered by key2 and has same next_key_part.
|
|
last can be deleted
|
|
*/
|
|
SEL_ARG *save=last;
|
|
last=last->next;
|
|
key1=key1->tree_delete(save);
|
|
}
|
|
// Redirect tmp to last which will cover the entire range
|
|
tmp= last;
|
|
|
|
/*
|
|
We need the minimum endpoint of first so we can compare it
|
|
with the minimum endpoint of the enclosing key2 range.
|
|
*/
|
|
last->copy_min(first);
|
|
bool full_range= last->copy_min(key2);
|
|
if (!full_range)
|
|
{
|
|
if (last->next && key2->cmp_max_to_min(last->next) >= 0)
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2: [-------------]
|
|
key1: [***------] [xxxx]
|
|
^ ^
|
|
last different next_key_part
|
|
|
|
Extend range of last up to last->next:
|
|
key2: [-------------]
|
|
key1: [***--------][xxxx]
|
|
*/
|
|
last->copy_min_to_max(last->next);
|
|
}
|
|
else
|
|
/*
|
|
This is the case:
|
|
key2: [--------*****]
|
|
key1: [***---------] [xxxx]
|
|
^ ^
|
|
last different next_key_part
|
|
|
|
Extend range of last up to MY_MAX(last.max, key2.max):
|
|
key2: [--------*****]
|
|
key1: [***----------**] [xxxx]
|
|
*/
|
|
full_range= last->copy_max(key2);
|
|
}
|
|
if (full_range)
|
|
{ // Full range
|
|
key1->free_tree();
|
|
for (; key2 ; key2=key2->next)
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
if (key1->maybe_flag)
|
|
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
|
|
{
|
|
/*
|
|
This is the case ("cmp>=0" means that tmp.max >= key2.min):
|
|
key2: [----]
|
|
tmp: [------------*****]
|
|
*/
|
|
|
|
if (!tmp->next_key_part)
|
|
{
|
|
SEL_ARG *key2_next= key2->next;
|
|
if (key2_shared)
|
|
{
|
|
SEL_ARG *key2_cpy= new SEL_ARG(*key2);
|
|
if (!key2_cpy)
|
|
return 0;
|
|
key2= key2_cpy;
|
|
}
|
|
/*
|
|
tmp->next_key_part is empty: cut the range that is covered
|
|
by tmp from key2.
|
|
Reason: (key2->next_key_part OR tmp->next_key_part) will be
|
|
empty and therefore equal to tmp->next_key_part. Thus, this
|
|
part of the key2 range is completely covered by tmp.
|
|
*/
|
|
if (tmp->cmp_max_to_max(key2) >= 0)
|
|
{
|
|
/*
|
|
tmp covers the entire range in key2.
|
|
key2: [----]
|
|
tmp: [-----------------]
|
|
|
|
Move on to next range in key2
|
|
*/
|
|
key2->increment_use_count(-1); // Free not used tree
|
|
key2= key2_next;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2: [-------]
|
|
tmp: [---------]
|
|
|
|
Result:
|
|
key2: [---]
|
|
tmp: [---------]
|
|
*/
|
|
key2->copy_max_to_min(tmp);
|
|
key2->next= key2_next; // In case of key2_shared
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
The ranges are overlapping but have not been merged because
|
|
next_key_part of tmp and key2 differ.
|
|
key2: [----]
|
|
tmp: [------------*****]
|
|
|
|
Split tmp in two where key2 starts:
|
|
key2: [----]
|
|
key1: [--------][--*****]
|
|
^ ^
|
|
insert tmp
|
|
*/
|
|
SEL_ARG *new_arg=tmp->clone_first(key2);
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
if ((new_arg->next_key_part= tmp->next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
tmp->copy_min_to_min(key2);
|
|
key1=key1->insert(new_arg);
|
|
} // tmp.min >= key2.min due to this if()
|
|
|
|
/*
|
|
Now key2.min <= tmp.min <= key2.max:
|
|
key2: [---------]
|
|
tmp: [****---*****]
|
|
*/
|
|
SEL_ARG key2_cpy(*key2); // Get copy we can modify
|
|
for (;;)
|
|
{
|
|
if (tmp->cmp_min_to_min(&key2_cpy) > 0)
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2_cpy: [------------]
|
|
key1: [-*****]
|
|
^
|
|
tmp
|
|
|
|
Result:
|
|
key2_cpy: [---]
|
|
key1: [-------][-*****]
|
|
^ ^
|
|
insert tmp
|
|
*/
|
|
SEL_ARG *new_arg=key2_cpy.clone_first(tmp);
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
if ((new_arg->next_key_part=key2_cpy.next_key_part))
|
|
new_arg->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(new_arg);
|
|
key2_cpy.copy_min_to_min(tmp);
|
|
}
|
|
// Now key2_cpy.min == tmp.min
|
|
|
|
if ((cmp= tmp->cmp_max_to_max(&key2_cpy)) <= 0)
|
|
{
|
|
/*
|
|
tmp.max <= key2_cpy.max:
|
|
key2_cpy: a) [-------] or b) [----]
|
|
tmp: [----] [----]
|
|
|
|
Steps:
|
|
1) Update next_key_part of tmp: OR it with key2_cpy->next_key_part.
|
|
2) If case a: Insert range [tmp.max, key2_cpy.max] into key1 using
|
|
next_key_part of key2_cpy
|
|
|
|
Result:
|
|
key1: a) [----][-] or b) [----]
|
|
*/
|
|
tmp->maybe_flag|= key2_cpy.maybe_flag;
|
|
key2_cpy.increment_use_count(key1->use_count+1);
|
|
|
|
uint old_weight= tmp->next_key_part? tmp->next_key_part->weight: 0;
|
|
|
|
tmp->next_key_part= key_or(param, tmp->next_key_part,
|
|
key2_cpy.next_key_part);
|
|
|
|
uint new_weight= tmp->next_key_part? tmp->next_key_part->weight: 0;
|
|
key1->weight += (new_weight - old_weight);
|
|
|
|
if (!cmp)
|
|
break; // case b: done with this key2 range
|
|
|
|
// Make key2_cpy the range [tmp.max, key2_cpy.max]
|
|
key2_cpy.copy_max_to_min(tmp);
|
|
if (!(tmp=tmp->next))
|
|
{
|
|
/*
|
|
No more ranges in key1. Insert key2_cpy and go to "end"
|
|
label to insert remaining ranges in key2 if any.
|
|
*/
|
|
SEL_ARG *tmp2= new SEL_ARG(key2_cpy);
|
|
if (!tmp2)
|
|
return 0; // OOM
|
|
key1=key1->insert(tmp2);
|
|
key2=key2->next;
|
|
goto end;
|
|
}
|
|
if (tmp->cmp_min_to_max(&key2_cpy) > 0)
|
|
{
|
|
/*
|
|
The next range in key1 does not overlap with key2_cpy.
|
|
Insert this range into key1 and move on to the next range
|
|
in key2.
|
|
*/
|
|
SEL_ARG *tmp2= new SEL_ARG(key2_cpy);
|
|
if (!tmp2)
|
|
return 0; // OOM
|
|
key1=key1->insert(tmp2);
|
|
break;
|
|
}
|
|
/*
|
|
key2_cpy overlaps with the next range in key1 and the case
|
|
is now "key2.min <= tmp.min <= key2.max". Go back to for(;;)
|
|
to handle this situation.
|
|
*/
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
This is the case:
|
|
key2_cpy: [-------]
|
|
tmp: [------------]
|
|
|
|
Result:
|
|
key1: [-------][---]
|
|
^ ^
|
|
new_arg tmp
|
|
Steps:
|
|
0) If tmp->next_key_part is empty: do nothing. Reason:
|
|
(key2_cpy->next_key_part OR tmp->next_key_part) will be
|
|
empty and therefore equal to tmp->next_key_part. Thus,
|
|
the range in key2_cpy is completely covered by tmp
|
|
1) Make new_arg with range [tmp.min, key2_cpy.max].
|
|
new_arg->next_key_part is OR between next_key_part
|
|
of tmp and key2_cpy
|
|
2) Make tmp the range [key2.max, tmp.max]
|
|
3) Insert new_arg into key1
|
|
*/
|
|
if (!tmp->next_key_part) // Step 0
|
|
{
|
|
key2_cpy.increment_use_count(-1); // Free not used tree
|
|
break;
|
|
}
|
|
SEL_ARG *new_arg=tmp->clone_last(&key2_cpy);
|
|
if (!new_arg)
|
|
return 0; // OOM
|
|
tmp->copy_max_to_min(&key2_cpy);
|
|
tmp->increment_use_count(key1->use_count+1);
|
|
/* Increment key count as it may be used for next loop */
|
|
key2_cpy.increment_use_count(1);
|
|
new_arg->next_key_part= key_or(param, tmp->next_key_part,
|
|
key2_cpy.next_key_part);
|
|
key1=key1->insert(new_arg);
|
|
break;
|
|
}
|
|
}
|
|
// Move on to next range in key2
|
|
key2=key2->next;
|
|
}
|
|
|
|
end:
|
|
/*
|
|
Add key2 ranges that are non-overlapping with and higher than the
|
|
highest range in key1.
|
|
*/
|
|
while (key2)
|
|
{
|
|
SEL_ARG *next=key2->next;
|
|
if (key2_shared)
|
|
{
|
|
SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy
|
|
if (!tmp)
|
|
return 0;
|
|
key2->increment_use_count(key1->use_count+1);
|
|
key1=key1->insert(tmp);
|
|
}
|
|
else
|
|
key1=key1->insert(key2); // Will destroy key2_root
|
|
key2=next;
|
|
}
|
|
key1->use_count++;
|
|
|
|
key1->max_part_no= max_part_no;
|
|
return key1;
|
|
}
|
|
|
|
|
|
/* Compare if two trees are equal */
|
|
|
|
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
|
|
{
|
|
if (a == b)
|
|
return 1;
|
|
if (!a || !b || !a->is_same(b))
|
|
return 0;
|
|
if (a->left != &null_element && b->left != &null_element)
|
|
{
|
|
if (!eq_tree(a->left,b->left))
|
|
return 0;
|
|
}
|
|
else if (a->left != &null_element || b->left != &null_element)
|
|
return 0;
|
|
if (a->right != &null_element && b->right != &null_element)
|
|
{
|
|
if (!eq_tree(a->right,b->right))
|
|
return 0;
|
|
}
|
|
else if (a->right != &null_element || b->right != &null_element)
|
|
return 0;
|
|
if (a->next_key_part != b->next_key_part)
|
|
{ // Sub range
|
|
if (!a->next_key_part != !b->next_key_part ||
|
|
!eq_tree(a->next_key_part, b->next_key_part))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Compute the MAX(key part) in this SEL_ARG graph.
|
|
*/
|
|
uint SEL_ARG::get_max_key_part() const
|
|
{
|
|
const SEL_ARG *cur;
|
|
uint max_part= part;
|
|
for (cur= first(); cur ; cur=cur->next)
|
|
{
|
|
if (cur->next_key_part)
|
|
{
|
|
uint mp= cur->next_key_part->get_max_key_part();
|
|
max_part= MY_MAX(part, mp);
|
|
}
|
|
}
|
|
return max_part;
|
|
}
|
|
|
|
|
|
/**
|
|
Compute the number of eq_ranges top elements in the tree
|
|
|
|
This is used by the cost_group_min_max() to calculate the number of
|
|
groups in SEL_TREE
|
|
|
|
@param group_key_parts number of key parts that must be equal
|
|
|
|
@return < 0 Not known
|
|
@return >= 0 Number of groups
|
|
*/
|
|
|
|
int SEL_ARG::number_of_eq_groups(uint group_key_parts) const
|
|
{
|
|
int elements= 0;
|
|
SEL_ARG const *cur;
|
|
|
|
if (part > group_key_parts-1 || type != KEY_RANGE)
|
|
return -1;
|
|
|
|
cur= first();
|
|
do
|
|
{
|
|
if ((cur->min_flag | cur->min_flag) &
|
|
(NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | NEAR_MAX | GEOM_FLAG))
|
|
return -1;
|
|
if (min_value != max_value && !min_max_are_equal())
|
|
return -1;
|
|
if (part != group_key_parts -1)
|
|
{
|
|
int tmp;
|
|
if (!next_key_part)
|
|
return -1;
|
|
if ((tmp= next_key_part->number_of_eq_groups(group_key_parts)) < 0)
|
|
return -1;
|
|
elements+= tmp;
|
|
}
|
|
else
|
|
elements++;
|
|
} while ((cur= cur->next));
|
|
return elements;
|
|
}
|
|
|
|
|
|
/*
|
|
Remove the SEL_ARG graph elements which have part > max_part.
|
|
|
|
@detail
|
|
Also update weight for the graph and any modified subgraphs.
|
|
*/
|
|
|
|
void prune_sel_arg_graph(SEL_ARG *sel_arg, uint max_part)
|
|
{
|
|
SEL_ARG *cur;
|
|
DBUG_ASSERT(max_part >= sel_arg->part);
|
|
|
|
for (cur= sel_arg->first(); cur ; cur=cur->next)
|
|
{
|
|
if (cur->next_key_part)
|
|
{
|
|
if (cur->next_key_part->part > max_part)
|
|
{
|
|
// Remove cur->next_key_part.
|
|
sel_arg->weight -= cur->next_key_part->weight;
|
|
cur->next_key_part= NULL;
|
|
}
|
|
else
|
|
{
|
|
uint old_weight= cur->next_key_part->weight;
|
|
prune_sel_arg_graph(cur->next_key_part, max_part);
|
|
sel_arg->weight -= (old_weight - cur->next_key_part->weight);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
@brief
|
|
Make sure the passed SEL_ARG graph's weight is below SEL_ARG::MAX_WEIGHT,
|
|
by cutting off branches if necessary.
|
|
|
|
@detail
|
|
@see declaration of SEL_ARG::weight for definition of weight.
|
|
|
|
This function attempts to reduce the graph's weight by cutting off
|
|
SEL_ARG::next_key_part connections if necessary.
|
|
|
|
We start with maximum used keypart and then remove one keypart after
|
|
another until the graph's weight is within the limit.
|
|
|
|
@seealso
|
|
sel_arg_and_weight_heuristic();
|
|
|
|
@return
|
|
tree pointer The tree after processing,
|
|
NULL If it was not possible to reduce the weight of the tree below
|
|
the limit.
|
|
*/
|
|
|
|
SEL_ARG *enforce_sel_arg_weight_limit(RANGE_OPT_PARAM *param, uint keyno,
|
|
SEL_ARG *sel_arg)
|
|
{
|
|
if (!sel_arg || sel_arg->type != SEL_ARG::KEY_RANGE ||
|
|
!param->thd->variables.optimizer_max_sel_arg_weight)
|
|
return sel_arg;
|
|
|
|
Field *field= sel_arg->field;
|
|
uint weight1= sel_arg->weight;
|
|
|
|
while (1)
|
|
{
|
|
if (likely(sel_arg->weight <= param->thd->variables.
|
|
optimizer_max_sel_arg_weight))
|
|
break;
|
|
|
|
uint max_part= sel_arg->get_max_key_part();
|
|
if (max_part == sel_arg->part)
|
|
{
|
|
/*
|
|
We don't return NULL right away as we want to have the information
|
|
about the changed tree in the optimizer trace.
|
|
*/
|
|
sel_arg= NULL;
|
|
break;
|
|
}
|
|
|
|
max_part--;
|
|
prune_sel_arg_graph(sel_arg, max_part);
|
|
}
|
|
|
|
uint weight2= sel_arg? sel_arg->weight : 0;
|
|
|
|
if (unlikely(weight2 != weight1 && param->thd->trace_started()))
|
|
{
|
|
Json_writer_object wrapper(param->thd);
|
|
Json_writer_object obj(param->thd, "enforce_sel_arg_weight_limit");
|
|
if (param->using_real_indexes)
|
|
obj.add("index", param->table->key_info[param->real_keynr[keyno]].name);
|
|
else
|
|
obj.add("pseudo_index", field->field_name);
|
|
|
|
obj.
|
|
add("old_weight", (longlong)weight1).
|
|
add("new_weight", (longlong)weight2);
|
|
}
|
|
return sel_arg;
|
|
}
|
|
|
|
|
|
/*
|
|
@detail
|
|
Do not combine the trees if their total weight is likely to exceed the
|
|
MAX_WEIGHT.
|
|
(It is possible that key1 has next_key_part that has empty overlap with
|
|
key2. In this case, the combined tree will have a smaller weight than we
|
|
predict. We assume this is rare.)
|
|
*/
|
|
|
|
static
|
|
bool sel_arg_and_weight_heuristic(RANGE_OPT_PARAM *param, SEL_ARG *key1,
|
|
SEL_ARG *key2)
|
|
{
|
|
DBUG_ASSERT(key1->part < key2->part);
|
|
|
|
ulong max_weight= param->thd->variables.optimizer_max_sel_arg_weight;
|
|
if (max_weight && key1->weight + key1->elements*key2->weight > max_weight)
|
|
{
|
|
if (unlikely(param->thd->trace_started()))
|
|
{
|
|
Json_writer_object wrapper(param->thd);
|
|
Json_writer_object obj(param->thd, "sel_arg_weight_heuristic");
|
|
obj.
|
|
add("key1_field", key1->field->field_name).
|
|
add("key2_field", key2->field->field_name).
|
|
add("key1_weight", (longlong)key1->weight).
|
|
add("key2_weight", (longlong)key2->weight);
|
|
}
|
|
return true; // Discard key2
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::insert(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element,**UNINIT_VAR(par),*UNINIT_VAR(last_element);
|
|
|
|
for (element= this; element != &null_element ; )
|
|
{
|
|
last_element=element;
|
|
if (key->cmp_min_to_min(element) > 0)
|
|
{
|
|
par= &element->right; element= element->right;
|
|
}
|
|
else
|
|
{
|
|
par = &element->left; element= element->left;
|
|
}
|
|
}
|
|
*par=key;
|
|
key->parent=last_element;
|
|
/* Link in list */
|
|
if (par == &last_element->left)
|
|
{
|
|
key->next=last_element;
|
|
if ((key->prev=last_element->prev))
|
|
key->prev->next=key;
|
|
last_element->prev=key;
|
|
}
|
|
else
|
|
{
|
|
if ((key->next=last_element->next))
|
|
key->next->prev=key;
|
|
key->prev=last_element;
|
|
last_element->next=key;
|
|
}
|
|
key->left=key->right= &null_element;
|
|
SEL_ARG *root=rb_insert(key); // rebalance tree
|
|
root->use_count=this->use_count; // copy root info
|
|
root->elements= this->elements+1;
|
|
/*
|
|
The new weight is:
|
|
old root's weight
|
|
+1 for the weight of the added element
|
|
+ next_key_part's weight of the added element
|
|
*/
|
|
root->weight = weight + 1 + (key->next_key_part? key->next_key_part->weight: 0);
|
|
root->maybe_flag=this->maybe_flag;
|
|
return root;
|
|
}
|
|
|
|
|
|
/*
|
|
** Find best key with min <= given key
|
|
** Because the call context this should never return 0 to get_range
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::find_range(SEL_ARG *key)
|
|
{
|
|
SEL_ARG *element=this,*found=0;
|
|
|
|
for (;;)
|
|
{
|
|
if (element == &null_element)
|
|
return found;
|
|
int cmp=element->cmp_min_to_min(key);
|
|
if (cmp == 0)
|
|
return element;
|
|
if (cmp < 0)
|
|
{
|
|
found=element;
|
|
element=element->right;
|
|
}
|
|
else
|
|
element=element->left;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Remove a element from the tree
|
|
|
|
SYNOPSIS
|
|
tree_delete()
|
|
key Key that is to be deleted from tree (this)
|
|
|
|
NOTE
|
|
This also frees all sub trees that is used by the element
|
|
|
|
RETURN
|
|
root of new tree (with key deleted)
|
|
*/
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::tree_delete(SEL_ARG *key)
|
|
{
|
|
enum leaf_color remove_color;
|
|
SEL_ARG *root,*nod,**par,*fix_par;
|
|
DBUG_ENTER("tree_delete");
|
|
|
|
root=this;
|
|
this->parent= 0;
|
|
|
|
/*
|
|
Compute the weight the tree will have after the element is removed.
|
|
We remove the element itself (weight=1)
|
|
and the sub-graph connected to its next_key_part.
|
|
*/
|
|
uint new_weight= root->weight - (1 + (key->next_key_part?
|
|
key->next_key_part->weight : 0));
|
|
|
|
DBUG_ASSERT(root->weight >= (1 + (key->next_key_part ?
|
|
key->next_key_part->weight : 0)));
|
|
|
|
/* Unlink from list */
|
|
if (key->prev)
|
|
key->prev->next=key->next;
|
|
if (key->next)
|
|
key->next->prev=key->prev;
|
|
key->increment_use_count(-1);
|
|
if (!key->parent)
|
|
par= &root;
|
|
else
|
|
par=key->parent_ptr();
|
|
|
|
if (key->left == &null_element)
|
|
{
|
|
*par=nod=key->right;
|
|
fix_par=key->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= key->color;
|
|
}
|
|
else if (key->right == &null_element)
|
|
{
|
|
*par= nod=key->left;
|
|
nod->parent=fix_par=key->parent;
|
|
remove_color= key->color;
|
|
}
|
|
else
|
|
{
|
|
SEL_ARG *tmp=key->next; // next bigger key (exist!)
|
|
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
|
|
fix_par=tmp->parent;
|
|
if (nod != &null_element)
|
|
nod->parent=fix_par;
|
|
remove_color= tmp->color;
|
|
|
|
tmp->parent=key->parent; // Move node in place of key
|
|
(tmp->left=key->left)->parent=tmp;
|
|
if ((tmp->right=key->right) != &null_element)
|
|
tmp->right->parent=tmp;
|
|
tmp->color=key->color;
|
|
*par=tmp;
|
|
if (fix_par == key) // key->right == key->next
|
|
fix_par=tmp; // new parent of nod
|
|
}
|
|
|
|
if (root == &null_element)
|
|
DBUG_RETURN(0); // Maybe root later
|
|
if (remove_color == BLACK)
|
|
root=rb_delete_fixup(root,nod,fix_par);
|
|
test_rb_tree(root,root->parent);
|
|
|
|
root->use_count=this->use_count; // Fix root counters
|
|
root->weight= new_weight;
|
|
root->elements=this->elements-1;
|
|
root->maybe_flag=this->maybe_flag;
|
|
DBUG_RETURN(root);
|
|
}
|
|
|
|
|
|
/* Functions to fix up the tree after insert and delete */
|
|
|
|
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->right;
|
|
leaf->right=y->left;
|
|
if (y->left != &null_element)
|
|
y->left->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->left=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y=leaf->left;
|
|
leaf->left=y->right;
|
|
if (y->right != &null_element)
|
|
y->right->parent=leaf;
|
|
if (!(y->parent=leaf->parent))
|
|
*root=y;
|
|
else
|
|
*leaf->parent_ptr()=y;
|
|
y->right=leaf;
|
|
leaf->parent=y;
|
|
}
|
|
|
|
|
|
SEL_ARG *
|
|
SEL_ARG::rb_insert(SEL_ARG *leaf)
|
|
{
|
|
SEL_ARG *y,*par,*par2,*root;
|
|
root= this; root->parent= 0;
|
|
|
|
leaf->color=RED;
|
|
while (leaf != root && (par= leaf->parent)->color == RED)
|
|
{ // This can't be root or 1 level under
|
|
if (par == (par2= leaf->parent->parent)->left)
|
|
{
|
|
y= par2->right;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->right)
|
|
{
|
|
left_rotate(&root,leaf->parent);
|
|
par=leaf; /* leaf is now parent to old leaf */
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
right_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
y= par2->left;
|
|
if (y->color == RED)
|
|
{
|
|
par->color=BLACK;
|
|
y->color=BLACK;
|
|
leaf=par2;
|
|
leaf->color=RED; /* And the loop continues */
|
|
}
|
|
else
|
|
{
|
|
if (leaf == par->left)
|
|
{
|
|
right_rotate(&root,par);
|
|
par=leaf;
|
|
}
|
|
par->color=BLACK;
|
|
par2->color=RED;
|
|
left_rotate(&root,par2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
root->color=BLACK;
|
|
test_rb_tree(root,root->parent);
|
|
return root;
|
|
}
|
|
|
|
|
|
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
|
|
{
|
|
SEL_ARG *x,*w;
|
|
root->parent=0;
|
|
|
|
x= key;
|
|
while (x != root && x->color == SEL_ARG::BLACK)
|
|
{
|
|
if (x == par->left)
|
|
{
|
|
w=par->right;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
left_rotate(&root,par);
|
|
w=par->right;
|
|
}
|
|
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->right->color == SEL_ARG::BLACK)
|
|
{
|
|
w->left->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
right_rotate(&root,w);
|
|
w=par->right;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->right->color=SEL_ARG::BLACK;
|
|
left_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
w=par->left;
|
|
if (w->color == SEL_ARG::RED)
|
|
{
|
|
w->color=SEL_ARG::BLACK;
|
|
par->color=SEL_ARG::RED;
|
|
right_rotate(&root,par);
|
|
w=par->left;
|
|
}
|
|
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->color=SEL_ARG::RED;
|
|
x=par;
|
|
}
|
|
else
|
|
{
|
|
if (w->left->color == SEL_ARG::BLACK)
|
|
{
|
|
w->right->color=SEL_ARG::BLACK;
|
|
w->color=SEL_ARG::RED;
|
|
left_rotate(&root,w);
|
|
w=par->left;
|
|
}
|
|
w->color=par->color;
|
|
par->color=SEL_ARG::BLACK;
|
|
w->left->color=SEL_ARG::BLACK;
|
|
right_rotate(&root,par);
|
|
x=root;
|
|
break;
|
|
}
|
|
}
|
|
par=x->parent;
|
|
}
|
|
x->color=SEL_ARG::BLACK;
|
|
return root;
|
|
}
|
|
|
|
|
|
/* Test that the properties for a red-black tree hold */
|
|
|
|
#ifdef EXTRA_DEBUG
|
|
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
|
|
{
|
|
int count_l,count_r;
|
|
|
|
if (element == &null_element)
|
|
return 0; // Found end of tree
|
|
if (element->parent != parent)
|
|
{
|
|
sql_print_error("Wrong tree: Parent doesn't point at parent");
|
|
return -1;
|
|
}
|
|
if (element->color == SEL_ARG::RED &&
|
|
(element->left->color == SEL_ARG::RED ||
|
|
element->right->color == SEL_ARG::RED))
|
|
{
|
|
sql_print_error("Wrong tree: Found two red in a row");
|
|
return -1;
|
|
}
|
|
if (element->left == element->right && element->left != &null_element)
|
|
{ // Dummy test
|
|
sql_print_error("Wrong tree: Found right == left");
|
|
return -1;
|
|
}
|
|
count_l=test_rb_tree(element->left,element);
|
|
count_r=test_rb_tree(element->right,element);
|
|
if (count_l >= 0 && count_r >= 0)
|
|
{
|
|
if (count_l == count_r)
|
|
return count_l+(element->color == SEL_ARG::BLACK);
|
|
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
|
|
count_l,count_r);
|
|
}
|
|
return -1; // Error, no more warnings
|
|
}
|
|
|
|
|
|
/**
|
|
Count how many times SEL_ARG graph "root" refers to its part "key" via
|
|
transitive closure.
