mariadb/sql/opt_range.cc
unknown 6efd76f317 Merge 4.1 into 5.0.
BitKeeper/etc/logging_ok:
  auto-union
configure.in:
  Auto merged
BitKeeper/deleted/.del-opt_ft.cc~2048ffa561f9c59:
  Auto merged
BitKeeper/deleted/.del-opt_ft.h~24aac1d29304599a:
  Auto merged
client/mysql.cc:
  Auto merged
include/my_global.h:
  Auto merged
libmysql/libmysql.c:
  Auto merged
libmysqld/Makefile.am:
  Auto merged
libmysqld/lib_sql.cc:
  Auto merged
myisam/mi_check.c:
  Auto merged
mysql-test/install_test_db.sh:
  Auto merged
mysql-test/r/multi_update.result:
  Auto merged
mysql-test/r/mysqldump.result:
  Auto merged
mysql-test/r/null.result:
  Auto merged
mysql-test/r/show_check.result:
  Auto merged
mysql-test/r/subselect.result:
  Auto merged
mysql-test/r/symlink.result:
  Auto merged
mysql-test/t/multi_update.test:
  Auto merged
mysql-test/t/null.test:
  Auto merged
mysql-test/t/rpl_until.test:
  Auto merged
mysql-test/t/subselect.test:
  Auto merged
sql/Makefile.am:
  Auto merged
sql/filesort.cc:
  Auto merged
sql/item.cc:
  Auto merged
sql/item_cmpfunc.cc:
  Auto merged
sql/item_cmpfunc.h:
  Auto merged
sql/item_create.cc:
  Auto merged
sql/item_create.h:
  Auto merged
sql/item_func.h:
  Auto merged
sql/item_subselect.cc:
  Auto merged
sql/item_sum.cc:
  Auto merged
sql/item_sum.h:
  Auto merged
sql/item_timefunc.cc:
  Auto merged
sql/mysqld.cc:
  Auto merged
sql/protocol.cc:
  Auto merged
sql/repl_failsafe.cc:
  Auto merged
sql/set_var.cc:
  Auto merged
sql/slave.cc:
  Auto merged
sql/slave.h:
  Auto merged
sql/sql_acl.cc:
  Auto merged
sql/sql_base.cc:
  Auto merged
sql/sql_cache.cc:
  Auto merged
sql/sql_class.h:
  Auto merged
sql/sql_db.cc:
  Auto merged
sql/sql_delete.cc:
  Auto merged
sql/sql_derived.cc:
  Auto merged
sql/sql_insert.cc:
  Auto merged
sql/sql_lex.cc:
  Auto merged
sql/sql_lex.h:
  Auto merged
sql/sql_list.h:
  Auto merged
sql/sql_load.cc:
  Auto merged
sql/sql_prepare.cc:
  Auto merged
sql/sql_select.cc:
  Auto merged
sql/sql_select.h:
  Auto merged
sql/sql_show.cc:
  Auto merged
sql/sql_table.cc:
  Auto merged
sql/sql_union.cc:
  Auto merged
sql/sql_update.cc:
  Auto merged
sql-common/client.c:
  Auto merged
2004-02-10 18:44:02 +01:00

4040 lines
111 KiB
C++

/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
TODO:
Fix that MAYBE_KEY are stored in the tree so that we can detect use
of full hash keys for queries like:
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);
*/
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <m_ctype.h>
#include <nisam.h>
#include "sql_select.h"
#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);
static char is_null_string[2]= {1,0};
class SEL_ARG :public Sql_alloc
{
public:
uint8 min_flag,max_flag,maybe_flag;
uint8 part; // Which key part
uint8 maybe_null;
uint16 elements; // Elements in tree
ulong use_count; // use of this sub_tree
Field *field;
char *min_value,*max_value; // Pointer to range
SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
enum leaf_color { BLACK,RED } color;
enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *,const char *,const char *);
SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
SEL_ARG(enum Type type_arg)
:elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
type(type_arg)
{}
inline bool is_same(SEL_ARG *arg)
{
if (type != arg->type || part != arg->part)
return 0;
if (type != KEY_RANGE)
return 1;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag=1; }
inline int cmp_min_to_min(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(SEL_ARG* arg)
{
return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(SEL_ARG* arg)
{
return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(SEL_ARG* arg)
{ // Get overlapping range
char *new_min,*new_max;
uint8 flag_min,flag_max;
if (cmp_min_to_min(arg) >= 0)
{
new_min=min_value; flag_min=min_flag;
}
else
{
new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0)
{
new_max=max_value; flag_max=max_flag;
}
else
{
new_max=arg->max_value; flag_max=arg->max_flag;
}
return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
test(maybe_flag && arg->maybe_flag));
}
SEL_ARG *clone_first(SEL_ARG *arg)
{ // min <= X < arg->min
return new SEL_ARG(field,part, min_value, arg->min_value,
min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone_last(SEL_ARG *arg)
{ // min <= X <= key_max
return new SEL_ARG(field, part, min_value, arg->max_value,
min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
}
SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);
bool copy_min(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_min_to_min(arg) > 0)
{
min_value=arg->min_value; min_flag=arg->min_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
bool copy_max(SEL_ARG* arg)
{ // Get overlapping range
if (cmp_max_to_max(arg) <= 0)
{
max_value=arg->max_value; max_flag=arg->max_flag;
if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
(NO_MAX_RANGE | NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag|=arg->maybe_flag;
return 0;
}
void copy_min_to_min(SEL_ARG *arg)
{
min_value=arg->min_value; min_flag=arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg)
{
max_value=arg->min_value;
max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg)
{
min_value=arg->max_value;
min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
void store(uint length,char **min_key,uint min_key_flag,
char **max_key, uint max_key_flag)
{
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
{
if (maybe_null && *min_value)
{
**min_key=1;
bzero(*min_key+1,length);
}
else
memcpy(*min_key,min_value,length+(int) maybe_null);
(*min_key)+= length+(int) maybe_null;
}
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
{
if (maybe_null && *max_value)
{
**max_key=1;
bzero(*max_key+1,length);
}
else
memcpy(*max_key,max_value,length+(int) maybe_null);
(*max_key)+= length+(int) maybe_null;
}
}
void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= first();
key_tree->store(key[key_tree->part].part_length,
range_key,*range_key_flag,range_key,NO_MAX_RANGE);
*range_key_flag|= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
}
void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
{
SEL_ARG *key_tree= last();
key_tree->store(key[key_tree->part].part_length,
range_key, NO_MIN_RANGE, range_key,*range_key_flag);
(*range_key_flag)|= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
}
SEL_ARG *insert(SEL_ARG *key);
SEL_ARG *tree_delete(SEL_ARG *key);
SEL_ARG *find_range(SEL_ARG *key);
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
void test_use_count(SEL_ARG *root);
#endif
SEL_ARG *first();
SEL_ARG *last();
void make_root();
inline bool simple_key()
{
return !next_key_part && elements == 1;
}
void increment_use_count(long count)
{
if (next_key_part)
{
next_key_part->use_count+=count;
count*= (next_key_part->use_count-count);
for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
if (pos->next_key_part)
pos->increment_use_count(count);
}
}
void free_tree()
{
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
if (pos->next_key_part)
{
pos->next_key_part->use_count--;
pos->next_key_part->free_tree();
}
}
inline SEL_ARG **parent_ptr()
{
return parent->left == this ? &parent->left : &parent->right;
}
SEL_ARG *clone_tree();
};
class SEL_IMERGE;
class SEL_TREE :public Sql_alloc
{
public:
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
SEL_TREE(enum Type type_arg) :type(type_arg) {}
SEL_TREE() :type(KEY)
{
keys_map.clear_all();
bzero((char*) keys,sizeof(keys));
}
SEL_ARG *keys[MAX_KEY];
key_map keys_map; /* bitmask of non-NULL elements in keys */
List<SEL_IMERGE> merges; /* possible ways to read rows using index_merge */
};
typedef struct st_qsel_param {
THD *thd;
TABLE *table;
KEY_PART *key_parts,*key_parts_end,*key[MAX_KEY];
MEM_ROOT *mem_root;
table_map prev_tables,read_tables,current_table;
uint baseflag, keys, max_key_part, range_count;
uint real_keynr[MAX_KEY];
char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
bool quick; // Don't calulate possible keys
uint *imerge_cost_buff; /* buffer for index_merge cost estimates */
uint imerge_cost_buff_size; /* size of the buffer */
} PARAM;
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
Item_func::Functype type,Item *value,
Item_result cmp_type);
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
KEY_PART *key_part,
Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag);
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
SEL_ARG *key_tree,
MEM_ROOT *alloc = NULL);
static int get_quick_select_params(SEL_TREE *tree, PARAM *param,
key_map& needed_reg,
bool index_read_can_be_used,
double *read_time,
ha_rows *records,
SEL_ARG*** key_to_read);
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
SEL_IMERGE *imerge, double *read_time,
ha_rows* imerge_rows);
inline double get_index_only_read_time(PARAM* param, ha_rows records,
int keynr);
#ifndef DBUG_OFF
static void print_quick_sel_imerge(QUICK_INDEX_MERGE_SELECT *quick,
const key_map *needed_reg);
void print_quick_sel_range(QUICK_RANGE_SELECT *quick,
const key_map *needed_reg);
#endif
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);
static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
static bool null_part_in_key(KEY_PART *key_part, const char *key,
uint length);
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);
/*
SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
a condition in the following form:
(t_1||t_2||...||t_N) && (next)
where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
(t_i,t_j) contains SEL_ARGS for the same index.
SEL_TREE contained in SEL_IMERGE always has merges=NULL.
This class relies on memory manager to do the cleanup.
*/
class SEL_IMERGE : public Sql_alloc
{
enum { PREALLOCED_TREES= 10};
public:
SEL_TREE *trees_prealloced[PREALLOCED_TREES];
SEL_TREE **trees; /* trees used to do index_merge */
SEL_TREE **trees_next; /* last of these trees */
SEL_TREE **trees_end; /* end of allocated space */
SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */
SEL_IMERGE() :
trees(&trees_prealloced[0]),
trees_next(trees),
trees_end(trees + PREALLOCED_TREES)
{}
int or_sel_tree(PARAM *param, SEL_TREE *tree);
int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};
/*
Add SEL_TREE to this index_merge without any checks,
NOTES
This function implements the following:
(x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs
RETURN
0 - OK
-1 - Out of memory.
*/
int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
if (trees_next == trees_end)
{
const int realloc_ratio= 2; /* Double size for next round */
uint old_elements= (trees_end - trees);
uint old_size= sizeof(SEL_TREE**) * old_elements;
uint new_size= old_size * realloc_ratio;
SEL_TREE **new_trees;
if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
return -1;
memcpy(new_trees, trees, old_size);
trees= new_trees;
trees_next= trees + old_elements;
trees_end= trees + old_elements * realloc_ratio;
}
*(trees_next++)= tree;
return 0;
}
/*
Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
combining new_tree with one of the trees in this SEL_IMERGE if they both
have SEL_ARGs for the same key.
SYNOPSIS
or_sel_tree_with_checks()
param PARAM from SQL_SELECT::test_quick_select
new_tree SEL_TREE with type KEY or KEY_SMALLER.
NOTES
This does the following:
(t_1||...||t_k)||new_tree =
either
= (t_1||...||t_k||new_tree)
or
= (t_1||....||(t_j|| new_tree)||...||t_k),
where t_i, y are SEL_TREEs.
new_tree is combined with the first t_j it has a SEL_ARG on common
key with. As a consequence of this, choice of keys to do index_merge
read may depend on the order of conditions in WHERE part of the query.
RETURN
0 OK
1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
and (*this) should be discarded.
-1 An error occurred.
*/
int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
for (SEL_TREE** tree = trees;
tree != trees_next;
tree++)
{
if (sel_trees_can_be_ored(*tree, new_tree, param))
{
*tree = tree_or(param, *tree, new_tree);
if (!*tree)
return 1;
if (((*tree)->type == SEL_TREE::MAYBE) ||
((*tree)->type == SEL_TREE::ALWAYS))
return 1;
/* SEL_TREE::IMPOSSIBLE is impossible here */
return 0;
}
}
/* New tree cannot be combined with any of existing trees. */
return or_sel_tree(param, new_tree);
}
/*
Perform OR operation on this index_merge and supplied index_merge list.
