mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 14:54:20 +01:00
0cc59b6952
git-svn-id: file:///svn/toku/tokudb@36450 c7de825b-a66e-492c-adef-691d508d4ae1
1298 lines
48 KiB
C
1298 lines
48 KiB
C
/* -*- mode: C; c-basic-offset: 4 -*- */
|
|
#ident "$Id$"
|
|
#ident "Copyright (c) 2007, 2008 Tokutek Inc. All rights reserved."
|
|
|
|
#include "test.h"
|
|
|
|
#include "includes.h"
|
|
|
|
#define MIN(x, y) (((x) < (y)) ? (x) : (y))
|
|
|
|
static int omt_int_cmp(OMTVALUE p, void *q)
|
|
{
|
|
LEAFENTRY a = p, b = q;
|
|
void *ak, *bk;
|
|
u_int32_t al, bl;
|
|
ak = le_key_and_len(a, &al);
|
|
bk = le_key_and_len(b, &bl);
|
|
assert(al == 4 && bl == 4);
|
|
int ai = *(int *) ak;
|
|
int bi = *(int *) bk;
|
|
int c = ai - bi;
|
|
if (c < 0) { return -1; }
|
|
if (c > 0) { return +1; }
|
|
else { return 0; }
|
|
}
|
|
|
|
static int omt_cmp(OMTVALUE p, void *q)
|
|
{
|
|
LEAFENTRY a = p, b = q;
|
|
void *ak, *bk;
|
|
u_int32_t al, bl;
|
|
ak = le_key_and_len(a, &al);
|
|
bk = le_key_and_len(b, &bl);
|
|
int l = MIN(al, bl);
|
|
int c = memcmp(ak, bk, l);
|
|
if (c < 0) { return -1; }
|
|
if (c > 0) { return +1; }
|
|
int d = al - bl;
|
|
if (d < 0) { return -1; }
|
|
if (d > 0) { return +1; }
|
|
else { return 0; }
|
|
}
|
|
|
|
static LEAFENTRY
|
|
le_fastmalloc(char *key, int keylen, char *val, int vallen)
|
|
{
|
|
LEAFENTRY r = toku_malloc(sizeof(r->type) + sizeof(r->keylen) + sizeof(r->u.clean.vallen) +
|
|
keylen + vallen);
|
|
resource_assert(r);
|
|
r->type = LE_CLEAN;
|
|
r->keylen = keylen;
|
|
r->u.clean.vallen = vallen;
|
|
memcpy(&r->u.clean.key_val[0], key, keylen);
|
|
memcpy(&r->u.clean.key_val[keylen], val, vallen);
|
|
return r;
|
|
}
|
|
|
|
static LEAFENTRY
|
|
le_malloc(char *key, char *val)
|
|
{
|
|
int keylen = strlen(key) + 1;
|
|
int vallen = strlen(val) + 1;
|
|
return le_fastmalloc(key, keylen, val, vallen);
|
|
}
|
|
|
|
struct check_leafentries_struct {
|
|
int nelts;
|
|
LEAFENTRY *elts;
|
|
int i;
|
|
int (*cmp)(OMTVALUE, void *);
|
|
};
|
|
|
|
static int check_leafentries(OMTVALUE v, u_int32_t UU(i), void *extra) {
|
|
struct check_leafentries_struct *e = extra;
|
|
assert(e->i < e->nelts);
|
|
assert(e->cmp(v, e->elts[e->i]) == 0);
|
|
e->i++;
|
|
return 0;
|
|
}
|
|
|
|
enum brtnode_verify_type {
|
|
read_all=1,
|
|
read_compressed,
|
|
read_none
|
|
};
|
|
|
|
static int
|
|
string_key_cmp(DB *UU(e), const DBT *a, const DBT *b)
|
|
{
|
|
char *s = a->data, *t = b->data;
|
|
return strcmp(s, t);
|
|
}
|
|
|
|
static void
|
|
setup_dn(enum brtnode_verify_type bft, int fd, struct brt_header *brt_h, BRTNODE *dn) {
|
|
int r;
|
|
if (bft == read_all) {
|
|
struct brtnode_fetch_extra bfe;
|
|
fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp);
|
|
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &bfe);
|
|
assert(r==0);
|
|
}
|
|
else if (bft == read_compressed || bft == read_none) {
|
|
struct brtnode_fetch_extra bfe;
|
|
fill_bfe_for_min_read(&bfe, brt_h, NULL, string_key_cmp);
|
|
r = toku_deserialize_brtnode_from(fd, make_blocknum(20), 0/*pass zero for hash*/, dn, &bfe);
|
|
assert(r==0);
|
|
// assert all bp's are compressed or on disk.