|
|
|
|
@param root An RB-Root node in a SEL_ARG graph.
|
|
@param key Another RB-Root node in that SEL_ARG graph.
|
|
|
|
The passed "root" node may refer to "key" node via root->next_key_part,
|
|
root->next->n
|
|
|
|
This function counts how many times the node "key" is referred (via
|
|
SEL_ARG::next_key_part) by
|
|
- intervals of RB-tree pointed by "root",
|
|
- intervals of RB-trees that are pointed by SEL_ARG::next_key_part from
|
|
intervals of RB-tree pointed by "root",
|
|
- and so on.
|
|
|
|
Here is an example (horizontal links represent next_key_part pointers,
|
|
vertical links - next/prev prev pointers):
|
|
|
|
+----+ $
|
|
|root|-----------------+
|
|
+----+ $ |
|
|
| $ |
|
|
| $ |
|
|
+----+ +---+ $ | +---+ Here the return value
|
|
| |- ... -| |---$-+--+->|key| will be 4.
|
|
+----+ +---+ $ | | +---+
|
|
| $ | |
|
|
... $ | |
|
|
| $ | |
|
|
+----+ +---+ $ | |
|
|
| |---| |---------+ |
|
|
+----+ +---+ $ |
|
|
| | $ |
|
|
... +---+ $ |
|
|
| |------------+
|
|
+---+ $
|
|
@return
|
|
Number of links to "key" from nodes reachable from "root".
|
|
*/
|
|
|
|
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
|
|
{
|
|
ulong count= 0;
|
|
for (root=root->first(); root ; root=root->next)
|
|
{
|
|
if (root->next_key_part)
|
|
{
|
|
if (root->next_key_part == key)
|
|
count++;
|
|
if (root->next_key_part->part < key->part)
|
|
count+=count_key_part_usage(root->next_key_part,key);
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
|
|
/*
|
|
Check if SEL_ARG::use_count value is correct
|
|
|
|
SYNOPSIS
|
|
SEL_ARG::test_use_count()
|
|
root The root node of the SEL_ARG graph (an RB-tree root node that
|
|
has the least value of sel_arg->part in the entire graph, and
|
|
thus is the "origin" of the graph)
|
|
|
|
DESCRIPTION
|
|
Check if SEL_ARG::use_count value is correct. See the definition of
|
|
use_count for what is "correct".
|
|
*/
|
|
|
|
void SEL_ARG::test_use_count(SEL_ARG *root)
|
|
{
|
|
uint e_count=0;
|
|
|
|
if (this->type != SEL_ARG::KEY_RANGE)
|
|
return;
|
|
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
|
|
{
|
|
e_count++;
|
|
if (pos->next_key_part)
|
|
{
|
|
ulong count=count_key_part_usage(root,pos->next_key_part);
|
|
if (count > pos->next_key_part->use_count)
|
|
{
|
|
sql_print_information("Use_count: Wrong count for key at %p: %lu "
|
|
"should be %lu", pos,
|
|
pos->next_key_part->use_count, count);
|
|
return;
|
|
}
|
|
pos->next_key_part->test_use_count(root);
|
|
}
|
|
}
|
|
if (e_count != elements)
|
|
sql_print_warning("Wrong use count: %u (should be %u) for tree at %p",
|
|
e_count, elements, this);
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
Check if first key part has only one value
|
|
|
|
@retval 1 yes
|
|
@retval 0 no
|
|
*/
|
|
|
|
static bool check_if_first_key_part_has_only_one_value(SEL_ARG *arg)
|
|
{
|
|
if (arg->left != &null_element || arg->right != &null_element)
|
|
return 0; // Multiple key values
|
|
if ((arg->min_flag | arg->max_flag) & (NEAR_MIN | NEAR_MAX))
|
|
return 0;
|
|
if (unlikely(arg->type != SEL_ARG::KEY_RANGE)) // Not a valid range
|
|
return 0;
|
|
return arg->min_value == arg->max_value || !arg->cmp_min_to_max(arg);
|
|
}
|
|
|
|
|
|
/*
|
|
Calculate cost and E(#rows) for a given index and intervals tree
|
|
|
|
SYNOPSIS
|
|
check_quick_select()
|
|
param Parameter from test_quick_select
|
|
idx Number of index to use in PARAM::key SEL_TREE::key
|
|
index_only TRUE - assume only index tuples will be accessed
|
|
FALSE - assume full table rows will be read
|
|
tree Transformed selection condition, tree->key[idx] holds
|
|
the intervals for the given index.
|
|
update_tbl_stats TRUE <=> update table->quick_* with information
|
|
about range scan we've evaluated.
|
|
mrr_flags INOUT MRR access flags
|
|
cost OUT Scan cost
|
|
is_ror_scan is set to reflect if the key scan is a ROR (see
|
|
is_key_scan_ror function for more info)
|
|
|
|
NOTES
|
|
param->table->opt_range*, param->range_count (and maybe others) are
|
|
updated with data of given key scan, see quick_range_seq_next for details.
|
|
|
|
RETURN
|
|
Estimate # of records to be retrieved.
|
|
HA_POS_ERROR if estimate calculation failed due to table handler problems.
|
|
*/
|
|
|
|
static
|
|
ha_rows check_quick_select(PARAM *param, uint idx, ha_rows limit,
|
|
bool index_only,
|
|
SEL_ARG *tree, bool update_tbl_stats,
|
|
uint *mrr_flags, uint *bufsize, Cost_estimate *cost,
|
|
bool *is_ror_scan)
|
|
{
|
|
SEL_ARG_RANGE_SEQ seq;
|
|
RANGE_SEQ_IF seq_if=
|
|
{NULL, sel_arg_range_seq_init, sel_arg_range_seq_next, 0, 0};
|
|
handler *file= param->table->file;
|
|
ha_rows rows= HA_POS_ERROR;
|
|
uint keynr= param->real_keynr[idx];
|
|
DBUG_ENTER("check_quick_select");
|
|
|
|
/* Range not calculated yet */
|
|
param->quick_rows[keynr]= HA_POS_ERROR;
|
|
|
|
/* Handle cases when we don't have a valid non-empty list of range */
|
|
if (!tree)
|
|
DBUG_RETURN(HA_POS_ERROR);
|
|
if (tree->type == SEL_ARG::IMPOSSIBLE)
|
|
DBUG_RETURN(0L);
|
|
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
|
|
DBUG_RETURN(HA_POS_ERROR);
|
|
|
|
seq.keyno= idx;
|
|
seq.real_keyno= keynr;
|
|
seq.key_parts= param->key[idx];
|
|
seq.param= param;
|
|
seq.start= tree;
|
|
|
|
param->range_count=0;
|
|
param->max_key_parts=0;
|
|
|
|
seq.is_ror_scan= TRUE;
|
|
if (param->table->key_info[keynr].index_flags & HA_KEY_SCAN_NOT_ROR)
|
|
seq.is_ror_scan= FALSE;
|
|
|
|
*mrr_flags= param->force_default_mrr? HA_MRR_USE_DEFAULT_IMPL: 0;
|
|
/*
|
|
Pass HA_MRR_SORTED to see if MRR implementation can handle sorting.
|
|
*/
|
|
*mrr_flags|= HA_MRR_NO_ASSOCIATION | HA_MRR_SORTED;
|
|
|
|
// TODO: param->max_key_parts holds 0 now, and not the #keyparts used.
|
|
// Passing wrong second argument to index_flags() makes no difference for
|
|
// most storage engines but might be an issue for MyRocks with certain
|
|
// datatypes.
|
|
// Note that HA_KEYREAD_ONLY implies that this is not a clustered index
|
|
if (index_only &&
|
|
(file->index_flags(keynr, param->max_key_parts, 1) & HA_KEYREAD_ONLY))
|
|
*mrr_flags |= HA_MRR_INDEX_ONLY;
|
|
|
|
if (param->thd->lex->sql_command != SQLCOM_SELECT)
|
|
*mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
|
|
*bufsize= param->thd->variables.mrr_buff_size;
|
|
/*
|
|
Skip materialized derived table/view result table from MRR check as
|
|
they aren't contain any data yet.
|
|
*/
|
|
if (!param->table->pos_in_table_list->is_materialized_derived())
|
|
rows= file->multi_range_read_info_const(keynr, &seq_if, (void*)&seq, 0,
|
|
bufsize, mrr_flags, limit, cost);
|
|
param->quick_rows[keynr]= rows;
|
|
if (rows != HA_POS_ERROR)
|
|
{
|
|
ha_rows table_records= param->table->stat_records();
|
|
if (rows > table_records)
|
|
{
|
|
/*
|
|
For any index the total number of records within all ranges
|
|
cannot be be bigger than the number of records in the table.
|
|
This check is needed as sometimes that table statistics or range
|
|
estimates may be slightly out of sync.
|
|
*/
|
|
rows= MY_MAX(table_records, 1);
|
|
param->quick_rows[keynr]= rows;
|
|
}
|
|
param->possible_keys.set_bit(keynr);
|
|
if (update_tbl_stats)
|
|
{
|
|
TABLE::OPT_RANGE *range= param->table->opt_range + keynr;
|
|
param->table->opt_range_keys.set_bit(keynr);
|
|
range->key_parts= param->max_key_parts;
|
|
range->ranges= param->range_count;
|
|
param->table->set_opt_range_condition_rows(rows);
|
|
range->selectivity= (rows ?
|
|
(param->table->opt_range_condition_rows /
|
|
rows) :
|
|
1.0); // ok as rows is 0
|
|
range->rows= rows;
|
|
range->cost= *cost;
|
|
range->max_index_blocks= file->index_blocks(keynr, range->ranges,
|
|
rows);
|
|
range->max_row_blocks= MY_MIN(file->row_blocks(), rows * file->stats.block_size / IO_SIZE);
|
|
range->first_key_part_has_only_one_value=
|
|
check_if_first_key_part_has_only_one_value(tree);
|
|
}
|
|
}
|
|
|
|
/* Figure out if the key scan is ROR (returns rows in ROWID order) or not */
|
|
enum ha_key_alg key_alg= param->table->key_info[seq.real_keyno].algorithm;
|
|
if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
|
|
{
|
|
/*
|
|
All scans are non-ROR scans for those index types.
|
|
TODO: Don't have this logic here, make table engines return
|
|
appropriate flags instead.
|
|
*/
|
|
seq.is_ror_scan= FALSE;
|
|
}
|
|
else if (param->table->file->is_clustering_key(keynr))
|
|
{
|
|
/* Clustered PK scan is always a ROR scan (TODO: same as above) */
|
|
seq.is_ror_scan= TRUE;
|
|
}
|
|
else if (param->range_count > 1)
|
|
{
|
|
/*
|
|
Scaning multiple key values in the index: the records are ROR
|
|
for each value, but not between values. E.g, "SELECT ... x IN
|
|
(1,3)" returns ROR order for all records with x=1, then ROR
|
|
order for records with x=3
|
|
*/
|
|
seq.is_ror_scan= FALSE;
|
|
}
|
|
*is_ror_scan= seq.is_ror_scan;
|
|
|
|
DBUG_PRINT("exit", ("Records: %lu", (ulong) rows));
|
|
DBUG_ASSERT(rows == HA_POS_ERROR ||
|
|
rows <= MY_MAX(param->table->stat_records(), 1));
|
|
DBUG_RETURN(rows); //psergey-merge:todo: maintain first_null_comp.
|
|
}
|
|
|
|
|
|
/*
|
|
Check if key scan on given index with equality conditions on first n key
|
|
parts is a ROR scan.
|
|
|
|
SYNOPSIS
|
|
is_key_scan_ror()
|
|
param Parameter from test_quick_select
|
|
keynr Number of key in the table. The key must not be a clustered
|
|
primary key.
|
|
nparts Number of first key parts for which equality conditions
|
|
are present.
|
|
|
|
NOTES
|
|
ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
|
|
ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
|
|
|
|
This function is needed to handle a practically-important special case:
|
|
an index scan is a ROR scan if it is done using a condition in form
|
|
|
|
"key1_1=c_1 AND ... AND key1_n=c_n"
|
|
|
|
where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])
|
|
|
|
and the table has a clustered Primary Key defined as
|
|
PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k)
|
|
|
|
i.e. the first key parts of it are identical to uncovered parts ot the
|
|
key being scanned. This function assumes that the index flags do not
|
|
include HA_KEY_SCAN_NOT_ROR flag (that is checked elsewhere).
|
|
|
|
Check (1) is made in quick_range_seq_next()
|
|
|
|
RETURN
|
|
TRUE The scan is ROR-scan
|
|
FALSE Otherwise
|
|
*/
|
|
|
|
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
|
|
{
|
|
KEY *table_key= param->table->key_info + keynr;
|
|
KEY_PART_INFO *key_part= table_key->key_part + nparts;
|
|
KEY_PART_INFO *key_part_end= (table_key->key_part +
|
|
table_key->user_defined_key_parts);
|
|
uint pk_number;
|
|
|
|
if (param->table->file->ha_table_flags() & HA_NON_COMPARABLE_ROWID)
|
|
return false;
|
|
|
|
for (KEY_PART_INFO *kp= table_key->key_part; kp < key_part; kp++)
|
|
{
|
|
field_index_t fieldnr= (param->table->key_info[keynr].
|
|
key_part[kp - table_key->key_part].fieldnr - 1);
|
|
if (param->table->field[fieldnr]->key_length() != kp->length)
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
If there are equalities for all key parts, it is a ROR scan. If there are
|
|
equalities all keyparts and even some of key parts from "Extended Key"
|
|
index suffix, it is a ROR-scan, too.
|
|
*/
|
|
if (key_part >= key_part_end)
|
|
return TRUE;
|
|
|
|
key_part= table_key->key_part + nparts;
|
|
pk_number= param->table->s->primary_key;
|
|
if (!param->table->file->pk_is_clustering_key(pk_number))
|
|
return FALSE;
|
|
|
|
KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
|
|
KEY_PART_INFO *pk_part_end= pk_part +
|
|
param->table->key_info[pk_number].user_defined_key_parts;
|
|
for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
|
|
++key_part, ++pk_part)
|
|
{
|
|
if ((key_part->field != pk_part->field) ||
|
|
(key_part->length != pk_part->length))
|
|
return FALSE;
|
|
}
|
|
return (key_part == key_part_end);
|
|
}
|
|
|
|
|
|
/*
|
|
Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
|
|
|
|
SYNOPSIS
|
|
get_quick_select()
|
|
param
|
|
idx Index of used key in param->key.
|
|
key_tree SEL_ARG tree for the used key
|
|
mrr_flags MRR parameter for quick select
|
|
mrr_buf_size MRR parameter for quick select
|
|
parent_alloc If not NULL, use it to allocate memory for
|
|
quick select data. Otherwise use quick->alloc.
|
|
NOTES
|
|
The caller must call QUICK_SELECT::init for returned quick select.
|
|
|
|
CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
|
|
deallocated when the returned quick select is deleted.
|
|
|
|
RETURN
|
|
NULL on error
|
|
otherwise created quick select
|
|
*/
|
|
|
|
QUICK_RANGE_SELECT *
|
|
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree, uint mrr_flags,
|
|
uint mrr_buf_size, MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_RANGE_SELECT *quick;
|
|
bool create_err= FALSE;
|
|
DBUG_ENTER("get_quick_select");
|
|
|
|
if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
|
|
quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
|
|
param->real_keynr[idx],
|
|
MY_TEST(parent_alloc),
|
|
parent_alloc, &create_err);
|
|
else
|
|
quick=new QUICK_RANGE_SELECT(param->thd, param->table,
|
|
param->real_keynr[idx],
|
|
MY_TEST(parent_alloc), NULL, &create_err);
|
|
|
|
if (quick)
|
|
{
|
|
if (create_err ||
|
|
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
|
|
param->max_key,0))
|
|
{
|
|
delete quick;
|
|
quick=0;
|
|
}
|
|
else
|
|
{
|
|
KEY *keyinfo= param->table->key_info+param->real_keynr[idx];
|
|
quick->mrr_flags= mrr_flags;
|
|
quick->mrr_buf_size= mrr_buf_size;
|
|
quick->key_parts=(KEY_PART*)
|
|
memdup_root(parent_alloc? parent_alloc : &quick->alloc,
|
|
(char*) param->key[idx],
|
|
sizeof(KEY_PART)*
|
|
param->table->actual_n_key_parts(keyinfo));
|
|
}
|
|
}
|
|
DBUG_RETURN(quick);
|
|
}
|
|
|
|
|
|
void SEL_ARG::store_next_min_max_keys(KEY_PART *key,
|
|
uchar **cur_min_key, uint *cur_min_flag,
|
|
uchar **cur_max_key, uint *cur_max_flag,
|
|
int *min_part, int *max_part)
|
|
{
|
|
DBUG_ASSERT(next_key_part);
|
|
const bool asc = !(key[next_key_part->part].flag & HA_REVERSE_SORT);
|
|
|
|
if (!get_min_flag(key))
|
|
{
|
|
if (asc)
|
|
{
|
|
*min_part += next_key_part->store_min_key(key, cur_min_key,
|
|
cur_min_flag, MAX_KEY, true);
|
|
}
|
|
else
|
|
{
|
|
uint tmp_flag = invert_min_flag(*cur_min_flag);
|
|
*min_part += next_key_part->store_max_key(key, cur_min_key, &tmp_flag,
|
|
MAX_KEY, true);
|
|
*cur_min_flag = invert_max_flag(tmp_flag);
|
|
}
|
|
}
|
|
if (!get_max_flag(key))
|
|
{
|
|
if (asc)
|
|
{
|
|
*max_part += next_key_part->store_max_key(key, cur_max_key,
|
|
cur_max_flag, MAX_KEY, false);
|
|
}
|
|
else
|
|
{
|
|
uint tmp_flag = invert_max_flag(*cur_max_flag);
|
|
*max_part += next_key_part->store_min_key(key, cur_max_key, &tmp_flag,
|
|
MAX_KEY, false);
|
|
*cur_max_flag = invert_min_flag(tmp_flag);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Fix this to get all possible sub_ranges
|
|
*/
|
|
bool
|
|
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
|
|
SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
|
|
uchar *max_key, uint max_key_flag)
|
|
{
|
|
QUICK_RANGE *range;
|
|
uint flag;
|
|
int min_part= key_tree->part-1, // # of keypart values in min_key buffer
|
|
max_part= key_tree->part-1; // # of keypart values in max_key buffer
|
|
|
|
const bool asc = !(key[key_tree->part].flag & HA_REVERSE_SORT);
|
|
SEL_ARG *next_tree = asc ? key_tree->left : key_tree->right;
|
|
if (next_tree != &null_element)
|
|
{
|
|
if (get_quick_keys(param,quick,key,next_tree,
|
|
min_key,min_key_flag, max_key, max_key_flag))
|
|
return 1;
|
|
}
|
|
uchar *tmp_min_key=min_key,*tmp_max_key=max_key;
|
|
|
|
key_tree->store_min_max(key, key[key_tree->part].store_length,
|
|
&tmp_min_key, min_key_flag,
|
|
&tmp_max_key, max_key_flag,
|
|
&min_part, &max_part);
|
|
|
|
if (key_tree->next_key_part &&
|
|
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE &&
|
|
key_tree->next_key_part->part == key_tree->part+1)
|
|
{ // const key as prefix
|
|
if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
|
|
memcmp(min_key, max_key, (uint)(tmp_max_key - max_key))==0 &&
|
|
key_tree->min_flag==0 && key_tree->max_flag==0)
|
|
{
|
|
// psergey-note: simplified the parameters below as follows:
|
|
// min_key_flag | key_tree->min_flag -> min_key_flag
|
|
// max_key_flag | key_tree->max_flag -> max_key_flag
|
|
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
|
|
tmp_min_key, min_key_flag,
|
|
tmp_max_key, max_key_flag))
|
|
return 1;
|
|
goto end; // Ugly, but efficient
|
|
}
|
|
{
|
|
uint tmp_min_flag= key_tree->get_min_flag(key);
|
|
uint tmp_max_flag= key_tree->get_max_flag(key);
|
|
|
|
key_tree->store_next_min_max_keys(key,
|
|
&tmp_min_key, &tmp_min_flag,
|
|
&tmp_max_key, &tmp_max_flag,
|
|
&min_part, &max_part);
|
|
flag=tmp_min_flag | tmp_max_flag;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (asc)
|
|
{
|
|
flag= (key_tree->min_flag & GEOM_FLAG) ? key_tree->min_flag:
|
|
(key_tree->min_flag |
|
|
key_tree->max_flag);
|
|
}
|
|
else
|
|
{
|
|
// Invert flags for DESC keypart
|
|
flag= invert_min_flag(key_tree->min_flag) |
|
|
invert_max_flag(key_tree->max_flag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Ensure that some part of min_key and max_key are used. If not,
|
|
regard this as no lower/upper range
|
|
*/
|
|
if ((flag & GEOM_FLAG) == 0)
|
|
{
|
|
if (tmp_min_key != param->min_key)
|
|
flag&= ~NO_MIN_RANGE;
|
|
else
|
|
flag|= NO_MIN_RANGE;
|
|
if (tmp_max_key != param->max_key)
|
|
flag&= ~NO_MAX_RANGE;
|
|
else
|
|
flag|= NO_MAX_RANGE;
|
|
}
|
|
if (flag == 0)
|
|
{
|
|
uint length= (uint) (tmp_min_key - param->min_key);
|
|
if (length == (uint) (tmp_max_key - param->max_key) &&
|
|
!memcmp(param->min_key,param->max_key,length))
|
|
{
|
|
KEY *table_key=quick->head->key_info+quick->index;
|
|
flag=EQ_RANGE;
|
|
if ((table_key->flags & HA_NOSAME) &&
|
|
min_part == key_tree->part &&
|
|
key_tree->part == table_key->user_defined_key_parts-1)
|
|
{
|
|
DBUG_ASSERT(min_part == max_part);
|
|
if ((table_key->flags & HA_NULL_PART_KEY) &&
|
|
null_part_in_key(key,
|
|
param->min_key,
|
|
(uint) (tmp_min_key - param->min_key)))
|
|
flag|= NULL_RANGE;
|
|
else
|
|
flag|= UNIQUE_RANGE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get range for retrieving rows in QUICK_SELECT::get_next */
|
|
if (!(range= new (param->thd->mem_root) QUICK_RANGE(
|
|
param->thd,
|
|
param->min_key,
|
|
(uint) (tmp_min_key - param->min_key),
|
|
min_part >=0 ? make_keypart_map(min_part) : 0,
|
|
param->max_key,
|
|
(uint) (tmp_max_key - param->max_key),
|
|
max_part >=0 ? make_keypart_map(max_part) : 0,
|
|
flag)))
|
|
return 1; // out of memory
|
|
|
|
set_if_bigger(quick->max_used_key_length, range->min_length);
|
|
set_if_bigger(quick->max_used_key_length, range->max_length);
|
|
set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
|
|
if (insert_dynamic(&quick->ranges, (uchar*) &range))
|
|
return 1;
|
|
|
|
end:
|
|
next_tree= asc ? key_tree->right : key_tree->left;
|
|
if (next_tree != &null_element)
|
|
return get_quick_keys(param,quick,key,next_tree,
|
|
min_key,min_key_flag,
|
|
max_key,max_key_flag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Return 1 if there is only one range and this uses the whole unique key
|
|
*/
|
|
|
|
bool QUICK_RANGE_SELECT::unique_key_range()
|
|
{
|
|
if (ranges.elements == 1)
|
|
{
|
|
QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
|
|
if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
|
|
{
|
|
KEY *key=head->key_info+index;
|
|
return (key->flags & HA_NOSAME) && key->key_length == tmp->min_length;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Return TRUE if any part of the key is NULL
|
|
|
|
SYNOPSIS
|
|
null_part_in_key()
|
|
key_part Array of key parts (index description)
|
|
key Key values tuple
|
|
length Length of key values tuple in bytes.
|
|
|
|
RETURN
|
|
TRUE The tuple has at least one "keypartX is NULL"
|
|
FALSE Otherwise
|
|
*/
|
|
|
|
static bool null_part_in_key(KEY_PART *key_part, const uchar *key, uint length)
|
|
{
|
|
for (const uchar *end=key+length ;
|
|
key < end;
|
|
key+= key_part++->store_length)
|
|
{
|
|
if (key_part->null_bit && *key)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool QUICK_SELECT_I::is_keys_used(const MY_BITMAP *fields)
|
|
{
|
|
return is_key_used(head, index, fields);
|
|
}
|
|
|
|
bool QUICK_INDEX_SORT_SELECT::is_keys_used(const MY_BITMAP *fields)
|
|
{
|
|
QUICK_RANGE_SELECT *quick;
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if (is_key_used(head, quick->index, fields))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(const MY_BITMAP *fields)
|
|
{
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
while ((qr= it++))
|
|
{
|
|
if (is_key_used(head, qr->quick->index, fields))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool QUICK_ROR_UNION_SELECT::is_keys_used(const MY_BITMAP *fields)
|
|
{
|
|
QUICK_SELECT_I *quick;
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if (quick->is_keys_used(fields))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
FT_SELECT *get_ft_select(THD *thd, TABLE *table, uint key)
|
|
{
|
|
bool create_err= FALSE;
|
|
FT_SELECT *fts= new FT_SELECT(thd, table, key, &create_err);
|
|
if (create_err)
|
|
{
|
|
delete fts;
|
|
return NULL;
|
|
}
|
|
else
|
|
return fts;
|
|
}
|
|
|
|
/*
|
|
Create quick select from ref/ref_or_null scan.