RETURN
0 - OK
1 - One of conditions in result is always TRUE and this SEL_IMERGE
should be discarded.
-1 - An error occurred
*/
int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
for (SEL_TREE** tree= imerge->trees;
tree != imerge->trees_next;
tree++)
{
if (or_sel_tree_with_checks(param, *tree))
return 1;
}
return 0;
}
/*
Perform AND operation on two index_merge lists and store result in *im1.
*/
inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
im1->concat(im2);
}
/*
Perform OR operation on 2 index_merge lists, storing result in first list.
NOTES
The following conversion is implemented:
(a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
=> (a_1||b_1).
i.e. all conjuncts except the first one are currently dropped.
This is done to avoid producing N*K ways to do index_merge.
If (a_1||b_1) produce a condition that is always true, NULL is returned
and index_merge is discarded (while it is actually possible to try
harder).
As a consequence of this, choice of keys to do index_merge read may depend
on the order of conditions in WHERE part of the query.
RETURN
0 OK, result is stored in *im1
other Error, both passed lists are unusable
*/
int imerge_list_or_list(PARAM *param,
List<SEL_IMERGE> *im1,
List<SEL_IMERGE> *im2)
{
SEL_IMERGE *imerge= im1->head();
im1->empty();
im1->push_back(imerge);
return imerge->or_sel_imerge_with_checks(param, im2->head());
}
/*
Perform OR operation on index_merge list and key tree.
RETURN
0 OK, result is stored in *im1.
other Error
*/
int imerge_list_or_tree(PARAM *param,
List<SEL_IMERGE> *im1,
SEL_TREE *tree)
{
SEL_IMERGE *imerge;
List_iterator<SEL_IMERGE> it(*im1);
while((imerge= it++))
{
if (imerge->or_sel_tree_with_checks(param, tree))
it.remove();
}
return im1->is_empty();
}
/***************************************************************************
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
***************************************************************************/
/* make a select from mysql info
Error is set as following:
0 = ok
1 = Got some error (out of memory?)
*/
SQL_SELECT *make_select(TABLE *head, table_map const_tables,
table_map read_tables, COND *conds, int *error)
{
SQL_SELECT *select;
DBUG_ENTER("make_select");
*error=0;
if (!conds)
DBUG_RETURN(0);
if (!(select= new SQL_SELECT))
{
*error= 1; // out of memory
DBUG_RETURN(0); /* purecov: inspected */
}
select->read_tables=read_tables;
select->const_tables=const_tables;
select->head=head;
select->cond=conds;
if (head->sort.io_cache)
{
select->file= *head->sort.io_cache;
select->records=(ha_rows) (select->file.end_of_file/
head->file->ref_length);
my_free((gptr) (head->sort.io_cache),MYF(0));
head->sort.io_cache=0;
}
DBUG_RETURN(select);
}
SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
quick_keys.clear_all(); needed_reg.clear_all();
my_b_clear(&file);
}
void SQL_SELECT::cleanup()
{
delete quick;
quick= 0;
if (free_cond)
{
free_cond=0;
delete cond;
cond= 0;
}
close_cached_file(&file);
}
SQL_SELECT::~SQL_SELECT()
{
cleanup();
}
#undef index // Fix for Unixware 7
QUICK_SELECT_I::QUICK_SELECT_I()
:max_used_key_length(0),
used_key_parts(0)
{}
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
bool no_alloc, MEM_ROOT *parent_alloc)
:dont_free(0),error(0),cur_range(NULL),range(0)
{
index= key_nr;
head= table;
my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
if (!no_alloc && !parent_alloc)
{
// Allocates everything through the internal memroot
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
}
else
bzero((char*) &alloc,sizeof(alloc));
file= head->file;
record= head->record[0];
}
int QUICK_RANGE_SELECT::init()
{
return (error= file->index_init(index));
}
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
{
if (!dont_free)
{
file->index_end();
delete_dynamic(&ranges); /* ranges are allocated in alloc */
free_root(&alloc,MYF(0));
}
}
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
TABLE *table)
:cur_quick_it(quick_selects),pk_quick_select(NULL),unique(NULL),
thd(thd_param)
{
index= MAX_KEY;
head= table;
reset_called= false;
bzero(&read_record, sizeof(read_record));
init_sql_alloc(&alloc,1024,0);
}
int QUICK_INDEX_MERGE_SELECT::init()
{
cur_quick_it.rewind();
cur_quick_select= cur_quick_it++;
return 0;
}
int QUICK_INDEX_MERGE_SELECT::reset()
{
int result;
DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
if (reset_called)
DBUG_RETURN(0);
reset_called= true;
result = cur_quick_select->reset() || prepare_unique();
DBUG_RETURN(result);
}
bool
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
/*
Save quick_select that does scan on clustered primary key as it will be
processed separately.
*/
if (head->file->primary_key_is_clustered() &&
quick_sel_range->index == head->primary_key)
pk_quick_select= quick_sel_range;
else
return quick_selects.push_back(quick_sel_range);
return 0;
}
QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
delete unique;
quick_selects.delete_elements();
delete pk_quick_select;
free_root(&alloc,MYF(0));
}
QUICK_RANGE::QUICK_RANGE()
:min_key(0),max_key(0),min_length(0),max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}
SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
type=arg.type;
min_flag=arg.min_flag;
max_flag=arg.max_flag;
maybe_flag=arg.maybe_flag;
maybe_null=arg.maybe_null;
part=arg.part;
field=arg.field;
min_value=arg.min_value;
max_value=arg.max_value;
next_key_part=arg.next_key_part;
use_count=1; elements=1;
}
inline void SEL_ARG::make_root()
{
left=right= &null_element;
color=BLACK;
next=prev=0;
use_count=0; elements=1;
}
SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
:min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
max_value((char*) max_value_arg), next(0),prev(0),
next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
:min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
field(field_), min_value(min_value_), max_value(max_value_),
next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
left=right= &null_element;
}
SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
SEL_ARG *tmp;
if (type != KEY_RANGE)
{
if (!(tmp= new SEL_ARG(type)))
return 0; // out of memory
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
}
else
{
if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
min_flag, max_flag, maybe_flag)))
return 0; // OOM
tmp->parent=new_parent;
tmp->next_key_part=next_key_part;
if (left != &null_element)
tmp->left=left->clone(tmp,next_arg);
tmp->prev= *next_arg; // Link into next/prev chain
(*next_arg)->next=tmp;
(*next_arg)= tmp;
if (right != &null_element)
if (!(tmp->right= right->clone(tmp,next_arg)))
return 0; // OOM
}
increment_use_count(1);
return tmp;
}
SEL_ARG *SEL_ARG::first()
{
SEL_ARG *next_arg=this;
if (!next_arg->left)
return 0; // MAYBE_KEY
while (next_arg->left != &null_element)
next_arg=next_arg->left;
return next_arg;
}
SEL_ARG *SEL_ARG::last()
{
SEL_ARG *next_arg=this;
if (!next_arg->right)
return 0; // MAYBE_KEY
while (next_arg->right != &null_element)
next_arg=next_arg->right;
return next_arg;
}
/*
Check if a compare is ok, when one takes ranges in account
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
int cmp;
/* First check if there was a compare to a min or max element */
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
{
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
return 0;
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
}
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
if (field->real_maybe_null()) // If null is part of key
{
if (*a != *b)
{
return *a ? -1 : 1;
}
if (*a)
goto end; // NULL where equal
a++; b++; // Skip NULL marker
}
cmp=field->key_cmp((byte*) a,(byte*) b);
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
// Check if the compared equal arguments was defined with open/closed range
end:
if (a_flag & (NEAR_MIN | NEAR_MAX))
{
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
return 0;
if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
return (a_flag & NEAR_MIN) ? 2 : -2;
return (a_flag & NEAR_MIN) ? 1 : -1;
}
if (b_flag & (NEAR_MIN | NEAR_MAX))
return (b_flag & NEAR_MIN) ? -2 : 2;
return 0; // The elements where equal
}
SEL_ARG *SEL_ARG::clone_tree()
{
SEL_ARG tmp_link,*next_arg,*root;
next_arg= &tmp_link;
root= clone((SEL_ARG *) 0, &next_arg);
next_arg->next=0; // Fix last link
tmp_link.next->prev=0; // Fix first link
if (root) // If not OOM
root->use_count= 0;
return root;
}
/*
Test if a key can be used in different ranges
SYNOPSIS
SQL_SELECT::test_quick_select(thd,keys_to_use, prev_tables,
limit, force_quick_range)
Updates the following in the select parameter:
needed_reg - Bits for keys with may be used if all prev regs are read
quick - Parameter to use when reading records.
In the table struct the following information is updated:
quick_keys - Which keys can be used
quick_rows - How many rows the key matches
RETURN VALUES
-1 if impossible select
0 if can't use quick_select
1 if found usable range
TODO
check if the function really needs to modify keys_to_use, and change the
code to pass it by reference if not
*/
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
table_map prev_tables,
ha_rows limit, bool force_quick_range)
{
uint basflag;
uint idx;
double scan_time;
QUICK_INDEX_MERGE_SELECT *quick_imerge= NULL;
DBUG_ENTER("test_quick_select");
DBUG_PRINT("enter",("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
keys_to_use.to_ulonglong(), (ulong) prev_tables,
(ulong) const_tables));
delete quick;
quick=0;
needed_reg.clear_all(); quick_keys.clear_all();
if (!cond || (specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
!limit)
DBUG_RETURN(0); /* purecov: inspected */
if (!((basflag= head->file->table_flags()) & HA_KEYPOS_TO_RNDPOS) &&
keys_to_use.is_set_all() || keys_to_use.is_clear_all())
DBUG_RETURN(0); /* Not smart database */
records=head->file->records;
if (!records)
records++; /* purecov: inspected */
scan_time=(double) records / TIME_FOR_COMPARE+1;
read_time=(double) head->file->scan_time()+ scan_time + 1.0;
if (head->force_index)
scan_time= read_time= DBL_MAX;
if (limit < records)
read_time=(double) records+scan_time+1; // Force to use index
else if (read_time <= 2.0 && !force_quick_range)
DBUG_RETURN(0); /* No need for quick select */
DBUG_PRINT("info",("Time to scan table: %g", read_time));
keys_to_use.intersect(head->keys_in_use_for_query);
if (!keys_to_use.is_clear_all())
{
MEM_ROOT *old_root,alloc;
SEL_TREE *tree;
KEY_PART *key_parts;
PARAM param;
/* set up parameter that is passed to all functions */
param.thd= thd;
param.baseflag=basflag;
param.prev_tables=prev_tables | const_tables;
param.read_tables=read_tables;
param.current_table= head->map;
param.table=head;
param.keys=0;
param.mem_root= &alloc;
param.imerge_cost_buff_size= 0;
thd->no_errors=1; // Don't warn about NULL
init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
if (!(param.key_parts = (KEY_PART*) alloc_root(&alloc,
sizeof(KEY_PART)*
head->key_parts)))
{
thd->no_errors=0;
free_root(&alloc,MYF(0)); // Return memory & allocator
DBUG_RETURN(0); // Can't use range
}
key_parts= param.key_parts;
old_root=my_pthread_getspecific_ptr(MEM_ROOT*,THR_MALLOC);
my_pthread_setspecific_ptr(THR_MALLOC,&alloc);
for (idx=0 ; idx < head->keys ; idx++)
{
if (!keys_to_use.is_set(idx))
continue;
KEY *key_info= &head->key_info[idx];
if (key_info->flags & HA_FULLTEXT)
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
param.key[param.keys]=key_parts;
for (uint part=0 ; part < key_info->key_parts ; part++,key_parts++)
{
key_parts->key=param.keys;
key_parts->part=part;
key_parts->part_length= key_info->key_part[part].length;
key_parts->field= key_info->key_part[part].field;
key_parts->null_bit= key_info->key_part[part].null_bit;
if (key_parts->field->type() == FIELD_TYPE_BLOB)
key_parts->part_length+=HA_KEY_BLOB_LENGTH;
key_parts->image_type =
(key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
}
param.real_keynr[param.keys++]=idx;
}
param.key_parts_end=key_parts;
if ((tree=get_mm_tree(&param,cond)))
{
if (tree->type == SEL_TREE::IMPOSSIBLE)
{
records=0L; // Return -1 from this function
read_time= (double) HA_POS_ERROR;
}
else if (tree->type == SEL_TREE::KEY ||
tree->type == SEL_TREE::KEY_SMALLER)
{
/*
It is possible to use a quick select (but maybe it would be slower
than 'all' table scan).