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED || BP_STATE(*dn, i) == PT_ON_DISK);
|
|
}
|
|
// if read_none, get rid of the compressed bp's
|
|
if (bft == read_none) {
|
|
if ((*dn)->height == 0) {
|
|
long bytes_freed = 0;
|
|
toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL);
|
|
// assert all bp's are on disk
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
if ((*dn)->height == 0) {
|
|
assert(BP_STATE(*dn,i) == PT_ON_DISK);
|
|
assert(is_BNULL(*dn, i));
|
|
}
|
|
else {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// first decompress everything, and make sure
|
|
// that it is available
|
|
// then run partial eviction to get it compressed
|
|
fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp);
|
|
assert(toku_brtnode_pf_req_callback(*dn, &bfe));
|
|
long size;
|
|
r = toku_brtnode_pf_callback(*dn, &bfe, fd, &size);
|
|
assert(r==0);
|
|
// assert all bp's are available
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
}
|
|
long bytes_freed = 0;
|
|
toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL);
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
// assert all bp's are still available, because we touched the clock
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
// now assert all should be evicted
|
|
assert(BP_SHOULD_EVICT(*dn, i));
|
|
}
|
|
toku_brtnode_pe_callback(*dn, 0xffffffff, &bytes_freed, NULL);
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_COMPRESSED);
|
|
}
|
|
}
|
|
}
|
|
// now decompress them
|
|
fill_bfe_for_full_read(&bfe, brt_h, NULL, string_key_cmp);
|
|
assert(toku_brtnode_pf_req_callback(*dn, &bfe));
|
|
long size;
|
|
r = toku_brtnode_pf_callback(*dn, &bfe, fd, &size);
|
|
assert(r==0);
|
|
// assert all bp's are available
|
|
for (int i = 0; i < (*dn)->n_children; i++) {
|
|
assert(BP_STATE(*dn,i) == PT_AVAIL);
|
|
}
|
|
// continue on with test
|
|
}
|
|
else {
|
|
// if we get here, this is a test bug, NOT a bug in development code
|
|
assert(FALSE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_check_msn(enum brtnode_verify_type bft) {
|
|
// struct brt source_brt;
|
|
const int nodesize = 1024;
|
|
struct brtnode sn, *dn;
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
#define PRESERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 42 })
|
|
#define POSTSERIALIZE_MSN_ON_DISK ((MSN) { MIN_MSN.msn + 84 })
|
|
|
|
sn.max_msn_applied_to_node_on_disk = PRESERIALIZE_MSN_ON_DISK;
|
|
sn.nodesize = nodesize;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
LEAFENTRY elts[3];
|
|
elts[0] = le_malloc("a", "aval");
|
|
elts[1] = le_malloc("b", "bval");
|
|
elts[2] = le_malloc("x", "xval");
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0);
|
|
sn.totalchildkeylens = 2;
|
|
BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0);
|
|
BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0);
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BLB(&sn, 0, toku_create_empty_bn());
|
|
set_BLB(&sn, 1, toku_create_empty_bn());
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_MAX_MSN_APPLIED(&sn, 0) = ((MSN) { MIN_MSN.msn + 73 });
|
|
BLB_MAX_MSN_APPLIED(&sn, 1) = POSTSERIALIZE_MSN_ON_DISK;
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
//
|
|
// test that subtree estimates get set
|
|
// rebalancing should make it 1 basement
|
|
//
|
|
assert(BP_SUBTREE_EST(&sn,0).nkeys == 3);
|
|
