mariadb/mit-pthreads/stdio/xprintf.c
bk@work.mysql.com f4c589ff6c Import changeset
2000-07-31 21:29:14 +02:00

883 lines
29 KiB
C

/*
** It turns out that the printf functions in the stock MIT pthread library
** is busted. It isn't thread safe. If two threads try to do a printf
** of a floating point value at the same time, a core-dump might result.
** So this code is substituted.
*/
/*
** NAME: $Source$
** VERSION: $Revision$
** DATE: $Date$
**
** ONELINER: A replacement for formatted printing programs.
**
** COPYRIGHT:
** Copyright (c) 1990 by D. Richard Hipp. This code is an original
** work and has been prepared without reference to any prior
** implementations of similar functions. No part of this code is
** subject to licensing restrictions of any telephone company or
** university.
**
** This copyright was released and the code placed in the public domain
** by the author, D. Richard Hipp, on October 3, 1996.
**
** DESCRIPTION:
** This program is an enhanced replacement for the "printf" programs
** found in the standard library. The following enhancements are
** supported:
**
** + Additional functions. The standard set of "printf" functions
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
** vsprintf. This module adds the following:
**
** * snprintf -- Works like sprintf, but has an extra argument
** which is the size of the buffer written to.
**
** * mprintf -- Similar to sprintf. Writes output to memory
** obtained from mem_alloc.
**
** * xprintf -- Calls a function to dispose of output.
**
** * nprintf -- No output, but returns the number of characters
** that would have been output by printf.
**
** * A v- version (ex: vsnprintf) of every function is also
** supplied.
**
** + A few extensions to the formatting notation are supported:
**
** * The "=" flag (similar to "-") causes the output to be
** be centered in the appropriately sized field.
**
** * The %b field outputs an integer in binary notation.
**
** * The %c field now accepts a precision. The character output
** is repeated by the number of times the precision specifies.
**
** * The %' field works like %c, but takes as its character the
** next character of the format string, instead of the next
** argument. For example, printf("%.78'-") prints 78 minus
** signs, the same as printf("%.78c",'-').
**
** + When compiled using GCC on a SPARC, this version of printf is
** faster than the library printf for SUN OS 4.1.
**
** + All functions are fully reentrant.
**
*/
/*
** Undefine COMPATIBILITY to make some slight changes in the way things
** work. I think the changes are an improvement, but they are not
** backwards compatible.
*/
/* #define COMPATIBILITY / * Compatible with SUN OS 4.1 */
#include <stdio.h>
#include <stdarg.h>
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
/*
** The maximum number of digits of accuracy in a floating-point conversion.
*/
#define MAXDIG 20
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
enum e_type { /* The type of the format field */
RADIX, /* Integer types. %d, %x, %o, and so forth */
FLOAT, /* Floating point. %f */
EXP, /* Exponentional notation. %e and %E */
GENERIC, /* Floating or exponential, depending on exponent. %g */
SIZE, /* Return number of characters processed so far. %n */
STRING, /* Strings. %s */
PERCENT, /* Percent symbol. %% */
CHAR, /* Characters. %c */
ERROR, /* Used to indicate no such conversion type */
/* The rest are extensions, not normally found in printf() */
CHARLIT, /* Literal characters. %' */
SEEIT, /* Strings with visible control characters. %S */
MEM_STRING, /* A string which should be deleted after use. %z */
ORDINAL, /* 1st, 2nd, 3rd and so forth */
};
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct s_info { /* Information about each format field */
int fmttype; /* The format field code letter */
int base; /* The base for radix conversion */
char *charset; /* The character set for conversion */
int flag_signed; /* Is the quantity signed? */
char *prefix; /* Prefix on non-zero values in alt format */
enum e_type type; /* Conversion paradigm */
} info;
/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
static info fmtinfo[] = {
{ 'd', 10, "0123456789", 1, 0, RADIX, },
{ 's', 0, 0, 0, 0, STRING, },
{ 'S', 0, 0, 0, 0, SEEIT, },
{ 'z', 0, 0, 0, 0, MEM_STRING, },
{ 'c', 0, 0, 0, 0, CHAR, },
{ 'o', 8, "01234567", 0, "0", RADIX, },
{ 'u', 10, "0123456789", 0, 0, RADIX, },
{ 'x', 16, "0123456789abcdef", 0, "x0", RADIX, },
{ 'X', 16, "0123456789ABCDEF", 0, "X0", RADIX, },
{ 'r', 10, "0123456789", 0, 0, ORDINAL, },
{ 'f', 0, 0, 1, 0, FLOAT, },
{ 'e', 0, "e", 1, 0, EXP, },
{ 'E', 0, "E", 1, 0, EXP, },
{ 'g', 0, "e", 1, 0, GENERIC, },
{ 'G', 0, "E", 1, 0, GENERIC, },
{ 'i', 10, "0123456789", 1, 0, RADIX, },
{ 'n', 0, 0, 0, 0, SIZE, },
{ 'S', 0, 0, 0, 0, SEEIT, },
{ '%', 0, 0, 0, 0, PERCENT, },
{ 'b', 2, "01", 0, "b0", RADIX, }, /* Binary notation */
{ 'p', 10, "0123456789", 0, 0, RADIX, }, /* Pointers */
{ '\'', 0, 0, 0, 0, CHARLIT, }, /* Literal char */
};