*/
SEL_ARG **best_key= 0;
ha_rows found_records;
double found_read_time= read_time;
if (!get_quick_select_params(tree, &param, needed_reg, false,
&found_read_time, &found_records,
&best_key))
{
/*
Ok, quick select is better than 'all' table scan and we have its
parameters, so construct it.
*/
read_time= found_read_time;
records= found_records;
if ((quick= get_quick_select(&param,(uint) (best_key-tree->keys),
*best_key)) && (!quick->init()))
{
quick->records= records;
quick->read_time= read_time;
}
}
/*
Btw, tree type SEL_TREE::INDEX_MERGE was not introduced
intentionally.
*/
/* If no range select could be built, try using index_merge. */
if (!quick && !tree->merges.is_empty())
{
DBUG_PRINT("info",("No range reads possible,"
" trying to construct index_merge"));
SEL_IMERGE *imerge;
SEL_IMERGE *min_imerge= NULL;
double min_imerge_read_time;
ha_rows min_imerge_records;
LINT_INIT(min_imerge_records); // Protected by min_imerge
if (!head->used_keys.is_clear_all())
{
int key_for_use= find_shortest_key(head, &head->used_keys);
ha_rows total_table_records= (0 == head->file->records)? 1 :
head->file->records;
read_time = get_index_only_read_time(&param, total_table_records,
key_for_use);
DBUG_PRINT("info",
("'all' scan will be using key %d, read time %g",
key_for_use, read_time));
}
min_imerge_read_time=read_time;
/*
Ok, read_time contains best 'all' read time.
Now look for index_merge with cost < read_time
*/
List_iterator_fast<SEL_IMERGE> it(tree->merges);
while ((imerge= it++))
{
if (!get_index_merge_params(&param, needed_reg, imerge,
&min_imerge_read_time,
&min_imerge_records))
min_imerge= imerge;
}
if (!min_imerge)
goto end_free;
records= min_imerge_records;
/* Ok, using index_merge is the best option, so construct it. */
if (!(quick= quick_imerge= new QUICK_INDEX_MERGE_SELECT(thd, head)))
goto end_free;
quick->records= min_imerge_records;
quick->read_time= min_imerge_read_time;
my_pthread_setspecific_ptr(THR_MALLOC, &quick_imerge->alloc);
QUICK_RANGE_SELECT *new_quick;
for (SEL_TREE **ptree = min_imerge->trees;
ptree != min_imerge->trees_next;
ptree++)
{
SEL_ARG **tree_best_key=
min_imerge->best_keys[ptree - min_imerge->trees];
if ((new_quick= get_quick_select(&param,
(uint)(tree_best_key-
(*ptree)->keys),
*tree_best_key,
&quick_imerge->alloc)))
{
new_quick->records= min_imerge_records;
new_quick->read_time= min_imerge_read_time;
/*
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT leaves THR_MALLOC
pointing to its allocator, restore it back.
*/
quick_imerge->last_quick_select= new_quick;
if (quick_imerge->push_quick_back(new_quick))
{
delete new_quick;
delete quick;
quick= quick_imerge= NULL;
goto end_free;
}
}
else
{
delete quick;
quick= quick_imerge= NULL;
goto end_free;
}
}
free_root(&alloc,MYF(0));
my_pthread_setspecific_ptr(THR_MALLOC,old_root);
if (quick->init())
{
delete quick;
quick= quick_imerge= NULL;
DBUG_PRINT("error",
("Failed to allocate index merge structures,"
"falling back to full scan."));
}
goto end;
}
}
}
end_free:
free_root(&alloc,MYF(0)); // Return memory & allocator
my_pthread_setspecific_ptr(THR_MALLOC,old_root);
end:
thd->no_errors=0;
}
DBUG_EXECUTE("info",
{
if (quick_imerge)
print_quick_sel_imerge(quick_imerge, &needed_reg);
else
print_quick_sel_range((QUICK_RANGE_SELECT*)quick, &needed_reg);
}
);
/*
Assume that if the user is using 'limit' we will only need to scan
limit rows if we are using a key
*/
DBUG_RETURN(records ? test(quick) : -1);
}
/*
Calculate index merge cost and save parameters for its construction.
SYNOPSIS
get_index_merge_params()
param in parameter with structure.
needed_reg in/out needed_reg from this SQL_SELECT
imerge in index_merge description structure
read_time in/out in: cost of an existing way to read a table
out: cost of index merge
imerge_rows out pessimistic estimate of # of rows to be retrieved
RETURN
0 Cost of this index_merge is less than passed *read_time,
*imerge_rows and *read_time contain new index_merge parameters.
1 Cost of this index_merge is more than *read_time,
*imerge_rows and *read_time are not modified.
-1 error
NOTES
index_merge_cost =
cost(index_reads) + (see #1)
cost(rowid_to_row_scan) + (see #2)
cost(unique_use) (see #3)
1. cost(index_reads) =SUM_i(cost(index_read_i))
For non-CPK scans,
cost(index_read_i) = {cost of ordinary 'index only' scan}
For CPK scan,
cost(index_read_i) = {cost of non-'index only' scan}
2. cost(rowid_to_row_scan)
If table PK is clustered then
cost(rowid_to_row_scan) =
{cost of ordinary clustered PK scan with n_ranges=n_rows}
Otherwise, we use the following model to calculate costs:
We need to retrieve n_rows rows from file that occupies n_blocks blocks.
We assume that offsets of rows we need are independent variates with
uniform distribution in [0..max_file_offset] range.
We'll denote block as "busy" if it contains row(s) we need to retrieve
and "empty" if doesn't contain rows we need.
Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
applies to any block in file). Let x_i be a variate taking value 1 if
block #i is empty and 0 otherwise.
Then E(x_i) = (1 - 1/n_blocks)^n_rows;
E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
= n_blocks * ((1 - 1/n_blocks)^n_rows) =
~= n_blocks * exp(-n_rows/n_blocks).
E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
~= n_blocks * (1 - exp(-n_rows/n_blocks)).
Average size of "hole" between neighbor non-empty blocks is
E(hole_size) = n_blocks/E(n_busy_blocks).
The total cost of reading all needed blocks in one "sweep" is:
E(n_busy_blocks)*
(DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).
3. Cost of Unique use is calculated in Unique::get_use_cost function.
*/
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
SEL_IMERGE *imerge, double *read_time,
ha_rows* imerge_rows)
{
double imerge_cost= 0.0; /* cost of this index_merge */
bool imerge_too_expensive= false;
double tree_read_time;
ha_rows tree_records;
bool pk_is_clustered= param->table->file->primary_key_is_clustered();
bool have_cpk_scan= false;
ha_rows records_for_unique= 0;
ha_rows cpk_records= 0;
DBUG_ENTER("get_index_merge_params");
/* allocate structs to save construction info */
imerge->best_keys=
(SEL_ARG***)alloc_root(param->mem_root,
(imerge->trees_next - imerge->trees)*
sizeof(void*));
/*
PHASE 1: get the best keys to use for this index_merge
*/
/*
It may be possible to use different keys for index_merge scans, e.g. for
query like
...WHERE (key1 < c2 AND key2 < c2) OR (key3 < c3 AND key4 < c4)
we have to make choice between key1 and key2 for one scan and between
key3, key4 for another.
We assume we'll get the best if we choose the best key read inside each
of the conjuncts.
*/
for (SEL_TREE **ptree= imerge->trees;
ptree != imerge->trees_next;
ptree++)
{
SEL_ARG **tree_best_key;
tree_read_time= *read_time;
if (get_quick_select_params(*ptree, param, needed_reg, true,
&tree_read_time, &tree_records,
&tree_best_key))
{
/*
One of index scans in this index_merge is more expensive than entire
table read for another available option. The entire index_merge will
be more expensive then, too. We continue here only to update
SQL_SELECT members.
*/
imerge_too_expensive= true;
}
if (imerge_too_expensive)
continue;
uint keynr= param->real_keynr[(tree_best_key-(*ptree)->keys)];
imerge->best_keys[ptree - imerge->trees]= tree_best_key;
imerge_cost += tree_read_time;
if (pk_is_clustered && keynr == param->table->primary_key)
{
have_cpk_scan= true;
cpk_records= tree_records;
}
else
records_for_unique += tree_records;
}
DBUG_PRINT("info",("index_merge cost of index reads: %g", imerge_cost));
if (imerge_too_expensive)
DBUG_RETURN(1);
if ((imerge_cost > *read_time) ||
((records_for_unique + cpk_records) >= param->table->file->records) &&
*read_time != DBL_MAX)
{
/* Bail out if it is obvious that index_merge would be more expensive */
DBUG_RETURN(1);
}
if (have_cpk_scan)
{
/*
Add one ROWID comparison for each row retrieved on non-CPK scan.
(it is done in QUICK_RANGE_SELECT::row_in_ranges)
*/
imerge_cost += records_for_unique / TIME_FOR_COMPARE_ROWID;
}
/* PHASE 2: Calculate cost(rowid_to_row_scan) */
if (pk_is_clustered)
{
imerge_cost +=
param->table->file->read_time(param->table->primary_key,
records_for_unique,
records_for_unique)
+ rows2double(records_for_unique) / TIME_FOR_COMPARE;
}
else
{
double n_blocks=
ceil((double)(longlong)param->table->file->data_file_length / IO_SIZE);
double busy_blocks=
n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, (double) records_for_unique));
JOIN *join= param->thd->lex->select_lex.join;
if (!join || join->tables == 1)
imerge_cost += busy_blocks*(DISK_SEEK_BASE_COST +
DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
else
{
/*
It can be a join with source table being non-last table, so assume
that disk seeks are random here.
(TODO it is possible to determine if this is a last table in 'index
checked for each record' join)
*/
imerge_cost += busy_blocks;
}
}
DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g", imerge_cost));
/* PHASE 3: Add Unique operations cost */
register uint unique_calc_buff_size=
Unique::get_cost_calc_buff_size(records_for_unique,
param->table->file->ref_length,
param->thd->variables.sortbuff_size);
if (param->imerge_cost_buff_size < unique_calc_buff_size)
{
if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
unique_calc_buff_size)))
DBUG_RETURN(1);
param->imerge_cost_buff_size= unique_calc_buff_size;
}
imerge_cost +=
Unique::get_use_cost(param->imerge_cost_buff, records_for_unique,
param->table->file->ref_length,
param->thd->variables.sortbuff_size);
DBUG_PRINT("info",("index_merge total cost: %g", imerge_cost));
if (imerge_cost < *read_time)
{
*read_time= imerge_cost;
records_for_unique += cpk_records;
*imerge_rows= min(records_for_unique, param->table->file->records);
DBUG_RETURN(0);
}
DBUG_RETURN(1);
}
/*
Calculate cost of 'index only' scan for given index and number of records.
(We can resolve this by only reading through this key.)
SYNOPSIS
get_whole_index_read_time()
param parameters structure
records #of records to read
keynr key to read
NOTES
It is assumed that we will read trough the whole key range and that all
key blocks are half full (normally things are much better).
*/
inline double get_index_only_read_time(PARAM* param, ha_rows records,
int keynr)
{
double read_time;
uint keys_per_block= (param->table->file->block_size/2/
(param->table->key_info[keynr].key_length+
param->table->file->ref_length) + 1);
read_time=((double) (records+keys_per_block-1)/
(double) keys_per_block);
return read_time;
}
/*
Calculate quick range select read time, # of records, and best key to use
without constructing QUICK_RANGE_SELECT object.