assert(BP_SUBTREE_EST(dn,0).nkeys == 3);
|
|
assert(BP_SUBTREE_EST(&sn,0).ndata == 3);
|
|
assert(BP_SUBTREE_EST(dn,0).ndata == 3);
|
|
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->optimized_for_upgrade == 1234);
|
|
assert(dn->n_children>=1);
|
|
assert(dn->max_msn_applied_to_node_on_disk.msn == POSTSERIALIZE_MSN_ON_DISK.msn);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(BLB_MAX_MSN_APPLIED(dn, i).msn == POSTSERIALIZE_MSN_ON_DISK.msn);
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
u_int32_t keylen;
|
|
if (i < npartitions-1) {
|
|
assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0);
|
|
}
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_brtnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < 3; ++i) {
|
|
toku_free(elts[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_large_pivots(enum brtnode_verify_type bft) {
|
|
int r;
|
|
struct brtnode sn, *dn;
|
|
const int keylens = 256*1024, vallens = 0, nrows = 8;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = 4*(1<<20);
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = nrows;
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY les[nrows];
|
|
{
|
|
char key[keylens], val[vallens];
|
|
key[keylens-1] = '\0';
|
|
for (int i = 0; i < nrows; ++i) {
|
|
char c = 'a' + i;
|
|
memset(key, c, keylens-1);
|
|
les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
}
|
|
}
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0);
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
for (int i = 0; i < nrows; ++i) {
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, i), les[i], omt_cmp, les[i], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, i) = leafentry_disksize(les[i]);
|
|
if (i < nrows-1) {
|
|
u_int32_t keylen;
|
|
char *key = le_key_and_len(les[i], &keylen);
|
|
sn.childkeys[i] = kv_pair_malloc(key, keylen, 0, 0);
|
|
}
|
|
}
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(keylens*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == nrows);
|
|
}
|
|
|
|
toku_brtnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < nrows; ++i) {
|
|
toku_free(les[i]);
|
|
}
|
|
toku_free(sn.childkeys);
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_many_rows(enum brtnode_verify_type bft) {
|
|
int r;
|
|
struct brtnode sn, *dn;
|
|
const int keylens = sizeof(int), vallens = sizeof(int), nrows = 196*1024;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = 4*(1<<20);
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 1;
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY les[nrows];
|
|
{
|
|
int key = 0, val = 0;
|
|
for (int i = 0; i < nrows; ++i, key++, val++) {
|
|
les[i] = le_fastmalloc((char *) &key, sizeof(key), (char *) &val, sizeof(val));
|
|
}
|
|
}
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*sizeof(int);
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0);
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0;
|
|
for (int i = 0; i < nrows; ++i) {
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_int_cmp, les[i], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(les[i]);
|
|
}
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(sizeof(int)*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = nrows, .elts = les, .i = 0, .cmp = omt_int_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+keylens+vallens) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