#define NINFO (sizeof(fmtinfo)/sizeof(info)) /* Size of the fmtinfo table */
/*
** If NOFLOATINGPOINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef NOFLOATINGPOINT
/*
** "*val" is a double such that 0.1 <= *val < 10.0
** Return the ascii code for the leading digit of *val, then
** multiply "*val" by 10.0 to renormalize.
**
** Example:
** input: *val = 3.14159
** output: *val = 1.4159 function return = '3'
**
** The counter *cnt is incremented each time. After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static int getdigit(long double *val, int *cnt){
int digit;
long double d;
if( (*cnt)++ >= MAXDIG ) return '0';
digit = (int)*val;
d = digit;
digit += '0';
*val = (*val - d)*10.0;
return digit;
}
#endif
/*
** Setting the size of the BUFFER involves trade-offs. No %d or %f
** conversion can have more than BUFSIZE characters. If the field
** width is larger than BUFSIZE, it is silently shortened. On the
** other hand, this routine consumes more stack space with larger
** BUFSIZEs. If you have some threads for which you want to minimize
** stack space, you should keep BUFSIZE small.
*/
#define BUFSIZE 100 /* Size of the output buffer */
/*
** The root program. All variations call this core.
**
** INPUTS:
** func This is a pointer to a function taking three arguments
** 1. A pointer to the list of characters to be output
** (Note, this list is NOT null terminated.)
** 2. An integer number of characters to be output.
** (Note: This number might be zero.)
** 3. A pointer to anything. Same as the "arg" parameter.
**
** arg This is the pointer to anything which will be passed as the
** third argument to "func". Use it for whatever you like.
**
** fmt This is the format string, as in the usual print.
**
** ap This is a pointer to a list of arguments. Same as in
** vfprint.
**
** OUTPUTS:
** The return value is the total number of characters sent to
** the function "func". Returns -1 on a error.
**
** Note that the order in which automatic variables are declared below
** seems to make a big difference in determining how fast this beast
** will run.
*/
static int vxprintf(func,arg,format,ap)
void (*func)(char*,int,void*);
void *arg;
const char *format;
va_list ap;
{
register const char *fmt; /* The format string. */
register int c; /* Next character in the format string */
register char *bufpt; /* Pointer to the conversion buffer */
register int precision; /* Precision of the current field */
register int length; /* Length of the field */
register int idx; /* A general purpose loop counter */
int count; /* Total number of characters output */
int width; /* Width of the current field */
int flag_leftjustify; /* True if "-" flag is present */
int flag_plussign; /* True if "+" flag is present */
int flag_blanksign; /* True if " " flag is present */
int flag_alternateform; /* True if "#" flag is present */
int flag_zeropad; /* True if field width constant starts with zero */
int flag_long; /* True if "l" flag is present */
int flag_center; /* True if "=" flag is present */
unsigned long longvalue; /* Value for integer types */
long double realvalue; /* Value for real types */
info *infop; /* Pointer to the appropriate info structure */