SYNOPSIS
get_quick_select_params
tree in make range select for this SEL_TREE
param in parameters from test_quick_select
needed_reg in/out other table data needed by this quick_select
index_read_must_be_used if true, assume 'index only' option will be set
(except for clustered PK indexes)
read_time out read time estimate
records out # of records estimate
key_to_read out SEL_ARG to be used for creating quick select
*/
static int get_quick_select_params(SEL_TREE *tree, PARAM *param,
key_map& needed_reg,
bool index_read_must_be_used,
double *read_time, ha_rows *records,
SEL_ARG ***key_to_read)
{
int idx;
int result = 1;
bool pk_is_clustered= param->table->file->primary_key_is_clustered();
/*
Note that there may be trees that have type SEL_TREE::KEY but contain no
key reads at all, e.g. tree for expression "key1 is not null" where key1
is defined as "not null".
*/
SEL_ARG **key,**end;
for (idx= 0,key=tree->keys, end=key+param->keys ;
key != end ;
key++,idx++)
{
ha_rows found_records;
double found_read_time;
if (*key)
{
uint keynr= param->real_keynr[idx];
if ((*key)->type == SEL_ARG::MAYBE_KEY ||
(*key)->maybe_flag)
needed_reg.set_bit(keynr);
bool read_index_only= index_read_must_be_used? true :
(bool)param->table->used_keys.is_set(keynr);
found_records=check_quick_select(param, idx, *key);
if (found_records != HA_POS_ERROR && found_records > 2 &&
read_index_only &&
(param->table->file->index_flags(keynr) & HA_KEY_READ_ONLY) &&
!(pk_is_clustered && keynr == param->table->primary_key))
{
/* We can resolve this by only reading through this key. */
found_read_time=get_index_only_read_time(param, found_records, keynr);
}
else
{
/*
cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
*/
found_read_time= (param->table->file->read_time(keynr,
param->range_count,
found_records)+
(double) found_records / TIME_FOR_COMPARE);
}
if (*read_time > found_read_time && found_records != HA_POS_ERROR)
{
*read_time= found_read_time;
*records= found_records;
*key_to_read= key;
result = 0;
}
}
}
return result;
}
/* make a select tree of all keys in condition */
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
SEL_TREE *tree=0;
DBUG_ENTER("get_mm_tree");
if (cond->type() == Item::COND_ITEM)
{
List_iterator<Item> li(*((Item_cond*) cond)->argument_list());
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
tree=0;
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
if (param->thd->is_fatal_error)
DBUG_RETURN(0); // out of memory
tree=tree_and(param,tree,new_tree);
if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
break;
}
}
else
{ // COND OR
tree=get_mm_tree(param,li++);
if (tree)
{
Item *item;
while ((item=li++))
{
SEL_TREE *new_tree=get_mm_tree(param,item);
if (!new_tree)
DBUG_RETURN(0); // out of memory
tree=tree_or(param,tree,new_tree);
if (!tree || tree->type == SEL_TREE::ALWAYS)
break;
}
}
}
DBUG_RETURN(tree);
}
/* Here when simple cond */
if (cond->const_item())
{
if (cond->val_int())
DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
}
table_map ref_tables=cond->used_tables();
if (cond->type() != Item::FUNC_ITEM)
{ // Should be a field
if ((ref_tables & param->current_table) ||
(ref_tables & ~(param->prev_tables | param->read_tables)))
DBUG_RETURN(0);
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
}
Item_func *cond_func= (Item_func*) cond;
if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
DBUG_RETURN(0); // Can't be calculated
if (cond_func->functype() == Item_func::BETWEEN)
{
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
{
Field *field=((Item_field*) (cond_func->arguments()[0]))->field;
Item_result cmp_type=field->cmp_type();
DBUG_RETURN(tree_and(param,
get_mm_parts(param, cond_func, field,
Item_func::GE_FUNC,
cond_func->arguments()[1], cmp_type),
get_mm_parts(param, cond_func, field,
Item_func::LE_FUNC,
cond_func->arguments()[2], cmp_type)));
}
DBUG_RETURN(0);
}
if (cond_func->functype() == Item_func::IN_FUNC)
{ // COND OR
Item_func_in *func=(Item_func_in*) cond_func;
if (func->key_item()->type() == Item::FIELD_ITEM)
{
Field *field=((Item_field*) (func->key_item()))->field;
Item_result cmp_type=field->cmp_type();
tree= get_mm_parts(param,cond_func,field,Item_func::EQ_FUNC,
func->arguments()[1],cmp_type);
if (!tree)
DBUG_RETURN(tree); // Not key field
for (uint i=2 ; i < func->argument_count(); i++)
{
SEL_TREE *new_tree=get_mm_parts(param,cond_func,field,
Item_func::EQ_FUNC,
func->arguments()[i],cmp_type);
tree=tree_or(param,tree,new_tree);
}
DBUG_RETURN(tree);
}
DBUG_RETURN(0); // Can't optimize this IN
}
if (ref_tables & ~(param->prev_tables | param->read_tables |
param->current_table))
DBUG_RETURN(0); // Can't be calculated yet
if (!(ref_tables & param->current_table))
DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE)); // This may be false or true
/* check field op const */
/* btw, ft_func's arguments()[0] isn't FIELD_ITEM. SerG*/
if (cond_func->arguments()[0]->type() == Item::FIELD_ITEM)
{
tree= get_mm_parts(param, cond_func,
((Item_field*) (cond_func->arguments()[0]))->field,
cond_func->functype(),
cond_func->arg_count > 1 ? cond_func->arguments()[1] :
0,
((Item_field*) (cond_func->arguments()[0]))->field->
cmp_type());
}
/* check const op field */
if (!tree &&
cond_func->have_rev_func() &&
cond_func->arguments()[1]->type() == Item::FIELD_ITEM)
{
DBUG_RETURN(get_mm_parts(param, cond_func,
((Item_field*)
(cond_func->arguments()[1]))->field,
((Item_bool_func2*) cond_func)->rev_functype(),
cond_func->arguments()[0],
((Item_field*)
(cond_func->arguments()[1]))->field->cmp_type()
));
}
DBUG_RETURN(tree);
}
static SEL_TREE *
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
Item_func::Functype type,
Item *value, Item_result cmp_type)
{
bool ne_func= FALSE;
DBUG_ENTER("get_mm_parts");
if (field->table != param->table)
DBUG_RETURN(0);
if (type == Item_func::NE_FUNC)
{
ne_func= TRUE;
type= Item_func::LT_FUNC;
}
KEY_PART *key_part = param->key_parts;
KEY_PART *end = param->key_parts_end;
SEL_TREE *tree=0;
if (value &&
value->used_tables() & ~(param->prev_tables | param->read_tables))
DBUG_RETURN(0);
for (; key_part != end ; key_part++)
{
if (field->eq(key_part->field))
{
SEL_ARG *sel_arg=0;
if (!tree && !(tree=new SEL_TREE()))
DBUG_RETURN(0); // OOM
if (!value || !(value->used_tables() & ~param->read_tables))
{
sel_arg=get_mm_leaf(param,cond_func,
key_part->field,key_part,type,value);
if (!sel_arg)
continue;
if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
{
tree->type=SEL_TREE::IMPOSSIBLE;
DBUG_RETURN(tree);
}
}
else
{
// This key may be used later
if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
DBUG_RETURN(0); // OOM
}
sel_arg->part=(uchar) key_part->part;
tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
tree->keys_map.set_bit(key_part->key);
}
}
if (ne_func)
{
SEL_TREE *tree2= get_mm_parts(param, cond_func,
field, Item_func::GT_FUNC,
value, cmp_type);
if (tree2)
tree= tree_or(param,tree,tree2);
}
DBUG_RETURN(tree);
}
static SEL_ARG *
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
Item_func::Functype type,Item *value)
{
uint maybe_null=(uint) field->real_maybe_null(), copies;
uint field_length=field->pack_length()+maybe_null;
SEL_ARG *tree;
char *str, *str2;
DBUG_ENTER("get_mm_leaf");
if (!value) // IS NULL or IS NOT NULL
{
if (field->table->outer_join) // Can't use a key on this
DBUG_RETURN(0);
if (!maybe_null) // Not null field
DBUG_RETURN(type == Item_func::ISNULL_FUNC ? &null_element : 0);
if (!(tree=new SEL_ARG(field,is_null_string,is_null_string)))
DBUG_RETURN(0); // out of memory
if (type == Item_func::ISNOTNULL_FUNC)
{
tree->min_flag=NEAR_MIN; /* IS NOT NULL -> X > NULL */
tree->max_flag=NO_MAX_RANGE;
}
DBUG_RETURN(tree);
}
/*
We can't use an index when comparing strings of
different collations
*/
if (field->result_type() == STRING_RESULT &&
value->result_type() == STRING_RESULT &&
key_part->image_type == Field::itRAW &&
((Field_str*)field)->charset() != conf_func->compare_collation())
DBUG_RETURN(0);
if (type == Item_func::LIKE_FUNC)
{
bool like_error;
char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
uint length,offset,min_length,max_length;
if (!field->optimize_range(param->real_keynr[key_part->key]))
DBUG_RETURN(0); // Can't optimize this
if (!(res= value->val_str(&tmp)))
DBUG_RETURN(&null_element);
/*
TODO:
Check if this was a function. This should have be optimized away
in the sql_select.cc
*/
if (res != &tmp)
{
tmp.copy(*res); // Get own copy
res= &tmp;
}
if (field->cmp_type() != STRING_RESULT)
DBUG_RETURN(0); // Can only optimize strings
offset=maybe_null;
length=key_part->part_length;
if (field->type() == FIELD_TYPE_BLOB)
{
offset+=HA_KEY_BLOB_LENGTH;
field_length=key_part->part_length-HA_KEY_BLOB_LENGTH;
}
else
{
if (length < field_length)
length=field_length; // Only if overlapping key
else
field_length=length;
}
length+=offset;
if (!(min_str= (char*) alloc_root(param->mem_root, length*2)))
DBUG_RETURN(0);
max_str=min_str+length;
if (maybe_null)
max_str[0]= min_str[0]=0;
like_error= my_like_range(field->charset(),
res->ptr(),res->length(),
wild_prefix,wild_one,wild_many,
field_length,
min_str+offset, max_str+offset,
&min_length,&max_length);
if (like_error) // Can't optimize with LIKE
DBUG_RETURN(0);
if (offset != maybe_null) // Blob
{
int2store(min_str+maybe_null,min_length);
int2store(max_str+maybe_null,max_length);
}
DBUG_RETURN(new SEL_ARG(field,min_str,max_str));
}
if (!field->optimize_range(param->real_keynr[key_part->key]) &&
type != Item_func::EQ_FUNC &&
type != Item_func::EQUAL_FUNC)
DBUG_RETURN(0); // Can't optimize this
/*
We can't always use indexes when comparing a string index to a number
cmp_type() is checked to allow compare of dates to numbers
*/
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
DBUG_RETURN(0);
if (value->save_in_field(field, 1) > 0)
{
/* This happens when we try to insert a NULL field in a not null column */
DBUG_RETURN(&null_element); // cmp with NULL is never true
}
/* Get local copy of key */
copies= 1;
if (field->key_type() == HA_KEYTYPE_VARTEXT)
copies= 2;
str= str2= (char*) alloc_root(param->mem_root,
(key_part->part_length+maybe_null)*copies+1);
if (!str)
DBUG_RETURN(0);
if (maybe_null)
*str= (char) field->is_real_null(); // Set to 1 if null
field->get_key_image(str+maybe_null,key_part->part_length,
field->charset(),key_part->image_type);
if (copies == 2)
{
/*
The key is stored as 2 byte length + key
key doesn't match end space. In other words, a key 'X ' should match
all rows between 'X' and 'X ...'