|
|
|
|
SYNOPSIS
|
|
get_quick_select_for_ref()
|
|
thd Thread handle
|
|
table Table to access
|
|
ref ref[_or_null] scan parameters
|
|
records Estimate of number of records (needed only to construct
|
|
quick select)
|
|
NOTES
|
|
This allocates things in a new memory root, as this may be called many
|
|
times during a query.
|
|
|
|
RETURN
|
|
Quick select that retrieves the same rows as passed ref scan
|
|
NULL on error.
|
|
*/
|
|
|
|
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
|
|
TABLE_REF *ref, ha_rows records)
|
|
{
|
|
MEM_ROOT *old_root, *alloc;
|
|
QUICK_RANGE_SELECT *quick;
|
|
KEY *key_info = &table->key_info[ref->key];
|
|
KEY_PART *key_part;
|
|
QUICK_RANGE *range;
|
|
uint part;
|
|
bool create_err= FALSE;
|
|
Cost_estimate cost;
|
|
uint max_used_key_len;
|
|
|
|
old_root= thd->mem_root;
|
|
/* The following call may change thd->mem_root */
|
|
quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0, 0, &create_err);
|
|
/* save mem_root set by QUICK_RANGE_SELECT constructor */
|
|
alloc= thd->mem_root;
|
|
/*
|
|
return back default mem_root (thd->mem_root) changed by
|
|
QUICK_RANGE_SELECT constructor
|
|
*/
|
|
thd->mem_root= old_root;
|
|
|
|
if (!quick || create_err || quick->init())
|
|
goto err;
|
|
quick->records= records;
|
|
|
|
if ((cp_buffer_from_ref(thd, table, ref) &&
|
|
unlikely(thd->is_fatal_error)) ||
|
|
unlikely(!(range= new(alloc) QUICK_RANGE())))
|
|
goto err; // out of memory
|
|
|
|
range->min_key= range->max_key= ref->key_buff;
|
|
range->min_length= range->max_length= ref->key_length;
|
|
range->min_keypart_map= range->max_keypart_map=
|
|
make_prev_keypart_map(ref->key_parts);
|
|
range->flag= EQ_RANGE;
|
|
|
|
if (unlikely(!(quick->key_parts=key_part=(KEY_PART *)
|
|
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts))))
|
|
goto err;
|
|
|
|
max_used_key_len=0;
|
|
for (part=0 ; part < ref->key_parts ;part++,key_part++)
|
|
{
|
|
key_part->part=part;
|
|
key_part->field= key_info->key_part[part].field;
|
|
key_part->length= key_info->key_part[part].length;
|
|
key_part->store_length= key_info->key_part[part].store_length;
|
|
key_part->null_bit= key_info->key_part[part].null_bit;
|
|
key_part->flag= (uint8) key_info->key_part[part].key_part_flag;
|
|
|
|
max_used_key_len +=key_info->key_part[part].store_length;
|
|
}
|
|
|
|
quick->max_used_key_length= max_used_key_len;
|
|
|
|
if (insert_dynamic(&quick->ranges,(uchar*)&range))
|
|
goto err;
|
|
|
|
/*
|
|
Add a NULL range if REF_OR_NULL optimization is used.
|
|
For example:
|
|
if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
|
|
and have ref->null_ref_key set. Will create a new NULL range here.
|
|
*/
|
|
if (ref->null_ref_key)
|
|
{
|
|
QUICK_RANGE *null_range;
|
|
|
|
*ref->null_ref_key= 1; // Set null byte then create a range
|
|
if (!(null_range= new (alloc)
|
|
QUICK_RANGE(thd, ref->key_buff, ref->key_length,
|
|
make_prev_keypart_map(ref->key_parts),
|
|
ref->key_buff, ref->key_length,
|
|
make_prev_keypart_map(ref->key_parts), EQ_RANGE)))
|
|
goto err;
|
|
*ref->null_ref_key= 0; // Clear null byte
|
|
if (insert_dynamic(&quick->ranges,(uchar*)&null_range))
|
|
goto err;
|
|
}
|
|
|
|
/* Call multi_range_read_info() to get the MRR flags and buffer size */
|
|
quick->mrr_flags= HA_MRR_NO_ASSOCIATION |
|
|
(table->file->keyread_enabled() ? HA_MRR_INDEX_ONLY : 0);
|
|
if (thd->lex->sql_command != SQLCOM_SELECT)
|
|
quick->mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
|
|
quick->mrr_buf_size= thd->variables.mrr_buff_size;
|
|
if (table->file->multi_range_read_info(quick->index, 1, (uint)records,
|
|
~0,
|
|
&quick->mrr_buf_size,
|
|
&quick->mrr_flags, &cost))
|
|
goto err;
|
|
|
|
return quick;
|
|
err:
|
|
delete quick;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Perform key scans for all used indexes (except CPK), get rowids and merge
|
|
them into an ordered non-recurrent sequence of rowids.
|
|
|
|
The merge/duplicate removal is performed using Unique class. We put all
|
|
rowids into Unique, get the sorted sequence and destroy the Unique.
|
|
|
|
If table has a clustered primary key that covers all rows (TRUE for bdb
|
|
and innodb currently) and one of the index_merge scans is a scan on PK,
|
|
then rows that will be retrieved by PK scan are not put into Unique and
|
|
primary key scan is not performed here, it is performed later separately.
|
|
|
|
RETURN
|
|
0 OK
|
|
other error
|
|
*/
|
|
|
|
int read_keys_and_merge_scans(THD *thd,
|
|
TABLE *head,
|
|
List<QUICK_RANGE_SELECT> quick_selects,
|
|
QUICK_RANGE_SELECT *pk_quick_select,
|
|
READ_RECORD *read_record,
|
|
bool intersection,
|
|
key_map *filtered_scans,
|
|
Unique **unique_ptr)
|
|
{
|
|
List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
|
|
QUICK_RANGE_SELECT* cur_quick;
|
|
int result;
|
|
Unique *unique= *unique_ptr;
|
|
handler *file= head->file;
|
|
bool with_cpk_filter= pk_quick_select != NULL;
|
|
DBUG_ENTER("read_keys_and_merge");
|
|
|
|
/* We're going to just read rowids. */
|
|
head->prepare_for_position();
|
|
|
|
cur_quick_it.rewind();
|
|
cur_quick= cur_quick_it++;
|
|
bool first_quick= TRUE;
|
|
DBUG_ASSERT(cur_quick != 0);
|
|
head->file->ha_start_keyread(cur_quick->index);
|
|
|
|
/*
|
|
We reuse the same instance of handler so we need to call both init and
|
|
reset here.
|
|
*/
|
|
if (cur_quick->init() || cur_quick->reset())
|
|
goto err;
|
|
|
|
if (unique == NULL)
|
|
{
|
|
DBUG_EXECUTE_IF("index_merge_may_not_create_a_Unique", DBUG_SUICIDE(); );
|
|
DBUG_EXECUTE_IF("only_one_Unique_may_be_created",
|
|
DBUG_SET("+d,index_merge_may_not_create_a_Unique"); );
|
|
|
|
unique= new Unique(refpos_order_cmp, (void *)file,
|
|
file->ref_length,
|
|
(size_t)thd->variables.sortbuff_size,
|
|
intersection ? quick_selects.elements : 0);
|
|
if (!unique)
|
|
goto err;
|
|
*unique_ptr= unique;
|
|
}
|
|
else
|
|
{
|
|
unique->reset();
|
|
}
|
|
|
|
DBUG_ASSERT(file->ref_length == unique->get_size());
|
|
DBUG_ASSERT(thd->variables.sortbuff_size == unique->get_max_in_memory_size());
|
|
|
|
for (;;)
|
|
{
|
|
while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
|
|
{
|
|
if (intersection)
|
|
with_cpk_filter= filtered_scans->is_set(cur_quick->index);
|
|
if (first_quick)
|
|
{
|
|
first_quick= FALSE;
|
|
if (intersection && unique->is_in_memory())
|
|
unique->close_for_expansion();
|
|
}
|
|
cur_quick->range_end();
|
|
cur_quick= cur_quick_it++;
|
|
if (!cur_quick)
|
|
break;
|
|
|
|
if (cur_quick->file->inited != handler::NONE)
|
|
cur_quick->file->ha_index_end();
|
|
if (cur_quick->init() || cur_quick->reset())
|
|
goto err;
|
|
}
|
|
|
|
if (result)
|
|
{
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
{
|
|
cur_quick->range_end();
|
|
goto err;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (thd->killed)
|
|
goto err;
|
|
|
|
if (with_cpk_filter &&
|
|
pk_quick_select->row_in_ranges() != intersection )
|
|
continue;
|
|
|
|
cur_quick->file->position(cur_quick->record);
|
|
if (unique->unique_add((char*)cur_quick->file->ref))
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
Ok all rowids are in the Unique now. The next call will initialize
|
|
the unique structure so it can be used to iterate through the rowids
|
|
sequence.
|
|
*/
|
|
result= unique->get(head);
|
|
/*
|
|
index merge currently doesn't support "using index" at all
|
|
*/
|
|
head->file->ha_end_keyread();
|
|
if (init_read_record(read_record, thd, head, (SQL_SELECT*) 0,
|
|
&unique->sort, 1 , 1, TRUE))
|
|
result= 1;
|
|
DBUG_RETURN(result);
|
|
|
|
err:
|
|
head->file->ha_end_keyread();
|
|
DBUG_RETURN(1);
|
|
}
|
|
|
|
|
|
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
|
|
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::read_keys_and_merge");
|
|
result= read_keys_and_merge_scans(thd, head, quick_selects, pk_quick_select,
|
|
&read_record, FALSE, NULL, &unique);
|
|
doing_pk_scan= FALSE;
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/*
|
|
Get next row for index_merge.
|
|
NOTES
|
|
The rows are read from
|
|
1. rowids stored in Unique.
|
|
2. QUICK_RANGE_SELECT with clustered primary key (if any).
|
|
The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
|
|
*/
|
|
|
|
int QUICK_INDEX_MERGE_SELECT::get_next()
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
|
|
|
|
if (doing_pk_scan)
|
|
DBUG_RETURN(pk_quick_select->get_next());
|
|
|
|
if ((result= read_record.read_record()) == -1)
|
|
{
|
|
result= HA_ERR_END_OF_FILE;
|
|
end_read_record(&read_record);
|
|
// Free things used by sort early. Shouldn't be strictly necessary
|
|
unique->sort.reset();
|
|
/* All rows from Unique have been retrieved, do a clustered PK scan */
|
|
if (pk_quick_select)
|
|
{
|
|
doing_pk_scan= TRUE;
|
|
if ((result= pk_quick_select->init()) ||
|
|
(result= pk_quick_select->reset()))
|
|
DBUG_RETURN(result);
|
|
DBUG_RETURN(pk_quick_select->get_next());
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
int QUICK_INDEX_INTERSECT_SELECT::read_keys_and_merge()
|
|
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_INDEX_INTERSECT_SELECT::read_keys_and_merge");
|
|
result= read_keys_and_merge_scans(thd, head, quick_selects, pk_quick_select,
|
|
&read_record, TRUE, &filtered_scans,
|
|
&unique);
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
int QUICK_INDEX_INTERSECT_SELECT::get_next()
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_INDEX_INTERSECT_SELECT::get_next");
|
|
|
|
if ((result= read_record.read_record()) == -1)
|
|
{
|
|
result= HA_ERR_END_OF_FILE;
|
|
end_read_record(&read_record);
|
|
unique->sort.reset(); // Free things early
|
|
}
|
|
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Retrieve next record.
|
|
SYNOPSIS
|
|
QUICK_ROR_INTERSECT_SELECT::get_next()
|
|
|
|
NOTES
|
|
Invariant on enter/exit: all intersected selects have retrieved all index
|
|
records with rowid <= some_rowid_val and no intersected select has
|
|
retrieved any index records with rowid > some_rowid_val.
|
|
We start fresh and loop until we have retrieved the same rowid in each of
|
|
the key scans or we got an error.
|
|
|
|
If a Clustered PK scan is present, it is used only to check if row
|
|
satisfies its condition (and never used for row retrieval).
|
|
|
|
Locking: to ensure that exclusive locks are only set on records that
|
|
are included in the final result we must release the lock
|
|
on all rows we read but do not include in the final result. This
|
|
must be done on each index that reads the record and the lock
|
|
must be released using the same handler (the same quick object) as
|
|
used when reading the record.
|
|
|
|
RETURN
|
|
0 - Ok
|
|
other - Error code if any error occurred.
|
|
*/
|
|
|
|
int QUICK_ROR_INTERSECT_SELECT::get_next()
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> quick_it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
QUICK_RANGE_SELECT* quick;
|
|
|
|
/* quick that reads the given rowid first. This is needed in order
|
|
to be able to unlock the row using the same handler object that locked
|
|
it */
|
|
QUICK_RANGE_SELECT* quick_with_last_rowid;
|
|
|
|
int error, cmp;
|
|
uint last_rowid_count=0;
|
|
DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
|
|
|
|
/* Get a rowid for first quick and save it as a 'candidate' */
|
|
qr= quick_it++;
|
|
quick= qr->quick;
|
|
error= quick->get_next();
|
|
if (cpk_quick)
|
|
{
|
|
while (!error && !cpk_quick->row_in_ranges())
|
|
{
|
|
quick->file->unlock_row(); /* row not in range; unlock */
|
|
error= quick->get_next();
|
|
}
|
|
}
|
|
if (unlikely(error))
|
|
DBUG_RETURN(error);
|
|
|
|
/* Save the read key tuple */
|
|
key_copy(qr->key_tuple, record, head->key_info + quick->index,
|
|
quick->max_used_key_length);
|
|
|
|
quick->file->position(quick->record);
|
|
memcpy(last_rowid, quick->file->ref, head->file->ref_length);
|
|
last_rowid_count= 1;
|
|
quick_with_last_rowid= quick;
|
|
|
|
while (last_rowid_count < quick_selects.elements)
|
|
{
|
|
if (!(qr= quick_it++))
|
|
{
|
|
quick_it.rewind();
|
|
qr= quick_it++;
|
|
}
|
|
quick= qr->quick;
|
|
|
|
do
|
|
{
|
|
DBUG_EXECUTE_IF("innodb_quick_report_deadlock",
|
|
DBUG_SET("+d,innodb_report_deadlock"););
|
|
if (unlikely((error= quick->get_next())))
|
|
{
|
|
/* On certain errors like deadlock, trx might be rolled back.*/
|
|
if (!thd->transaction_rollback_request)
|
|
quick_with_last_rowid->file->unlock_row();
|
|
DBUG_RETURN(error);
|
|
}
|
|
quick->file->position(quick->record);
|
|
cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
|
|
if (cmp < 0)
|
|
{
|
|
/* This row is being skipped. Release lock on it. */
|
|
quick->file->unlock_row();
|
|
}
|
|
} while (cmp < 0);
|
|
|
|
key_copy(qr->key_tuple, record, head->key_info + quick->index,
|
|
quick->max_used_key_length);
|
|
|
|
/* Ok, current select 'caught up' and returned ref >= cur_ref */
|
|
if (cmp > 0)
|
|
{
|
|
/* Found a row with ref > cur_ref. Make it a new 'candidate' */
|
|
if (cpk_quick)
|
|
{
|
|
while (!cpk_quick->row_in_ranges())
|
|
{
|
|
quick->file->unlock_row(); /* row not in range; unlock */
|
|
if (unlikely((error= quick->get_next())))
|
|
{
|
|
/* On certain errors like deadlock, trx might be rolled back.*/
|
|
if (!thd->transaction_rollback_request)
|
|
quick_with_last_rowid->file->unlock_row();
|
|
DBUG_RETURN(error);
|
|
}
|
|
}
|
|
quick->file->position(quick->record);
|
|
}
|
|
memcpy(last_rowid, quick->file->ref, head->file->ref_length);
|
|
quick_with_last_rowid->file->unlock_row();
|
|
last_rowid_count= 1;
|
|
quick_with_last_rowid= quick;
|
|
|
|
//save the fields here
|
|
key_copy(qr->key_tuple, record, head->key_info + quick->index,
|
|
quick->max_used_key_length);
|
|
}
|
|
else
|
|
{
|
|
/* current 'candidate' row confirmed by this select */
|
|
last_rowid_count++;
|
|
}
|
|
}
|
|
|
|
/* We get here if we got the same row ref in all scans. */
|
|
if (need_to_fetch_row)
|
|
error= head->file->ha_rnd_pos(head->record[0], last_rowid);
|
|
|
|
if (!need_to_fetch_row)
|
|
{
|
|
/* Restore the columns we've read/saved with other quick selects */
|
|
quick_it.rewind();
|
|
while ((qr= quick_it++))
|
|
{
|
|
if (qr->quick != quick)
|
|
{
|
|
key_restore(record, qr->key_tuple, head->key_info + qr->quick->index,
|
|
qr->quick->max_used_key_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Retrieve next record.
|
|
SYNOPSIS
|
|
QUICK_ROR_UNION_SELECT::get_next()
|
|
|
|
NOTES
|
|
Enter/exit invariant:
|
|
For each quick select in the queue a {key,rowid} tuple has been
|
|
retrieved but the corresponding row hasn't been passed to output.
|
|
|
|
RETURN
|
|
0 - Ok
|
|
other - Error code if any error occurred.
|
|
*/
|
|
|
|
int QUICK_ROR_UNION_SELECT::get_next()
|
|
{
|
|
int error, dup_row;
|
|
QUICK_SELECT_I *quick;
|
|
uchar *tmp;
|
|
DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
|
|
|
|
do
|
|
{
|
|
if (!queue.elements)
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
/* Ok, we have a queue with >= 1 scans */
|
|
|
|
quick= (QUICK_SELECT_I*)queue_top(&queue);
|
|
memcpy(cur_rowid, quick->last_rowid, rowid_length);
|
|
|
|
/* put into queue rowid from the same stream as top element */
|
|
if ((error= quick->get_next()))
|
|
{
|
|
if (error != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(error);
|
|
queue_remove_top(&queue);
|
|
}
|
|
else
|
|
{
|
|
quick->save_last_pos();
|
|
queue_replace_top(&queue);
|
|
}
|
|
|
|
if (!have_prev_rowid)
|
|
{
|
|
/* No rows have been returned yet */
|
|
dup_row= FALSE;
|
|
have_prev_rowid= TRUE;
|
|
}
|
|
else
|
|
dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
|
|
} while (dup_row);
|
|
|
|
tmp= cur_rowid;
|
|
cur_rowid= prev_rowid;
|
|
prev_rowid= tmp;
|
|
|
|
error= head->file->ha_rnd_pos(quick->record, prev_rowid);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
int QUICK_RANGE_SELECT::reset()
|
|
{
|
|
uint buf_size;
|
|
uchar *mrange_buff;
|
|
int error;
|
|
HANDLER_BUFFER empty_buf;
|
|
MY_BITMAP * const save_read_set= head->read_set;
|
|
MY_BITMAP * const save_write_set= head->write_set;
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::reset");
|
|
last_range= NULL;
|
|
cur_range= (QUICK_RANGE**) ranges.buffer;
|
|
RANGE_SEQ_IF seq_funcs= {NULL, quick_range_seq_init, quick_range_seq_next, 0, 0};
|
|
|
|
if (file->inited == handler::RND)
|
|
{
|
|
/* Handler could be left in this state by MRR */
|
|
if (unlikely((error= file->ha_rnd_end())))
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
if (in_ror_merged_scan)
|
|
head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
|
|
|
|
if (file->inited == handler::NONE)
|
|
{
|
|
DBUG_EXECUTE_IF("bug14365043_2",
|
|
DBUG_SET("+d,ha_index_init_fail"););
|
|
if (unlikely((error= file->ha_index_init(index,1))))
|
|
{
|
|
file->print_error(error, MYF(0));
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Allocate buffer if we need one but haven't allocated it yet */
|
|
if (mrr_buf_size && !mrr_buf_desc)
|
|
{
|
|
buf_size= mrr_buf_size;
|
|
while (buf_size && !my_multi_malloc(key_memory_QUICK_RANGE_SELECT_mrr_buf_desc,
|
|
MYF(MY_WME),
|
|
&mrr_buf_desc, sizeof(*mrr_buf_desc),
|
|
&mrange_buff, buf_size,
|
|
NullS))
|
|
{
|
|
/* Try to shrink the buffers until both are 0. */
|
|
buf_size/= 2;
|
|
}
|
|
if (!mrr_buf_desc)
|
|
{
|
|
error= HA_ERR_OUT_OF_MEM;
|
|
goto err;
|
|
}
|
|
|
|
/* Initialize the handler buffer. */
|
|
mrr_buf_desc->buffer= mrange_buff;
|
|
mrr_buf_desc->buffer_end= mrange_buff + buf_size;
|
|
mrr_buf_desc->end_of_used_area= mrange_buff;
|
|
}
|
|
|
|
if (!mrr_buf_desc)
|
|
empty_buf.buffer= empty_buf.buffer_end= empty_buf.end_of_used_area= NULL;
|
|
|
|
error= file->multi_range_read_init(&seq_funcs, (void*)this,
|
|
(uint)ranges.elements, mrr_flags,
|
|
mrr_buf_desc? mrr_buf_desc: &empty_buf);
|
|
err:
|
|
/* Restore bitmaps set on entry */
|
|
if (in_ror_merged_scan)
|
|
head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Get next possible record using quick-struct.
|
|
|
|
SYNOPSIS
|
|
QUICK_RANGE_SELECT::get_next()
|
|
|
|
NOTES
|
|
Record is read into table->record[0]
|
|
|
|
RETURN
|
|
0 Found row
|
|
HA_ERR_END_OF_FILE No (more) rows in range
|
|
# Error code
|
|
*/
|
|
|
|
int QUICK_RANGE_SELECT::get_next()
|
|
{
|
|
range_id_t dummy;
|
|
int result;
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
|
|
|
|
if (!in_ror_merged_scan)
|
|
DBUG_RETURN(file->multi_range_read_next(&dummy));
|
|
|
|
MY_BITMAP * const save_read_set= head->read_set;
|
|
MY_BITMAP * const save_write_set= head->write_set;
|
|
/*
|
|
We don't need to signal the bitmap change as the bitmap is always the
|
|
same for this head->file
|
|
*/
|
|
head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
|
|
result= file->multi_range_read_next(&dummy);
|
|
head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the next record with a different prefix.
|
|
|
|
@param prefix_length length of cur_prefix
|
|
@param group_key_parts The number of key parts in the group prefix
|
|
@param cur_prefix prefix of a key to be searched for
|
|
|
|
Each subsequent call to the method retrieves the first record that has a
|
|
prefix with length prefix_length and which is different from cur_prefix,
|
|
such that the record with the new prefix is within the ranges described by
|
|
this->ranges. The record found is stored into the buffer pointed by
|
|
this->record. The method is useful for GROUP-BY queries with range
|
|
conditions to discover the prefix of the next group that satisfies the range
|
|
conditions.
|
|
|
|
@todo
|
|
|
|
This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
|
|
methods should be unified into a more general one to reduce code
|
|
duplication.
|
|
|
|
@retval 0 on success
|
|
@retval HA_ERR_END_OF_FILE if returned all keys
|
|
@retval other if some error occurred
|
|
*/
|
|
|
|
int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
|
|
uint group_key_parts,
|
|
uchar *cur_prefix)
|
|
{
|
|
DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");
|
|
const key_part_map keypart_map= make_prev_keypart_map(group_key_parts);
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (last_range)
|
|
{
|
|
/* Read the next record in the same range with prefix after cur_prefix. */
|
|
DBUG_ASSERT(cur_prefix != NULL);
|
|
result= file->ha_index_read_map(record, cur_prefix, keypart_map,
|
|
HA_READ_AFTER_KEY);
|
|
if (result || last_range->max_keypart_map == 0) {
|
|
/*
|
|
Only return if actual failure occurred. For HA_ERR_KEY_NOT_FOUND
|
|
or HA_ERR_END_OF_FILE, we just want to continue to reach the next
|
|
set of ranges. It is possible for the storage engine to return
|
|
HA_ERR_KEY_NOT_FOUND/HA_ERR_END_OF_FILE even when there are more
|
|
keys if it respects the end range set by the read_range_first call
|
|
below.
|
|
*/
|
|
if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
} else {
|
|
/*
|
|
For storage engines that don't respect end range, check if we've
|
|
moved past the current range.
|
|
*/
|
|
key_range previous_endpoint;
|
|
last_range->make_max_endpoint(&previous_endpoint, prefix_length,
|
|
keypart_map);
|
|
if (file->compare_key(&previous_endpoint) <= 0)
|
|
DBUG_RETURN(0);
|
|
}
|
|
}
|
|
|
|
size_t count= ranges.elements - (size_t)(cur_range - (QUICK_RANGE**) ranges.buffer);
|
|
if (count == 0)
|
|
{
|
|
/* Ranges have already been used up before. None is left for read. */
|
|
last_range= 0;
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
last_range= *(cur_range++);
|
|
|
|
key_range start_key, end_key;
|
|
last_range->make_min_endpoint(&start_key, prefix_length, keypart_map);
|
|
last_range->make_max_endpoint(&end_key, prefix_length, keypart_map);
|
|
|
|
result= file->read_range_first(last_range->min_keypart_map ? &start_key : 0,
|
|
last_range->max_keypart_map ? &end_key : 0,
|
|
MY_TEST(last_range->flag & EQ_RANGE),
|
|
TRUE);
|
|
if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
last_range= 0; // Stop searching
|
|
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
last_range= 0; // No matching rows; go to next range
|
|
}
|
|
}
|
|
|
|
|
|
/* Get next for geometrical indexes */
|
|
|
|
int QUICK_RANGE_SELECT_GEOM::get_next()
|
|
{
|
|
DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (last_range)
|
|
{
|
|
// Already read through key
|
|
result= file->ha_index_next_same(record, last_range->min_key,
|
|
last_range->min_length);
|
|
if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
size_t count= ranges.elements - (size_t)(cur_range - (QUICK_RANGE**) ranges.buffer);
|
|
if (count == 0)
|
|
{
|
|
/* Ranges have already been used up before. None is left for read. */
|
|
last_range= 0;
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
last_range= *(cur_range++);
|
|
|
|
result= file->ha_index_read_map(record, last_range->min_key,
|
|
last_range->min_keypart_map,
|
|
(ha_rkey_function)(last_range->flag ^
|
|
GEOM_FLAG));
|
|
if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
last_range= 0; // Not found, to next range
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Check if current row will be retrieved by this QUICK_RANGE_SELECT
|
|
|
|
NOTES
|
|
It is assumed that currently a scan is being done on another index
|
|
which reads all necessary parts of the index that is scanned by this
|
|
quick select.