char buf[BUFSIZE]; /* Conversion buffer */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
int errorflag = 0; /* True if an error is encountered */
enum e_type xtype; /* Conversion paradigm */
char *zMem; /* String to be freed */
static char spaces[] =
" ";
#define SPACESIZE (sizeof(spaces)-1)
#ifndef NOFLOATINGPOINT
int exp; /* exponent of real numbers */
long double rounder; /* Used for rounding floating point values */
int flag_dp; /* True if decimal point should be shown */
int flag_rtz; /* True if trailing zeros should be removed */
int flag_exp; /* True to force display of the exponent */
int nsd; /* Number of significant digits returned */
#endif
fmt = format; /* Put in a register for speed */
count = length = 0;
bufpt = 0;
for(; (c=(*fmt))!=0; ++fmt){
if( c!='%' ){
register int amt;
bufpt = (char *)fmt;
amt = 1;
while( (c=(*++fmt))!='%' && c!=0 ) amt++;
(*func)(bufpt,amt,arg);
count += amt;
if( c==0 ) break;
}
if( (c=(*++fmt))==0 ){
errorflag = 1;
(*func)("%",1,arg);
count++;
break;
}
/* Find out what flags are present */
flag_leftjustify = flag_plussign = flag_blanksign =
flag_alternateform = flag_zeropad = flag_center = 0;
do{
switch( c ){
case '-': flag_leftjustify = 1; c = 0; break;
case '+': flag_plussign = 1; c = 0; break;
case ' ': flag_blanksign = 1; c = 0; break;
case '#': flag_alternateform = 1; c = 0; break;
case '0': flag_zeropad = 1; c = 0; break;
case '=': flag_center = 1; c = 0; break;
default: break;
}
}while( c==0 && (c=(*++fmt))!=0 );
if( flag_center ) flag_leftjustify = 0;
/* Get the field width */
width = 0;
if( c=='*' ){
width = va_arg(ap,int);
if( width<0 ){
flag_leftjustify = 1;
width = -width;
}
c = *++fmt;
}else{
while( isdigit(c) ){
width = width*10 + c - '0';
c = *++fmt;
}
}
if( width > BUFSIZE-10 ){
width = BUFSIZE-10;
}
/* Get the precision */
if( c=='.' ){
precision = 0;
c = *++fmt;
if( c=='*' ){
precision = va_arg(ap,int);
#ifndef COMPATIBILITY
/* This is sensible, but SUN OS 4.1 doesn't do it. */
if( precision<0 ) precision = -precision;
#endif
c = *++fmt;
}else{
while( isdigit(c) ){
precision = precision*10 + c - '0';
c = *++fmt;
}
}
/* Limit the precision to prevent overflowing buf[] during conversion */
if( precision>BUFSIZE-40 ) precision = BUFSIZE-40;
}else{
precision = -1;
}
/* Get the conversion type modifier */
if( c=='l' ){
flag_long = 1;
c = *++fmt;
}else{
flag_long = 0;
}
/* Fetch the info entry for the field */
infop = 0;
for(idx=0; idx<NINFO; idx++){
if( c==fmtinfo[idx].fmttype ){
infop = &fmtinfo[idx];
break;
}
}
/* No info entry found. It must be an error. */
if( infop==0 ){
xtype = ERROR;
}else{
xtype = infop->type;
}
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_plussign TRUE if a '+' is present.
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long TRUE if the letter 'l' (ell) prefixed
** the conversion character.
** flag_blanksign TRUE if a ' ' is present.
** width The specified field width. This is
** always non-negative. Zero is the default.
** precision The specified precision. The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch( xtype ){
case ORDINAL:
case RADIX:
if( flag_long ) longvalue = va_arg(ap,long);
else longvalue = va_arg(ap,int);
#ifdef COMPATIBILITY
/* For the format %#x, the value zero is printed "0" not "0x0".