assert(BLB_NBYTESINBUF(dn, i) < 128*1024); // BN_MAX_SIZE, apt to change
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == nrows);
|
|
}
|
|
|
|
toku_brtnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < nrows; ++i) {
|
|
toku_free(les[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_large_rows(enum brtnode_verify_type bft) {
|
|
int r;
|
|
struct brtnode sn, *dn;
|
|
const size_t val_size = 512*1024;
|
|
// assert(val_size > BN_MAX_SIZE); // BN_MAX_SIZE isn't visible
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = 4*(1<<20);
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 1;
|
|
sn.dirty = 1;
|
|
|
|
LEAFENTRY les[7];
|
|
{
|
|
char key[8], val[val_size];
|
|
key[7] = '\0';
|
|
val[val_size-1] = '\0';
|
|
for (int i = 0; i < 7; ++i) {
|
|
char c = 'a' + i;
|
|
memset(key, c, 7);
|
|
memset(val, c, val_size-1);
|
|
les[i] = le_fastmalloc(key, 8, val, val_size);
|
|
}
|
|
}
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.totalchildkeylens = (sn.n_children-1)*8;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long) random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0);
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0;
|
|
for (int i = 0; i < 7; ++i) {
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), les[i], omt_cmp, les[i], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) += leafentry_disksize(les[i]);
|
|
}
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(npartitions == 7);
|
|
assert(dn->totalchildkeylens==(8*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 7, .elts = les, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+8+val_size) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 7);
|
|
}
|
|
|
|
toku_brtnode_free(&dn);
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < 7; ++i) {
|
|
toku_free(les[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_empty_basement_nodes(enum brtnode_verify_type bft) {
|
|
const int nodesize = 1024;
|
|
struct brtnode sn, *dn;
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = nodesize;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 7;
|
|
sn.dirty = 1;
|
|
LEAFENTRY elts[3];
|
|
elts[0] = le_malloc("a", "aval");
|
|
elts[1] = le_malloc("b", "bval");
|
|
elts[2] = le_malloc("x", "xval");
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0);
|
|
sn.childkeys[1] = kv_pair_malloc("a", 2, 0, 0);
|
|
sn.childkeys[2] = kv_pair_malloc("a", 2, 0, 0);
|
|
sn.childkeys[3] = kv_pair_malloc("b", 2, 0, 0);
|
|
sn.childkeys[4] = kv_pair_malloc("b", 2, 0, 0);
|
|
sn.childkeys[5] = kv_pair_malloc("x", 2, 0, 0);
|
|
sn.totalchildkeylens = (sn.n_children-1)*2;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0);
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
BLB_SEQINSERT(&sn, i) = 0;
|
|
}
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 3), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 5), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
|
|
BLB_NBYTESINBUF(&sn, 3) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
|
|
BLB_NBYTESINBUF(&sn, 4) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 4));
|
|
BLB_NBYTESINBUF(&sn, 5) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 5));
|
|
BLB_NBYTESINBUF(&sn, 6) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 6));
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->optimized_for_upgrade == 1234);
|
|