*/
uint length= uint2korr(str+maybe_null);
str2= str+ key_part->part_length + maybe_null;
/* remove end space */
while (length > 0 && str[length+HA_KEY_BLOB_LENGTH+maybe_null-1] == ' ')
length--;
int2store(str+maybe_null, length);
/* Create key that is space filled */
memcpy(str2, str, length + HA_KEY_BLOB_LENGTH + maybe_null);
bfill(str2+ length+ HA_KEY_BLOB_LENGTH +maybe_null,
key_part->part_length-length - HA_KEY_BLOB_LENGTH, ' ');
int2store(str2+maybe_null, key_part->part_length - HA_KEY_BLOB_LENGTH);
}
if (!(tree=new SEL_ARG(field,str,str2)))
DBUG_RETURN(0); // out of memory
switch (type) {
case Item_func::LT_FUNC:
if (field_is_equal_to_item(field,value))
tree->max_flag=NEAR_MAX;
/* fall through */
case Item_func::LE_FUNC:
if (!maybe_null)
tree->min_flag=NO_MIN_RANGE; /* From start */
else
{ // > NULL
tree->min_value=is_null_string;
tree->min_flag=NEAR_MIN;
}
break;
case Item_func::GT_FUNC:
if (field_is_equal_to_item(field,value))
tree->min_flag=NEAR_MIN;
/* fall through */
case Item_func::GE_FUNC:
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_EQUALS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_DISJOINT_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_INTERSECTS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_TOUCHES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_CROSSES_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_WITHIN_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_CONTAINS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
case Item_func::SP_OVERLAPS_FUNC:
tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
tree->max_flag=NO_MAX_RANGE;
break;
default:
break;
}
DBUG_RETURN(tree);
}
/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
** IMPOSSIBLE: Condition is never true
** ALWAYS: Condition is always true
** MAYBE: Condition may exists when tables are read
** MAYBE_KEY: Condition refers to a key that may be used in join loop
** KEY_RANGE: Condition uses a key
******************************************************************************/
/*
Add a new key test to a key when scanning through all keys
This will never be called for same key parts.
*/
static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
SEL_ARG *root,**key_link;
if (!key1)
return key2;
if (!key2)
return key1;
key_link= &root;
while (key1 && key2)
{
if (key1->part < key2->part)
{
*key_link= key1;
key_link= &key1->next_key_part;
key1=key1->next_key_part;
}
else
{
*key_link= key2;
key_link= &key2->next_key_part;
key2=key2->next_key_part;
}
}
*key_link=key1 ? key1 : key2;
return root;
}
#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)
static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_and");
if (!tree1)
DBUG_RETURN(tree2);
if (!tree2)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree1->type == SEL_TREE::MAYBE)
{
if (tree2->type == SEL_TREE::KEY)
tree2->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree2);
}
if (tree2->type == SEL_TREE::MAYBE)
{
tree1->type=SEL_TREE::KEY_SMALLER;
DBUG_RETURN(tree1);
}
key_map result_keys;
result_keys.clear_all();
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
key1 != end ; key1++,key2++)
{
uint flag=0;
if (*key1 || *key2)
{
if (*key1 && !(*key1)->simple_key())
flag|=CLONE_KEY1_MAYBE;
if (*key2 && !(*key2)->simple_key())
flag|=CLONE_KEY2_MAYBE;
*key1=key_and(*key1,*key2,flag);
if ((*key1)->type == SEL_ARG::IMPOSSIBLE)
{
tree1->type= SEL_TREE::IMPOSSIBLE;
DBUG_RETURN(tree1);
}
result_keys.set_bit(key1 - tree1->keys);
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
#endif
}
}
tree1->keys_map= result_keys;
/* dispose index_merge if there is a "range" option */
if (!result_keys.is_clear_all())
{
tree1->merges.empty();
DBUG_RETURN(tree1);
}
/* ok, both trees are index_merge trees */
imerge_list_and_list(&tree1->merges, &tree2->merges);
DBUG_RETURN(tree1);
}
/*
Check if two SEL_TREES can be combined into one (i.e. a single key range
read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
using index_merge.
*/
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
key_map common_keys= tree1->keys_map;
DBUG_ENTER("sel_trees_can_be_ored");
common_keys.intersect(tree2->keys_map);
if (common_keys.is_clear_all())
DBUG_RETURN(false);
/* trees have a common key, check if they refer to same key part */
SEL_ARG **key1,**key2;
for (uint key_no=0; key_no < param->keys; key_no++)
{
if (common_keys.is_set(key_no))
{
key1= tree1->keys + key_no;
key2= tree2->keys + key_no;
if ((*key1)->part == (*key2)->part)
{
DBUG_RETURN(true);
}
}
}
DBUG_RETURN(false);
}
static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
DBUG_ENTER("tree_or");
if (!tree1 || !tree2)
DBUG_RETURN(0);
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree2);
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
DBUG_RETURN(tree1);
if (tree1->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree1); // Can't use this
if (tree2->type == SEL_TREE::MAYBE)
DBUG_RETURN(tree2);
SEL_TREE *result= 0;
key_map result_keys;
result_keys.clear_all();
if (sel_trees_can_be_ored(tree1, tree2, param))
{
/* Join the trees key per key */
SEL_ARG **key1,**key2,**end;
for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
key1 != end ; key1++,key2++)
{
*key1=key_or(*key1,*key2);
if (*key1)
{
result=tree1; // Added to tree1
result_keys.set_bit(key1 - tree1->keys);
#ifdef EXTRA_DEBUG
(*key1)->test_use_count(*key1);
#endif
}
}
if (result)
result->keys_map= result_keys;
}
else
{
/* ok, two trees have KEY type but cannot be used without index merge */
if (tree1->merges.is_empty() && tree2->merges.is_empty())
{
SEL_IMERGE *merge;
/* both trees are "range" trees, produce new index merge structure */
if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
(result->merges.push_back(merge)) ||
(merge->or_sel_tree(param, tree1)) ||
(merge->or_sel_tree(param, tree2)))
result= NULL;
else
result->type= tree1->type;
}
else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
{
if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
result= new SEL_TREE(SEL_TREE::ALWAYS);
else
result= tree1;
}
else
{
/* one tree is index merge tree and another is range tree */
if (tree1->merges.is_empty())
swap(SEL_TREE*, tree1, tree2);
/* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
if (imerge_list_or_tree(param, &tree1->merges, tree2))
result= new SEL_TREE(SEL_TREE::ALWAYS);
else
result= tree1;
}
}
DBUG_RETURN(result);
}
/* And key trees where key1->part < key2 -> part */
static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
SEL_ARG *next;
ulong use_count=key1->use_count;
if (key1->elements != 1)
{
key2->use_count+=key1->elements-1;
key2->increment_use_count((int) key1->elements-1);
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key1->right= key1->left= &null_element;
key1->next= key1->prev= 0;
}
for (next=key1->first(); next ; next=next->next)
{
if (next->next_key_part)
{
SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
{
key1=key1->tree_delete(next);
continue;
}
next->next_key_part=tmp;
if (use_count)
next->increment_use_count(use_count);
}
else
next->next_key_part=key2;
}
if (!key1)
return &null_element; // Impossible ranges
key1->use_count++;
return key1;
}
static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
if (!key1)
return key2;
if (!key2)
return key1;
if (key1->part != key2->part)
{
if (key1->part > key2->part)
{
swap(SEL_ARG *,key1,key2);
clone_flag=swap_clone_flag(clone_flag);
}
// key1->part < key2->part
key1->use_count--;
if (key1->use_count > 0)
if (!(key1= key1->clone_tree()))
return 0; // OOM
return and_all_keys(key1,key2,clone_flag);
}
if (((clone_flag & CLONE_KEY2_MAYBE) &&
!(clone_flag & CLONE_KEY1_MAYBE) &&
key2->type != SEL_ARG::MAYBE_KEY) ||
key1->type == SEL_ARG::MAYBE_KEY)
{ // Put simple key in key2
swap(SEL_ARG *,key1,key2);
clone_flag=swap_clone_flag(clone_flag);
}
// If one of the key is MAYBE_KEY then the found region may be smaller
if (key2->type == SEL_ARG::MAYBE_KEY)
{
if (key1->use_count > 1)
{
key1->use_count--;
if (!(key1=key1->clone_tree()))
return 0; // OOM
key1->use_count++;
}
if (key1->type == SEL_ARG::MAYBE_KEY)
{ // Both are maybe key
key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
clone_flag);
if (key1->next_key_part &&
key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
return key1;
}
else
{
key1->maybe_smaller();
if (key2->next_key_part)
{
key1->use_count--; // Incremented in and_all_keys
return and_all_keys(key1,key2,clone_flag);
}
key2->use_count--; // Key2 doesn't have a tree
}
return key1;
}
key1->use_count--;
key2->use_count--;
SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;
while (e1 && e2)
{
int cmp=e1->cmp_min_to_min(e2);
if (cmp < 0)
{
if (get_range(&e1,&e2,key1))
continue;
}
else if (get_range(&e2,&e1,key2))
continue;
SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
e1->increment_use_count(1);
e2->increment_use_count(1);
if (!next || next->type != SEL_ARG::IMPOSSIBLE)
{
SEL_ARG *new_arg= e1->clone_and(e2);
if (!new_arg)
return &null_element; // End of memory
new_arg->next_key_part=next;
if (!new_tree)
{
new_tree=new_arg;
}
else
new_tree=new_tree->insert(new_arg);
}
if (e1->cmp_max_to_max(e2) < 0)
e1=e1->next; // e1 can't overlapp next e2
else
e2=e2->next;
}
key1->free_tree();
key2->free_tree();
if (!new_tree)
return &null_element; // Impossible range
return new_tree;
}
static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
(*e1)=root1->find_range(*e2); // first e1->min < e2->min
if ((*e1)->cmp_max_to_min(*e2) < 0)
{
if (!((*e1)=(*e1)->next))
return 1;
if ((*e1)->cmp_min_to_max(*e2) > 0)
{
(*e2)=(*e2)->next;
return 1;
}
}
return 0;
}
static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
if (!key1)
{
if (key2)
{
key2->use_count--;
key2->free_tree();
}
return 0;
}
if (!key2)
{
key1->use_count--;
key1->free_tree();
return 0;
}
key1->use_count--;
key2->use_count--;
if (key1->part != key2->part)
{
key1->free_tree();
key2->free_tree();
return 0; // Can't optimize this
}
// If one of the key is MAYBE_KEY then the found region may be bigger
if (key1->type == SEL_ARG::MAYBE_KEY)
{
key2->free_tree();
key1->use_count++;
return key1;
}
if (key2->type == SEL_ARG::MAYBE_KEY)
{
key1->free_tree();
key2->use_count++;
return key2;
}
if (key1->use_count > 0)
{
if (key2->use_count == 0 || key1->elements > key2->elements)
{
swap(SEL_ARG *,key1,key2);
}
else if (!(key1=key1->clone_tree()))
return 0; // OOM
}
// Add tree at key2 to tree at key1
bool key2_shared=key2->use_count != 0;
key1->maybe_flag|=key2->maybe_flag;
for (key2=key2->first(); key2; )
{
SEL_ARG *tmp=key1->find_range(key2); // Find key1.min <= key2.min
int cmp;
if (!tmp)
{
tmp=key1->first(); // tmp.min > key2.min
cmp= -1;
}
else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
{ // Found tmp.max < key2.min
SEL_ARG *next=tmp->next;
if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{
// Join near ranges like tmp.max < 0 and key2.min >= 0
SEL_ARG *key2_next=key2->next;
if (key2_shared)
{
if (!(key2=new SEL_ARG(*key2)))
return 0; // out of memory
key2->increment_use_count(key1->use_count+1);
key2->next=key2_next; // New copy of key2
}
key2->copy_min(tmp);
if (!(key1=key1->tree_delete(tmp)))
{ // Only one key in tree
key1=key2;
key1->make_root();
key2=key2_next;
break;
}
}
if (!(tmp=next)) // tmp.min > key2.min
break; // Copy rest of key2
}
if (cmp < 0)
{ // tmp.min > key2.min
int tmp_cmp;
if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
{
if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
{ // ranges are connected
tmp->copy_min_to_min(key2);
key1->merge_flags(key2);
if (tmp->min_flag & NO_MIN_RANGE &&
tmp->max_flag & NO_MAX_RANGE)
{
if (key1->maybe_flag)
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
}
key2->increment_use_count(-1); // Free not used tree
key2=key2->next;
continue;
}
else
{
SEL_ARG *next=key2->next; // Keys are not overlapping
if (key2_shared)
{
SEL_ARG *tmp= new SEL_ARG(*key2); // Must make copy
if (!tmp)
return 0; // OOM
key1=key1->insert(tmp);
key2->increment_use_count(key1->use_count+1);
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
continue;
}
}
}
// tmp.max >= key2.min && tmp.min <= key.max (overlapping ranges)
if (eq_tree(tmp->next_key_part,key2->next_key_part))
{
if (tmp->is_same(key2))
{
tmp->merge_flags(key2); // Copy maybe flags
key2->increment_use_count(-1); // Free not used tree
}
else
{
SEL_ARG *last=tmp;
while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
eq_tree(last->next->next_key_part,key2->next_key_part))
{
SEL_ARG *save=last;
last=last->next;
key1=key1->tree_delete(save);
}
if (last->copy_min(key2) || last->copy_max(key2))
{ // Full range
key1->free_tree();
for (; key2 ; key2=key2->next)
key2->increment_use_count(-1); // Free not used tree
if (key1->maybe_flag)
return new SEL_ARG(SEL_ARG::MAYBE_KEY);