|
|
The implementation does a binary search on sorted array of disjoint
|
|
ranges, without taking size of range into account.
|
|
|
|
This function is used to filter out clustered PK scan rows in
|
|
index_merge quick select.
|
|
|
|
RETURN
|
|
TRUE if current row will be retrieved by this quick select
|
|
FALSE if not
|
|
*/
|
|
|
|
bool QUICK_RANGE_SELECT::row_in_ranges()
|
|
{
|
|
QUICK_RANGE *res;
|
|
size_t min= 0;
|
|
size_t max= ranges.elements - 1;
|
|
size_t mid= (max + min)/2;
|
|
|
|
while (min != max)
|
|
{
|
|
if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
|
|
{
|
|
/* current row value > mid->max */
|
|
min= mid + 1;
|
|
}
|
|
else
|
|
max= mid;
|
|
mid= (min + max) / 2;
|
|
}
|
|
res= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
|
|
return (!cmp_next(res) && !cmp_prev(res));
|
|
}
|
|
|
|
/*
|
|
This is a hack: we inherit from QUICK_RANGE_SELECT so that we can use the
|
|
get_next() interface, but we have to hold a pointer to the original
|
|
QUICK_RANGE_SELECT because its data are used all over the place. What
|
|
should be done is to factor out the data that is needed into a base
|
|
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
|
|
which handle the ranges and implement the get_next() function. But
|
|
for now, this seems to work right at least.
|
|
*/
|
|
|
|
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
|
|
uint used_key_parts_arg)
|
|
:QUICK_RANGE_SELECT(*q), rev_it(rev_ranges),
|
|
used_key_parts (used_key_parts_arg)
|
|
{
|
|
QUICK_RANGE *r;
|
|
/*
|
|
Use default MRR implementation for reverse scans. No table engine
|
|
currently can do an MRR scan with output in reverse index order.
|
|
*/
|
|
mrr_buf_desc= NULL;
|
|
mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
|
|
mrr_buf_size= 0;
|
|
|
|
QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
|
|
QUICK_RANGE **end_range= pr + ranges.elements;
|
|
for (; pr!=end_range; pr++)
|
|
rev_ranges.push_front(*pr);
|
|
|
|
/* Remove EQ_RANGE flag for keys that are not using the full key */
|
|
for (r = rev_it++; r; r = rev_it++)
|
|
{
|
|
if ((r->flag & EQ_RANGE) &&
|
|
head->key_info[index].key_length != r->max_length)
|
|
r->flag&= ~EQ_RANGE;
|
|
}
|
|
rev_it.rewind();
|
|
q->dont_free=1; // Don't free shared mem
|
|
}
|
|
|
|
|
|
int QUICK_SELECT_DESC::get_next()
|
|
{
|
|
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
|
|
|
|
/* The max key is handled as follows:
|
|
* - if there is NO_MAX_RANGE, start at the end and move backwards
|
|
* - if it is an EQ_RANGE, which means that max key covers the entire
|
|
* key, go directly to the key and read through it (sorting backwards is
|
|
* same as sorting forwards)
|
|
* - if it is NEAR_MAX, go to the key or next, step back once, and
|
|
* move backwards
|
|
* - otherwise (not NEAR_MAX == include the key), go after the key,
|
|
* step back once, and move backwards
|
|
*/
|
|
|
|
for (;;)
|
|
{
|
|
int result;
|
|
if (last_range)
|
|
{ // Already read through key
|
|
result = ((last_range->flag & EQ_RANGE &&
|
|
used_key_parts <= head->key_info[index].user_defined_key_parts) ?
|
|
file->ha_index_next_same(record, last_range->min_key,
|
|
last_range->min_length) :
|
|
file->ha_index_prev(record));
|
|
if (!result)
|
|
{
|
|
if (cmp_prev(*rev_it.ref()) == 0)
|
|
DBUG_RETURN(0);
|
|
}
|
|
else if (result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (!(last_range= rev_it++))
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
|
|
|
|
key_range start_key;
|
|
start_key.key= (const uchar*) last_range->min_key;
|
|
start_key.length= last_range->min_length;
|
|
start_key.flag= ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
|
|
(last_range->flag & EQ_RANGE) ?
|
|
HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
|
|
start_key.keypart_map= last_range->min_keypart_map;
|
|
key_range end_key;
|
|
end_key.key= (const uchar*) last_range->max_key;
|
|
end_key.length= last_range->max_length;
|
|
end_key.flag= (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
|
|
HA_READ_AFTER_KEY);
|
|
end_key.keypart_map= last_range->max_keypart_map;
|
|
result= file->prepare_range_scan((last_range->flag & NO_MIN_RANGE) ? NULL : &start_key,
|
|
(last_range->flag & NO_MAX_RANGE) ? NULL : &end_key);
|
|
if (result)
|
|
{
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
if (last_range->flag & NO_MAX_RANGE) // Read last record
|
|
{
|
|
int local_error;
|
|
if (unlikely((local_error= file->ha_index_last(record))))
|
|
DBUG_RETURN(local_error); // Empty table
|
|
if (cmp_prev(last_range) == 0)
|
|
DBUG_RETURN(0);
|
|
last_range= 0; // No match; go to next range
|
|
continue;
|
|
}
|
|
|
|
if (last_range->flag & EQ_RANGE &&
|
|
used_key_parts <= head->key_info[index].user_defined_key_parts)
|
|
|
|
{
|
|
result= file->ha_index_read_map(record, last_range->max_key,
|
|
last_range->max_keypart_map,
|
|
HA_READ_KEY_EXACT);
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(last_range->flag & NEAR_MAX ||
|
|
(last_range->flag & EQ_RANGE &&
|
|
used_key_parts > head->key_info[index].user_defined_key_parts) ||
|
|
range_reads_after_key(last_range));
|
|
result= file->ha_index_read_map(record, last_range->max_key,
|
|
last_range->max_keypart_map,
|
|
((last_range->flag & NEAR_MAX) ?
|
|
HA_READ_BEFORE_KEY :
|
|
HA_READ_PREFIX_LAST_OR_PREV));
|
|
}
|
|
if (result)
|
|
{
|
|
if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(result);
|
|
last_range= 0; // Not found, to next range
|
|
continue;
|
|
}
|
|
if (cmp_prev(last_range) == 0)
|
|
{
|
|
if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
|
|
last_range= 0; // Stop searching
|
|
DBUG_RETURN(0); // Found key is in range
|
|
}
|
|
last_range= 0; // To next range
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
Create a compatible quick select with the result ordered in an opposite way
|
|
|
|
@param used_key_parts_arg Number of used key parts
|
|
|
|
@retval NULL in case of errors (OOM etc)
|
|
@retval pointer to a newly created QUICK_SELECT_DESC if success
|
|
*/
|
|
|
|
QUICK_SELECT_I *QUICK_RANGE_SELECT::make_reverse(uint used_key_parts_arg)
|
|
{
|
|
QUICK_SELECT_DESC *new_quick= new QUICK_SELECT_DESC(this, used_key_parts_arg);
|
|
if (new_quick == NULL)
|
|
{
|
|
delete new_quick;
|
|
return NULL;
|
|
}
|
|
return new_quick;
|
|
}
|
|
|
|
|
|
/*
|
|
Compare if found key is over max-value
|
|
Returns 0 if key <= range->max_key
|
|
TODO: Figure out why can't this function be as simple as cmp_prev().
|
|
*/
|
|
|
|
int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
|
|
{
|
|
if (range_arg->flag & NO_MAX_RANGE)
|
|
return 0; /* key can't be to large */
|
|
|
|
KEY_PART *key_part=key_parts;
|
|
uint store_length;
|
|
|
|
for (uchar *key=range_arg->max_key, *end=key+range_arg->max_length;
|
|
key < end;
|
|
key+= store_length, key_part++)
|
|
{
|
|
int cmp;
|
|
bool reverse= MY_TEST(key_part->flag & HA_REVERSE_SORT);
|
|
store_length= key_part->store_length;
|
|
if (key_part->null_bit)
|
|
{
|
|
if (*key)
|
|
{
|
|
if (!key_part->field->is_null())
|
|
return reverse ? 0 : 1;
|
|
continue;
|
|
}
|
|
else if (key_part->field->is_null())
|
|
return reverse ? 1 : 0;
|
|
key++; // Skip null byte
|
|
store_length--;
|
|
}
|
|
if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
|
|
return reverse ? 1 : 0;
|
|
if (cmp > 0)
|
|
return reverse ? 0 : 1;
|
|
}
|
|
return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
|
|
}
|
|
|
|
|
|
/*
|
|
Returns 0 if found key is inside range (found key >= range->min_key).
|
|
*/
|
|
|
|
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
|
|
{
|
|
int cmp;
|
|
if (range_arg->flag & NO_MIN_RANGE)
|
|
return 0; /* key can't be to small */
|
|
|
|
cmp= key_cmp(key_part_info, range_arg->min_key,
|
|
range_arg->min_length);
|
|
if (cmp > 0 || (cmp == 0 && !(range_arg->flag & NEAR_MIN)))
|
|
return 0;
|
|
return 1; // outside of range
|
|
}
|
|
|
|
|
|
/*
|
|
* TRUE if this range will require using HA_READ_AFTER_KEY
|
|
See comment in get_next() about this
|
|
*/
|
|
|
|
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
|
|
{
|
|
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
|
|
!(range_arg->flag & EQ_RANGE) ||
|
|
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
|
|
}
|
|
|
|
|
|
void QUICK_SELECT_I::add_key_name(String *str, bool *first)
|
|
{
|
|
KEY *key_info= head->key_info + index;
|
|
|
|
if (*first)
|
|
*first= FALSE;
|
|
else
|
|
str->append(',');
|
|
str->append(&key_info->name);
|
|
}
|
|
|
|
|
|
Explain_quick_select* QUICK_RANGE_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
if ((res= new (local_alloc) Explain_quick_select(QS_TYPE_RANGE)))
|
|
res->range.set(local_alloc, &head->key_info[index], max_used_key_length);
|
|
return res;
|
|
}
|
|
|
|
|
|
Explain_quick_select*
|
|
QUICK_GROUP_MIN_MAX_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
if ((res= new (local_alloc) Explain_quick_select(QS_TYPE_GROUP_MIN_MAX)))
|
|
res->range.set(local_alloc, &head->key_info[index], max_used_key_length);
|
|
return res;
|
|
}
|
|
|
|
|
|
Explain_quick_select*
|
|
QUICK_INDEX_SORT_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
if (!(res= new (local_alloc) Explain_quick_select(get_type())))
|
|
return NULL;
|
|
|
|
QUICK_RANGE_SELECT *quick;
|
|
Explain_quick_select *child_explain;
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if ((child_explain= quick->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
if (pk_quick_select)
|
|
{
|
|
if ((child_explain= pk_quick_select->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
Same as QUICK_INDEX_SORT_SELECT::get_explain(), but primary key is printed
|
|
first
|
|
*/
|
|
|
|
Explain_quick_select*
|
|
QUICK_INDEX_INTERSECT_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
Explain_quick_select *child_explain;
|
|
|
|
if (!(res= new (local_alloc) Explain_quick_select(get_type())))
|
|
return NULL;
|
|
|
|
if (pk_quick_select)
|
|
{
|
|
if ((child_explain= pk_quick_select->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
QUICK_RANGE_SELECT *quick;
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if ((child_explain= quick->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
Explain_quick_select*
|
|
QUICK_ROR_INTERSECT_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
Explain_quick_select *child_explain;
|
|
|
|
if (!(res= new (local_alloc) Explain_quick_select(get_type())))
|
|
return NULL;
|
|
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
while ((qr= it++))
|
|
{
|
|
if ((child_explain= qr->quick->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
if (cpk_quick)
|
|
{
|
|
if ((child_explain= cpk_quick->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
Explain_quick_select*
|
|
QUICK_ROR_UNION_SELECT::get_explain(MEM_ROOT *local_alloc)
|
|
{
|
|
Explain_quick_select *res;
|
|
Explain_quick_select *child_explain;
|
|
|
|
if (!(res= new (local_alloc) Explain_quick_select(get_type())))
|
|
return NULL;
|
|
|
|
QUICK_SELECT_I *quick;
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
if ((child_explain= quick->get_explain(local_alloc)))
|
|
res->children.push_back(child_explain);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
void QUICK_SELECT_I::add_key_and_length(String *key_names,
|
|
String *used_lengths,
|
|
bool *first)
|
|
{
|
|
char buf[64];
|
|
size_t length;
|
|
KEY *key_info= head->key_info + index;
|
|
|
|
if (*first)
|
|
*first= FALSE;
|
|
else
|
|
{
|
|
key_names->append(',');
|
|
used_lengths->append(',');
|
|
}
|
|
key_names->append(&key_info->name);
|
|
length= longlong10_to_str(max_used_key_length, buf, 10) - buf;
|
|
used_lengths->append(buf, length);
|
|
}
|
|
|
|
|
|
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
bool first= TRUE;
|
|
|
|
add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
|
|
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
QUICK_RANGE_SELECT *quick;
|
|
bool first= TRUE;
|
|
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
|
|
while ((quick= it++))
|
|
{
|
|
quick->add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
|
|
if (pk_quick_select)
|
|
pk_quick_select->add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
|
|
|
|
void QUICK_INDEX_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
QUICK_RANGE_SELECT *quick;
|
|
bool first= TRUE;
|
|
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
|
|
if (pk_quick_select)
|
|
pk_quick_select->add_key_and_length(key_names, used_lengths, &first);
|
|
|
|
while ((quick= it++))
|
|
{
|
|
quick->add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
}
|
|
|
|
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
bool first= TRUE;
|
|
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
|
|
while ((qr= it++))
|
|
{
|
|
qr->quick->add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
if (cpk_quick)
|
|
cpk_quick->add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
|
|
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
QUICK_SELECT_I *quick;
|
|
bool first= TRUE;
|
|
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
|
|
while ((quick= it++))
|
|
{
|
|
if (first)
|
|
first= FALSE;
|
|
else
|
|
{
|
|
used_lengths->append(',');
|
|
key_names->append(',');
|
|
}
|
|
quick->add_keys_and_lengths(key_names, used_lengths);
|
|
}
|
|
}
|
|
|
|
|
|
void QUICK_RANGE_SELECT::add_used_key_part_to_set()
|
|
{
|
|
uint key_len;
|
|
KEY_PART *part= key_parts;
|
|
for (key_len=0; key_len < max_used_key_length;
|
|
key_len += (part++)->store_length)
|
|
{
|
|
/*
|
|
We have to use field_index instead of part->field
|
|
as for partial fields, part->field points to
|
|
a temporary field that is only part of the original
|
|
field. field_index always points to the original field
|
|
*/
|
|
Field *field= head->field[part->field->field_index];
|
|
field->register_field_in_read_map();
|
|
}
|
|
}
|
|
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::add_used_key_part_to_set()
|
|
{
|
|
uint key_len;
|
|
KEY_PART_INFO *part= index_info->key_part;
|
|
for (key_len=0; key_len < max_used_key_length;
|
|
key_len += (part++)->store_length)
|
|
{
|
|
/*
|
|
We have to use field_index instead of part->field
|
|
as for partial fields, part->field points to
|
|
a temporary field that is only part of the original
|
|
field. field_index always points to the original field
|
|
*/
|
|
Field *field= head->field[part->field->field_index];
|
|
field->register_field_in_read_map();
|
|
}
|
|
}
|
|
|
|
|
|
void QUICK_ROR_INTERSECT_SELECT::add_used_key_part_to_set()
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *quick;
|
|
while ((quick= it++))
|
|
{
|
|
quick->quick->add_used_key_part_to_set();
|
|
}
|
|
}
|
|
|
|
|
|
void QUICK_INDEX_SORT_SELECT::add_used_key_part_to_set()
|
|
{
|
|
QUICK_RANGE_SELECT *quick;
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
while ((quick= it++))
|
|
{
|
|
quick->add_used_key_part_to_set();
|
|
}
|
|
if (pk_quick_select)
|
|
pk_quick_select->add_used_key_part_to_set();
|
|
}
|
|
|
|
|
|
void QUICK_ROR_UNION_SELECT::add_used_key_part_to_set()
|
|
{
|
|
QUICK_SELECT_I *quick;
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
|
|
while ((quick= it++))
|
|
{
|
|
quick->add_used_key_part_to_set();
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
|
|
*******************************************************************************/
|
|
|
|
static inline uint get_field_keypart(KEY *index, Field *field);
|
|
static bool get_sel_arg_for_keypart(Field *field, SEL_ARG *index_range_tree,
|
|
SEL_ARG **cur_range);
|
|
static bool get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
|
|
KEY_PART_INFO *first_non_group_part,
|
|
KEY_PART_INFO *min_max_arg_part,
|
|
KEY_PART_INFO *last_part, THD *thd,
|
|
uchar *key_infix, uint *key_infix_len,
|
|
KEY_PART_INFO **first_non_infix_part);
|
|
static bool
|
|
check_group_min_max_predicates(Item *cond, Item_field *min_max_arg_item,
|
|
Field::imagetype image_type,
|
|
bool *has_min_max_fld, bool *has_other_fld);
|
|
|
|
static void
|
|
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
|
|
uint group_key_parts, SEL_TREE *range_tree,
|
|
SEL_ARG *index_tree, ha_rows quick_prefix_records,
|
|
bool have_min, bool have_max,
|
|
double *read_cost, ha_rows *records);
|
|
|
|
|
|
/**
|
|
Test if this access method is applicable to a GROUP query with MIN/MAX
|
|
functions, and if so, construct a new TRP object.
|
|
|
|
DESCRIPTION
|
|
Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
|
|
Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
|
|
following conditions:
|
|
A) Table T has at least one compound index I of the form:
|
|
I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
|
|
B) Query conditions:
|
|
B0. Q is over a single table T.
|
|
B1. The attributes referenced by Q are a subset of the attributes of I.
|
|
B2. All attributes QA in Q can be divided into 3 overlapping groups:
|
|
- SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
|
|
referenced by any number of MIN and/or MAX functions if present.
|
|
- WA = {W_1, ..., W_p} - from the WHERE clause
|
|
- GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
|
|
= SA - if Q is a DISTINCT query (based on the
|
|
equivalence of DISTINCT and GROUP queries.
|
|
- NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
|
|
GROUP BY and not referenced by MIN/MAX functions.
|
|
with the following properties specified below.
|
|
B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not
|
|
applicable.
|
|
|
|
SA1. There is at most one attribute in SA referenced by any number of
|
|
MIN and/or MAX functions which, which if present, is denoted as C.
|
|
SA2. The position of the C attribute in the index is after the last A_k.
|
|
SA3. The attribute C can be referenced in the WHERE clause only in
|
|
predicates of the forms:
|
|
- (C {< | <= | > | >= | =} const)
|
|
- (const {< | <= | > | >= | =} C)
|
|
- (C between const_i and const_j)
|
|
- C IS NULL
|
|
- C IS NOT NULL
|
|
- C != const
|
|
SA4. If Q has a GROUP BY clause, there are no other aggregate functions
|
|
except MIN and MAX. For queries with DISTINCT, aggregate functions
|
|
are allowed.
|
|
SA5. The select list in DISTINCT queries should not contain expressions.
|
|
SA6. Clustered index can not be used by GROUP_MIN_MAX quick select
|
|
for AGG_FUNC(DISTINCT ...) optimization because cursor position is
|
|
never stored after a unique key lookup in the clustered index and
|
|
furhter index_next/prev calls can not be used. So loose index scan
|
|
optimization can not be used in this case.
|
|
SA7. If Q has both AGG_FUNC(DISTINCT ...) and MIN/MAX() functions then this
|
|
access method is not used.
|
|
For above queries MIN/MAX() aggregation has to be done at
|
|
nested_loops_join (end_send_group). But with current design MIN/MAX()
|
|
is always set as part of loose index scan. Because of this mismatch
|
|
MIN() and MAX() values will be set incorrectly. For such queries to
|
|
work we need a new interface for loose index scan. This new interface
|
|
should only fetch records with min and max values and let
|
|
end_send_group to do aggregation. Until then do not use
|
|
loose_index_scan.
|
|
GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
|
|
G_i = A_j => i = j.
|
|
GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
|
|
forms a prefix of I. This permutation is used as the GROUP clause
|
|
when the DISTINCT query is converted to a GROUP query.
|
|
GA3. The attributes in GA may participate in arbitrary predicates, divided
|
|
into two groups:
|
|
- RNG(G_1,...,G_q ; where q <= k) is a range condition over the
|
|
attributes of a prefix of GA
|
|
- PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
|
|
of GA. Since P is applied to only GROUP attributes it filters some
|
|
groups, and thus can be applied after the grouping.
|
|
GA4. There are no expressions among G_i, just direct column references.
|
|
NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
|
|
and the MIN/MAX attribute C, then NGA must consist of exactly the
|
|
index attributes that constitute the gap. As a result there is a
|
|
permutation of NGA, BA=<B_1,...,B_m>, that coincides with the gap
|
|
in the index.
|
|
NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
|
|
equality conditions for all NG_i of the form (NG_i = const) or
|
|
(const = NG_i), such that each NG_i is referenced in exactly one
|
|
conjunct. Informally, the predicates provide constants to fill the
|
|
gap in the index.
|
|
NGA3.If BA <> {}, there can only be one range. TODO: This is a code
|
|
limitation and is not strictly needed. See BUG#15947433
|
|
WA1. There are no other attributes in the WHERE clause except the ones
|
|
referenced in predicates RNG, PA, PC, EQ defined above. Therefore
|
|
WA is subset of (GA union NGA union C) for GA,NGA,C that pass the
|
|
above tests. By transitivity then it also follows that each WA_i
|
|
participates in the index I (if this was already tested for GA, NGA
|
|
and C).
|
|
WA2. If there is a predicate on C, then it must be in conjunction
|
|
to all predicates on all earlier keyparts in I.
|
|
|
|
C) Overall query form:
|
|
SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
|
|
FROM T
|
|
WHERE [RNG(A_1,...,A_p ; where p <= k)]
|
|
[AND EQ(B_1,...,B_m)]
|
|
[AND PC(C)]
|
|
[AND PA(A_i1,...,A_iq)]
|
|
GROUP BY A_1,...,A_k
|
|
[HAVING PH(A_1, ..., B_1,..., C)]
|
|
where EXPR(...) is an arbitrary expression over some or all SELECT fields,
|
|
or:
|
|
SELECT DISTINCT A_i1,...,A_ik
|
|
FROM T
|
|
WHERE [RNG(A_1,...,A_p ; where p <= k)]
|
|
[AND PA(A_i1,...,A_iq)];
|
|
|
|
NOTES
|
|
If the current query satisfies the conditions above, and if
|
|
(mem_root! = NULL), then the function constructs and returns a new TRP
|
|
object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
|
|
If (mem_root == NULL), then the function only tests whether the current
|
|
query satisfies the conditions above, and, if so, sets
|
|
is_applicable = TRUE.
|
|
|
|
Queries with DISTINCT for which index access can be used are transformed
|
|
into equivalent group-by queries of the form:
|
|
|
|
SELECT A_1,...,A_k FROM T
|
|
WHERE [RNG(A_1,...,A_p ; where p <= k)]
|
|
[AND PA(A_i1,...,A_iq)]
|
|
GROUP BY A_1,...,A_k;
|
|
|
|
The group-by list is a permutation of the select attributes, according
|
|
to their order in the index.
|
|
|
|
EXAMPLES of handled queries
|
|
select max(keypart2) from t1 group by keypart1
|
|
select max(keypart2) from t1 where keypart2 <= const group by keypart1
|
|
select distinct keypart1 from table;
|
|
select count(distinct keypart1) from table;
|
|
|
|
TODO
|
|
- What happens if the query groups by the MIN/MAX field, and there is no
|
|
other field as in: "select MY_MIN(a) from t1 group by a" ?
|
|
- We assume that the general correctness of the GROUP-BY query was checked
|
|
before this point. Is this correct, or do we have to check it completely?
|
|
- Lift the limitation in condition (B3), that is, make this access method
|
|
applicable to ROLLUP queries.
|
|
|
|
@param param Parameter from test_quick_select
|
|
@param sel_tree Range tree generated by get_mm_tree
|
|
@param read_time Best read time so far of table or index scan time
|
|
@return table read plan
|
|
@retval NULL Loose index scan not applicable or mem_root == NULL
|
|
@retval !NULL Loose index scan table read plan
|
|
*/
|
|
|
|
static TRP_GROUP_MIN_MAX *
|
|
get_best_group_min_max(PARAM *param, SEL_TREE *tree, double read_time)
|
|
{
|
|
THD *thd= param->thd;
|
|
JOIN *join= thd->lex->current_select->join;
|
|
TABLE *table= param->table;
|
|
bool have_min= FALSE; /* TRUE if there is a MIN function. */
|
|
bool have_max= FALSE; /* TRUE if there is a MAX function. */
|
|
Item_field *min_max_arg_item= NULL; // The argument of all MIN/MAX functions
|
|
KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
|
|
uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
|
|
KEY *index_info= NULL; /* The index chosen for data access. */
|
|
uint index= 0; /* The id of the chosen index. */
|
|
uint group_key_parts= 0; // Number of index key parts in the group prefix.