assert(dn->n_children>0);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) > 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_brtnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < 3; ++i) {
|
|
toku_free(elts[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(enum brtnode_verify_type bft) {
|
|
const int nodesize = 1024;
|
|
struct brtnode sn, *dn;
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = nodesize;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 4;
|
|
sn.dirty = 1;
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(sn.n_children-1, sn.childkeys);
|
|
sn.childkeys[0] = kv_pair_malloc("A", 2, 0, 0);
|
|
sn.childkeys[1] = kv_pair_malloc("A", 2, 0, 0);
|
|
sn.childkeys[2] = kv_pair_malloc("A", 2, 0, 0);
|
|
sn.totalchildkeylens = (sn.n_children-1)*2;
|
|
for (int i = 0; i < sn.n_children; ++i) {
|
|
BP_STATE(&sn,i) = PT_AVAIL;
|
|
BP_SUBTREE_EST(&sn,i).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,i).exact = (BOOL)(random()%2 != 0);
|
|
set_BLB(&sn, i, toku_create_empty_bn());
|
|
}
|
|
BLB_NBYTESINBUF(&sn, 0) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
BLB_NBYTESINBUF(&sn, 2) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 2));
|
|
BLB_NBYTESINBUF(&sn, 3) = 0*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 3));
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->optimized_for_upgrade == 1234);
|
|
assert(dn->n_children == 1);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 0, .elts = NULL, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
assert(toku_omt_size(BLB_BUFFER(dn, i)) == 0);
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 0);
|
|
}
|
|
toku_brtnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_leaf(enum brtnode_verify_type bft) {
|
|
// struct brt source_brt;
|
|
const int nodesize = 1024;
|
|
struct brtnode sn, *dn;
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
sn.nodesize = nodesize;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 0;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
LEAFENTRY elts[3];
|
|
elts[0] = le_malloc("a", "aval");
|
|
elts[1] = le_malloc("b", "bval");
|
|
elts[2] = le_malloc("x", "xval");
|
|
MALLOC_N(sn.n_children, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
sn.childkeys[0] = kv_pair_malloc("b", 2, 0, 0);
|
|
sn.totalchildkeylens = 2;
|
|
BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0);
|
|
BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0);
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BLB(&sn, 0, toku_create_empty_bn());
|
|
set_BLB(&sn, 1, toku_create_empty_bn());
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[0], omt_cmp, elts[0], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 0), elts[1], omt_cmp, elts[1], NULL); assert(r==0);
|
|
r = toku_omt_insert(BLB_BUFFER(&sn, 1), elts[2], omt_cmp, elts[2], NULL); assert(r==0);
|
|
BLB_NBYTESINBUF(&sn, 0) = 2*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 0));
|
|
BLB_NBYTESINBUF(&sn, 1) = 1*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(&sn, 1));
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
|
|
assert(dn->height == 0);
|
|
assert(dn->optimized_for_upgrade == 1234);
|
|
assert(dn->n_children>=1);
|
|
{
|
|
const u_int32_t npartitions = dn->n_children;
|
|
assert(dn->totalchildkeylens==(2*(npartitions-1)));
|
|
struct check_leafentries_struct extra = { .nelts = 3, .elts = elts, .i = 0, .cmp = omt_cmp };