** I think this is stupid. */
if( longvalue==0 ) flag_alternateform = 0;
#else
/* More sensible: turn off the prefix for octal (to prevent "00"),
** but leave the prefix for hex. */
if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
#endif
if( infop->flag_signed ){
if( *(long*)&longvalue<0 ){
longvalue = -*(long*)&longvalue;
prefix = '-';
}else if( flag_plussign ) prefix = '+';
else if( flag_blanksign ) prefix = ' ';
else prefix = 0;
}else prefix = 0;
if( flag_zeropad && precision<width-(prefix!=0) ){
precision = width-(prefix!=0);
}
bufpt = &buf[BUFSIZE];
if( xtype==ORDINAL ){
long a,b;
a = longvalue%10;
b = longvalue%100;
bufpt -= 2;
if( a==0 || a>3 || (b>10 && b<14) ){
bufpt[0] = 't';
bufpt[1] = 'h';
}else if( a==1 ){
bufpt[0] = 's';
bufpt[1] = 't';
}else if( a==2 ){
bufpt[0] = 'n';
bufpt[1] = 'd';
}else if( a==3 ){
bufpt[0] = 'r';
bufpt[1] = 'd';
}
}
{
register char *cset; /* Use registers for speed */
register int base;
cset = infop->charset;
base = infop->base;
do{ /* Convert to ascii */
*(--bufpt) = cset[longvalue%base];
longvalue = longvalue/base;
}while( longvalue>0 );
}
length = (int)(&buf[BUFSIZE]-bufpt);
for(idx=precision-length; idx>0; idx--){
*(--bufpt) = '0'; /* Zero pad */
}
if( prefix ) *(--bufpt) = prefix; /* Add sign */
if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
char *pre, x;
pre = infop->prefix;
if( *bufpt!=pre[0] ){
for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
}
}
length = (int)(&buf[BUFSIZE]-bufpt);
break;
case FLOAT:
case EXP:
case GENERIC:
realvalue = va_arg(ap,double);
#ifndef NOFLOATINGPOINT
if( precision<0 ) precision = 6; /* Set default precision */
if( precision>BUFSIZE-10 ) precision = BUFSIZE-10;
if( realvalue<0.0 ){
realvalue = -realvalue;
prefix = '-';
}else{
if( flag_plussign ) prefix = '+';
else if( flag_blanksign ) prefix = ' ';
else prefix = 0;
}
if( infop->type==GENERIC && precision>0 ) precision--;
rounder = 0.0;
#ifdef COMPATIBILITY
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
#else
/* It makes more sense to use 0.5 */
if( precision>MAXDIG-1 ) idx = MAXDIG-1;
else idx = precision;
for(rounder=0.5; idx>0; idx--, rounder*=0.1);
#endif
if( infop->type==FLOAT ) realvalue += rounder;
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if( realvalue>0.0 ){
int k = 0;
while( realvalue>=1e8 && k++<100 ){ realvalue *= 1e-8; exp+=8; }
while( realvalue>=10.0 && k++<100 ){ realvalue *= 0.1; exp++; }
while( realvalue<1e-8 && k++<100 ){ realvalue *= 1e8; exp-=8; }
while( realvalue<1.0 && k++<100 ){ realvalue *= 10.0; exp--; }
if( k>=100 ){
bufpt = "NaN";
length = 3;
break;
}
}
bufpt = buf;
/*
** If the field type is GENERIC, then convert to either EXP
** or FLOAT, as appropriate.
*/
flag_exp = xtype==EXP;
if( xtype!=FLOAT ){
realvalue += rounder;
if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
}
if( xtype==GENERIC ){
flag_rtz = !flag_alternateform;
if( exp<-4 || exp>precision ){
xtype = EXP;
}else{
precision = precision - exp;
xtype = FLOAT;
}
}else{
flag_rtz = 0;
}
/*
** The "exp+precision" test causes output to be of type EXP if
** the precision is too large to fit in buf[].
*/
nsd = 0;
if( xtype==FLOAT && exp+precision<BUFSIZE-30 ){
flag_dp = (precision>0 || flag_alternateform);
if( prefix ) *(bufpt++) = prefix; /* Sign */
if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */
else for(; exp>=0; exp--) *(bufpt++) = getdigit(&realvalue,&nsd);
if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */
for(exp++; exp<0 && precision>0; precision--, exp++){
*(bufpt++) = '0';
}
while( (precision--)>0 ) *(bufpt++) = getdigit(&realvalue,&nsd);
*(bufpt--) = 0; /* Null terminate */
if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */
while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
}
bufpt++; /* point to next free slot */
}else{ /* EXP or GENERIC */
flag_dp = (precision>0 || flag_alternateform);
if( prefix ) *(bufpt++) = prefix; /* Sign */
*(bufpt++) = getdigit(&realvalue,&nsd); /* First digit */
if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */
while( (precision--)>0 ) *(bufpt++) = getdigit(&realvalue,&nsd);
bufpt--; /* point to last digit */
if( flag_rtz && flag_dp ){ /* Remove tail zeros */
while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
}
bufpt++; /* point to next free slot */
if( exp || flag_exp ){