|
|
uint used_key_parts= 0; /* Number of index key parts used for access. */
|
|
uchar key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
|
|
uint key_infix_len= 0; /* Length of key_infix. */
|
|
TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
|
|
uint key_part_nr;
|
|
uint elements_in_group;
|
|
ORDER *tmp_group;
|
|
Item *item;
|
|
Item_field *item_field;
|
|
bool is_agg_distinct;
|
|
List<Item_field> agg_distinct_flds;
|
|
DBUG_ENTER("get_best_group_min_max");
|
|
|
|
Json_writer_object trace_group(thd, "group_index_range");
|
|
const char* cause= NULL;
|
|
|
|
/* Perform few 'cheap' tests whether this access method is applicable. */
|
|
if (!join) /* This is not a select statement. */
|
|
cause= "no join";
|
|
else if (join->table_count != 1) /* The query must reference one table. */
|
|
cause= "not single_table";
|
|
else if (join->select_lex->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
|
|
cause= "rollup";
|
|
else if (table->s->keys == 0) // There are no indexes to use.
|
|
cause= "no index";
|
|
else if (join->conds && join->conds->used_tables()
|
|
& OUTER_REF_TABLE_BIT) // Cannot execute with correlated conditions.
|
|
cause= "correlated conditions";
|
|
else if (table->stat_records() == 0)
|
|
cause= "Empty table"; // Exit now, records=0 messes up cost computations
|
|
|
|
if (cause)
|
|
{
|
|
trace_group.add("chosen", false).add("cause", cause);
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
is_agg_distinct = is_indexed_agg_distinct(join, &agg_distinct_flds);
|
|
|
|
if ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
|
|
(!join->select_distinct) &&
|
|
!is_agg_distinct)
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.add("chosen", false).add("cause","no group by or distinct");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
/* Analyze the query in more detail. */
|
|
|
|
/* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
|
|
List_iterator<Item> select_items_it(join->fields_list);
|
|
|
|
if (join->sum_funcs[0])
|
|
{
|
|
Item_sum *min_max_item;
|
|
Item_sum **func_ptr= join->sum_funcs;
|
|
while ((min_max_item= *(func_ptr++)))
|
|
{
|
|
if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
|
|
have_min= TRUE;
|
|
else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
|
|
have_max= TRUE;
|
|
else if (is_agg_distinct &&
|
|
(min_max_item->sum_func() == Item_sum::COUNT_DISTINCT_FUNC ||
|
|
min_max_item->sum_func() == Item_sum::SUM_DISTINCT_FUNC ||
|
|
min_max_item->sum_func() == Item_sum::AVG_DISTINCT_FUNC))
|
|
continue;
|
|
else
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "not applicable aggregate function");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/* The argument of MIN/MAX. */
|
|
Item *expr= min_max_item->get_arg(0)->real_item();
|
|
if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
|
|
{
|
|
if (! min_max_arg_item)
|
|
min_max_arg_item= (Item_field*) expr;
|
|
else if (! min_max_arg_item->eq(expr, 1))
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "arguments different in min max function");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "no field item in min max function");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check (SA7). */
|
|
if (is_agg_distinct && (have_max || have_min))
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "have both agg distinct and min max");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/* Check (SA5). */
|
|
if (join->select_distinct)
|
|
{
|
|
trace_group.add("distinct_query", true);
|
|
while ((item= select_items_it++))
|
|
{
|
|
if (item->real_item()->type() != Item::FIELD_ITEM)
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "distinct field is expression");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Check (GA4) - that there are no expressions among the group attributes. */
|
|
elements_in_group= 0;
|
|
for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
|
|
{
|
|
if ((*tmp_group->item)->real_item()->type() != Item::FIELD_ITEM)
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("chosen", false).
|
|
add("cause", "group field is expression");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
elements_in_group++;
|
|
}
|
|
|
|
/*
|
|
Check that table has at least one compound index such that the conditions
|
|
(GA1,GA2) are all TRUE. If there is more than one such index, select the
|
|
first one. Here we set the variables: group_prefix_len and index_info.
|
|
*/
|
|
/* Cost-related variables for the best index so far. */
|
|
double best_read_cost= DBL_MAX;
|
|
ha_rows best_records= 0;
|
|
SEL_ARG *best_index_tree= NULL;
|
|
ha_rows best_quick_prefix_records= 0;
|
|
uint best_param_idx= 0;
|
|
|
|
const uint pk= param->table->s->primary_key;
|
|
uint max_key_part;
|
|
SEL_ARG *cur_index_tree= NULL;
|
|
ha_rows cur_quick_prefix_records= 0;
|
|
|
|
// We go through allowed indexes
|
|
Json_writer_array trace_indexes(thd, "potential_group_range_indexes");
|
|
|
|
for (uint cur_param_idx= 0; cur_param_idx < param->keys ; ++cur_param_idx)
|
|
{
|
|
const uint cur_index= param->real_keynr[cur_param_idx];
|
|
KEY *const cur_index_info= &table->key_info[cur_index];
|
|
|
|
Json_writer_object trace_idx(thd);
|
|
trace_idx.add("index", cur_index_info->name);
|
|
|
|
KEY_PART_INFO *cur_part;
|
|
KEY_PART_INFO *end_part; /* Last part for loops. */
|
|
/* Last index part. */
|
|
KEY_PART_INFO *last_part;
|
|
KEY_PART_INFO *first_non_group_part;
|
|
KEY_PART_INFO *first_non_infix_part;
|
|
uint key_parts;
|
|
uint key_infix_parts;
|
|
uint cur_group_key_parts= 0;
|
|
uint cur_group_prefix_len= 0;
|
|
double cur_read_cost;
|
|
ha_rows cur_records;
|
|
key_map used_key_parts_map;
|
|
uint cur_key_infix_len= 0;
|
|
uchar cur_key_infix[MAX_KEY_LENGTH];
|
|
uint cur_used_key_parts;
|
|
|
|
/*
|
|
Check (B1) - if current index is covering.
|
|
(was also: "Exclude UNIQUE indexes ..." but this was removed because
|
|
there are cases Loose Scan over a multi-part index is useful).
|
|
*/
|
|
if (!table->covering_keys.is_set(cur_index) ||
|
|
!table->keys_in_use_for_group_by.is_set(cur_index))
|
|
{
|
|
cause= "not covering";
|
|
goto next_index;
|
|
}
|
|
|
|
{
|
|
for (uint i= 0; i < table->actual_n_key_parts(cur_index_info); i++)
|
|
{
|
|
if (cur_index_info->key_part[i].key_part_flag & HA_REVERSE_SORT)
|
|
{
|
|
cause="Reverse-ordered (not supported yet)";
|
|
goto next_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
This function is called on the precondition that the index is covering.
|
|
Therefore if the GROUP BY list contains more elements than the index,
|
|
these are duplicates. The GROUP BY list cannot be a prefix of the index.
|
|
*/
|
|
if (elements_in_group > table->actual_n_key_parts(cur_index_info))
|
|
{
|
|
cause= "group key parts greater than index key parts";
|
|
goto next_index;
|
|
}
|
|
|
|
/*
|
|
Unless extended keys can be used for cur_index:
|
|
If the current storage manager is such that it appends the primary key to
|
|
each index, then the above condition is insufficient to check if the
|
|
index is covering. In such cases it may happen that some fields are
|
|
covered by the PK index, but not by the current index. Since we can't
|
|
use the concatenation of both indexes for index lookup, such an index
|
|
does not qualify as covering in our case. If this is the case, below
|
|
we check that all query fields are indeed covered by 'cur_index'.
|
|
*/
|
|
if (cur_index_info->user_defined_key_parts ==
|
|
table->actual_n_key_parts(cur_index_info)
|
|
&& pk < MAX_KEY && cur_index != pk &&
|
|
(table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
|
|
{
|
|
/* For each table field */
|
|
for (uint i= 0; i < table->s->fields; i++)
|
|
{
|
|
Field *cur_field= table->field[i];
|
|
/*
|
|
If the field is used in the current query ensure that it's
|
|
part of 'cur_index'
|
|
*/
|
|
if (bitmap_is_set(table->read_set, cur_field->field_index) &&
|
|
!cur_field->part_of_key_not_clustered.is_set(cur_index))
|
|
{
|
|
cause= "not covering";
|
|
goto next_index; // Field was not part of key
|
|
}
|
|
}
|
|
}
|
|
|
|
trace_idx.add("covering", true);
|
|
|
|
max_key_part= 0;
|
|
used_key_parts_map.clear_all();
|
|
|
|
/*
|
|
Check (GA1) for GROUP BY queries.
|
|
*/
|
|
if (join->group_list)
|
|
{
|
|
cur_part= cur_index_info->key_part;
|
|
end_part= cur_part + table->actual_n_key_parts(cur_index_info);
|
|
/* Iterate in parallel over the GROUP list and the index parts. */
|
|
for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
|
|
tmp_group= tmp_group->next, cur_part++)
|
|
{
|
|
/*
|
|
TODO:
|
|
tmp_group::item is an array of Item, is it OK to consider only the
|
|
first Item? If so, then why? What is the array for?
|
|
*/
|
|
/* Above we already checked that all group items are fields. */
|
|
DBUG_ASSERT((*tmp_group->item)->real_item()->type() ==
|
|
Item::FIELD_ITEM);
|
|
Item_field *group_field= (Item_field *) (*tmp_group->item)->real_item();
|
|
if (group_field->field->eq(cur_part->field))
|
|
{
|
|
cur_group_prefix_len+= cur_part->store_length;
|
|
++cur_group_key_parts;
|
|
max_key_part= (uint)(cur_part - cur_index_info->key_part) + 1;
|
|
used_key_parts_map.set_bit(max_key_part);
|
|
}
|
|
else
|
|
{
|
|
cause= "group attribute not prefix in index";
|
|
goto next_index;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
Check (GA2) if this is a DISTINCT query.
|
|
If GA2, then Store a new ORDER object in group_fields_array at the
|
|
position of the key part of item_field->field. Thus we get the ORDER
|
|
objects for each field ordered as the corresponding key parts.
|
|
Later group_fields_array of ORDER objects is used to convert the query
|
|
to a GROUP query.
|
|
*/
|
|
if ((!join->group && join->select_distinct) ||
|
|
is_agg_distinct)
|
|
{
|
|
if (!is_agg_distinct)
|
|
{
|
|
select_items_it.rewind();
|
|
}
|
|
|
|
List_iterator<Item_field> agg_distinct_flds_it (agg_distinct_flds);
|
|
while (NULL != (item = (is_agg_distinct ?
|
|
(Item *) agg_distinct_flds_it++ : select_items_it++)))
|
|
{
|
|
/* (SA5) already checked above. */
|
|
item_field= (Item_field*) item->real_item();
|
|
DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
|
|
|
|
/* not doing loose index scan for derived tables */
|
|
if (!item_field->field)
|
|
{
|
|
cause= "derived table";
|
|
goto next_index;
|
|
}
|
|
|
|
/* Find the order of the key part in the index. */
|
|
key_part_nr= get_field_keypart(cur_index_info, item_field->field);
|
|
/*
|
|
Check if this attribute was already present in the select list.
|
|
If it was present, then its corresponding key part was alredy used.
|
|
*/
|
|
if (used_key_parts_map.is_set(key_part_nr))
|
|
continue;
|
|
if (key_part_nr < 1 ||
|
|
(!is_agg_distinct && key_part_nr > join->fields_list.elements))
|
|
{
|
|
cause= "select attribute not prefix in index";
|
|
goto next_index;
|
|
}
|
|
cur_part= cur_index_info->key_part + key_part_nr - 1;
|
|
cur_group_prefix_len+= cur_part->store_length;
|
|
used_key_parts_map.set_bit(key_part_nr);
|
|
++cur_group_key_parts;
|
|
max_key_part= MY_MAX(max_key_part,key_part_nr);
|
|
}
|
|
/*
|
|
Check that used key parts forms a prefix of the index.
|
|
To check this we compare bits in all_parts and cur_parts.
|
|
all_parts have all bits set from 0 to (max_key_part-1).
|
|
cur_parts have bits set for only used keyparts.
|
|
*/
|
|
ulonglong all_parts, cur_parts;
|
|
all_parts= (1ULL << max_key_part) - 1;
|
|
cur_parts= used_key_parts_map.to_ulonglong() >> 1;
|
|
if (all_parts != cur_parts)
|
|
goto next_index;
|
|
}
|
|
|
|
/* Check (SA2). */
|
|
if (min_max_arg_item)
|
|
{
|
|
key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
|
|
if (key_part_nr <= cur_group_key_parts)
|
|
{
|
|
cause= "aggregate column not suffix in idx";
|
|
goto next_index;
|
|
}
|
|
min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
|
|
}
|
|
|
|
/*
|
|
Aplly a heuristic: there is no point to use loose index scan when we're
|
|
using the whole unique index.
|
|
*/
|
|
if (cur_index_info->flags & HA_NOSAME &&
|
|
cur_group_key_parts == cur_index_info->user_defined_key_parts)
|
|
{
|
|
cause= "using unique index";
|
|
goto next_index;
|
|
}
|
|
|
|
/*
|
|
Check (NGA1, NGA2) and extract a sequence of constants to be used as part
|
|
of all search keys.
|
|
*/
|
|
|
|
/*
|
|
If there is MIN/MAX, each keypart between the last group part and the
|
|
MIN/MAX part must participate in one equality with constants, and all
|
|
keyparts after the MIN/MAX part must not be referenced in the query.
|
|
|
|
If there is no MIN/MAX, the keyparts after the last group part can be
|
|
referenced only in equalities with constants, and the referenced keyparts
|
|
must form a sequence without any gaps that starts immediately after the
|
|
last group keypart.
|
|
*/
|
|
key_parts= table->actual_n_key_parts(cur_index_info);
|
|
last_part= cur_index_info->key_part + key_parts;
|
|
first_non_group_part= (cur_group_key_parts < key_parts) ?
|
|
cur_index_info->key_part + cur_group_key_parts :
|
|
NULL;
|
|
first_non_infix_part= min_max_arg_part ?
|
|
(min_max_arg_part < last_part) ?
|
|
min_max_arg_part :
|
|
NULL :
|
|
NULL;
|
|
if (first_non_group_part &&
|
|
(!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
|
|
{
|
|
if (tree)
|
|
{
|
|
SEL_ARG *index_range_tree= tree->keys[cur_param_idx];
|
|
if (!get_constant_key_infix(cur_index_info, index_range_tree,
|
|
first_non_group_part, min_max_arg_part,
|
|
last_part, thd, cur_key_infix,
|
|
&cur_key_infix_len,
|
|
&first_non_infix_part))
|
|
{
|
|
cause= "nonconst equality gap attribute";
|
|
goto next_index;
|
|
}
|
|
}
|
|
else if (min_max_arg_part &&
|
|
(min_max_arg_part - first_non_group_part > 0))
|
|
{
|
|
/*
|
|
There is a gap but no range tree, thus no predicates at all for the
|
|
non-group keyparts.
|
|
*/
|
|
cause= "no nongroup keypart predicate";
|
|
goto next_index;
|
|
}
|
|
else if (first_non_group_part && join->conds)
|
|
{
|
|
/*
|
|
If there is no MIN/MAX function in the query, but some index
|
|
key part is referenced in the WHERE clause, then this index
|
|
cannot be used because the WHERE condition over the keypart's
|
|
field cannot be 'pushed' to the index (because there is no
|
|
range 'tree'), and the WHERE clause must be evaluated before
|
|
GROUP BY/DISTINCT.
|
|
*/
|
|
/*
|
|
Store the first and last keyparts that need to be analyzed
|
|
into one array that can be passed as parameter.
|
|
*/
|
|
KEY_PART_INFO *key_part_range[2];
|
|
key_part_range[0]= first_non_group_part;
|
|
key_part_range[1]= last_part;
|
|
|
|
/* Check if cur_part is referenced in the WHERE clause. */
|
|
if (join->conds->walk(&Item::find_item_in_field_list_processor, true,
|
|
key_part_range))
|
|
{
|
|
cause= "keypart reference from where clause";
|
|
goto next_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Test (WA1) partially - that no other keypart after the last infix part is
|
|
referenced in the query.
|
|
*/
|
|
if (first_non_infix_part)
|
|
{
|
|
cur_part= first_non_infix_part +
|
|
(min_max_arg_part && (min_max_arg_part < last_part));
|
|
for (; cur_part != last_part; cur_part++)
|
|
{
|
|
if (bitmap_is_set(table->read_set, cur_part->field->field_index))
|
|
{
|
|
cause= "keypart after infix in query";
|
|
goto next_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Test WA2:If there are conditions on a column C participating in
|
|
MIN/MAX, those conditions must be conjunctions to all earlier
|
|
keyparts. Otherwise, Loose Index Scan cannot be used.
|
|
*/
|
|
if (tree && min_max_arg_item)
|
|
{
|
|
SEL_ARG *index_range_tree= tree->keys[cur_param_idx];
|
|
SEL_ARG *cur_range= NULL;
|
|
if (get_sel_arg_for_keypart(min_max_arg_part->field,
|
|
index_range_tree, &cur_range) ||
|
|
(cur_range && cur_range->type != SEL_ARG::KEY_RANGE))
|
|
{
|
|
cause= "minmax keypart in disjunctive query";
|
|
goto next_index;
|
|
}
|
|
}
|
|
|
|
/* If we got to this point, cur_index_info passes the test. */
|
|
key_infix_parts= cur_key_infix_len ? (uint)
|
|
(first_non_infix_part - first_non_group_part) : 0;
|
|
cur_used_key_parts= cur_group_key_parts + key_infix_parts;
|
|
|
|
/* Compute the cost of using this index. */
|
|
if (tree)
|
|
{
|
|
if ((cur_index_tree= tree->keys[cur_param_idx]))
|
|
{
|
|
cur_quick_prefix_records= param->quick_rows[cur_index];
|
|
if (!cur_quick_prefix_records)
|
|
{
|
|
/*
|
|
Non-constant table has a range with rows=0. Can happen e.g. for
|
|
Merge tables. Regular range access will be just as good as loose
|
|
scan.
|
|
*/
|
|
if (unlikely(trace_idx.trace_started()))
|
|
trace_idx.add("aborting_search", "range with rows=0");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
if (unlikely(cur_index_tree && thd->trace_started()))
|
|
{
|
|
Json_writer_array trace_range(thd, "ranges");
|
|
trace_ranges(&trace_range, param, cur_param_idx,
|
|
cur_index_tree, cur_index_info->key_part);
|
|
}
|
|
}
|
|
else
|
|
cur_quick_prefix_records= HA_POS_ERROR;
|
|
}
|
|
cost_group_min_max(table, cur_index_info, cur_used_key_parts,
|
|
cur_group_key_parts, tree, cur_index_tree,
|
|
cur_quick_prefix_records, have_min, have_max,
|
|
&cur_read_cost, &cur_records);
|
|
/*
|
|
If cur_read_cost is lower than best_read_cost use cur_index.
|
|
Do not compare doubles directly because they may have different
|
|
representations (64 vs. 80 bits).
|
|
*/
|
|
trace_idx.add("rows", cur_records).add("cost", cur_read_cost);
|
|
|
|
if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
|
|
{
|
|
index_info= cur_index_info;
|
|
index= cur_index;
|
|
best_read_cost= cur_read_cost;
|
|
best_records= cur_records;
|
|
best_index_tree= cur_index_tree;
|
|
best_quick_prefix_records= cur_quick_prefix_records;
|
|
best_param_idx= cur_param_idx;
|
|
group_key_parts= cur_group_key_parts;
|
|
group_prefix_len= cur_group_prefix_len;
|
|
key_infix_len= cur_key_infix_len;
|
|
if (key_infix_len)
|
|
memcpy (key_infix, cur_key_infix, sizeof (key_infix));
|
|
used_key_parts= cur_used_key_parts;
|
|
}
|
|
|
|
next_index:
|
|
if (cause)
|
|
{
|
|
trace_idx.add("usable", false).add("cause", cause);
|
|
cause= NULL;
|
|
}
|
|
}
|
|
|
|
trace_indexes.end();
|
|
|
|
if (!index_info) /* No usable index found. */
|
|
DBUG_RETURN(NULL);
|
|
|
|
/* Check (SA3) for the where clause. */
|
|
bool has_min_max_fld= false, has_other_fld= false;
|
|
if (join->conds && min_max_arg_item &&
|
|
!check_group_min_max_predicates(join->conds, min_max_arg_item,
|
|
(index_info->flags & HA_SPATIAL) ?
|
|
Field::itMBR : Field::itRAW,
|
|
&has_min_max_fld, &has_other_fld))
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("usable", false).
|
|
add("cause", "unsupported predicate on agg attribute");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/*
|
|
Check (SA6) if clustered key is used
|
|
*/
|
|
if (is_agg_distinct && table->file->is_clustering_key(index))
|
|
{
|
|
if (unlikely(trace_group.trace_started()))
|
|
trace_group.
|
|
add("usable", false).
|
|
add("cause", "index is clustered");
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
/* The query passes all tests, so construct a new TRP object. */
|
|
read_plan= new (param->mem_root)
|
|
TRP_GROUP_MIN_MAX(have_min, have_max, is_agg_distinct,
|
|
min_max_arg_part,
|
|
group_prefix_len, used_key_parts,
|
|
group_key_parts, index_info, index,
|
|
key_infix_len,
|
|
(key_infix_len > 0) ? key_infix : NULL,
|
|
tree, best_index_tree, best_param_idx,
|
|
best_quick_prefix_records);
|
|
if (read_plan)
|
|
{
|
|
if (tree && read_plan->quick_prefix_records == 0)
|
|
DBUG_RETURN(NULL);
|
|
|
|
read_plan->read_cost= best_read_cost;
|
|
read_plan->records= best_records;
|
|
if (is_agg_distinct)
|
|
{
|
|
double best_cost, duplicate_removal_cost;
|
|
ulonglong records;
|
|
handler *file= table->file;
|
|
|
|
/* Calculate cost of distinct scan on index */
|
|
if (best_index_tree && read_plan->quick_prefix_records)
|
|
records= read_plan->quick_prefix_records;
|
|
else
|
|
records= table->stat_records();
|
|
|
|
best_cost= file->cost(file->ha_key_scan_time(index, records));
|
|
/* We only have 'best_records' left after duplication elimination */
|
|
best_cost+= best_records * WHERE_COST_THD(thd);
|
|
duplicate_removal_cost= (DUPLICATE_REMOVAL_COST * records);
|
|
|
|
if (best_cost < read_plan->read_cost + duplicate_removal_cost)
|
|
{
|
|
read_plan->read_cost= best_cost;
|
|
read_plan->use_index_scan();
|
|
trace_group.
|
|
add("scan_cost", best_cost).
|
|
add("index_scan", true);
|
|
}
|
|
}
|
|
|
|
DBUG_PRINT("info",
|
|
("Returning group min/max plan: cost: %g, records: %lu",
|
|
read_plan->read_cost, (ulong) read_plan->records));
|
|
}
|
|
|
|
DBUG_RETURN(read_plan);
|
|
}
|
|
|
|
|
|
/*
|
|
Check that the MIN/MAX attribute participates only in range predicates
|
|
with constants.
|
|
|
|
SYNOPSIS
|
|
check_group_min_max_predicates()
|
|
cond [in] the expression tree being analyzed
|
|
min_max_arg [in] the field referenced by the MIN/MAX function(s)
|
|
image_type [in]
|
|
has_min_max_arg [out] true if the subtree being analyzed references
|
|
min_max_arg
|
|
has_other_arg [out] true if the subtree being analyzed references a
|
|
column other min_max_arg
|
|
|
|
DESCRIPTION
|
|
The function walks recursively over the cond tree representing a WHERE
|
|
clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
|
|
aggregate function, it is referenced only by one of the following
|
|
predicates $FUNC$:
|
|
{=, !=, <, <=, >, >=, between, is [not] null, multiple equal}.
|
|
In addition the function checks that the WHERE condition is equivalent to
|
|
"cond1 AND cond2" where :
|
|
cond1 - does not use min_max_column at all.
|
|
cond2 - is an AND/OR tree with leaves in form
|
|
"$FUNC$(min_max_column[, const])".
|
|
|
|
RETURN
|
|
TRUE if cond passes the test
|
|
FALSE o/w
|
|
*/
|
|
|
|
static bool
|
|
check_group_min_max_predicates(Item *cond, Item_field *min_max_arg_item,
|
|
Field::imagetype image_type,
|
|
bool *has_min_max_arg, bool *has_other_arg)
|
|
{
|
|
DBUG_ENTER("check_group_min_max_predicates");
|
|
DBUG_ASSERT(cond && min_max_arg_item);
|
|
|
|
cond= cond->real_item();
|
|
Item::Type cond_type= cond->real_type();
|
|
if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
|
|
{
|
|
DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
|
|
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
|
|
Item *and_or_arg;
|
|
Item_func::Functype func_type= ((Item_cond*) cond)->functype();
|
|
bool has_min_max= false, has_other= false;
|
|
while ((and_or_arg= li++))
|
|
{
|
|
/*
|
|
The WHERE clause doesn't pass the condition if:
|
|
(1) any subtree doesn't pass the condition or
|
|
(2) the subtree passes the test, but it is an OR and it references both
|
|
the min/max argument and other columns.
|
|
*/
|
|
if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item, //1
|
|
image_type,
|
|
&has_min_max, &has_other) ||
|
|
(func_type == Item_func::COND_OR_FUNC && has_min_max && has_other))//2
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
*has_min_max_arg= has_min_max || *has_min_max_arg;
|
|
*has_other_arg= has_other || *has_other_arg;
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/*
|
|
Disallow loose index scan if the MIN/MAX argument field is referenced by
|
|
a subquery in the WHERE clause.
|
|
*/
|
|
|
|
if (unlikely(cond_type == Item::SUBSELECT_ITEM))
|
|
{
|
|
Item_subselect *subs_cond= (Item_subselect*) cond;
|
|
if (subs_cond->is_correlated)
|
|
{
|
|
DBUG_ASSERT(subs_cond->upper_refs.elements > 0);
|
|
List_iterator_fast<Item_subselect::Ref_to_outside>
|
|
li(subs_cond->upper_refs);
|
|
Item_subselect::Ref_to_outside *dep;
|
|
while ((dep= li++))
|
|
{
|
|
if (dep->item->eq(min_max_arg_item, FALSE))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
}
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
/*
|
|
Subquery with IS [NOT] NULL
|
|
TODO: Look into the cache_item and optimize it like we do for
|
|
subselect's above
|
|
*/
|
|
if (unlikely(cond_type == Item::CACHE_ITEM))
|
|
DBUG_RETURN(cond->const_item());
|
|
|
|
/*
|
|
Condition of the form 'field' is equivalent to 'field <> 0' and thus
|
|
satisfies the SA3 condition.