|
|
u_int32_t last_i = 0;
|
|
for (u_int32_t i = 0; i < npartitions; ++i) {
|
|
assert(dn->bp[i].start > 0);
|
|
assert(dn->bp[i].size > 0);
|
|
if (i > 0) {
|
|
assert(dn->bp[i].start >= dn->bp[i-1].start + dn->bp[i-1].size);
|
|
}
|
|
toku_omt_iterate(BLB_BUFFER(dn, i), check_leafentries, &extra);
|
|
u_int32_t keylen;
|
|
if (i < npartitions-1) {
|
|
assert(strcmp(kv_pair_key(dn->childkeys[i]), le_key_and_len(elts[extra.i-1], &keylen))==0);
|
|
}
|
|
// don't check soft_copy_is_up_to_date or seqinsert
|
|
assert(BLB_NBYTESINBUF(dn, i) == (extra.i-last_i)*(KEY_VALUE_OVERHEAD+2+5) + toku_omt_size(BLB_BUFFER(dn, i)));
|
|
last_i = extra.i;
|
|
}
|
|
assert(extra.i == 3);
|
|
}
|
|
toku_brtnode_free(&dn);
|
|
|
|
for (int i = 0; i < sn.n_children-1; ++i) {
|
|
kv_pair_free(sn.childkeys[i]);
|
|
}
|
|
for (int i = 0; i < 3; ++i) {
|
|
toku_free(elts[i]);
|
|
}
|
|
for (int i = 0; i < sn.n_children; i++) {
|
|
destroy_basement_node(BLB(&sn, i));
|
|
}
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
static void
|
|
test_serialize_nonleaf(enum brtnode_verify_type bft) {
|
|
// struct brt source_brt;
|
|
const int nodesize = 1024;
|
|
struct brtnode sn, *dn;
|
|
|
|
int fd = open(__FILE__ ".brt", O_RDWR|O_CREAT|O_BINARY, S_IRWXU|S_IRWXG|S_IRWXO); assert(fd >= 0);
|
|
|
|
int r;
|
|
|
|
// source_brt.fd=fd;
|
|
sn.max_msn_applied_to_node_on_disk.msn = 0;
|
|
char *hello_string;
|
|
sn.nodesize = nodesize;
|
|
sn.flags = 0x11223344;
|
|
sn.thisnodename.b = 20;
|
|
sn.layout_version = BRT_LAYOUT_VERSION;
|
|
sn.layout_version_original = BRT_LAYOUT_VERSION;
|
|
sn.height = 1;
|
|
sn.optimized_for_upgrade = 1234;
|
|
sn.n_children = 2;
|
|
sn.dirty = 1;
|
|
hello_string = toku_strdup("hello");
|
|
MALLOC_N(2, sn.bp);
|
|
MALLOC_N(1, sn.childkeys);
|
|
sn.childkeys[0] = kv_pair_malloc(hello_string, 6, 0, 0);
|
|
sn.totalchildkeylens = 6;
|
|
BP_BLOCKNUM(&sn, 0).b = 30;
|
|
BP_BLOCKNUM(&sn, 1).b = 35;
|
|
BP_SUBTREE_EST(&sn,0).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).ndata = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).nkeys = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,1).dsize = random() + (((long long)random())<<32);
|
|
BP_SUBTREE_EST(&sn,0).exact = (BOOL)(random()%2 != 0);
|
|
BP_SUBTREE_EST(&sn,1).exact = (BOOL)(random()%2 != 0);
|
|
BP_STATE(&sn,0) = PT_AVAIL;
|
|
BP_STATE(&sn,1) = PT_AVAIL;
|
|
set_BNC(&sn, 0, toku_create_empty_nl());
|
|
set_BNC(&sn, 1, toku_create_empty_nl());
|
|
//Create XIDS
|
|
XIDS xids_0 = xids_get_root_xids();
|
|
XIDS xids_123;
|
|
XIDS xids_234;
|
|
r = xids_create_child(xids_0, &xids_123, (TXNID)123);
|
|
CKERR(r);
|
|
r = xids_create_child(xids_123, &xids_234, (TXNID)234);
|
|
CKERR(r);
|
|
|
|
r = toku_bnc_insert_msg(BNC(&sn, 0), "a", 2, "aval", 5, BRT_NONE, next_dummymsn(), xids_0, true, NULL, string_key_cmp); assert_zero(r);
|
|
r = toku_bnc_insert_msg(BNC(&sn, 0), "b", 2, "bval", 5, BRT_NONE, next_dummymsn(), xids_123, false, NULL, string_key_cmp); assert_zero(r);
|
|
r = toku_bnc_insert_msg(BNC(&sn, 1), "x", 2, "xval", 5, BRT_NONE, next_dummymsn(), xids_234, true, NULL, string_key_cmp); assert_zero(r);
|
|
BNC(&sn, 0)->n_bytes_in_buffer = 2*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_0) + xids_get_serialize_size(xids_123);
|
|
BNC(&sn, 1)->n_bytes_in_buffer = 1*(BRT_CMD_OVERHEAD+KEY_VALUE_OVERHEAD+2+5) + xids_get_serialize_size(xids_234);