*(bufpt++) = infop->charset[0];
if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
else { *(bufpt++) = '+'; }
if( exp>=100 ){
*(bufpt++) = (exp/100)+'0'; /* 100's digit */
exp %= 100;
}
*(bufpt++) = exp/10+'0'; /* 10's digit */
*(bufpt++) = exp%10+'0'; /* 1's digit */
}
}
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
length = (int)(bufpt-buf);
bufpt = buf;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if( flag_zeropad && !flag_leftjustify && length < width){
int i;
int nPad = width - length;
for(i=width; i>=nPad; i--){
bufpt[i] = bufpt[i-nPad];
}
i = prefix!=0;
while( nPad-- ) bufpt[i++] = '0';
length = width;
}
#endif
break;
case SIZE:
*(va_arg(ap,int*)) = count;
length = width = 0;
break;
case PERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case CHARLIT:
case CHAR:
c = buf[0] = (xtype==CHAR ? va_arg(ap,int) : *++fmt);
if( precision>=0 ){
for(idx=1; idx<precision; idx++) buf[idx] = c;
length = precision;
}else{
length =1;
}
bufpt = buf;
break;
case STRING:
case MEM_STRING:
zMem = bufpt = va_arg(ap,char*);
if( bufpt==0 ) bufpt = "(null)";
length = strlen(bufpt);
if( precision>=0 && precision<length ) length = precision;
break;
case SEEIT:
{
int i;
int c;
char *arg = va_arg(ap,char*);
for(i=0; i<BUFSIZE-1 && (c = *arg++)!=0; i++){
if( c<0x20 || c>=0x7f ){
buf[i++] = '^';
buf[i] = (c&0x1f)+0x40;
}else{
buf[i] = c;
}
}
bufpt = buf;
length = i;
if( precision>=0 && precision<length ) length = precision;
}
break;
case ERROR:
buf[0] = '%';
buf[1] = c;
errorflag = 0;
idx = 1+(c!=0);
(*func)("%",idx,arg);
count += idx;
if( c==0 ) fmt--;
break;
}/* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long. The field width is "width". Do
** the output.
*/
if( !flag_leftjustify ){
register int nspace;
nspace = width-length;
if( nspace>0 ){
if( flag_center ){
nspace = nspace/2;
width -= nspace;
flag_leftjustify = 1;
}
count += nspace;
while( nspace>=SPACESIZE ){
(*func)(spaces,SPACESIZE,arg);
nspace -= SPACESIZE;
}
if( nspace>0 ) (*func)(spaces,nspace,arg);
}
}
if( length>0 ){
(*func)(bufpt,length,arg);
count += length;
}
if( xtype==MEM_STRING && zMem ){
free(zMem);
}
if( flag_leftjustify ){
register int nspace;
nspace = width-length;
if( nspace>0 ){
count += nspace;
while( nspace>=SPACESIZE ){
(*func)(spaces,SPACESIZE,arg);
nspace -= SPACESIZE;
}
if( nspace>0 ) (*func)(spaces,nspace,arg);
}
}
}/* End for loop over the format string */
return errorflag ? -1 : count;
} /* End of function */
/*
** This non-standard function is still occasionally useful....
*/
int xprintf(
void (*func)(char*,int,void*),
void *arg,
const char *format,
...
){
va_list ap;
va_start(ap,format);
return vxprintf(func,arg,format,ap);
}
/*
** Now for string-print, also as found in any standard library.
** Add to this the snprint function which stops added characters
** to the string at a given length.
**
** Note that snprint returns the length of the string as it would
** be if there were no limit on the output.
*/
struct s_strargument { /* Describes the string being written to */
char *next; /* Next free slot in the string */
char *last; /* Last available slot in the string */
};
static void sout(txt,amt,arg)
char *txt;
int amt;
void *arg;
{
register char *head;
register const char *t;
register int a;
register char *tail;
a = amt;
t = txt;
head = ((struct s_strargument*)arg)->next;
tail = ((struct s_strargument*)arg)->last;
if( tail ){
while( a-- >0 && head<tail ) *(head++) = *(t++);
}else{
while( a-- >0 ) *(head++) = *(t++);
}
*head = 0;
((struct s_strargument*)arg)->next = head;
}
int sprintf(char *buf, const char *fmt, ...){
int rc;
va_list ap;
struct s_strargument arg;
va_start(ap,fmt);
arg.next = buf;
arg.last = 0;
*arg.next = 0;
rc = vxprintf(sout,&arg,fmt,ap);
va_end(ap);
}
int vsprintf(char *buf,const char *fmt,va_list ap){
struct s_strargument arg;
arg.next = buf;
arg.last = 0;
*buf = 0;
return vxprintf(sout,&arg,fmt,ap);
}
int snprintf(char *buf, size_t n, const char *fmt, ...){
int rc;
va_list ap;
struct s_strargument arg;
va_start(ap,fmt);
arg.next = buf;
arg.last = &arg.next[n-1];
*arg.next = 0;
rc = vxprintf(sout,&arg,fmt,ap);
va_end(ap);
}
int vsnprintf(char *buf, size_t n, const char *fmt, va_list ap){
struct s_strargument arg;
arg.next = buf;
arg.last = &buf[n-1];
*buf = 0;
return vxprintf(sout,&arg,fmt,ap);
}
/*
** The following section of code handles the mprintf routine, that
** writes to memory obtained from malloc().
*/
/* This structure is used to store state information about the
** write in progress
*/
struct sgMprintf {
char *zBase; /* A base allocation */
char *zText; /* The string collected so far */
int nChar; /* Length of the string so far */
int nAlloc; /* Amount of space allocated in zText */
};
/* The xprintf callback function. */
static void mout(zNewText,nNewChar,arg)
char *zNewText;
int nNewChar;
void *arg;
{
struct sgMprintf *pM = (struct sgMprintf*)arg;
if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
pM->nAlloc = pM->nChar + nNewChar*2 + 1;
if( pM->zText==pM->zBase ){
pM->zText = malloc(pM->nAlloc);
if( pM->zText && pM->nChar ) memcpy(pM->zText,pM->zBase,pM->nChar);
}else{
pM->zText = realloc(pM->zText, pM->nAlloc);
}
}
if( pM->zText ){
memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
pM->nChar += nNewChar;
pM->zText[pM->nChar] = 0;
}
}
/*
** mprintf() works like printf(), but allocations memory to hold the
** resulting string and returns a pointer to the allocated memory.
**
** We changed the name to TclMPrint() to conform with the Tcl private
** routine naming conventions.
*/
char *mprintf(const char *zFormat, ...){
va_list ap;
struct sgMprintf sMprintf;
char *zNew;
char zBuf[200];
va_start(ap,zFormat);
sMprintf.nChar = 0;
sMprintf.nAlloc = sizeof(zBuf);
sMprintf.zText = zBuf;
sMprintf.zBase = zBuf;
vxprintf(mout,&sMprintf,zFormat,ap);
va_end(ap);
if( sMprintf.zText==sMprintf.zBase ){
zNew = malloc( sMprintf.nChar+1 );
if( zNew ) strcpy(zNew,zBuf);
}else{
zNew = realloc(sMprintf.zText,sMprintf.nChar+1);
}
return zNew;
}
/* This is the varargs version of mprintf.
**
** The name is changed to TclVMPrintf() to conform with Tcl naming
** conventions.
*/
char *vmprintf(const char *zFormat,va_list ap){
struct sgMprintf sMprintf;
char zBuf[200];
sMprintf.nChar = 0;
sMprintf.zText = zBuf;
sMprintf.nAlloc = sizeof(zBuf);
sMprintf.zBase = zBuf;
vxprintf(mout,&sMprintf,zFormat,ap);
if( sMprintf.zText==sMprintf.zBase ){
sMprintf.zText = malloc( strlen(zBuf)+1 );
if( sMprintf.zText ) strcpy(sMprintf.zText,zBuf);
}else{
sMprintf.zText = realloc(sMprintf.zText,sMprintf.nChar+1);
}
return sMprintf.zText;
}
/*
** The following section of code handles the standard fprintf routines
** for pthreads.
*/
/* The xprintf callback function. */
static void fout(zNewText,nNewChar,arg)
char *zNewText;
int nNewChar;
void *arg;
{
fwrite(zNewText,1,nNewChar,(FILE*)arg);
}
/* The public interface routines */
int fprintf(FILE *pOut, const char *zFormat, ...){
va_list ap;
int retc;
va_start(ap,zFormat);
retc = vxprintf(fout,pOut,zFormat,ap);
va_end(ap);
return retc;
}
int vfprintf(FILE *pOut, const char *zFormat, va_list ap){
return vxprintf(fout,pOut,zFormat,ap);
}
int printf(const char *zFormat, ...){
va_list ap;
int retc;
va_start(ap,zFormat);
retc = vxprintf(fout,stdout,zFormat,ap);
va_end(ap);
return retc;
}
int vprintf(const char *zFormat, va_list ap){
return vxprintf(fout,stdout,zFormat,ap);
}