|
|
*/
|
|
if (cond_type == Item::FIELD_ITEM)
|
|
{
|
|
DBUG_PRINT("info", ("Analyzing: %s", cond->full_name()));
|
|
if (min_max_arg_item->eq((Item_field*)cond, 1))
|
|
*has_min_max_arg= true;
|
|
else
|
|
*has_other_arg= true;
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/* We presume that at this point there are no other Items than functions. */
|
|
DBUG_ASSERT(cond_type == Item::FUNC_ITEM);
|
|
if (unlikely(cond_type != Item::FUNC_ITEM)) /* Safety */
|
|
DBUG_RETURN(FALSE);
|
|
|
|
/* Test if cond references only group-by or non-group fields. */
|
|
Item_func *pred= (Item_func*) cond;
|
|
Item_func::Functype pred_type= pred->functype();
|
|
DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
|
|
if (pred_type == Item_func::MULT_EQUAL_FUNC)
|
|
{
|
|
/*
|
|
Check that each field in a multiple equality is either a constant or
|
|
it is a reference to the min/max argument, or it doesn't contain the
|
|
min/max argument at all.
|
|
*/
|
|
Item_equal_fields_iterator eq_it(*((Item_equal*)pred));
|
|
Item *eq_item;
|
|
bool has_min_max= false, has_other= false;
|
|
while ((eq_item= eq_it++))
|
|
{
|
|
if (min_max_arg_item->eq(eq_item->real_item(), 1))
|
|
has_min_max= true;
|
|
else
|
|
has_other= true;
|
|
}
|
|
*has_min_max_arg= has_min_max || *has_min_max_arg;
|
|
*has_other_arg= has_other || *has_other_arg;
|
|
DBUG_RETURN(!(has_min_max && has_other));
|
|
}
|
|
|
|
Item **arguments= pred->arguments();
|
|
Item *cur_arg;
|
|
bool has_min_max= false, has_other= false;
|
|
for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
|
|
{
|
|
cur_arg= arguments[arg_idx]->real_item();
|
|
DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
|
|
if (cur_arg->type() == Item::FIELD_ITEM)
|
|
{
|
|
if (min_max_arg_item->eq(cur_arg, 1))
|
|
{
|
|
has_min_max= true;
|
|
/*
|
|
If pred references the MIN/MAX argument, check whether pred is a range
|
|
condition that compares the MIN/MAX argument with a constant.
|
|
*/
|
|
if (pred_type != Item_func::EQUAL_FUNC &&
|
|
pred_type != Item_func::LT_FUNC &&
|
|
pred_type != Item_func::LE_FUNC &&
|
|
pred_type != Item_func::GT_FUNC &&
|
|
pred_type != Item_func::GE_FUNC &&
|
|
pred_type != Item_func::BETWEEN &&
|
|
pred_type != Item_func::ISNULL_FUNC &&
|
|
pred_type != Item_func::ISNOTNULL_FUNC &&
|
|
pred_type != Item_func::EQ_FUNC &&
|
|
pred_type != Item_func::NE_FUNC)
|
|
DBUG_RETURN(FALSE);
|
|
|
|
/* Check that pred compares min_max_arg_item with a constant. */
|
|
Item *args[3];
|
|
bzero(args, 3 * sizeof(Item*));
|
|
bool inv;
|
|
/* Test if this is a comparison of a field and a constant. */
|
|
if (!simple_pred(pred, args, &inv))
|
|
DBUG_RETURN(FALSE);
|
|
|
|
if (args[0] && args[1]) // this is a binary function or BETWEEN
|
|
{
|
|
DBUG_ASSERT(pred->fixed_type_handler());
|
|
DBUG_ASSERT(pred->fixed_type_handler()->is_bool_type());
|
|
Item_bool_func *bool_func= (Item_bool_func*) pred;
|
|
Field *field= min_max_arg_item->field;
|
|
if (!args[2]) // this is a binary function
|
|
{
|
|
if (!field->can_optimize_group_min_max(bool_func, args[1]))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
else // this is BETWEEN
|
|
{
|
|
if (!field->can_optimize_group_min_max(bool_func, args[1]) ||
|
|
!field->can_optimize_group_min_max(bool_func, args[2]))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
has_other= true;
|
|
}
|
|
else if (cur_arg->type() == Item::FUNC_ITEM)
|
|
{
|
|
if (!check_group_min_max_predicates(cur_arg, min_max_arg_item, image_type,
|
|
&has_min_max, &has_other))
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
else if (cur_arg->can_eval_in_optimize())
|
|
{
|
|
/*
|
|
For predicates of the form "const OP expr" we also have to check 'expr'
|
|
to make a decision.
|
|
*/
|
|
continue;
|
|
}
|
|
else
|
|
DBUG_RETURN(FALSE);
|
|
if(has_min_max && has_other)
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
*has_min_max_arg= has_min_max || *has_min_max_arg;
|
|
*has_other_arg= has_other || *has_other_arg;
|
|
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Get the SEL_ARG tree 'tree' for the keypart covering 'field', if
|
|
any. 'tree' must be a unique conjunction to ALL predicates in earlier
|
|
keyparts of 'keypart_tree'.
|
|
|
|
E.g., if 'keypart_tree' is for a composite index (kp1,kp2) and kp2
|
|
covers 'field', all these conditions satisfies the requirement:
|
|
|
|
1. "(kp1=2 OR kp1=3) AND kp2=10" => returns "kp2=10"
|
|
2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=10)" => returns "kp2=10"
|
|
3. "(kp1=2 AND (kp2=10 OR kp2=11)) OR (kp1=3 AND (kp2=10 OR kp2=11))"
|
|
=> returns "kp2=10 OR kp2=11"
|
|
|
|
whereas these do not
|
|
1. "(kp1=2 AND kp2=10) OR kp1=3"
|
|
2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=11)"
|
|
3. "(kp1=2 AND kp2=10) OR (kp1=3 AND (kp2=10 OR kp2=11))"
|
|
|
|
This function effectively tests requirement WA2. In combination with
|
|
a test that the returned tree has no more than one range it is also
|
|
a test of NGA3.
|
|
|
|
@param[in] field The field we want the SEL_ARG tree for
|
|
@param[in] keypart_tree Root node of the SEL_ARG* tree for the index
|
|
@param[out] cur_range The SEL_ARG tree, if any, for the keypart
|
|
covering field 'keypart_field'
|
|
@retval true 'keypart_tree' contained a predicate for 'field' that
|
|
is not conjunction to all predicates on earlier keyparts
|
|
@retval false otherwise
|
|
*/
|
|
|
|
static bool
|
|
get_sel_arg_for_keypart(Field *field,
|
|
SEL_ARG *keypart_tree,
|
|
SEL_ARG **cur_range)
|
|
{
|
|
if (keypart_tree == NULL)
|
|
return false;
|
|
if (keypart_tree->field->eq(field))
|
|
{
|
|
*cur_range= keypart_tree;
|
|
return false;
|
|
}
|
|
|
|
SEL_ARG *tree_first_range= NULL;
|
|
SEL_ARG *first_kp= keypart_tree->first();
|
|
|
|
for (SEL_ARG *cur_kp= first_kp; cur_kp; cur_kp= cur_kp->next)
|
|
{
|
|
SEL_ARG *curr_tree= NULL;
|
|
if (cur_kp->next_key_part)
|
|
{
|
|
if (get_sel_arg_for_keypart(field,
|
|
cur_kp->next_key_part,
|
|
&curr_tree))
|
|
return true;
|
|
}
|
|
/*
|
|
Check if the SEL_ARG tree for 'field' is identical for all ranges in
|
|
'keypart_tree
|
|
*/
|
|
if (cur_kp == first_kp)
|
|
tree_first_range= curr_tree;
|
|
else if (!all_same(tree_first_range, curr_tree))
|
|
return true;
|
|
}
|
|
*cur_range= tree_first_range;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
Extract a sequence of constants from a conjunction of equality predicates.
|
|
|
|
SYNOPSIS
|
|
get_constant_key_infix()
|
|
index_info [in] Descriptor of the chosen index.
|
|
index_range_tree [in] Range tree for the chosen index
|
|
first_non_group_part [in] First index part after group attribute parts
|
|
min_max_arg_part [in] The keypart of the MIN/MAX argument if any
|
|
last_part [in] Last keypart of the index
|
|
thd [in] Current thread
|
|
key_infix [out] Infix of constants to be used for index lookup
|
|
key_infix_len [out] Length of the infix
|
|
first_non_infix_part [out] The first keypart after the infix (if any)
|
|
|
|
DESCRIPTION
|
|
Test conditions (NGA1, NGA2, NGA3) from get_best_group_min_max(). Namely,
|
|
for each keypart field NG_i not in GROUP-BY, check that there is exactly one
|
|
constant equality predicate among conds with the form (NG_i = const_ci) or
|
|
(const_ci = NG_i).. In addition, there can only be one range when there is
|
|
such a gap.
|
|
Thus all the NGF_i attributes must fill the 'gap' between the last group-by
|
|
attribute and the MIN/MAX attribute in the index (if present). Also ensure
|
|
that there is only a single range on NGF_i (NGA3). If these
|
|
conditions hold, copy each constant from its corresponding predicate into
|
|
key_infix, in the order its NG_i attribute appears in the index, and update
|
|
key_infix_len with the total length of the key parts in key_infix.
|
|
|
|
RETURN
|
|
TRUE if the index passes the test
|
|
FALSE o/w
|
|
*/
|
|
static bool
|
|
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
|
|
KEY_PART_INFO *first_non_group_part,
|
|
KEY_PART_INFO *min_max_arg_part,
|
|
KEY_PART_INFO *last_part, THD *thd,
|
|
uchar *key_infix, uint *key_infix_len,
|
|
KEY_PART_INFO **first_non_infix_part)
|
|
{
|
|
KEY_PART_INFO *cur_part;
|
|
/* End part for the first loop below. */
|
|
KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
|
|
|
|
*key_infix_len= 0;
|
|
uchar *key_ptr= key_infix;
|
|
for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
|
|
{
|
|
SEL_ARG *cur_range= NULL;
|
|
/*
|
|
Check NGA3:
|
|
1. get_sel_arg_for_keypart gets the range tree for the 'field' and also
|
|
checks for a unique conjunction of this tree with all the predicates
|
|
on the earlier keyparts in the index.
|
|
2. Check for multiple ranges on the found keypart tree.
|
|
|
|
We assume that index_range_tree points to the leftmost keypart in
|
|
the index.
|
|
*/
|
|
if (get_sel_arg_for_keypart(cur_part->field, index_range_tree,
|
|
&cur_range))
|
|
return false;
|
|
|
|
if (cur_range && cur_range->elements > 1)
|
|
return false;
|
|
|
|
if (!cur_range || cur_range->type != SEL_ARG::KEY_RANGE)
|
|
{
|
|
if (min_max_arg_part)
|
|
return false; /* The current keypart has no range predicates at all. */
|
|
else
|
|
{
|
|
*first_non_infix_part= cur_part;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if ((cur_range->min_flag & NO_MIN_RANGE) ||
|
|
(cur_range->max_flag & NO_MAX_RANGE) ||
|
|
(cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
|
|
return false;
|
|
|
|
uint field_length= cur_part->store_length;
|
|
if (cur_range->maybe_null &&
|
|
cur_range->min_value[0] && cur_range->max_value[0])
|
|
{
|
|
/*
|
|
cur_range specifies 'IS NULL'. In this case the argument points
|
|
to a "null value" (is_null_string) that may not always be long
|
|
enough for a direct memcpy to a field.
|
|
*/
|
|
DBUG_ASSERT (field_length > 0);
|
|
*key_ptr= 1;
|
|
bzero(key_ptr+1,field_length-1);
|
|
key_ptr+= field_length;
|
|
*key_infix_len+= field_length;
|
|
}
|
|
else if (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0)
|
|
{ /* cur_range specifies an equality condition. */
|
|
memcpy(key_ptr, cur_range->min_value, field_length);
|
|
key_ptr+= field_length;
|
|
*key_infix_len+= field_length;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
if (!min_max_arg_part && (cur_part == last_part))
|
|
*first_non_infix_part= last_part;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
Find the key part referenced by a field.
|
|
|
|
SYNOPSIS
|
|
get_field_keypart()
|
|
index descriptor of an index
|
|
field field that possibly references some key part in index
|
|
|
|
NOTES
|
|
The return value can be used to get a KEY_PART_INFO pointer by
|
|
part= index->key_part + get_field_keypart(...) - 1;
|
|
|
|
RETURN
|
|
Positive number which is the consecutive number of the key part, or
|
|
0 if field does not reference any index field.
|
|
*/
|
|
|
|
static inline uint
|
|
get_field_keypart(KEY *index, Field *field)
|
|
{
|
|
KEY_PART_INFO *part, *end;
|
|
|
|
for (part= index->key_part,
|
|
end= part + field->table->actual_n_key_parts(index);
|
|
part < end; part++)
|
|
{
|
|
if (field->eq(part->field))
|
|
return (uint)(part - index->key_part + 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Compute the cost of a quick_group_min_max_select for a particular index.
|
|
|
|
SYNOPSIS
|
|
cost_group_min_max()
|
|
table [in] The table being accessed
|
|
index_info [in] The index used to access the table
|
|
used_key_parts [in] Number of key parts used to access the index
|
|
group_key_parts [in] Number of index key parts in the group prefix
|
|
range_tree [in] Tree of ranges for all indexes
|
|
index_tree [in] The range tree for the current index
|
|
quick_prefix_records [in] Number of records retrieved by the internally
|
|
used quick range select if any
|
|
have_min [in] True if there is a MIN function
|
|
have_max [in] True if there is a MAX function
|
|
read_cost [out] The cost to retrieve rows via this quick select
|
|
out_records [out] The number of rows retrieved
|
|
|
|
DESCRIPTION
|
|
This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
|
|
the number of rows returned.
|
|
|
|
The used algorithm used for finding the rows is:
|
|
|
|
For each range (if no ranges, the range is the whole table)
|
|
Do an index search for the start of the range
|
|
As long as the found key is withing the range
|
|
If the found row matches the where clause, use the row otherwise skip it
|
|
Scan index for next group, jumping over all identical keys, done in
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_prefix
|
|
If the engine does not support a native next_prefix, we will
|
|
either scan the index for the next value or do a new index dive
|
|
with 'find next bigger key'.
|
|
|
|
When using MIN() and MAX() in the query, the calls to the storage engine
|
|
are as follows for each group:
|
|
Assuming kp1 in ('abc','def','ghi)' and kp2 between 1000 and 2000
|
|
|
|
read_key('abc', HA_READ_KEY_OR_NEXT)
|
|
In case of MIN() we do:
|
|
read_key('abc,:'1000', HA_READ_KEY_OR_NEXT)
|
|
In case of MAX() we do
|
|
read_key('abc,:'2000', HA_READ_PREFIX_LAST_OR_PREV)
|
|
In the following code we will assume that the MIN key will be in
|
|
the same block as the first key read.
|
|
(We should try to optimize away the extra call for MAX() at some
|
|
point).
|
|
|
|
NOTES
|
|
See get_best_group_min_max() for which kind of queries this function
|
|
will be called.
|
|
|
|
The cost computation distinguishes several cases:
|
|
1) No equality predicates over non-group attributes (thus no key_infix).
|
|
If groups are bigger than blocks on the average, then we assume that it
|
|
is very unlikely that block ends are aligned with group ends, thus even
|
|
if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
|
|
keys, except for the first MIN and the last MAX keys, will be in the
|
|
same block. If groups are smaller than blocks, then we are going to
|
|
read all blocks.
|
|
2) There are equality predicates over non-group attributes.
|
|
In this case the group prefix is extended by additional constants, and
|
|
as a result the min/max values are inside sub-groups of the original
|
|
groups. The number of blocks that will be read depends on whether the
|
|
ends of these sub-groups will be contained in the same or in different
|
|
blocks. We compute the probability for the two ends of a subgroup to be
|
|
in two different blocks as the ratio of:
|
|
- the number of positions of the left-end of a subgroup inside a group,
|
|
such that the right end of the subgroup is past the end of the buffer
|
|
containing the left-end, and
|
|
- the total number of possible positions for the left-end of the
|
|
subgroup, which is the number of keys in the containing group.
|
|
We assume it is very unlikely that two ends of subsequent subgroups are
|
|
in the same block.
|
|
3) The are range predicates over the group attributes.
|
|
Then some groups may be filtered by the range predicates. We use the
|
|
selectivity of the range predicates to decide how many groups will be
|
|
filtered.
|
|
|
|
TODO
|
|
- Take into account the optional range predicates over the MIN/MAX
|
|
argument.
|
|
- Check if we have a PK index and we use all cols - then each key is a
|
|
group, and it will be better to use an index scan.
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
|
|
uint group_key_parts, SEL_TREE *range_tree,
|
|
SEL_ARG *index_tree, ha_rows quick_prefix_records,
|
|
bool have_min, bool have_max,
|
|
double *read_cost, ha_rows *out_records)
|
|
{
|
|
uint key_length;
|
|
ha_rows records;
|
|
ha_rows num_groups;
|
|
ha_rows num_blocks;
|
|
ha_rows keys_per_group;
|
|
double quick_prefix_selectivity;
|
|
ulonglong io_cost;
|
|
handler *file= table->file;
|
|
DBUG_ENTER("cost_group_min_max");
|
|
|
|
/* Same code as in handler::key_read_time() */
|
|
records= table->stat_records();
|
|
key_length= (index_info->key_length + file->ref_length);
|
|
|
|
/* Compute the number of keys in a group. */
|
|
if (!group_key_parts)
|
|
{
|
|
/* Summary over the whole table */
|
|
keys_per_group= MY_MAX(records,1);
|
|
}
|
|
else
|
|
{
|
|
keys_per_group= (ha_rows) index_info->actual_rec_per_key(group_key_parts -
|
|
1);
|
|
if (keys_per_group == 0) /* If there is no statistics try to guess */
|
|
{
|
|
/* each group contains 10% of all records */
|
|
keys_per_group= (records / 10) + 1;
|
|
}
|
|
}
|
|
if (keys_per_group > 1)
|
|
num_groups= (records / keys_per_group) + 1;
|
|
else
|
|
num_groups= records;
|
|
|
|
/* Apply the selectivity of the quick select for group prefixes. */
|
|
if (range_tree && (quick_prefix_records != HA_POS_ERROR))
|
|
{
|
|
int groups;
|
|
quick_prefix_selectivity= (double) quick_prefix_records /
|
|
(double) records;
|
|
num_groups= (ha_rows) rint(num_groups * quick_prefix_selectivity);
|
|
records= quick_prefix_records;
|
|
|
|
/*
|
|
Try to handle cases like
|
|
WHERE a in (1,2,3) GROUP BY a
|
|
|
|
If all ranges are eq_ranges for the group_key_parts we can use
|
|
this as the number of groups.
|
|
*/
|
|
groups= index_tree->number_of_eq_groups(group_key_parts);
|
|
if (groups > 0)
|
|
num_groups= groups;
|
|
else
|
|
{
|
|
/*
|
|
Expect at least as many groups as there is ranges in the index
|
|
|
|
This is mostly relevant for queries with few records, which is
|
|
something we have a lot of in our test suites.
|
|
In theory it is possible to scan the index_tree and for cases
|
|
where all ranges are eq ranges, we could calculate the exact number
|
|
of groups. This is probably an overkill so for now we estimate
|
|
the lower level of number of groups by the range elements in the
|
|
tree.
|
|
*/
|
|
set_if_bigger(num_groups, MY_MAX(index_tree->elements, 1));
|
|
}
|
|
/* There cannot be more groups than matched records */
|
|
set_if_smaller(num_groups, quick_prefix_records);
|
|
}
|
|
DBUG_ASSERT(num_groups <= records);
|
|
|
|
/* Calculate the number of blocks we will touch for the table or range scan */
|
|
num_blocks= (records * key_length / INDEX_BLOCK_FILL_FACTOR_DIV *
|
|
INDEX_BLOCK_FILL_FACTOR_MUL) / file->stats.block_size + 1;
|
|
|
|
io_cost= (have_max) ? num_groups * 2 : num_groups;
|
|
set_if_smaller(io_cost, num_blocks);
|
|
|
|
/*
|
|
CPU cost must be comparable to that of an index scan as computed
|
|
in SQL_SELECT::test_quick_select(). When the groups are small,
|
|
e.g. for a unique index, using index scan will be cheaper since it
|
|
reads the next record without having to re-position to it on every
|
|
group.
|
|
*/
|
|
uint keyno= (uint) (index_info - table->key_info);
|
|
*read_cost= file->cost(file->ha_keyread_and_compare_time(keyno,
|
|
(ulong) num_groups,
|
|
num_groups,
|
|
io_cost));
|
|
*out_records= num_groups;
|
|
|
|
DBUG_PRINT("info",
|
|
("rows: %lu keys/group: %lu "
|
|
"result rows: %lu blocks: %lu",
|
|
(ulong) records, (ulong) keys_per_group,
|
|
(ulong) *out_records, (ulong) num_blocks));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Construct a new quick select object for queries with group by with min/max.
|
|
|
|
SYNOPSIS
|
|
TRP_GROUP_MIN_MAX::make_quick()
|
|
param Parameter from test_quick_select
|
|
retrieve_full_rows ignored
|
|
parent_alloc Memory pool to use, if any.
|
|
|
|
NOTES
|
|
Make_quick ignores the retrieve_full_rows parameter because
|
|
QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
|
|
The other parameter are ignored as well because all necessary
|
|
data to create the QUICK object is computed at this TRP creation
|
|
time.
|
|
|
|
RETURN
|
|
New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
|
|
NULL otherwise.
|
|
*/
|
|
|
|
QUICK_SELECT_I *
|
|
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
|
|
MEM_ROOT *parent_alloc)
|
|
{
|
|
QUICK_GROUP_MIN_MAX_SELECT *quick;
|
|
DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");
|
|
|
|
quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
|
|
param->thd->lex->current_select->join,
|
|
have_min, have_max,
|
|
have_agg_distinct, min_max_arg_part,
|
|
group_prefix_len, group_key_parts,
|
|
used_key_parts, index_info, index,
|
|
read_cost, records, key_infix_len,
|
|
key_infix, parent_alloc,
|
|
is_index_scan);
|
|
if (!quick)
|
|
DBUG_RETURN(NULL);
|
|
|
|
if (quick->init())
|
|
{
|
|
delete quick;
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
if (range_tree)
|
|
{
|
|
DBUG_ASSERT(quick_prefix_records > 0);
|
|
if (quick_prefix_records == HA_POS_ERROR)
|
|
quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
|
|
else
|
|
/* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
|
|
quick->quick_prefix_select= get_quick_select(param, param_idx,
|
|
index_tree,
|
|
HA_MRR_USE_DEFAULT_IMPL, 0,
|
|
&quick->alloc);
|
|
|
|
/*
|
|
Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
|
|
attribute, and create an array of QUICK_RANGES to be used by the
|
|
new quick select.
|
|
*/
|
|
if (min_max_arg_part)
|
|
{
|
|
SEL_ARG *min_max_range= index_tree;
|
|
while (min_max_range) /* Find the tree for the MIN/MAX key part. */
|
|
{
|
|
if (min_max_range->field->eq(min_max_arg_part->field))
|
|
break;
|
|
min_max_range= min_max_range->next_key_part;
|
|
}
|
|
/* Scroll to the leftmost interval for the MIN/MAX argument. */
|
|
while (min_max_range && min_max_range->prev)
|
|
min_max_range= min_max_range->prev;
|
|
/* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
|
|
while (min_max_range)
|
|
{
|
|
if (quick->add_range(min_max_range))
|
|
{
|
|
delete quick;
|
|
quick= NULL;
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
min_max_range= min_max_range->next;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
quick->quick_prefix_select= NULL;
|
|
|
|
quick->update_key_stat();
|
|
quick->adjust_prefix_ranges();
|
|
|
|
DBUG_RETURN(quick);
|
|
}
|
|
|
|
|
|
/*
|
|
Construct new quick select for group queries with min/max.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
|
|
table The table being accessed
|
|
join Descriptor of the current query
|
|
have_min TRUE if the query selects a MIN function
|
|
have_max TRUE if the query selects a MAX function
|
|
min_max_arg_part The only argument field of all MIN/MAX functions
|
|
group_prefix_len Length of all key parts in the group prefix
|
|
prefix_key_parts All key parts in the group prefix
|
|
index_info The index chosen for data access
|
|
use_index The id of index_info
|
|
read_cost Cost of this access method
|
|
records Number of records returned
|
|
key_infix_len Length of the key infix appended to the group prefix
|
|
key_infix Infix of constants from equality predicates
|
|
parent_alloc Memory pool for this and quick_prefix_select data
|
|
is_index_scan get the next different key not by jumping on it via
|
|
index read, but by scanning until the end of the
|
|
rows with equal key value.
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
QUICK_GROUP_MIN_MAX_SELECT::
|
|
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
|
|
bool have_max_arg, bool have_agg_distinct_arg,
|
|
KEY_PART_INFO *min_max_arg_part_arg,
|
|
uint group_prefix_len_arg, uint group_key_parts_arg,
|
|
uint used_key_parts_arg, KEY *index_info_arg,
|
|
uint use_index, double read_cost_arg,
|
|
ha_rows records_arg, uint key_infix_len_arg,
|
|
uchar *key_infix_arg, MEM_ROOT *parent_alloc,
|
|
bool is_index_scan_arg)
|
|
:file(table->file), join(join_arg), index_info(index_info_arg),
|
|
group_prefix_len(group_prefix_len_arg),
|
|
group_key_parts(group_key_parts_arg), have_min(have_min_arg),
|
|
have_max(have_max_arg), have_agg_distinct(have_agg_distinct_arg),
|
|
seen_first_key(FALSE), min_max_arg_part(min_max_arg_part_arg),
|
|
key_infix(key_infix_arg), key_infix_len(key_infix_len_arg),
|
|
min_functions_it(NULL), max_functions_it(NULL),
|
|
is_index_scan(is_index_scan_arg)
|
|
{
|
|
head= table;
|
|
index= use_index;
|
|
record= head->record[0];
|
|
tmp_record= head->record[1];
|
|
read_time= read_cost_arg;
|
|
records= records_arg;
|
|
used_key_parts= used_key_parts_arg;
|
|
real_key_parts= used_key_parts_arg;
|
|
real_prefix_len= group_prefix_len + key_infix_len;
|
|
group_prefix= NULL;
|
|
min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
|
|
|
|
/*
|
|
We can't have parent_alloc set as the init function can't handle this case
|
|
yet.
|
|
*/
|
|
DBUG_ASSERT(!parent_alloc);
|
|
if (!parent_alloc)
|
|
{
|
|
THD *thd= join->thd;
|
|
init_sql_alloc(key_memory_quick_range_select_root, &alloc,
|
|
thd->variables.range_alloc_block_size, 0, MYF(MY_THREAD_SPECIFIC));
|
|
thd->mem_root= &alloc;
|
|
}
|
|
else
|
|
bzero(&alloc, sizeof(MEM_ROOT)); // ensure that it's not used
|
|
}
|
|
|
|
|
|
/*
|
|
Do post-constructor initialization.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::init()
|
|
|
|
DESCRIPTION
|
|
The method performs initialization that cannot be done in the constructor
|
|
such as memory allocations that may fail. It allocates memory for the
|
|
group prefix and inifix buffers, and for the lists of MIN/MAX item to be
|
|
updated during execution.