return 0;
}
}
key2=key2->next;
continue;
}
if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
{ // tmp.min <= x < key2.min
SEL_ARG *new_arg=tmp->clone_first(key2);
if (!new_arg)
return 0; // OOM
if ((new_arg->next_key_part= key1->next_key_part))
new_arg->increment_use_count(key1->use_count+1);
tmp->copy_min_to_min(key2);
key1=key1->insert(new_arg);
}
// tmp.min >= key2.min && tmp.min <= key2.max
SEL_ARG key(*key2); // Get copy we can modify
for (;;)
{
if (tmp->cmp_min_to_min(&key) > 0)
{ // key.min <= x < tmp.min
SEL_ARG *new_arg=key.clone_first(tmp);
if (!new_arg)
return 0; // OOM
if ((new_arg->next_key_part=key.next_key_part))
new_arg->increment_use_count(key1->use_count+1);
key1=key1->insert(new_arg);
}
if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
{ // tmp.min. <= x <= tmp.max
tmp->maybe_flag|= key.maybe_flag;
key.increment_use_count(key1->use_count+1);
tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
if (!cmp) // Key2 is ready
break;
key.copy_max_to_min(tmp);
if (!(tmp=tmp->next))
{
SEL_ARG *tmp2= new SEL_ARG(key);
if (!tmp2)
return 0; // OOM
key1=key1->insert(tmp2);
key2=key2->next;
goto end;
}
if (tmp->cmp_min_to_max(&key) > 0)
{
SEL_ARG *tmp2= new SEL_ARG(key);
if (!tmp2)
return 0; // OOM
key1=key1->insert(tmp2);
break;
}
}
else
{
SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
if (!new_arg)
return 0; // OOM
tmp->copy_max_to_min(&key);
tmp->increment_use_count(key1->use_count+1);
new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
key1=key1->insert(new_arg);
break;
}
}
key2=key2->next;
}
end:
while (key2)
{
SEL_ARG *next=key2->next;
if (key2_shared)
{
SEL_ARG *tmp=new SEL_ARG(*key2); // Must make copy
if (!tmp)
return 0;
key2->increment_use_count(key1->use_count+1);
key1=key1->insert(tmp);
}
else
key1=key1->insert(key2); // Will destroy key2_root
key2=next;
}
key1->use_count++;
return key1;
}
/* Compare if two trees are equal */
static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
if (a == b)
return 1;
if (!a || !b || !a->is_same(b))
return 0;
if (a->left != &null_element && b->left != &null_element)
{
if (!eq_tree(a->left,b->left))
return 0;
}
else if (a->left != &null_element || b->left != &null_element)
return 0;
if (a->right != &null_element && b->right != &null_element)
{
if (!eq_tree(a->right,b->right))
return 0;
}
else if (a->right != &null_element || b->right != &null_element)
return 0;
if (a->next_key_part != b->next_key_part)
{ // Sub range
if (!a->next_key_part != !b->next_key_part ||
!eq_tree(a->next_key_part, b->next_key_part))
return 0;
}
return 1;
}
SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
SEL_ARG *element,**par,*last_element;
LINT_INIT(par); LINT_INIT(last_element);
for (element= this; element != &null_element ; )
{
last_element=element;
if (key->cmp_min_to_min(element) > 0)
{
par= &element->right; element= element->right;
}
else
{
par = &element->left; element= element->left;
}
}
*par=key;
key->parent=last_element;
/* Link in list */
if (par == &last_element->left)
{
key->next=last_element;
if ((key->prev=last_element->prev))
key->prev->next=key;
last_element->prev=key;
}
else
{
if ((key->next=last_element->next))
key->next->prev=key;
key->prev=last_element;
last_element->next=key;
}
key->left=key->right= &null_element;
SEL_ARG *root=rb_insert(key); // rebalance tree
root->use_count=this->use_count; // copy root info
root->elements= this->elements+1;
root->maybe_flag=this->maybe_flag;
return root;
}
/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/
SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
SEL_ARG *element=this,*found=0;
for (;;)
{
if (element == &null_element)
return found;
int cmp=element->cmp_min_to_min(key);
if (cmp == 0)
return element;
if (cmp < 0)
{
found=element;
element=element->right;
}
else
element=element->left;
}
}
/*
** Remove a element from the tree
** This also frees all sub trees that is used by the element
*/
SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
enum leaf_color remove_color;
SEL_ARG *root,*nod,**par,*fix_par;
root=this; this->parent= 0;
/* Unlink from list */
if (key->prev)
key->prev->next=key->next;
if (key->next)
key->next->prev=key->prev;
key->increment_use_count(-1);
if (!key->parent)
par= &root;
else
par=key->parent_ptr();
if (key->left == &null_element)
{
*par=nod=key->right;
fix_par=key->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= key->color;
}
else if (key->right == &null_element)
{
*par= nod=key->left;
nod->parent=fix_par=key->parent;
remove_color= key->color;
}
else
{
SEL_ARG *tmp=key->next; // next bigger key (exist!)
nod= *tmp->parent_ptr()= tmp->right; // unlink tmp from tree
fix_par=tmp->parent;
if (nod != &null_element)
nod->parent=fix_par;
remove_color= tmp->color;
tmp->parent=key->parent; // Move node in place of key
(tmp->left=key->left)->parent=tmp;
if ((tmp->right=key->right) != &null_element)
tmp->right->parent=tmp;
tmp->color=key->color;
*par=tmp;
if (fix_par == key) // key->right == key->next
fix_par=tmp; // new parent of nod
}
if (root == &null_element)
return 0; // Maybe root later
if (remove_color == BLACK)
root=rb_delete_fixup(root,nod,fix_par);
test_rb_tree(root,root->parent);
root->use_count=this->use_count; // Fix root counters
root->elements=this->elements-1;
root->maybe_flag=this->maybe_flag;
return root;
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->right;
leaf->right=y->left;
if (y->left != &null_element)
y->left->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->left=leaf;
leaf->parent=y;
}
static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
SEL_ARG *y=leaf->left;
leaf->left=y->right;
if (y->right != &null_element)
y->right->parent=leaf;
if (!(y->parent=leaf->parent))
*root=y;
else
*leaf->parent_ptr()=y;
y->right=leaf;
leaf->parent=y;
}
SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
SEL_ARG *y,*par,*par2,*root;
root= this; root->parent= 0;
leaf->color=RED;
while (leaf != root && (par= leaf->parent)->color == RED)
{ // This can't be root or 1 level under
if (par == (par2= leaf->parent->parent)->left)
{
y= par2->right;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(&root,leaf->parent);
par=leaf; /* leaf is now parent to old leaf */
}
par->color=BLACK;
par2->color=RED;
right_rotate(&root,par2);
break;
}
}
else
{
y= par2->left;
if (y->color == RED)
{
par->color=BLACK;
y->color=BLACK;
leaf=par2;
leaf->color=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(&root,par);
par=leaf;
}
par->color=BLACK;
par2->color=RED;
left_rotate(&root,par2);
break;
}
}
}
root->color=BLACK;
test_rb_tree(root,root->parent);
return root;
}
SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
SEL_ARG *x,*w;
root->parent=0;
x= key;
while (x != root && x->color == SEL_ARG::BLACK)
{
if (x == par->left)
{
w=par->right;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
left_rotate(&root,par);
w=par->right;
}
if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->right->color == SEL_ARG::BLACK)
{
w->left->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
right_rotate(&root,w);
w=par->right;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->right->color=SEL_ARG::BLACK;
left_rotate(&root,par);
x=root;
break;
}
}
else
{
w=par->left;
if (w->color == SEL_ARG::RED)
{
w->color=SEL_ARG::BLACK;
par->color=SEL_ARG::RED;
right_rotate(&root,par);
w=par->left;
}
if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
{
w->color=SEL_ARG::RED;
x=par;
}
else
{
if (w->left->color == SEL_ARG::BLACK)
{
w->right->color=SEL_ARG::BLACK;
w->color=SEL_ARG::RED;
left_rotate(&root,w);
w=par->left;
}
w->color=par->color;
par->color=SEL_ARG::BLACK;
w->left->color=SEL_ARG::BLACK;
right_rotate(&root,par);
x=root;
break;
}
}
par=x->parent;
}
x->color=SEL_ARG::BLACK;
return root;
}
/* Test that the proporties for a red-black tree holds */
#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
int count_l,count_r;
if (element == &null_element)
return 0; // Found end of tree
if (element->parent != parent)
{
sql_print_error("Wrong tree: Parent doesn't point at parent");
return -1;
}
if (element->color == SEL_ARG::RED &&
(element->left->color == SEL_ARG::RED ||
element->right->color == SEL_ARG::RED))
{
sql_print_error("Wrong tree: Found two red in a row");
return -1;
}
if (element->left == element->right && element->left != &null_element)
{ // Dummy test
sql_print_error("Wrong tree: Found right == left");
return -1;
}
count_l=test_rb_tree(element->left,element);
count_r=test_rb_tree(element->right,element);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
return count_l+(element->color == SEL_ARG::BLACK);
sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
count_l,count_r);
}
return -1; // Error, no more warnings
}
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
ulong count= 0;
for (root=root->first(); root ; root=root->next)
{
if (root->next_key_part)
{
if (root->next_key_part == key)
count++;
if (root->next_key_part->part < key->part)
count+=count_key_part_usage(root->next_key_part,key);
}
}
return count;
}
void SEL_ARG::test_use_count(SEL_ARG *root)
{
if (this == root && use_count != 1)
{
sql_print_error("Note: Use_count: Wrong count %lu for root",use_count);
return;
}
if (this->type != SEL_ARG::KEY_RANGE)
return;
uint e_count=0;
for (SEL_ARG *pos=first(); pos ; pos=pos->next)
{
e_count++;
if (pos->next_key_part)
{
ulong count=count_key_part_usage(root,pos->next_key_part);
if (count > pos->next_key_part->use_count)
{
sql_print_error("Note: Use_count: Wrong count for key at %lx, %lu should be %lu",
pos,pos->next_key_part->use_count,count);
return;
}
pos->next_key_part->test_use_count(root);
}
}
if (e_count != elements)
sql_print_error("Warning: Wrong use count: %u for tree at %lx", e_count,
(gptr) this);
}
#endif
/*****************************************************************************
** Check how many records we will find by using the found tree
*****************************************************************************/
static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
ha_rows records;
DBUG_ENTER("check_quick_select");
if (!tree)
DBUG_RETURN(HA_POS_ERROR); // Can't use it
param->max_key_part=0;
param->range_count=0;
if (tree->type == SEL_ARG::IMPOSSIBLE)
DBUG_RETURN(0L); // Impossible select. return
if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
DBUG_RETURN(HA_POS_ERROR); // Don't use tree
records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
if (records != HA_POS_ERROR)
{
uint key=param->real_keynr[idx];
param->table->quick_keys.set_bit(key);
param->table->quick_rows[key]=records;
param->table->quick_key_parts[key]=param->max_key_part+1;
}
DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
DBUG_RETURN(records);
}
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
char *min_key,uint min_key_flag, char *max_key,
uint max_key_flag)
{
ha_rows records=0,tmp;
param->max_key_part=max(param->max_key_part,key_tree->part);
if (key_tree->left != &null_element)
{
records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
max_key,max_key_flag);
if (records == HA_POS_ERROR) // Impossible
return records;
}
uint tmp_min_flag,tmp_max_flag,keynr;
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(param->key[idx][key_tree->part].part_length,
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
uint min_key_length= (uint) (tmp_min_key- param->min_key);
uint max_key_length= (uint) (tmp_max_key- param->max_key);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (min_key_length == max_key_length &&
!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
!key_tree->min_flag && !key_tree->max_flag)
{
tmp=check_quick_keys(param,idx,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag);
goto end; // Ugly, but efficient
}
tmp_min_flag=key_tree->min_flag;
tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
&tmp_max_flag);
min_key_length= (uint) (tmp_min_key- param->min_key);
max_key_length= (uint) (tmp_max_key- param->max_key);
}
else
{
tmp_min_flag=min_key_flag | key_tree->min_flag;
tmp_max_flag=max_key_flag | key_tree->max_flag;
}
keynr=param->real_keynr[idx];
param->range_count++;
if (!tmp_min_flag && ! tmp_max_flag &&
(uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
(param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
HA_NOSAME &&
min_key_length == max_key_length &&
!memcmp(param->min_key,param->max_key,min_key_length))
tmp=1; // Max one record
else
{
if (tmp_min_flag & GEOM_FLAG)
{
tmp= param->table->file->
records_in_range((int) keynr, (byte*)(param->min_key),
min_key_length,
(ha_rkey_function)(tmp_min_flag ^ GEOM_FLAG),
(byte *)NullS, 0, HA_READ_KEY_EXACT);
}
else
{
tmp=param->table->file->
records_in_range((int) keynr,
(byte*) (!min_key_length ? NullS :
param->min_key),
min_key_length,
tmp_min_flag & NEAR_MIN ?