|
|
//Cleanup:
|
|
xids_destroy(&xids_0);
|
|
xids_destroy(&xids_123);
|
|
xids_destroy(&xids_234);
|
|
|
|
struct brt *XMALLOC(brt);
|
|
struct brt_header *XCALLOC(brt_h);
|
|
brt->h = brt_h;
|
|
brt_h->type = BRTHEADER_CURRENT;
|
|
brt_h->panic = 0; brt_h->panic_string = 0;
|
|
brt_h->basementnodesize = 128*1024;
|
|
toku_blocktable_create_new(&brt_h->blocktable);
|
|
//Want to use block #20
|
|
BLOCKNUM b = make_blocknum(0);
|
|
while (b.b < 20) {
|
|
toku_allocate_blocknum(brt_h->blocktable, &b, brt_h);
|
|
}
|
|
assert(b.b == 20);
|
|
|
|
{
|
|
DISKOFF offset;
|
|
DISKOFF size;
|
|
toku_blocknum_realloc_on_disk(brt_h->blocktable, b, 100, &offset, brt_h, FALSE);
|
|
assert(offset==BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
|
|
toku_translate_blocknum_to_offset_size(brt_h->blocktable, b, &offset, &size);
|
|
assert(offset == BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
assert(size == 100);
|
|
}
|
|
|
|
r = toku_serialize_brtnode_to(fd, make_blocknum(20), &sn, brt->h, 1, 1, FALSE);
|
|
assert(r==0);
|
|
|
|
setup_dn(bft, fd, brt_h, &dn);
|
|
|
|
assert(dn->thisnodename.b==20);
|
|
|
|
assert(dn->layout_version ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_original ==BRT_LAYOUT_VERSION);
|
|
assert(dn->layout_version_read_from_disk ==BRT_LAYOUT_VERSION);
|
|
assert(dn->height == 1);
|
|
assert(dn->optimized_for_upgrade == 1234);
|
|
assert(dn->n_children==2);
|
|
assert(strcmp(kv_pair_key(dn->childkeys[0]), "hello")==0);
|
|
assert(toku_brt_pivot_key_len(dn->childkeys[0])==6);
|
|
assert(dn->totalchildkeylens==6);
|
|
assert(BP_BLOCKNUM(dn,0).b==30);
|
|
assert(BP_BLOCKNUM(dn,1).b==35);
|
|
|
|
FIFO src_fifo_1 = BNC(&sn, 0)->buffer;
|
|
FIFO src_fifo_2 = BNC(&sn, 1)->buffer;
|
|
FIFO dest_fifo_1 = BNC(dn, 0)->buffer;
|
|
FIFO dest_fifo_2 = BNC(dn, 1)->buffer;
|
|
bytevec src_key,src_val, dest_key, dest_val;
|
|
ITEMLEN src_keylen, src_vallen;
|
|
u_int32_t src_type;
|
|
MSN src_msn;
|
|
XIDS src_xids;
|
|
ITEMLEN dest_keylen, dest_vallen;
|
|
u_int32_t dest_type;
|
|
MSN dest_msn;
|
|
XIDS dest_xids;
|
|
bool src_is_fresh;
|
|
bool dest_is_fresh;
|
|
r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids, &src_is_fresh);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids, &dest_is_fresh);
|
|
assert(r==0);
|
|
assert(src_keylen == dest_keylen);
|
|
assert(src_keylen == 2);
|
|
assert(src_vallen == dest_vallen);
|
|
assert(src_vallen == 5);
|
|
assert(src_type == dest_type);
|
|
assert(src_msn.msn == dest_msn.msn);
|
|
assert(strcmp(src_key, "a") == 0);
|
|
assert(strcmp(dest_key, "a") == 0);
|
|
assert(strcmp(src_val, "aval") == 0);
|
|
assert(strcmp(dest_val, "aval") == 0);
|
|
assert(src_is_fresh == dest_is_fresh);
|
|
r = toku_fifo_deq(src_fifo_1);
|
|
assert(r==0);
|
|
r = toku_fifo_deq(dest_fifo_1);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids, &src_is_fresh);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids, &dest_is_fresh);
|
|
assert(r==0);
|
|
assert(src_keylen == dest_keylen);
|
|
assert(src_keylen == 2);
|
|
assert(src_vallen == dest_vallen);
|
|
assert(src_vallen == 5);
|
|
assert(src_type == dest_type);
|
|
assert(src_msn.msn == dest_msn.msn);
|
|
assert(strcmp(src_key, "b") == 0);
|
|
assert(strcmp(dest_key, "b") == 0);
|
|
assert(strcmp(src_val, "bval") == 0);
|
|
assert(strcmp(dest_val, "bval") == 0);