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::init()
|
|
{
|
|
if (group_prefix) /* Already initialized. */
|
|
return 0;
|
|
|
|
/*
|
|
We allocate one byte more to serve the case when the last field in
|
|
the buffer is compared using uint3korr (e.g. a Field_newdate field)
|
|
*/
|
|
if (!(last_prefix= (uchar*) alloc_root(&alloc, group_prefix_len+1)))
|
|
return 1;
|
|
/*
|
|
We may use group_prefix to store keys with all select fields, so allocate
|
|
enough space for it.
|
|
We allocate one byte more to serve the case when the last field in
|
|
the buffer is compared using uint3korr (e.g. a Field_newdate field)
|
|
*/
|
|
if (!(group_prefix= (uchar*) alloc_root(&alloc,
|
|
real_prefix_len+min_max_arg_len+1)))
|
|
return 1;
|
|
|
|
if (key_infix_len > 0)
|
|
{
|
|
/*
|
|
The memory location pointed to by key_infix will be deleted soon, so
|
|
allocate a new buffer and copy the key_infix into it.
|
|
*/
|
|
uchar *tmp_key_infix= (uchar*) alloc_root(&alloc, key_infix_len);
|
|
if (!tmp_key_infix)
|
|
return 1;
|
|
memcpy(tmp_key_infix, this->key_infix, key_infix_len);
|
|
this->key_infix= tmp_key_infix;
|
|
}
|
|
|
|
if (min_max_arg_part)
|
|
{
|
|
if (my_init_dynamic_array(PSI_INSTRUMENT_ME, &min_max_ranges,
|
|
sizeof(QUICK_RANGE*), 16, 16,
|
|
MYF(MY_THREAD_SPECIFIC)))
|
|
return 1;
|
|
|
|
if (have_min)
|
|
{
|
|
if (!(min_functions= new List<Item_sum>))
|
|
return 1;
|
|
}
|
|
else
|
|
min_functions= NULL;
|
|
if (have_max)
|
|
{
|
|
if (!(max_functions= new List<Item_sum>))
|
|
return 1;
|
|
}
|
|
else
|
|
max_functions= NULL;
|
|
|
|
Item_sum *min_max_item;
|
|
Item_sum **func_ptr= join->sum_funcs;
|
|
while ((min_max_item= *(func_ptr++)))
|
|
{
|
|
if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
|
|
min_functions->push_back(min_max_item);
|
|
else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
|
|
max_functions->push_back(min_max_item);
|
|
}
|
|
|
|
if (have_min)
|
|
{
|
|
if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
|
|
return 1;
|
|
}
|
|
|
|
if (have_max)
|
|
{
|
|
if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
min_max_ranges.elements= 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
|
|
{
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
|
|
if (file->inited != handler::NONE)
|
|
{
|
|
DBUG_ASSERT(file == head->file);
|
|
head->file->ha_end_keyread();
|
|
/*
|
|
There may be a code path when the same table was first accessed by index,
|
|
then the index is closed, and the table is scanned (order by + loose scan).
|
|
*/
|
|
file->ha_index_or_rnd_end();
|
|
}
|
|
if (min_max_arg_part)
|
|
delete_dynamic(&min_max_ranges);
|
|
free_root(&alloc,MYF(0));
|
|
delete min_functions_it;
|
|
delete max_functions_it;
|
|
delete quick_prefix_select;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
Eventually create and add a new quick range object.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::add_range()
|
|
sel_range Range object from which a
|
|
|
|
NOTES
|
|
Construct a new QUICK_RANGE object from a SEL_ARG object, and
|
|
add it to the array min_max_ranges. If sel_arg is an infinite
|
|
range, e.g. (x < 5 or x > 4), then skip it and do not construct
|
|
a quick range.
|
|
|
|
RETURN
|
|
FALSE on success
|
|
TRUE otherwise
|
|
*/
|
|
|
|
bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
|
|
{
|
|
QUICK_RANGE *range;
|
|
uint range_flag= sel_range->min_flag | sel_range->max_flag;
|
|
|
|
/* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
|
|
if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
|
|
return FALSE;
|
|
|
|
if (!(sel_range->min_flag & NO_MIN_RANGE) &&
|
|
!(sel_range->max_flag & NO_MAX_RANGE))
|
|
{
|
|
if (sel_range->maybe_null &&
|
|
sel_range->min_value[0] && sel_range->max_value[0])
|
|
range_flag|= NULL_RANGE; /* IS NULL condition */
|
|
else if (memcmp(sel_range->min_value, sel_range->max_value,
|
|
min_max_arg_len) == 0)
|
|
range_flag|= EQ_RANGE; /* equality condition */
|
|
}
|
|
range= new QUICK_RANGE(join->thd, sel_range->min_value, min_max_arg_len,
|
|
make_keypart_map(sel_range->part),
|
|
sel_range->max_value, min_max_arg_len,
|
|
make_keypart_map(sel_range->part),
|
|
range_flag);
|
|
if (!range)
|
|
return TRUE;
|
|
if (insert_dynamic(&min_max_ranges, (uchar*)&range))
|
|
return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Opens the ranges if there are more conditions in quick_prefix_select than
|
|
the ones used for jumping through the prefixes.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges()
|
|
|
|
NOTES
|
|
quick_prefix_select is made over the conditions on the whole key.
|
|
It defines a number of ranges of length x.
|
|
However when jumping through the prefixes we use only the the first
|
|
few most significant keyparts in the range key. However if there
|
|
are more keyparts to follow the ones we are using we must make the
|
|
condition on the key inclusive (because x < "ab" means
|
|
x[0] < 'a' OR (x[0] == 'a' AND x[1] < 'b').
|
|
To achive the above we must turn off the NEAR_MIN/NEAR_MAX
|
|
*/
|
|
void QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges ()
|
|
{
|
|
if (quick_prefix_select &&
|
|
group_prefix_len < quick_prefix_select->max_used_key_length)
|
|
{
|
|
DYNAMIC_ARRAY *arr;
|
|
uint inx;
|
|
|
|
for (inx= 0, arr= &quick_prefix_select->ranges; inx < arr->elements; inx++)
|
|
{
|
|
QUICK_RANGE *range;
|
|
|
|
get_dynamic(arr, (uchar*)&range, inx);
|
|
range->flag &= ~(NEAR_MIN | NEAR_MAX);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Determine the total number and length of the keys that will be used for
|
|
index lookup.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
|
|
|
|
DESCRIPTION
|
|
The total length of the keys used for index lookup depends on whether
|
|
there are any predicates referencing the min/max argument, and/or if
|
|
the min/max argument field can be NULL.
|
|
This function does an optimistic analysis whether the search key might
|
|
be extended by a constant for the min/max keypart. It is 'optimistic'
|
|
because during actual execution it may happen that a particular range
|
|
is skipped, and then a shorter key will be used. However this is data
|
|
dependent and can't be easily estimated here.
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
|
|
{
|
|
max_used_key_length= real_prefix_len;
|
|
if (min_max_ranges.elements > 0)
|
|
{
|
|
QUICK_RANGE *cur_range;
|
|
if (have_min)
|
|
{ /* Check if the right-most range has a lower boundary. */
|
|
get_dynamic(&min_max_ranges, (uchar*)&cur_range,
|
|
min_max_ranges.elements - 1);
|
|
if (!(cur_range->flag & NO_MIN_RANGE))
|
|
{
|
|
max_used_key_length+= min_max_arg_len;
|
|
used_key_parts++;
|
|
return;
|
|
}
|
|
}
|
|
if (have_max)
|
|
{ /* Check if the left-most range has an upper boundary. */
|
|
get_dynamic(&min_max_ranges, (uchar*)&cur_range, 0);
|
|
if (!(cur_range->flag & NO_MAX_RANGE))
|
|
{
|
|
max_used_key_length+= min_max_arg_len;
|
|
used_key_parts++;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else if (have_min && min_max_arg_part &&
|
|
min_max_arg_part->field->real_maybe_null())
|
|
{
|
|
/*
|
|
If a MIN/MAX argument value is NULL, we can quickly determine
|
|
that we're in the beginning of the next group, because NULLs
|
|
are always < any other value. This allows us to quickly
|
|
determine the end of the current group and jump to the next
|
|
group (see next_min()) and thus effectively increases the
|
|
usable key length.
|
|
*/
|
|
max_used_key_length+= min_max_arg_len;
|
|
used_key_parts++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Initialize a quick group min/max select for key retrieval.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::reset()
|
|
|
|
DESCRIPTION
|
|
Initialize the index chosen for access and find and store the prefix
|
|
of the last group. The method is expensive since it performs disk access.
|
|
|
|
RETURN
|
|
0 OK
|
|
other Error code
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");
|
|
|
|
seen_first_key= FALSE;
|
|
head->file->ha_start_keyread(index); /* We need only the key attributes */
|
|
|
|
if ((result= file->ha_index_init(index,1)))
|
|
{
|
|
head->file->print_error(result, MYF(0));
|
|
DBUG_RETURN(result);
|
|
}
|
|
if (quick_prefix_select && quick_prefix_select->reset())
|
|
DBUG_RETURN(1);
|
|
result= file->ha_index_last(record);
|
|
if (result == HA_ERR_END_OF_FILE)
|
|
DBUG_RETURN(0);
|
|
/* Save the prefix of the last group. */
|
|
key_copy(last_prefix, record, index_info, group_prefix_len);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Get the next key containing the MIN and/or MAX key for the next group.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::get_next()
|
|
|
|
DESCRIPTION
|
|
The method finds the next subsequent group of records that satisfies the
|
|
query conditions and finds the keys that contain the MIN/MAX values for
|
|
the key part referenced by the MIN/MAX function(s). Once a group and its
|
|
MIN/MAX values are found, store these values in the Item_sum objects for
|
|
the MIN/MAX functions. The rest of the values in the result row are stored
|
|
in the Item_field::result_field of each select field. If the query does
|
|
not contain MIN and/or MAX functions, then the function only finds the
|
|
group prefix, which is a query answer itself.
|
|
|
|
NOTES
|
|
If both MIN and MAX are computed, then we use the fact that if there is
|
|
no MIN key, there can't be a MAX key as well, so we can skip looking
|
|
for a MAX key in this case.
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_END_OF_FILE if returned all keys
|
|
other if some error occurred
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::get_next()
|
|
{
|
|
int min_res= 0;
|
|
int max_res= 0;
|
|
#ifdef HPUX11
|
|
/*
|
|
volatile is required by a bug in the HP compiler due to which the
|
|
last test of result fails.
|
|
*/
|
|
volatile int result;
|
|
#else
|
|
int result;
|
|
#endif
|
|
int is_last_prefix= 0;
|
|
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");
|
|
|
|
/*
|
|
Loop until a group is found that satisfies all query conditions or the last
|
|
group is reached.
|
|
*/
|
|
do
|
|
{
|
|
result= next_prefix();
|
|
/*
|
|
Check if this is the last group prefix. Notice that at this point
|
|
this->record contains the current prefix in record format.
|
|
*/
|
|
if (!result)
|
|
{
|
|
is_last_prefix= key_cmp(index_info->key_part, last_prefix,
|
|
group_prefix_len);
|
|
DBUG_ASSERT(is_last_prefix <= 0);
|
|
}
|
|
else
|
|
{
|
|
if (result == HA_ERR_KEY_NOT_FOUND)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
if (have_min)
|
|
{
|
|
min_res= next_min();
|
|
if (min_res == 0)
|
|
update_min_result();
|
|
}
|
|
/* If there is no MIN in the group, there is no MAX either. */
|
|
if ((have_max && !have_min) ||
|
|
(have_max && have_min && (min_res == 0)))
|
|
{
|
|
max_res= next_max();
|
|
if (max_res == 0)
|
|
update_max_result();
|
|
/* If a MIN was found, a MAX must have been found as well. */
|
|
DBUG_ASSERT((have_max && !have_min) ||
|
|
(have_max && have_min && (max_res == 0)));
|
|
}
|
|
/*
|
|
If this is just a GROUP BY or DISTINCT without MIN or MAX and there
|
|
are equality predicates for the key parts after the group, find the
|
|
first sub-group with the extended prefix.
|
|
*/
|
|
if (!have_min && !have_max && key_infix_len > 0)
|
|
result= file->ha_index_read_map(record, group_prefix,
|
|
make_prev_keypart_map(real_key_parts),
|
|
HA_READ_KEY_EXACT);
|
|
|
|
result= have_min ? min_res : have_max ? max_res : result;
|
|
} while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
|
|
is_last_prefix != 0);
|
|
|
|
if (result == HA_ERR_KEY_NOT_FOUND)
|
|
result= HA_ERR_END_OF_FILE;
|
|
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Retrieve the minimal key in the next group.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_min()
|
|
|
|
DESCRIPTION
|
|
Find the minimal key within this group such that the key satisfies the query
|
|
conditions and NULL semantics. The found key is loaded into this->record.
|
|
|
|
IMPLEMENTATION
|
|
Depending on the values of min_max_ranges.elements, key_infix_len, and
|
|
whether there is a NULL in the MIN field, this function may directly
|
|
return without any data access. In this case we use the key loaded into
|
|
this->record by the call to this->next_prefix() just before this call.
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
|
|
HA_ERR_END_OF_FILE - "" -
|
|
other if some error occurred
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::next_min()
|
|
{
|
|
int result= 0;
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");
|
|
|
|
/* Find the MIN key using the eventually extended group prefix. */
|
|
if (min_max_ranges.elements > 0)
|
|
{
|
|
if ((result= next_min_in_range()))
|
|
DBUG_RETURN(result);
|
|
}
|
|
else
|
|
{
|
|
/* Apply the constant equality conditions to the non-group select fields */
|
|
if (key_infix_len > 0)
|
|
{
|
|
if ((result=
|
|
file->ha_index_read_map(record, group_prefix,
|
|
make_prev_keypart_map(real_key_parts),
|
|
HA_READ_KEY_EXACT)))
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/*
|
|
If the min/max argument field is NULL, skip subsequent rows in the same
|
|
group with NULL in it. Notice that:
|
|
- if the first row in a group doesn't have a NULL in the field, no row
|
|
in the same group has (because NULL < any other value),
|
|
- min_max_arg_part->field->ptr points to some place in 'record'.
|
|
*/
|
|
if (min_max_arg_part && min_max_arg_part->field->is_null())
|
|
{
|
|
uchar *tmp_key_buff= (uchar*)my_alloca(max_used_key_length);
|
|
/* Find the first subsequent record without NULL in the MIN/MAX field. */
|
|
key_copy(tmp_key_buff, record, index_info, max_used_key_length);
|
|
result= file->ha_index_read_map(record, tmp_key_buff,
|
|
make_keypart_map(real_key_parts),
|
|
HA_READ_AFTER_KEY);
|
|
/*
|
|
Check if the new record belongs to the current group by comparing its
|
|
prefix with the group's prefix. If it is from the next group, then the
|
|
whole group has NULLs in the MIN/MAX field, so use the first record in
|
|
the group as a result.
|
|
TODO:
|
|
It is possible to reuse this new record as the result candidate for the
|
|
next call to next_min(), and to save one lookup in the next call. For
|
|
this add a new member 'this->next_group_prefix'.
|
|
*/
|
|
if (!result)
|
|
{
|
|
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
|
|
key_restore(record, tmp_key_buff, index_info, 0);
|
|
}
|
|
else if (result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE)
|
|
result= 0; /* There is a result in any case. */
|
|
my_afree(tmp_key_buff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
If the MIN attribute is non-nullable, this->record already contains the
|
|
MIN key in the group, so just return.
|
|
*/
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Retrieve the maximal key in the next group.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_max()
|
|
|
|
DESCRIPTION
|
|
Lookup the maximal key of the group, and store it into this->record.
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
|
|
HA_ERR_END_OF_FILE - "" -
|
|
other if some error occurred
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::next_max()
|
|
{
|
|
int result;
|
|
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");
|
|
|
|
/* Get the last key in the (possibly extended) group. */
|
|
if (min_max_ranges.elements > 0)
|
|
result= next_max_in_range();
|
|
else
|
|
result= file->ha_index_read_map(record, group_prefix,
|
|
make_prev_keypart_map(real_key_parts),
|
|
HA_READ_PREFIX_LAST);
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/**
|
|
Find the next different key value by skiping all the rows with the same key
|
|
value.
|
|
|
|
Implements a specialized loose index access method for queries
|
|
containing aggregate functions with distinct of the form:
|
|
SELECT [SUM|COUNT|AVG](DISTINCT a,...) FROM t
|
|
This method comes to replace the index scan + Unique class
|
|
(distinct selection) for loose index scan that visits all the rows of a
|
|
covering index instead of jumping in the beginning of each group.
|
|
TODO: Placeholder function. To be replaced by a handler API call
|
|
|
|
@param is_index_scan hint to use index scan instead of random index read
|
|
to find the next different value.
|
|
@param file table handler
|
|
@param key_part group key to compare
|
|
@param record row data
|
|
@param group_prefix current key prefix data
|
|
@param group_prefix_len length of the current key prefix data
|
|
@param group_key_parts number of the current key prefix columns
|
|
@return status
|
|
@retval 0 success
|
|
@retval !0 failure
|
|
*/
|
|
|
|
static int index_next_different (bool is_index_scan, handler *file,
|
|
KEY_PART_INFO *key_part, uchar * record,
|
|
const uchar * group_prefix,
|
|
uint group_prefix_len,
|
|
uint group_key_parts)
|
|
{
|
|
if (is_index_scan)
|
|
{
|
|
int result= 0;
|
|
|
|
while (!key_cmp (key_part, group_prefix, group_prefix_len))
|
|
{
|
|
result= file->ha_index_next(record);
|
|
if (result)
|
|
return(result);
|
|
}
|
|
return result;
|
|
}
|
|
else
|
|
return file->ha_index_read_map(record, group_prefix,
|
|
make_prev_keypart_map(group_key_parts),
|
|
HA_READ_AFTER_KEY);
|
|
}
|
|
|
|
|
|
/*
|
|
Determine the prefix of the next group.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
|
|
|
|
DESCRIPTION
|
|
Determine the prefix of the next group that satisfies the query conditions.
|
|
If there is a range condition referencing the group attributes, use a
|
|
QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
|
|
condition. If there is a key infix of constants, append this infix
|
|
immediately after the group attributes. The possibly extended prefix is
|
|
stored in this->group_prefix. The first key of the found group is stored in
|
|
this->record, on which relies this->next_min().
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
|
|
HA_ERR_END_OF_FILE if there are no more keys
|
|
other if some error occurred
|
|
*/
|
|
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
|
|
{
|
|
int result;
|
|
DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");
|
|
|
|
if (quick_prefix_select)
|
|
{
|
|
uchar *cur_prefix= seen_first_key ? group_prefix : NULL;
|
|
if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
|
|
group_key_parts,
|
|
cur_prefix)))
|
|
DBUG_RETURN(result);
|
|
seen_first_key= TRUE;
|
|
}
|
|
else
|
|
{
|
|
if (!seen_first_key)
|
|
{
|
|
result= file->ha_index_first(record);
|
|
if (result)
|
|
DBUG_RETURN(result);
|
|
seen_first_key= TRUE;
|
|
}
|
|
else
|
|
{
|
|
/* Load the first key in this group into record. */
|
|
result= index_next_different (is_index_scan, file, index_info->key_part,
|
|
record, group_prefix, group_prefix_len,
|
|
group_key_parts);
|
|
if (result)
|
|
DBUG_RETURN(result);
|
|
}
|
|
}
|
|
|
|
/* Save the prefix of this group for subsequent calls. */
|
|
key_copy(group_prefix, record, index_info, group_prefix_len);
|
|
/* Append key_infix to group_prefix. */
|
|
if (key_infix_len > 0)
|
|
memcpy(group_prefix + group_prefix_len,
|
|
key_infix, key_infix_len);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/**
|
|
Allocate a temporary buffer, populate the buffer using the group prefix key
|
|
and the min/max field key, and compare the result to the current key pointed
|
|
by index_info.
|
|
|
|
@param key - the min or max field key
|
|
@param length - length of "key"
|
|
*/
|
|
int
|
|
QUICK_GROUP_MIN_MAX_SELECT::cmp_min_max_key(const uchar *key, uint16 length)
|
|
{
|
|
/*
|
|
Allocate a buffer.
|
|
Note, we allocate one extra byte, because some of Field_xxx::cmp(),
|
|
e.g. Field_newdate::cmp(), use uint3korr() which actually read four bytes
|
|
and then bit-and the read value with 0xFFFFFF.
|
|
See "MDEV-7920 main.group_min_max fails ... with valgrind" for details.
|
|
*/
|
|
uchar *buffer= (uchar*) my_alloca(real_prefix_len + min_max_arg_len + 1);
|
|
/* Concatenate the group prefix key and the min/max field key */
|
|
memcpy(buffer, group_prefix, real_prefix_len);
|
|
memcpy(buffer + real_prefix_len, key, length);
|
|
/* Compare the key pointed by key_info to the created key */
|
|
int cmp_res= key_cmp(index_info->key_part, buffer,
|
|
real_prefix_len + min_max_arg_len);
|
|
my_afree(buffer);
|
|
return cmp_res;
|
|
}
|
|
|
|
|
|
/*
|
|
Find the minimal key in a group that satisfies some range conditions for the
|
|
min/max argument field.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
|
|
|
|
DESCRIPTION
|
|
Given the sequence of ranges min_max_ranges, find the minimal key that is
|
|
in the left-most possible range. If there is no such key, then the current
|
|
group does not have a MIN key that satisfies the WHERE clause. If a key is
|
|
found, its value is stored in this->record.
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
|
|
the ranges
|
|
HA_ERR_END_OF_FILE - "" -
|
|
other if some error
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
|
|
{
|
|
ha_rkey_function find_flag;
|
|
key_part_map keypart_map;
|
|
QUICK_RANGE *cur_range;
|
|
bool found_null= FALSE;
|
|
int result= HA_ERR_KEY_NOT_FOUND;
|
|
|
|
DBUG_ASSERT(min_max_ranges.elements > 0);
|
|
|
|
for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
|
|
{ /* Search from the left-most range to the right. */
|
|
get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx);
|
|
|
|
/*
|
|
If the current value for the min/max argument is bigger than the right
|
|
boundary of cur_range, there is no need to check this range.
|
|
*/
|
|
if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
|
|
(key_cmp(min_max_arg_part, (const uchar*) cur_range->max_key,
|
|
min_max_arg_len) == 1))
|
|
continue;
|
|
|
|
if (cur_range->flag & NO_MIN_RANGE)
|
|
{
|
|
keypart_map= make_prev_keypart_map(real_key_parts);
|
|
find_flag= HA_READ_KEY_EXACT;
|
|
}
|
|
else
|
|
{
|
|
/* Extend the search key with the lower boundary for this range. */
|
|
memcpy(group_prefix + real_prefix_len, cur_range->min_key,
|
|
cur_range->min_length);
|
|
keypart_map= make_keypart_map(real_key_parts);
|
|
find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
|
|
HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
|
|
HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
|
|
}
|
|
|
|
result= file->ha_index_read_map(record, group_prefix, keypart_map,
|
|
find_flag);
|
|
if (result)
|
|
{
|
|
if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
|
|
(cur_range->flag & (EQ_RANGE | NULL_RANGE)))
|
|
continue; /* Check the next range. */
|
|
|
|
/*
|
|
In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
|
|
HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
|
|
range, it can't succeed for any other subsequent range.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/* A key was found. */
|
|
if (cur_range->flag & EQ_RANGE)
|
|
break; /* No need to perform the checks below for equal keys. */
|
|
|
|
if (cur_range->flag & NULL_RANGE)
|
|
{
|
|
/*
|
|
Remember this key, and continue looking for a non-NULL key that
|
|
satisfies some other condition.
|
|
*/
|
|
memcpy(tmp_record, record, head->s->rec_buff_length);
|
|
found_null= TRUE;
|
|
continue;
|
|
}
|
|
|
|
/* Check if record belongs to the current group. */
|
|
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
|
|
{
|
|
result= HA_ERR_KEY_NOT_FOUND;
|
|
continue;
|
|
}
|
|
|
|
/* If there is an upper limit, check if the found key is in the range. */
|
|
if ( !(cur_range->flag & NO_MAX_RANGE) )
|
|
{
|
|
int cmp_res= cmp_min_max_key(cur_range->max_key, cur_range->max_length);
|
|
/*
|
|
The key is outside of the range if:
|
|
the interval is open and the key is equal to the maximum boundry
|
|
or
|
|
the key is greater than the maximum
|
|
*/
|
|
if (((cur_range->flag & NEAR_MAX) && cmp_res == 0) ||
|
|
cmp_res > 0)
|
|
{
|
|
result= HA_ERR_KEY_NOT_FOUND;
|
|
continue;
|
|
}
|
|
}
|
|
/* If we got to this point, the current key qualifies as MIN. */
|
|
DBUG_ASSERT(result == 0);
|
|
break;
|
|
}
|
|
/*
|
|
If there was a key with NULL in the MIN/MAX field, and there was no other
|
|
key without NULL from the same group that satisfies some other condition,
|
|
then use the key with the NULL.
|
|
*/
|
|
if (found_null && result)
|
|
{
|
|
memcpy(record, tmp_record, head->s->rec_buff_length);
|
|
result= 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
Find the maximal key in a group that satisfies some range conditions for the
|
|
min/max argument field.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
|
|
|
|
DESCRIPTION
|
|
Given the sequence of ranges min_max_ranges, find the maximal key that is
|
|
in the right-most possible range. If there is no such key, then the current
|
|
group does not have a MAX key that satisfies the WHERE clause. If a key is
|
|
found, its value is stored in this->record.
|
|
|
|
RETURN
|
|
0 on success
|
|
HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
|
|
the ranges
|
|
HA_ERR_END_OF_FILE - "" -
|
|
other if some error
|
|
*/
|
|
|
|
int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
|
|
{
|
|
ha_rkey_function find_flag;
|
|
key_part_map keypart_map;
|
|
QUICK_RANGE *cur_range;
|
|
int result;
|
|
|
|
DBUG_ASSERT(min_max_ranges.elements > 0);
|
|
|
|
for (size_t range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
|
|
{ /* Search from the right-most range to the left. */
|
|
get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx - 1);
|
|
|
|
/*
|
|
If the current value for the min/max argument is smaller than the left
|
|
boundary of cur_range, there is no need to check this range.
|
|
*/
|
|
if (range_idx != min_max_ranges.elements &&
|
|
!(cur_range->flag & NO_MIN_RANGE) &&
|
|
(key_cmp(min_max_arg_part, (const uchar*) cur_range->min_key,
|
|
min_max_arg_len) == -1))
|
|
continue;
|
|
|
|
if (cur_range->flag & NO_MAX_RANGE)
|
|
{
|
|
keypart_map= make_prev_keypart_map(real_key_parts);
|
|
find_flag= HA_READ_PREFIX_LAST;
|
|
}
|
|
else
|
|
{
|
|
/* Extend the search key with the upper boundary for this range. */
|
|
memcpy(group_prefix + real_prefix_len, cur_range->max_key,
|
|
cur_range->max_length);
|
|
keypart_map= make_keypart_map(real_key_parts);
|
|
find_flag= (cur_range->flag & EQ_RANGE) ?
|
|
HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
|
|
HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
|
|
}
|
|
|
|
result= file->ha_index_read_map(record, group_prefix, keypart_map,
|
|
find_flag);
|
|
|
|
if (result)
|
|
{
|
|
if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
|
|
(cur_range->flag & EQ_RANGE))
|
|
continue; /* Check the next range. */
|
|
|
|
/*
|
|
In no key was found with this upper bound, there certainly are no keys
|
|
in the ranges to the left.
|
|
*/
|
|
return result;
|
|
}
|
|
/* A key was found. */
|
|
if (cur_range->flag & EQ_RANGE)
|
|
return 0; /* No need to perform the checks below for equal keys. */
|
|
|
|
/* Check if record belongs to the current group. */
|
|
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
|
|
continue; // Row not found
|
|
|
|
/* If there is a lower limit, check if the found key is in the range. */
|
|
if ( !(cur_range->flag & NO_MIN_RANGE) )
|
|
{
|
|
int cmp_res= cmp_min_max_key(cur_range->min_key, cur_range->min_length);
|
|
/*
|
|
The key is outside of the range if:
|
|
the interval is open and the key is equal to the minimum boundry
|
|
or
|
|
the key is less than the minimum
|
|
*/
|
|
if (((cur_range->flag & NEAR_MIN) && cmp_res == 0) ||
|
|
cmp_res < 0)
|
|
continue;
|
|
}
|
|
/* If we got to this point, the current key qualifies as MAX. */
|
|
return result;
|
|
}
|
|
return HA_ERR_KEY_NOT_FOUND;
|
|
}
|
|
|
|
|
|
/*
|
|
Update all MIN function results with the newly found value.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
|
|
|
|
DESCRIPTION
|
|
The method iterates through all MIN functions and updates the result value
|
|
of each function by calling Item_sum::reset(), which in turn picks the new
|
|
result value from this->head->record[0], previously updated by
|
|
next_min(). The updated value is stored in a member variable of each of the
|
|
Item_sum objects, depending on the value type.
|
|
|
|
IMPLEMENTATION
|
|
The update must be done separately for MIN and MAX, immediately after
|
|
next_min() was called and before next_max() is called, because both MIN and
|
|
MAX take their result value from the same buffer this->head->record[0]
|
|
(i.e. this->record).
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
|
|
{
|
|
Item_sum *min_func;
|
|
|
|
min_functions_it->rewind();
|
|
while ((min_func= (*min_functions_it)++))
|
|
min_func->reset_and_add();
|
|
}
|
|
|
|
|
|
/*
|
|
Update all MAX function results with the newly found value.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
|
|
|
|
DESCRIPTION
|
|
The method iterates through all MAX functions and updates the result value
|
|
of each function by calling Item_sum::reset(), which in turn picks the new
|
|
result value from this->head->record[0], previously updated by
|
|
next_max(). The updated value is stored in a member variable of each of the
|
|
Item_sum objects, depending on the value type.
|
|
|
|
IMPLEMENTATION
|
|
The update must be done separately for MIN and MAX, immediately after
|
|
next_max() was called, because both MIN and MAX take their result value
|
|
from the same buffer this->head->record[0] (i.e. this->record).
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
|
|
{
|
|
Item_sum *max_func;
|
|
|
|
max_functions_it->rewind();
|
|
while ((max_func= (*max_functions_it)++))
|
|
max_func->reset_and_add();
|
|
}
|
|
|
|
|
|
/*
|
|
Append comma-separated list of keys this quick select uses to key_names;
|
|
append comma-separated list of corresponding used lengths to used_lengths.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
|
|
key_names [out] Names of used indexes
|
|
used_lengths [out] Corresponding lengths of the index names
|
|
|
|
DESCRIPTION
|
|
This method is used by select_describe to extract the names of the
|
|
indexes used by a quick select.
|
|
|
|
*/
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
|
|
String *used_lengths)
|
|
{
|
|
bool first= TRUE;
|
|
|
|
add_key_and_length(key_names, used_lengths, &first);
|
|
}
|
|
|
|
|
|
/* Check whether the number for equality ranges exceeds the set threshold */
|
|
|
|
bool eq_ranges_exceeds_limit(RANGE_SEQ_IF *seq, void *seq_init_param,
|
|
uint limit)
|
|
{
|
|
KEY_MULTI_RANGE range;
|
|
range_seq_t seq_it;
|
|
uint count = 0;
|
|
|
|
if (limit == 0)
|
|
{
|
|
/* 'Statistics instead of index dives' feature is turned off */
|
|
return false;
|
|
}
|
|
seq_it= seq->init(seq_init_param, 0, 0);
|
|
while (!seq->next(seq_it, &range))
|
|
{
|
|
if ((range.range_flag & EQ_RANGE) && !(range.range_flag & NULL_RANGE))
|
|
{
|
|
if (++count >= limit)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifndef DBUG_OFF
|
|
|
|
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
|
|
const char *msg)
|
|
{
|
|
char buff[1024];
|
|
DBUG_ENTER("print_sel_tree");
|
|
|
|
String tmp(buff,sizeof(buff),&my_charset_bin);
|
|
tmp.length(0);
|
|
for (uint idx= 0; idx < param->keys; idx++)
|
|
{
|
|
if (tree_map->is_set(idx))
|
|
{
|
|
uint keynr= param->real_keynr[idx];
|
|
if (tmp.length())
|
|
tmp.append(',');
|
|
tmp.append(¶m->table->key_info[keynr].name);
|
|
}
|
|
}
|
|
if (!tmp.length())
|
|
tmp.append(STRING_WITH_LEN("(empty)"));
|
|
|
|
DBUG_PRINT("info", ("SEL_TREE: %p (%s) scans: %s", tree, msg,
|
|
tmp.c_ptr_safe()));
|
|
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
static void print_ror_scans_arr(TABLE *table, const char *msg,
|
|
struct st_ror_scan_info **start,
|
|
struct st_ror_scan_info **end)
|
|
{
|
|
DBUG_ENTER("print_ror_scans_arr");
|
|
|
|
char buff[1024];
|
|
String tmp(buff,sizeof(buff),&my_charset_bin);
|
|
tmp.length(0);
|
|
for (;start != end; start++)
|
|
{
|
|
if (tmp.length())
|
|
tmp.append(',');
|
|
tmp.append(&table->key_info[(*start)->keynr].name);
|
|
}
|
|
if (!tmp.length())
|
|
tmp.append(STRING_WITH_LEN("(empty)"));
|
|
DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.c_ptr()));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
static String dbug_print_sel_arg_buf;
|
|
|
|
static void
|
|
print_sel_arg_key(Field *field, const uchar *key, String *out)
|
|
{
|
|
TABLE *table= field->table;
|
|
MY_BITMAP *old_sets[2];
|
|
dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
|
|
|
|
if (field->real_maybe_null())
|
|
{
|
|
if (*key)
|
|
{
|
|
out->append(STRING_WITH_LEN("NULL"));
|
|
goto end;
|
|
}
|
|
key++; // Skip null byte
|
|
}
|
|
|
|
field->set_key_image(key, field->pack_length());
|
|
|
|
if (field->type() == MYSQL_TYPE_BIT)
|
|
(void) field->val_int_as_str(out, 1);
|
|
else
|
|
field->val_str(out);
|
|
|
|
end:
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
}
|
|
|
|
|
|
/*
|
|
@brief
|
|
Produce a string representation of an individual SEL_ARG and return pointer
|
|
to it
|
|
|
|
@detail
|
|
Intended usage:
|
|
|
|
(gdb) p dbug_print_sel_arg(ptr)
|
|
*/
|
|
|
|
const char *dbug_print_sel_arg(SEL_ARG *sel_arg)
|
|
{
|
|
StringBuffer<64> buf;
|
|
String &out= dbug_print_sel_arg_buf;
|
|
LEX_CSTRING tmp;
|
|
out.length(0);
|
|
|
|
if (!sel_arg)
|
|
{
|
|
out.append(STRING_WITH_LEN("NULL"));
|
|
goto end;
|
|
}
|
|
|
|
out.append(STRING_WITH_LEN("SEL_ARG("));
|
|
|
|
const char *stype;
|
|
switch(sel_arg->type) {
|
|
case SEL_ARG::IMPOSSIBLE:
|
|
stype="IMPOSSIBLE";
|
|
break;
|
|
case SEL_ARG::MAYBE:
|
|
stype="MAYBE";
|
|
break;
|
|
case SEL_ARG::MAYBE_KEY:
|
|
stype="MAYBE_KEY";
|
|
break;
|
|
case SEL_ARG::KEY_RANGE:
|
|
default:
|
|
stype= NULL;
|
|
}
|
|
|
|
if (stype)
|
|
{
|
|
out.append(STRING_WITH_LEN("type="));
|
|
out.append(stype, strlen(stype));
|
|
goto end;
|
|
}
|
|
|
|
if (sel_arg->min_flag & NO_MIN_RANGE)
|
|
out.append(STRING_WITH_LEN("-inf"));
|
|
else
|
|
{
|
|
print_sel_arg_key(sel_arg->field, sel_arg->min_value, &buf);
|
|
out.append(buf);
|
|
}
|
|
|
|
if (sel_arg->min_flag & NEAR_MIN)
|
|
lex_string_set3(&tmp, "<", 1);
|
|
else
|
|
lex_string_set3(&tmp, "<=", 2);
|
|
out.append(&tmp);
|
|
|
|
out.append(sel_arg->field->field_name);
|
|
|
|
if (sel_arg->min_flag & NEAR_MAX)
|
|
lex_string_set3(&tmp, "<", 1);
|
|
else
|
|
lex_string_set3(&tmp, "<=", 2);
|
|
out.append(&tmp);
|
|
|
|
if (sel_arg->max_flag & NO_MAX_RANGE)
|
|
out.append(STRING_WITH_LEN("+inf"));
|
|
else
|
|
{
|
|
buf.length(0);
|
|
print_sel_arg_key(sel_arg->field, sel_arg->max_value, &buf);
|
|
out.append(buf);
|
|
}
|
|
|
|
out.append(')');
|
|
|
|
end:
|
|
return dbug_print_sel_arg_buf.c_ptr_safe();
|
|
}
|
|
|
|
|
|
/*****************************************************************************
|
|
** Print a quick range for debugging
|
|
** TODO:
|
|
** This should be changed to use a String to store each row instead
|
|
** of locking the DEBUG stream !
|
|
*****************************************************************************/
|
|
|
|
static void
|
|
print_key(KEY_PART *key_part, const uchar *key, uint used_length)
|
|
{
|
|
char buff[1024];
|
|
const uchar *key_end= key+used_length;
|
|
uint store_length;
|
|
TABLE *table= key_part->field->table;
|
|
MY_BITMAP *old_sets[2];
|
|
|
|
dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
|
|
|
|
for (; key < key_end; key+=store_length, key_part++)
|
|
{
|
|
String tmp(buff,sizeof(buff),&my_charset_bin);
|
|
Field *field= key_part->field;
|
|
store_length= key_part->store_length;
|
|
|
|
if (field->real_maybe_null())
|
|
{
|
|
if (*key)
|
|
{
|
|
fwrite("NULL",sizeof(char),4,DBUG_FILE);
|
|
continue;
|
|
}
|
|
key++; // Skip null byte
|
|
store_length--;
|
|
}
|
|
field->set_key_image(key, key_part->length);
|
|
if (field->type() == MYSQL_TYPE_BIT)
|
|
(void) field->val_int_as_str(&tmp, 1);
|
|
else
|
|
field->val_str(&tmp);
|
|
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
|
|
if (key+store_length < key_end)
|
|
fputc('/',DBUG_FILE);
|
|
}
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
}
|
|
|
|
|
|
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
|
|
{
|
|
char buf[MAX_KEY/8+1];
|
|
TABLE *table;
|
|
MY_BITMAP *old_sets[2];
|
|
DBUG_ENTER("print_quick");
|
|
if (!quick)
|
|
DBUG_VOID_RETURN;
|
|
DBUG_LOCK_FILE;
|
|
|
|
table= quick->head;
|
|
dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
|
|
quick->dbug_dump(0, TRUE);
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
|
|
fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
|
|
|
|
DBUG_UNLOCK_FILE;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
|
|
{
|
|
/* purecov: begin inspected */
|
|
fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
|
|
indent, "", head->key_info[index].name.str, max_used_key_length);
|
|
|
|
if (verbose)
|
|
{
|
|
QUICK_RANGE *range;
|
|
QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
|
|
QUICK_RANGE **end_range= pr + ranges.elements;
|
|
for (; pr != end_range; ++pr)
|
|
{
|
|
fprintf(DBUG_FILE, "%*s", indent + 2, "");
|
|
range= *pr;
|
|
if (!(range->flag & NO_MIN_RANGE))
|
|
{
|
|
print_key(key_parts, range->min_key, range->min_length);
|
|
if (range->flag & NEAR_MIN)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
}
|
|
fputs("X",DBUG_FILE);
|
|
|
|
if (!(range->flag & NO_MAX_RANGE))
|
|
{
|
|
if (range->flag & NEAR_MAX)
|
|
fputs(" < ",DBUG_FILE);
|
|
else
|
|
fputs(" <= ",DBUG_FILE);
|
|
print_key(key_parts, range->max_key, range->max_length);
|
|
}
|
|
fputs("\n",DBUG_FILE);
|
|
}
|
|
}
|
|
/* purecov: end */
|
|
}
|
|
|
|
void QUICK_INDEX_SORT_SELECT::dbug_dump(int indent, bool verbose)
|
|
{
|
|
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
|
|
QUICK_RANGE_SELECT *quick;
|
|
fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
|
|
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
|
|
while ((quick= it++))
|
|
quick->dbug_dump(indent+2, verbose);
|
|
if (pk_quick_select)
|
|
{
|
|
fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
|
|
pk_quick_select->dbug_dump(indent+2, verbose);
|
|
}
|
|
fprintf(DBUG_FILE, "%*s}\n", indent, "");
|
|
}
|
|
|
|
void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects);
|
|
QUICK_SELECT_WITH_RECORD *qr;
|
|
fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
|
|
indent, "", need_to_fetch_row? "":"non-");
|
|
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
|
|
while ((qr= it++))
|
|
qr->quick->dbug_dump(indent+2, verbose);
|
|
if (cpk_quick)
|
|
{
|
|
fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
|
|
cpk_quick->dbug_dump(indent+2, verbose);
|
|
}
|
|
fprintf(DBUG_FILE, "%*s}\n", indent, "");
|
|
}
|
|
|
|
void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
|
|
{
|
|
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
|
|
QUICK_SELECT_I *quick;
|
|
fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
|
|
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
|
|
while ((quick= it++))
|
|
quick->dbug_dump(indent+2, verbose);
|
|
fprintf(DBUG_FILE, "%*s}\n", indent, "");
|
|
}
|
|
|
|
|
|
/*
|
|
Print quick select information to DBUG_FILE.
|
|
|
|
SYNOPSIS
|
|
QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
|
|
indent Indentation offset
|
|
verbose If TRUE show more detailed output.
|
|
|
|
DESCRIPTION
|
|
Print the contents of this quick select to DBUG_FILE. The method also
|
|
calls dbug_dump() for the used quick select if any.
|
|
|
|
IMPLEMENTATION
|
|
Caller is responsible for locking DBUG_FILE before this call and unlocking
|
|
it afterwards.
|
|
|
|
RETURN
|
|
None
|
|
*/
|
|
|
|
void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
|
|
{
|
|
fprintf(DBUG_FILE,
|
|
"%*squick_group_min_max_select: index %s (%d), length: %d\n",
|
|
indent, "", index_info->name.str, index, max_used_key_length);
|
|
if (key_infix_len > 0)
|
|
{
|
|
fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
|
|
indent, "", key_infix_len);
|
|
}
|
|
if (quick_prefix_select)
|
|
{
|
|
fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
|
|
quick_prefix_select->dbug_dump(indent + 2, verbose);
|
|
}
|
|
if (min_max_ranges.elements > 0)
|
|
{
|
|
fprintf(DBUG_FILE, "%*susing %zu quick_ranges for MIN/MAX:\n",
|
|
indent, "", min_max_ranges.elements);
|
|
}
|
|
}
|
|
|
|
#endif /* !DBUG_OFF */
|
|
|
|
|
|
/*
|
|
@brief Print the comparison operator for the min range
|
|
*/
|
|
|
|
static void print_min_range_operator(String *out, const ha_rkey_function flag)
|
|
{
|
|
if (flag == HA_READ_AFTER_KEY)
|
|
out->append(STRING_WITH_LEN(" < "));
|
|
else if (flag == HA_READ_KEY_EXACT || flag == HA_READ_KEY_OR_NEXT)
|
|
out->append(STRING_WITH_LEN(" <= "));
|
|
else
|
|
out->append(STRING_WITH_LEN(" ? "));
|
|
}
|
|
|
|
|
|
/*
|
|
@brief Print the comparison operator for the max range
|
|
*/
|
|
|
|
static void print_max_range_operator(String *out, const ha_rkey_function flag)
|
|
{
|
|
if (flag == HA_READ_BEFORE_KEY)
|
|
out->append(STRING_WITH_LEN(" < "));
|
|
else if (flag == HA_READ_AFTER_KEY)
|
|
out->append(STRING_WITH_LEN(" <= "));
|
|
else
|
|
out->append(STRING_WITH_LEN(" ? "));
|
|
}
|
|
|
|
|
|
static
|
|
void print_range(String *out, const KEY_PART_INFO *key_part,
|
|
KEY_MULTI_RANGE *range, uint n_key_parts)
|
|
{
|
|
uint flag= range->range_flag;
|
|
String key_name;
|
|
key_name.set_charset(system_charset_info);
|
|
key_part_map keypart_map= range->start_key.keypart_map |
|
|
range->end_key.keypart_map;
|
|
|
|
if (flag & GEOM_FLAG)
|
|
{
|
|
/*
|
|
The flags of GEOM ranges do not work the same way as for other
|
|
range types, so printing "col < some_geom" doesn't make sense.
|
|
Just print the column name, not operator.
|
|
*/
|
|
print_keyparts_name(out, key_part, n_key_parts, keypart_map);
|
|
out->append(STRING_WITH_LEN(" "));
|
|
print_key_value(out, key_part, range->start_key.key,
|
|
range->start_key.length);
|
|
return;
|
|
}
|
|
|
|
if (range->start_key.length)
|
|
{
|
|
print_key_value(out, key_part, range->start_key.key,
|
|
range->start_key.length);
|
|
print_min_range_operator(out, range->start_key.flag);
|
|
}
|
|
|
|
print_keyparts_name(out, key_part, n_key_parts, keypart_map);
|
|
|
|
if (range->end_key.length)
|
|
{
|
|
print_max_range_operator(out, range->end_key.flag);
|
|
print_key_value(out, key_part, range->end_key.key,
|
|
range->end_key.length);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
@brief Print range created for non-indexed columns
|
|
|
|
@param
|
|
out output string
|
|
field field for which the range is printed
|
|
range range for the field
|
|
*/
|
|
|
|
static
|
|
void print_range_for_non_indexed_field(String *out, Field *field,
|
|
KEY_MULTI_RANGE *range)
|
|
{
|
|
TABLE *table= field->table;
|
|
MY_BITMAP *old_sets[2];
|
|
dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
|
|
|
|
if (range->start_key.length)
|
|
{
|
|
field->print_key_part_value(out, range->start_key.key, field->key_length());
|
|
print_min_range_operator(out, range->start_key.flag);
|
|
}
|
|
|
|
out->append(field->field_name);
|
|
|
|
if (range->end_key.length)
|
|
{
|
|
print_max_range_operator(out, range->end_key.flag);
|
|
field->print_key_part_value(out, range->end_key.key, field->key_length());
|
|
}
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Add ranges to the trace
|
|
For ex:
|
|
lets say we have an index a_b(a,b)
|
|
query: select * from t1 where a=2 and b=4 ;
|
|
so we create a range:
|
|
(2,4) <= (a,b) <= (2,4)
|
|
this is added to the trace
|
|
*/
|
|
|
|
static void trace_ranges(Json_writer_array *range_trace,
|
|
PARAM *param, uint idx,
|
|
SEL_ARG *keypart,
|
|
const KEY_PART_INFO *key_parts)
|
|
{
|
|
SEL_ARG_RANGE_SEQ seq;
|
|
KEY_MULTI_RANGE range;
|
|
range_seq_t seq_it;
|
|
uint flags= 0;
|
|
RANGE_SEQ_IF seq_if = {NULL, sel_arg_range_seq_init,
|
|
sel_arg_range_seq_next, 0, 0};
|
|
KEY *keyinfo= param->table->key_info + param->real_keynr[idx];
|
|
uint n_key_parts= param->table->actual_n_key_parts(keyinfo);
|
|
DBUG_ASSERT(range_trace->trace_started());
|
|
seq.keyno= idx;
|
|
seq.key_parts= param->key[idx];
|
|
seq.real_keyno= param->real_keynr[idx];
|
|
seq.param= param;
|
|
seq.start= keypart;
|
|
/*
|
|
is_ror_scan is set to FALSE here, because we are only interested
|
|
in iterating over all the ranges and printing them.
|
|
*/
|
|
seq.is_ror_scan= FALSE;
|
|
const KEY_PART_INFO *cur_key_part= key_parts + keypart->part;
|
|
seq_it= seq_if.init((void *) &seq, 0, flags);
|
|
|
|
while (!seq_if.next(seq_it, &range))
|
|
{
|
|
StringBuffer<128> range_info(system_charset_info);
|
|
print_range(&range_info, cur_key_part, &range, n_key_parts);
|
|
range_trace->add(range_info.c_ptr_safe(), range_info.length());
|
|
}
|
|
}
|
|
|
|
/**
|
|
Print a key to a string
|
|
|
|
@param[out] out String the key is appended to
|
|
@param[in] key_part Index components description
|
|
@param[in] key Key tuple
|
|
@param[in] used_length length of the key tuple
|
|
*/
|
|
|
|
static void print_key_value(String *out, const KEY_PART_INFO *key_part,
|
|
const uchar* key, uint used_length)
|
|
{
|
|
out->append(STRING_WITH_LEN("("));
|
|
Field *field= key_part->field;
|
|
StringBuffer<128> tmp(system_charset_info);
|
|
TABLE *table= field->table;
|
|
uint store_length;
|
|
MY_BITMAP *old_sets[2];
|
|
dbug_tmp_use_all_columns(table, old_sets, &table->read_set, &table->write_set);
|
|
const uchar *key_end= key+used_length;
|
|
|
|
for (; key < key_end; key+=store_length, key_part++)
|
|
{
|
|
field= key_part->field;
|
|
store_length= key_part->store_length;
|
|
|
|
field->print_key_part_value(out, key, key_part->length);
|
|
|
|
if (key + store_length < key_end)
|
|
out->append(STRING_WITH_LEN(","));
|
|
}
|
|
dbug_tmp_restore_column_maps(&table->read_set, &table->write_set, old_sets);
|
|
out->append(STRING_WITH_LEN(")"));
|
|
}
|
|
|
|
/**
|
|
Print key parts involed in a range
|
|
@param[out] out String the key is appended to
|
|
@param[in] key_part Index components description
|
|
@param[in] n_keypart Number of keyparts in index
|
|
@param[in] keypart_map map for keyparts involved in the range
|
|
*/
|
|
|
|
void print_keyparts_name(String *out, const KEY_PART_INFO *key_part,
|
|
uint n_keypart, key_part_map keypart_map)
|
|
{
|
|
uint i;
|
|
out->append(STRING_WITH_LEN("("));
|
|
bool first_keypart= TRUE;
|
|
for (i=0; i < n_keypart; key_part++, i++)
|
|
{
|
|
if (keypart_map & (1 << i))
|
|
{
|
|
if (first_keypart)
|
|
first_keypart= FALSE;
|
|
else
|
|
out->append(STRING_WITH_LEN(","));
|
|
out->append(key_part->field->field_name);
|
|
if (key_part->key_part_flag & HA_REVERSE_SORT)
|
|
out->append(STRING_WITH_LEN(" DESC"));
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
out->append(STRING_WITH_LEN(")"));
|
|
}
|