HA_READ_AFTER_KEY : HA_READ_KEY_EXACT,
(byte*) (!max_key_length ? NullS :
param->max_key),
max_key_length,
(tmp_max_flag & NEAR_MAX ?
HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY));
}
}
end:
if (tmp == HA_POS_ERROR) // Impossible range
return tmp;
records+=tmp;
if (key_tree->right != &null_element)
{
tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
max_key,max_key_flag);
if (tmp == HA_POS_ERROR)
return tmp;
records+=tmp;
}
return records;
}
/****************************************************************************
** change a tree to a structure to be used by quick_select
** This uses it's own malloc tree
** The caller should call QUICK_SELCT::init for returned quick select
****************************************************************************/
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
MEM_ROOT *parent_alloc)
{
QUICK_RANGE_SELECT *quick;
DBUG_ENTER("get_quick_select");
if ((quick=new QUICK_RANGE_SELECT(param->thd, param->table,
param->real_keynr[idx],test(parent_alloc),
parent_alloc)))
{
if (quick->error ||
get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
param->max_key,0))
{
delete quick;
quick=0;
}
else
{
quick->key_parts=(KEY_PART*)
memdup_root(parent_alloc? parent_alloc : &quick->alloc,
(char*) param->key[idx],
sizeof(KEY_PART)*
param->table->key_info[param->real_keynr[idx]].key_parts);
}
}
DBUG_RETURN(quick);
}
/*
** Fix this to get all possible sub_ranges
*/
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,char *min_key,uint min_key_flag,
char *max_key, uint max_key_flag)
{
QUICK_RANGE *range;
uint flag;
if (key_tree->left != &null_element)
{
if (get_quick_keys(param,quick,key,key_tree->left,
min_key,min_key_flag, max_key, max_key_flag))
return 1;
}
char *tmp_min_key=min_key,*tmp_max_key=max_key;
key_tree->store(key[key_tree->part].part_length,
&tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
if (key_tree->next_key_part &&
key_tree->next_key_part->part == key_tree->part+1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{ // const key as prefix
if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
key_tree->min_flag || key_tree->max_flag))
{
if (get_quick_keys(param,quick,key,key_tree->next_key_part,
tmp_min_key, min_key_flag | key_tree->min_flag,
tmp_max_key, max_key_flag | key_tree->max_flag))
return 1;
goto end; // Ugly, but efficient
}
{
uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(key, &tmp_min_key,
&tmp_min_flag);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(key, &tmp_max_key,
&tmp_max_flag);
flag=tmp_min_flag | tmp_max_flag;
}
}
else
{
flag = (key_tree->min_flag & GEOM_FLAG) ?
key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
}
/*
Ensure that some part of min_key and max_key are used. If not,
regard this as no lower/upper range
*/
if ((flag & GEOM_FLAG) == 0)
{
if (tmp_min_key != param->min_key)
flag&= ~NO_MIN_RANGE;
else
flag|= NO_MIN_RANGE;
if (tmp_max_key != param->max_key)
flag&= ~NO_MAX_RANGE;
else
flag|= NO_MAX_RANGE;
}
if (flag == 0)
{
uint length= (uint) (tmp_min_key - param->min_key);
if (length == (uint) (tmp_max_key - param->max_key) &&
!memcmp(param->min_key,param->max_key,length))
{
KEY *table_key=quick->head->key_info+quick->index;
flag=EQ_RANGE;
if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
key->part == table_key->key_parts-1)
{
if (!(table_key->flags & HA_NULL_PART_KEY) ||
!null_part_in_key(key,
param->min_key,
(uint) (tmp_min_key - param->min_key)))
flag|= UNIQUE_RANGE;
else
flag|= NULL_RANGE;
}
}
}
/* Get range for retrieving rows in QUICK_SELECT::get_next */
if (!(range= new QUICK_RANGE(param->min_key,
(uint) (tmp_min_key - param->min_key),
param->max_key,
(uint) (tmp_max_key - param->max_key),
flag)))
return 1; // out of memory
set_if_bigger(quick->max_used_key_length,range->min_length);
set_if_bigger(quick->max_used_key_length,range->max_length);
set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
if (insert_dynamic(&quick->ranges, (gptr)&range))
return 1;
end:
if (key_tree->right != &null_element)
return get_quick_keys(param,quick,key,key_tree->right,
min_key,min_key_flag,
max_key,max_key_flag);
return 0;
}
/*
Return 1 if there is only one range and this uses the whole primary key
*/
bool QUICK_RANGE_SELECT::unique_key_range()
{
if (ranges.elements == 1)
{
QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
{
KEY *key=head->key_info+index;
return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
key->key_length == tmp->min_length);
}
}
return 0;
}
/* Returns true if any part of the key is NULL */
static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
for (const char *end=key+length ;
key < end;
key+= key_part++->part_length)
{
if (key_part->null_bit)
{
if (*key++)
return 1;
}
}
return 0;
}
/****************************************************************************
** Create a QUICK RANGE based on a key
****************************************************************************/
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
TABLE_REF *ref)
{
table->file->index_end(); // Remove old cursor
QUICK_RANGE_SELECT *quick=new QUICK_RANGE_SELECT(thd, table, ref->key, 1);
KEY *key_info = &table->key_info[ref->key];
KEY_PART *key_part;
QUICK_RANGE *range;
uint part;
if (!quick)
return 0; /* no ranges found */
if (quick->init())
{
delete quick;
return 0;
}
if (cp_buffer_from_ref(ref))
{
if (thd->is_fatal_error)
goto err; // out of memory
}
if (!(range= new QUICK_RANGE()))
goto err; // out of memory
range->min_key=range->max_key=(char*) ref->key_buff;
range->min_length=range->max_length=ref->key_length;
range->flag= ((ref->key_length == key_info->key_length &&
(key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
HA_NOSAME) ? EQ_RANGE : 0);
if (!(quick->key_parts=key_part=(KEY_PART *)
alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
goto err;
for (part=0 ; part < ref->key_parts ;part++,key_part++)
{
key_part->part=part;
key_part->field= key_info->key_part[part].field;
key_part->part_length= key_info->key_part[part].length;
if (key_part->field->type() == FIELD_TYPE_BLOB)
key_part->part_length+=HA_KEY_BLOB_LENGTH;
key_part->null_bit= key_info->key_part[part].null_bit;
}
if (insert_dynamic(&quick->ranges,(gptr)&range))
goto err;
/*
Add a NULL range if REF_OR_NULL optimization is used.
For example:
if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
and have ref->null_ref_key set. Will create a new NULL range here.
*/
if (ref->null_ref_key)
{
QUICK_RANGE *null_range;
*ref->null_ref_key= 1; // Set null byte then create a range
if (!(null_range= new QUICK_RANGE(ref->key_buff, ref->key_length,
ref->key_buff, ref->key_length,
EQ_RANGE)))
goto err;
*ref->null_ref_key= 0; // Clear null byte
if (insert_dynamic(&quick->ranges,(gptr)&null_range))
goto err;
}
return quick;
err:
delete quick;
return 0;
}
#define MEM_STRIP_BUF_SIZE thd->variables.sortbuff_size
/*
Fetch all row ids into unique.
If table has a clustered primary key that covers all rows (true for bdb
and innodb currently) and one of the index_merge scans is a scan on PK,
then
primary key scan rowids are not put into Unique and also
rows that will be retrieved by PK scan are not put into Unique
RETURN
0 OK
other error
*/
int QUICK_INDEX_MERGE_SELECT::prepare_unique()
{
int result;
DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
/* We're going to just read rowids. */
head->file->extra(HA_EXTRA_KEYREAD);
/*
Make innodb retrieve all PK member fields, so
* ha_innobase::position (which uses them) call works.
* We can filter out rows that will be retrieved by clustered PK.
(This also creates a deficiency - it is possible that we will retrieve
parts of key that are not used by current query at all.)
*/
head->file->extra(HA_EXTRA_RETRIEVE_ALL_COLS);
cur_quick_select->init();
unique= new Unique(refposcmp2, (void *) &head->file->ref_length,
head->file->ref_length,
MEM_STRIP_BUF_SIZE);
if (!unique)
DBUG_RETURN(1);
do
{
while ((result= cur_quick_select->get_next()) == HA_ERR_END_OF_FILE)
{
cur_quick_select= cur_quick_it++;
if (!cur_quick_select)
break;
if (cur_quick_select->init())
DBUG_RETURN(1);
/* QUICK_RANGE_SELECT::reset never fails */
cur_quick_select->reset();
}
if (result)
{
if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
break;
}
if (thd->killed)
DBUG_RETURN(1);
/* skip row if it will be retrieved by clustered PK scan */
if (pk_quick_select && pk_quick_select->row_in_ranges())
continue;
cur_quick_select->file->position(cur_quick_select->record);
result= unique->unique_add((char*)cur_quick_select->file->ref);
if (result)
DBUG_RETURN(1);
}while(true);
/* ok, all row ids are in Unique */
result= unique->get(head);
doing_pk_scan= false;
init_read_record(&read_record, thd, head, NULL, 1, 1);
/* index_merge currently doesn't support "using index" at all */
head->file->extra(HA_EXTRA_NO_KEYREAD);
DBUG_RETURN(result);
}
/*
Get next row for index_merge.
NOTES
The rows are read from
1. rowids stored in Unique.
2. QUICK_RANGE_SELECT with clustered primary key (if any).
The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
*/
int QUICK_INDEX_MERGE_SELECT::get_next()
{
int result;
DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
if (doing_pk_scan)
DBUG_RETURN(pk_quick_select->get_next());
result= read_record.read_record(&read_record);
if (result == -1)
{
result= HA_ERR_END_OF_FILE;
end_read_record(&read_record);
/* All rows from Unique have been retrieved, do a clustered PK scan */
if(pk_quick_select)
{
doing_pk_scan= true;
if ((result= pk_quick_select->init()))
DBUG_RETURN(result);
DBUG_RETURN(pk_quick_select->get_next());
}
}
DBUG_RETURN(result);
}
/* get next possible record using quick-struct */
int QUICK_RANGE_SELECT::get_next()
{
DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
for (;;)
{
int result;
if (range)
{ // Already read through key
result=((range->flag & (EQ_RANGE | GEOM_FLAG)) ?
file->index_next_same(record, (byte*) range->min_key,
range->min_length) :
file->index_next(record));
if (!result)
{
if ((range->flag & GEOM_FLAG) || !cmp_next(*cur_range))
DBUG_RETURN(0);
}
else if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
}
if (!cur_range)
range= *(cur_range= (QUICK_RANGE**)ranges.buffer);
else
range=
(cur_range == ((QUICK_RANGE**)ranges.buffer + ranges.elements - 1))?