|
|
assert(src_is_fresh == dest_is_fresh);
|
|
r = toku_fifo_deq(src_fifo_1);
|
|
assert(r==0);
|
|
r = toku_fifo_deq(dest_fifo_1);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(src_fifo_1, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids, &src_is_fresh);
|
|
assert(r!=0);
|
|
r = toku_fifo_peek(dest_fifo_1, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids, &dest_is_fresh);
|
|
assert(r!=0);
|
|
|
|
r = toku_fifo_peek(src_fifo_2, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids, &src_is_fresh);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(dest_fifo_2, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids, &dest_is_fresh);
|
|
assert(r==0);
|
|
assert(src_keylen == dest_keylen);
|
|
assert(src_keylen == 2);
|
|
assert(src_vallen == dest_vallen);
|
|
assert(src_vallen == 5);
|
|
assert(src_type == dest_type);
|
|
assert(src_msn.msn == dest_msn.msn);
|
|
assert(strcmp(src_key, "x") == 0);
|
|
assert(strcmp(dest_key, "x") == 0);
|
|
assert(strcmp(src_val, "xval") == 0);
|
|
assert(strcmp(dest_val, "xval") == 0);
|
|
assert(src_is_fresh == dest_is_fresh);
|
|
r = toku_fifo_deq(src_fifo_2);
|
|
assert(r==0);
|
|
r = toku_fifo_deq(dest_fifo_2);
|
|
assert(r==0);
|
|
r = toku_fifo_peek(src_fifo_2, &src_key, &src_keylen, &src_val, &src_vallen, &src_type, &src_msn, &src_xids, &src_is_fresh);
|
|
assert(r!=0);
|
|
r = toku_fifo_peek(dest_fifo_2, &dest_key, &dest_keylen, &dest_val, &dest_vallen, &dest_type, &dest_msn, &dest_xids, &dest_is_fresh);
|
|
assert(r!=0);
|
|
|
|
|
|
toku_brtnode_free(&dn);
|
|
|
|
kv_pair_free(sn.childkeys[0]);
|
|
toku_free(hello_string);
|
|
destroy_nonleaf_childinfo(BNC(&sn, 0));
|
|
destroy_nonleaf_childinfo(BNC(&sn, 1));
|
|
toku_free(sn.bp);
|
|
toku_free(sn.childkeys);
|
|
|
|
toku_block_free(brt_h->blocktable, BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE);
|
|
toku_blocktable_destroy(&brt_h->blocktable);
|
|
toku_free(brt_h);
|
|
toku_free(brt);
|
|
|
|
r = close(fd); assert(r != -1);
|
|
}
|
|
|
|
int
|
|
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
|
|
test_serialize_leaf(read_none);
|
|
test_serialize_leaf(read_all);
|
|
test_serialize_leaf(read_compressed);
|
|
|
|
test_serialize_leaf_with_empty_basement_nodes(read_none);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_all);
|
|
test_serialize_leaf_with_empty_basement_nodes(read_compressed);
|
|
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_none);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_all);
|
|
test_serialize_leaf_with_multiple_empty_basement_nodes(read_compressed);
|
|
|
|
test_serialize_leaf_with_large_rows(read_none);
|
|
test_serialize_leaf_with_large_rows(read_all);
|
|
test_serialize_leaf_with_large_rows(read_compressed);
|
|
|
|
test_serialize_leaf_with_many_rows(read_none);
|
|
test_serialize_leaf_with_many_rows(read_all);
|
|
test_serialize_leaf_with_many_rows(read_compressed);
|
|
|
|
test_serialize_leaf_with_large_pivots(read_none);
|
|
test_serialize_leaf_with_large_pivots(read_all);
|
|
test_serialize_leaf_with_large_pivots(read_compressed);
|
|
|
|
test_serialize_leaf_check_msn(read_none);
|
|
test_serialize_leaf_check_msn(read_all);
|
|
test_serialize_leaf_check_msn(read_compressed);
|
|
|
|
test_serialize_nonleaf(read_none);
|
|
test_serialize_nonleaf(read_all);
|
|
test_serialize_nonleaf(read_compressed);
|
|
|
|
return 0;
|
|
}
|