NULL: *(++cur_range);
if (!range)
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
if (range->flag & GEOM_FLAG)
{
if ((result = file->index_read(record,
(byte*) (range->min_key),
range->min_length,
(ha_rkey_function)(range->flag ^
GEOM_FLAG))))
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
continue;
}
DBUG_RETURN(0);
}
if (range->flag & NO_MIN_RANGE) // Read first record
{
int local_error;
if ((local_error=file->index_first(record)))
DBUG_RETURN(local_error); // Empty table
if (cmp_next(range) == 0)
DBUG_RETURN(0);
range=0; // No matching records; go to next range
continue;
}
if ((result = file->index_read(record,
(byte*) (range->min_key +
test(range->flag & GEOM_FLAG)),
range->min_length,
(range->flag & NEAR_MIN) ?
HA_READ_AFTER_KEY:
(range->flag & EQ_RANGE) ?
HA_READ_KEY_EXACT :
HA_READ_KEY_OR_NEXT)))
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
continue;
}
if (cmp_next(range) == 0)
{
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range=0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
range=0; // To next range
}
}
/*
Compare if found key is over max-value
Returns 0 if key <= range->max_key
*/
int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
if (range_arg->flag & NO_MAX_RANGE)
return 0; /* key can't be to large */
KEY_PART *key_part=key_parts;
for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
key < end;
key+= key_part++->part_length)
{
int cmp;
if (key_part->null_bit)
{
if (*key++)
{
if (!key_part->field->is_null())
return 1;
continue;
}
else if (key_part->field->is_null())
return 0;
}
if ((cmp=key_part->field->key_cmp((byte*) key, key_part->part_length)) < 0)
return 0;
if (cmp > 0)
return 1;
}
return (range_arg->flag & NEAR_MAX) ? 1 : 0; // Exact match
}
/*
Check if current row will be retrieved by this QUICK_RANGE_SELECT
NOTES
It is assumed that currently a scan is being done on another index
which reads all necessary parts of the index that is scanned by this
quick select.
The implementation does a binary search on sorted array of disjoint
ranges, without taking size of range into account.
This function is used to filter out clustered PK scan rows in
index_merge quick select.
RETURN
true if current row will be retrieved by this quick select
false if not
*/
bool QUICK_RANGE_SELECT::row_in_ranges()
{
QUICK_RANGE *range;
uint min= 0;
uint max= ranges.elements - 1;
uint mid= (max + min)/2;
while (min != max)
{
if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
{
/* current row value > mid->max */
min= mid + 1;
}
else
max= mid;
mid= (min + max) / 2;
}
range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
return (!cmp_next(range) && !cmp_prev(range));
}
/*
This is a hack: we inherit from QUICK_SELECT so that we can use the
get_next() interface, but we have to hold a pointer to the original
QUICK_SELECT because its data are used all over the place. What
should be done is to factor out the data that is needed into a base
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
which handle the ranges and implement the get_next() function. But
for now, this seems to work right at least.
*/
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
uint used_key_parts)
: QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
{
bool not_read_after_key = file->table_flags() & HA_NOT_READ_AFTER_KEY;
QUICK_RANGE *r;
QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
QUICK_RANGE **last_range= pr + ranges.elements;
for (; pr!=last_range; ++pr)
{
r= *pr;
rev_ranges.push_front(r);
if (not_read_after_key && range_reads_after_key(r))
{
error = HA_ERR_UNSUPPORTED;
dont_free=1; // Don't free memory from 'q'
return;
}
}
/* Remove EQ_RANGE flag for keys that are not using the full key */
for (r = rev_it++; r; r = rev_it++)
{
if ((r->flag & EQ_RANGE) &&
head->key_info[index].key_length != r->max_length)
r->flag&= ~EQ_RANGE;
}
rev_it.rewind();
q->dont_free=1; // Don't free shared mem
delete q;
}
int QUICK_SELECT_DESC::get_next()
{
DBUG_ENTER("QUICK_SELECT_DESC::get_next");
/* The max key is handled as follows:
* - if there is NO_MAX_RANGE, start at the end and move backwards
* - if it is an EQ_RANGE, which means that max key covers the entire
* key, go directly to the key and read through it (sorting backwards is
* same as sorting forwards)
* - if it is NEAR_MAX, go to the key or next, step back once, and
* move backwards
* - otherwise (not NEAR_MAX == include the key), go after the key,
* step back once, and move backwards
*/
for (;;)
{
int result;
if (range)
{ // Already read through key
result = ((range->flag & EQ_RANGE)
? file->index_next_same(record, (byte*) range->min_key,
range->min_length) :
file->index_prev(record));
if (!result)
{
if (cmp_prev(*rev_it.ref()) == 0)
DBUG_RETURN(0);
}
else if (result != HA_ERR_END_OF_FILE)
DBUG_RETURN(result);
}
if (!(range=rev_it++))
DBUG_RETURN(HA_ERR_END_OF_FILE); // All ranges used
if (range->flag & NO_MAX_RANGE) // Read last record
{
int local_error;
if ((local_error=file->index_last(record)))
DBUG_RETURN(local_error); // Empty table
if (cmp_prev(range) == 0)
DBUG_RETURN(0);
range=0; // No matching records; go to next range
continue;
}
if (range->flag & EQ_RANGE)
{
result = file->index_read(record, (byte*) range->max_key,
range->max_length, HA_READ_KEY_EXACT);
}
else
{
DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
#ifndef NOT_IMPLEMENTED_YET
result=file->index_read(record, (byte*) range->max_key,
range->max_length,
((range->flag & NEAR_MAX) ?
HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
#else
/* Heikki changed Sept 11, 2002: since InnoDB does not store the cursor
position if READ_KEY_EXACT is used to a primary key with all
key columns specified, we must use below HA_READ_KEY_OR_NEXT,
so that InnoDB stores the cursor position and is able to move
the cursor one step backward after the search. */
/* Note: even if max_key is only a prefix, HA_READ_AFTER_KEY will
* do the right thing - go past all keys which match the prefix */
result=file->index_read(record, (byte*) range->max_key,
range->max_length,
((range->flag & NEAR_MAX) ?
HA_READ_KEY_OR_NEXT : HA_READ_AFTER_KEY));
result = file->index_prev(record);
#endif
}
if (result)
{
if (result != HA_ERR_KEY_NOT_FOUND)
DBUG_RETURN(result);
range=0; // Not found, to next range
continue;
}
if (cmp_prev(range) == 0)
{
if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
range = 0; // Stop searching
DBUG_RETURN(0); // Found key is in range
}
range = 0; // To next range
}
}
/*
Returns 0 if found key is inside range (found key >= range->min_key).
*/
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
{
if (range_arg->flag & NO_MIN_RANGE)
return 0; /* key can't be to small */
KEY_PART *key_part = key_parts;
for (char *key = range_arg->min_key, *end = key + range_arg->min_length;
key < end;
key += key_part++->part_length)
{
int cmp;
if (key_part->null_bit)
{
// this key part allows null values; NULL is lower than everything else
if (*key++)
{
// the range is expecting a null value
if (!key_part->field->is_null())
return 0; // not null -- still inside the range
continue; // null -- exact match, go to next key part
}
else if (key_part->field->is_null())
return 1; // null -- outside the range
}
if ((cmp = key_part->field->key_cmp((byte*) key,
key_part->part_length)) > 0)
return 0;
if (cmp < 0)
return 1;
}
return (range_arg->flag & NEAR_MIN) ? 1 : 0; // Exact match
}
/*
* True if this range will require using HA_READ_AFTER_KEY
See comment in get_next() about this
*/
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
{
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
!(range_arg->flag & EQ_RANGE) ||
head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
}
/* True if we are reading over a key that may have a NULL value */
#ifdef NOT_USED
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
uint used_key_parts)
{
uint offset,end;
KEY_PART *key_part = key_parts,
*key_part_end= key_part+used_key_parts;
for (offset= 0, end = min(range_arg->min_length, range_arg->max_length) ;
offset < end && key_part != key_part_end ;
offset += key_part++->part_length)
{
uint null_length=test(key_part->null_bit);
if (!memcmp((char*) range_arg->min_key+offset,
(char*) range_arg->max_key+offset,
key_part->part_length + null_length))
{
offset+=null_length;
continue;
}
if (null_length && range_arg->min_key[offset])
return 1; // min_key is null and max_key isn't
// Range doesn't cover NULL. This is ok if there is no more null parts
break;
}
/*
If the next min_range is > NULL, then we can use this, even if
it's a NULL key
Example: SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;
*/
if (key_part != key_part_end && key_part->null_bit)
{
if (offset >= range_arg->min_length || range_arg->min_key[offset])
return 1; // Could be null
key_part++;
}
/*
If any of the key parts used in the ORDER BY could be NULL, we can't
use the key to sort the data.
*/
for (; key_part != key_part_end ; key_part++)
if (key_part->null_bit)
return 1; // Covers null part
return 0;
}
#endif
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/
#ifndef DBUG_OFF
static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
char buff[1024];
String tmp(buff,sizeof(buff),&my_charset_bin);
for (uint length=0;
length < used_length ;
length+=key_part->part_length, key+=key_part->part_length, key_part++)
{
Field *field=key_part->field;
if (length != 0)
fputc('/',DBUG_FILE);
if (field->real_maybe_null())
{
length++; // null byte is not in part_length
if (*key++)
{
fwrite("NULL",sizeof(char),4,DBUG_FILE);
continue;
}
}
field->set_key_image((char*) key,key_part->part_length -
((field->type() == FIELD_TYPE_BLOB) ?
HA_KEY_BLOB_LENGTH : 0),
field->charset());
field->val_str(&tmp,&tmp);
fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
}
}
static void print_quick_sel_imerge(QUICK_INDEX_MERGE_SELECT *quick,
const key_map *needed_reg)
{
DBUG_ENTER("print_param");
if (! _db_on_ || !quick)
DBUG_VOID_RETURN;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick->quick_selects);
QUICK_RANGE_SELECT* quick_range_sel;
while ((quick_range_sel= it++))
{
print_quick_sel_range(quick_range_sel, needed_reg);
}
if (quick->pk_quick_select)
print_quick_sel_range(quick->pk_quick_select, needed_reg);
DBUG_VOID_RETURN;
}
void print_quick_sel_range(QUICK_RANGE_SELECT *quick,
const key_map *needed_reg)
{
QUICK_RANGE *range;
char buf[MAX_KEY/8+1];
DBUG_ENTER("print_param");
if (! _db_on_ || !quick)
DBUG_VOID_RETURN;
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"Used quick_range on key: %d (other_keys: 0x%s):\n",
quick->index, needed_reg->print(buf));
QUICK_RANGE **pr= (QUICK_RANGE**)quick->ranges.buffer;
QUICK_RANGE **last_range= pr + quick->ranges.elements;
for (; pr!=last_range; ++pr)
{
range= *pr;
if (!(range->flag & NO_MIN_RANGE))
{
print_key(quick->key_parts,range->min_key,range->min_length);
if (range->flag & NEAR_MIN)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
}
fputs("X",DBUG_FILE);
if (!(range->flag & NO_MAX_RANGE))
{
if (range->flag & NEAR_MAX)
fputs(" < ",DBUG_FILE);
else
fputs(" <= ",DBUG_FILE);
print_key(quick->key_parts,range->max_key,range->max_length);
}
fputs("\n",DBUG_FILE);
}
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
#endif
/*****************************************************************************
** Instansiate templates
*****************************************************************************/
#ifdef __GNUC__
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif