mariadb/row/row0ins.c
unknown 6afbf295f0 Updated with XtraDB from Percona Server 5.5.17-rel22.1
Files copied from Percona-Server-5.5.17-rel22.1.tar.gz source tarball.
2011-12-14 14:58:22 +01:00

2558 lines
66 KiB
C

/*****************************************************************************
Copyright (c) 1996, 2010, Innobase Oy. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/**************************************************//**
@file row/row0ins.c
Insert into a table
Created 4/20/1996 Heikki Tuuri
*******************************************************/
#include "row0ins.h"
#ifdef UNIV_NONINL
#include "row0ins.ic"
#endif
#include "ha_prototypes.h"
#include "dict0dict.h"
#include "dict0boot.h"
#include "trx0undo.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "mach0data.h"
#include "que0que.h"
#include "row0upd.h"
#include "row0sel.h"
#include "row0row.h"
#include "rem0cmp.h"
#include "lock0lock.h"
#include "log0log.h"
#include "eval0eval.h"
#include "data0data.h"
#include "usr0sess.h"
#include "buf0lru.h"
#define ROW_INS_PREV 1
#define ROW_INS_NEXT 2
/*************************************************************************
IMPORTANT NOTE: Any operation that generates redo MUST check that there
is enough space in the redo log before for that operation. This is
done by calling log_free_check(). The reason for checking the
availability of the redo log space before the start of the operation is
that we MUST not hold any synchonization objects when performing the
check.
If you make a change in this module make sure that no codepath is
introduced where a call to log_free_check() is bypassed. */
/*********************************************************************//**
Creates an insert node struct.
@return own: insert node struct */
UNIV_INTERN
ins_node_t*
ins_node_create(
/*============*/
ulint ins_type, /*!< in: INS_VALUES, ... */
dict_table_t* table, /*!< in: table where to insert */
mem_heap_t* heap) /*!< in: mem heap where created */
{
ins_node_t* node;
node = mem_heap_alloc(heap, sizeof(ins_node_t));
node->common.type = QUE_NODE_INSERT;
node->ins_type = ins_type;
node->state = INS_NODE_SET_IX_LOCK;
node->table = table;
node->index = NULL;
node->entry = NULL;
node->select = NULL;
node->trx_id = 0;
node->entry_sys_heap = mem_heap_create(128);
node->magic_n = INS_NODE_MAGIC_N;
return(node);
}
/***********************************************************//**
Creates an entry template for each index of a table. */
UNIV_INTERN
void
ins_node_create_entry_list(
/*=======================*/
ins_node_t* node) /*!< in: row insert node */
{
dict_index_t* index;
dtuple_t* entry;
ut_ad(node->entry_sys_heap);
UT_LIST_INIT(node->entry_list);
index = dict_table_get_first_index(node->table);
while (index != NULL) {
entry = row_build_index_entry(node->row, NULL, index,
node->entry_sys_heap);
UT_LIST_ADD_LAST(tuple_list, node->entry_list, entry);
/* We will include all indexes (include those corrupted
secondary indexes) in the entry list. Filteration of
these corrupted index will be done in row_ins() */
index = dict_table_get_next_index(index);
}
}
/*****************************************************************//**
Adds system field buffers to a row. */
static
void
row_ins_alloc_sys_fields(
/*=====================*/
ins_node_t* node) /*!< in: insert node */
{
dtuple_t* row;
dict_table_t* table;
mem_heap_t* heap;
const dict_col_t* col;
dfield_t* dfield;
byte* ptr;
row = node->row;
table = node->table;
heap = node->entry_sys_heap;
ut_ad(row && table && heap);
ut_ad(dtuple_get_n_fields(row) == dict_table_get_n_cols(table));
/* 1. Allocate buffer for row id */
col = dict_table_get_sys_col(table, DATA_ROW_ID);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
ptr = mem_heap_zalloc(heap, DATA_ROW_ID_LEN);
dfield_set_data(dfield, ptr, DATA_ROW_ID_LEN);
node->row_id_buf = ptr;
/* 3. Allocate buffer for trx id */
col = dict_table_get_sys_col(table, DATA_TRX_ID);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
ptr = mem_heap_zalloc(heap, DATA_TRX_ID_LEN);
dfield_set_data(dfield, ptr, DATA_TRX_ID_LEN);
node->trx_id_buf = ptr;
/* 4. Allocate buffer for roll ptr */
col = dict_table_get_sys_col(table, DATA_ROLL_PTR);
dfield = dtuple_get_nth_field(row, dict_col_get_no(col));
ptr = mem_heap_zalloc(heap, DATA_ROLL_PTR_LEN);
dfield_set_data(dfield, ptr, DATA_ROLL_PTR_LEN);
}
/*********************************************************************//**
Sets a new row to insert for an INS_DIRECT node. This function is only used
if we have constructed the row separately, which is a rare case; this
function is quite slow. */
UNIV_INTERN
void
ins_node_set_new_row(
/*=================*/
ins_node_t* node, /*!< in: insert node */
dtuple_t* row) /*!< in: new row (or first row) for the node */
{
node->state = INS_NODE_SET_IX_LOCK;
node->index = NULL;
node->entry = NULL;
node->row = row;
mem_heap_empty(node->entry_sys_heap);
/* Create templates for index entries */
ins_node_create_entry_list(node);
/* Allocate from entry_sys_heap buffers for sys fields */
row_ins_alloc_sys_fields(node);
/* As we allocated a new trx id buf, the trx id should be written
there again: */
node->trx_id = 0;
}
/*******************************************************************//**
Does an insert operation by updating a delete-marked existing record
in the index. This situation can occur if the delete-marked record is
kept in the index for consistent reads.
@return DB_SUCCESS or error code */
static
ulint
row_ins_sec_index_entry_by_modify(
/*==============================*/
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether mtr holds just a leaf
latch or also a tree latch */
btr_cur_t* cursor, /*!< in: B-tree cursor */
const dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr; must be committed before
latching any further pages */
{
big_rec_t* dummy_big_rec;
mem_heap_t* heap;
upd_t* update;
rec_t* rec;
ulint err;
rec = btr_cur_get_rec(cursor);
ut_ad(!dict_index_is_clust(cursor->index));
ut_ad(rec_get_deleted_flag(rec,
dict_table_is_comp(cursor->index->table)));
/* We know that in the alphabetical ordering, entry and rec are
identified. But in their binary form there may be differences if
there are char fields in them. Therefore we have to calculate the
difference. */
heap = mem_heap_create(1024);
update = row_upd_build_sec_rec_difference_binary(
cursor->index, entry, rec, thr_get_trx(thr), heap);
if (mode == BTR_MODIFY_LEAF) {
/* Try an optimistic updating of the record, keeping changes
within the page */
err = btr_cur_optimistic_update(BTR_KEEP_SYS_FLAG, cursor,
update, 0, thr, mtr);
switch (err) {
case DB_OVERFLOW:
case DB_UNDERFLOW:
case DB_ZIP_OVERFLOW:
err = DB_FAIL;
}
} else {
ut_a(mode == BTR_MODIFY_TREE);
if (buf_LRU_buf_pool_running_out()) {
err = DB_LOCK_TABLE_FULL;
goto func_exit;
}
err = btr_cur_pessimistic_update(BTR_KEEP_SYS_FLAG, cursor,
&heap, &dummy_big_rec, update,
0, thr, mtr);
ut_ad(!dummy_big_rec);
}
func_exit:
mem_heap_free(heap);
return(err);
}
/*******************************************************************//**
Does an insert operation by delete unmarking and updating a delete marked
existing record in the index. This situation can occur if the delete marked
record is kept in the index for consistent reads.
@return DB_SUCCESS, DB_FAIL, or error code */
static
ulint
row_ins_clust_index_entry_by_modify(
/*================================*/
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether mtr holds just a leaf
latch or also a tree latch */
btr_cur_t* cursor, /*!< in: B-tree cursor */
mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */
big_rec_t** big_rec,/*!< out: possible big rec vector of fields
which have to be stored externally by the
caller */
const dtuple_t* entry, /*!< in: index entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr; must be committed before
latching any further pages */
{
rec_t* rec;
upd_t* update;
ulint err;
ut_ad(dict_index_is_clust(cursor->index));
*big_rec = NULL;
rec = btr_cur_get_rec(cursor);
ut_ad(rec_get_deleted_flag(rec,
dict_table_is_comp(cursor->index->table)));
if (!*heap) {
*heap = mem_heap_create(1024);
}
/* Build an update vector containing all the fields to be modified;
NOTE that this vector may NOT contain system columns trx_id or
roll_ptr */
update = row_upd_build_difference_binary(cursor->index, entry, rec,
thr_get_trx(thr), *heap);
if (mode == BTR_MODIFY_LEAF) {
/* Try optimistic updating of the record, keeping changes
within the page */
err = btr_cur_optimistic_update(0, cursor, update, 0, thr,
mtr);
switch (err) {
case DB_OVERFLOW:
case DB_UNDERFLOW:
case DB_ZIP_OVERFLOW:
err = DB_FAIL;
}
} else {
ut_a(mode == BTR_MODIFY_TREE);
if (buf_LRU_buf_pool_running_out()) {
return(DB_LOCK_TABLE_FULL);
}
err = btr_cur_pessimistic_update(0, cursor,
heap, big_rec, update,
0, thr, mtr);
}
return(err);
}
/*********************************************************************//**
Returns TRUE if in a cascaded update/delete an ancestor node of node
updates (not DELETE, but UPDATE) table.
@return TRUE if an ancestor updates table */
static
ibool
row_ins_cascade_ancestor_updates_table(
/*===================================*/
que_node_t* node, /*!< in: node in a query graph */
dict_table_t* table) /*!< in: table */
{
que_node_t* parent;
upd_node_t* upd_node;
parent = que_node_get_parent(node);
while (que_node_get_type(parent) == QUE_NODE_UPDATE) {
upd_node = parent;
if (upd_node->table == table && upd_node->is_delete == FALSE) {
return(TRUE);
}
parent = que_node_get_parent(parent);
ut_a(parent);
}
return(FALSE);
}
/*********************************************************************//**
Returns the number of ancestor UPDATE or DELETE nodes of a
cascaded update/delete node.
@return number of ancestors */
static
ulint
row_ins_cascade_n_ancestors(
/*========================*/
que_node_t* node) /*!< in: node in a query graph */
{
que_node_t* parent;
ulint n_ancestors = 0;
parent = que_node_get_parent(node);
while (que_node_get_type(parent) == QUE_NODE_UPDATE) {
n_ancestors++;
parent = que_node_get_parent(parent);
ut_a(parent);
}
return(n_ancestors);
}
/******************************************************************//**
Calculates the update vector node->cascade->update for a child table in
a cascaded update.
@return number of fields in the calculated update vector; the value
can also be 0 if no foreign key fields changed; the returned value is
ULINT_UNDEFINED if the column type in the child table is too short to
fit the new value in the parent table: that means the update fails */
static
ulint
row_ins_cascade_calc_update_vec(
/*============================*/
upd_node_t* node, /*!< in: update node of the parent
table */
dict_foreign_t* foreign, /*!< in: foreign key constraint whose
type is != 0 */
mem_heap_t* heap) /*!< in: memory heap to use as
temporary storage */
{
upd_node_t* cascade = node->cascade_node;
dict_table_t* table = foreign->foreign_table;
dict_index_t* index = foreign->foreign_index;
upd_t* update;
upd_field_t* ufield;
dict_table_t* parent_table;
dict_index_t* parent_index;
upd_t* parent_update;
upd_field_t* parent_ufield;
ulint n_fields_updated;
ulint parent_field_no;
ulint i;
ulint j;
ut_a(node);
ut_a(foreign);
ut_a(cascade);
ut_a(table);
ut_a(index);
/* Calculate the appropriate update vector which will set the fields
in the child index record to the same value (possibly padded with
spaces if the column is a fixed length CHAR or FIXBINARY column) as
the referenced index record will get in the update. */
parent_table = node->table;
ut_a(parent_table == foreign->referenced_table);
parent_index = foreign->referenced_index;
parent_update = node->update;
update = cascade->update;
update->info_bits = 0;
update->n_fields = foreign->n_fields;
n_fields_updated = 0;
for (i = 0; i < foreign->n_fields; i++) {
parent_field_no = dict_table_get_nth_col_pos(
parent_table,
dict_index_get_nth_col_no(parent_index, i));
for (j = 0; j < parent_update->n_fields; j++) {
parent_ufield = parent_update->fields + j;
if (parent_ufield->field_no == parent_field_no) {
ulint min_size;
const dict_col_t* col;
ulint ufield_len;
col = dict_index_get_nth_col(index, i);
/* A field in the parent index record is
updated. Let us make the update vector
field for the child table. */
ufield = update->fields + n_fields_updated;
ufield->field_no
= dict_table_get_nth_col_pos(
table, dict_col_get_no(col));
ufield->exp = NULL;
ufield->new_val = parent_ufield->new_val;
ufield_len = dfield_get_len(&ufield->new_val);
/* Clear the "external storage" flag */
dfield_set_len(&ufield->new_val, ufield_len);
/* Do not allow a NOT NULL column to be
updated as NULL */
if (dfield_is_null(&ufield->new_val)
&& (col->prtype & DATA_NOT_NULL)) {
return(ULINT_UNDEFINED);
}
/* If the new value would not fit in the
column, do not allow the update */
if (!dfield_is_null(&ufield->new_val)
&& dtype_get_at_most_n_mbchars(
col->prtype, col->mbminmaxlen,
col->len,
ufield_len,
dfield_get_data(&ufield->new_val))
< ufield_len) {
return(ULINT_UNDEFINED);
}
/* If the parent column type has a different
length than the child column type, we may
need to pad with spaces the new value of the
child column */
min_size = dict_col_get_min_size(col);
/* Because UNIV_SQL_NULL (the marker
of SQL NULL values) exceeds all possible
values of min_size, the test below will
not hold for SQL NULL columns. */
if (min_size > ufield_len) {
byte* pad;
ulint pad_len;
byte* padded_data;
ulint mbminlen;
padded_data = mem_heap_alloc(
heap, min_size);
pad = padded_data + ufield_len;
pad_len = min_size - ufield_len;
memcpy(padded_data,
dfield_get_data(&ufield
->new_val),
ufield_len);
mbminlen = dict_col_get_mbminlen(col);
ut_ad(!(ufield_len % mbminlen));
ut_ad(!(min_size % mbminlen));
if (mbminlen == 1
&& dtype_get_charset_coll(
col->prtype)
== DATA_MYSQL_BINARY_CHARSET_COLL) {
/* Do not pad BINARY columns */
return(ULINT_UNDEFINED);
}
row_mysql_pad_col(mbminlen,
pad, pad_len);
dfield_set_data(&ufield->new_val,
padded_data, min_size);
}
n_fields_updated++;
}
}
}
update->n_fields = n_fields_updated;
return(n_fields_updated);
}
/*********************************************************************//**
Set detailed error message associated with foreign key errors for
the given transaction. */
static
void
row_ins_set_detailed(
/*=================*/
trx_t* trx, /*!< in: transaction */
dict_foreign_t* foreign) /*!< in: foreign key constraint */
{
mutex_enter(&srv_misc_tmpfile_mutex);
rewind(srv_misc_tmpfile);
if (os_file_set_eof(srv_misc_tmpfile)) {
ut_print_name(srv_misc_tmpfile, trx, TRUE,
foreign->foreign_table_name);
dict_print_info_on_foreign_key_in_create_format(
srv_misc_tmpfile, trx, foreign, FALSE);
trx_set_detailed_error_from_file(trx, srv_misc_tmpfile);
} else {
trx_set_detailed_error(trx, "temp file operation failed");
}
mutex_exit(&srv_misc_tmpfile_mutex);
}
/*********************************************************************//**
Reports a foreign key error associated with an update or a delete of a
parent table index entry. */
static
void
row_ins_foreign_report_err(
/*=======================*/
const char* errstr, /*!< in: error string from the viewpoint
of the parent table */
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
dict_foreign_t* foreign, /*!< in: foreign key constraint */
const rec_t* rec, /*!< in: a matching index record in the
child table */
const dtuple_t* entry) /*!< in: index entry in the parent
table */
{
FILE* ef = dict_foreign_err_file;
trx_t* trx = thr_get_trx(thr);
row_ins_set_detailed(trx, foreign);
mutex_enter(&dict_foreign_err_mutex);
rewind(ef);
ut_print_timestamp(ef);
fputs(" Transaction:\n", ef);
trx_print(ef, trx, 600);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx, TRUE, foreign->foreign_table_name);
fputs(":\n", ef);
dict_print_info_on_foreign_key_in_create_format(ef, trx, foreign,
TRUE);
putc('\n', ef);
fputs(errstr, ef);
fputs(" in parent table, in index ", ef);
ut_print_name(ef, trx, FALSE, foreign->referenced_index->name);
if (entry) {
fputs(" tuple:\n", ef);
dtuple_print(ef, entry);
}
fputs("\nBut in child table ", ef);
ut_print_name(ef, trx, TRUE, foreign->foreign_table_name);
fputs(", in index ", ef);
ut_print_name(ef, trx, FALSE, foreign->foreign_index->name);
if (rec) {
fputs(", there is a record:\n", ef);
rec_print(ef, rec, foreign->foreign_index);
} else {
fputs(", the record is not available\n", ef);
}
putc('\n', ef);
mutex_exit(&dict_foreign_err_mutex);
}
/*********************************************************************//**
Reports a foreign key error to dict_foreign_err_file when we are trying
to add an index entry to a child table. Note that the adding may be the result
of an update, too. */
static
void
row_ins_foreign_report_add_err(
/*===========================*/
trx_t* trx, /*!< in: transaction */
dict_foreign_t* foreign, /*!< in: foreign key constraint */
const rec_t* rec, /*!< in: a record in the parent table:
it does not match entry because we
have an error! */
const dtuple_t* entry) /*!< in: index entry to insert in the
child table */
{
FILE* ef = dict_foreign_err_file;
row_ins_set_detailed(trx, foreign);
mutex_enter(&dict_foreign_err_mutex);
rewind(ef);
ut_print_timestamp(ef);
fputs(" Transaction:\n", ef);
trx_print(ef, trx, 600);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx, TRUE, foreign->foreign_table_name);
fputs(":\n", ef);
dict_print_info_on_foreign_key_in_create_format(ef, trx, foreign,
TRUE);
fputs("\nTrying to add in child table, in index ", ef);
ut_print_name(ef, trx, FALSE, foreign->foreign_index->name);
if (entry) {
fputs(" tuple:\n", ef);
/* TODO: DB_TRX_ID and DB_ROLL_PTR may be uninitialized.
It would be better to only display the user columns. */
dtuple_print(ef, entry);
}
fputs("\nBut in parent table ", ef);
ut_print_name(ef, trx, TRUE, foreign->referenced_table_name);
fputs(", in index ", ef);
ut_print_name(ef, trx, FALSE, foreign->referenced_index->name);
fputs(",\nthe closest match we can find is record:\n", ef);
if (rec && page_rec_is_supremum(rec)) {
/* If the cursor ended on a supremum record, it is better
to report the previous record in the error message, so that
the user gets a more descriptive error message. */
rec = page_rec_get_prev_const(rec);
}
if (rec) {
rec_print(ef, rec, foreign->referenced_index);
}
putc('\n', ef);
mutex_exit(&dict_foreign_err_mutex);
}
/*********************************************************************//**
Invalidate the query cache for the given table. */
static
void
row_ins_invalidate_query_cache(
/*===========================*/
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
const char* name) /*!< in: table name prefixed with
database name and a '/' character */
{
char* buf;
char* ptr;
ulint len = strlen(name) + 1;
buf = mem_strdupl(name, len);
ptr = strchr(buf, '/');
ut_a(ptr);
*ptr = '\0';
innobase_invalidate_query_cache(thr_get_trx(thr), buf, len);
mem_free(buf);
}
/*********************************************************************//**
Perform referential actions or checks when a parent row is deleted or updated
and the constraint had an ON DELETE or ON UPDATE condition which was not
RESTRICT.
@return DB_SUCCESS, DB_LOCK_WAIT, or error code */
static
ulint
row_ins_foreign_check_on_constraint(
/*================================*/
que_thr_t* thr, /*!< in: query thread whose run_node
is an update node */
dict_foreign_t* foreign, /*!< in: foreign key constraint whose
type is != 0 */
btr_pcur_t* pcur, /*!< in: cursor placed on a matching
index record in the child table */
dtuple_t* entry, /*!< in: index entry in the parent
table */
mtr_t* mtr) /*!< in: mtr holding the latch of pcur
page */
{
upd_node_t* node;
upd_node_t* cascade;
dict_table_t* table = foreign->foreign_table;
dict_index_t* index;
dict_index_t* clust_index;
dtuple_t* ref;
mem_heap_t* upd_vec_heap = NULL;
const rec_t* rec;
const rec_t* clust_rec;
const buf_block_t* clust_block;
upd_t* update;
ulint n_to_update;
ulint err;
ulint i;
trx_t* trx;
mem_heap_t* tmp_heap = NULL;
ut_a(thr);
ut_a(foreign);
ut_a(pcur);
ut_a(mtr);
trx = thr_get_trx(thr);
/* Since we are going to delete or update a row, we have to invalidate
the MySQL query cache for table. A deadlock of threads is not possible
here because the caller of this function does not hold any latches with
the sync0sync.h rank above the kernel mutex. The query cache mutex has
a rank just above the kernel mutex. */
row_ins_invalidate_query_cache(thr, table->name);
node = thr->run_node;
if (node->is_delete && 0 == (foreign->type
& (DICT_FOREIGN_ON_DELETE_CASCADE
| DICT_FOREIGN_ON_DELETE_SET_NULL))) {
row_ins_foreign_report_err("Trying to delete",
thr, foreign,
btr_pcur_get_rec(pcur), entry);
return(DB_ROW_IS_REFERENCED);
}
if (!node->is_delete && 0 == (foreign->type
& (DICT_FOREIGN_ON_UPDATE_CASCADE
| DICT_FOREIGN_ON_UPDATE_SET_NULL))) {
/* This is an UPDATE */
row_ins_foreign_report_err("Trying to update",
thr, foreign,
btr_pcur_get_rec(pcur), entry);
return(DB_ROW_IS_REFERENCED);
}
if (node->cascade_node == NULL) {
/* Extend our query graph by creating a child to current
update node. The child is used in the cascade or set null
operation. */
node->cascade_heap = mem_heap_create(128);
node->cascade_node = row_create_update_node_for_mysql(
table, node->cascade_heap);
que_node_set_parent(node->cascade_node, node);
}
/* Initialize cascade_node to do the operation we want. Note that we
use the SAME cascade node to do all foreign key operations of the
SQL DELETE: the table of the cascade node may change if there are
several child tables to the table where the delete is done! */
cascade = node->cascade_node;
cascade->table = table;
cascade->foreign = foreign;
if (node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_DELETE_CASCADE)) {
cascade->is_delete = TRUE;
} else {
cascade->is_delete = FALSE;
if (foreign->n_fields > cascade->update_n_fields) {
/* We have to make the update vector longer */
cascade->update = upd_create(foreign->n_fields,
node->cascade_heap);
cascade->update_n_fields = foreign->n_fields;
}
}
/* We do not allow cyclic cascaded updating (DELETE is allowed,
but not UPDATE) of the same table, as this can lead to an infinite
cycle. Check that we are not updating the same table which is
already being modified in this cascade chain. We have to check
this also because the modification of the indexes of a 'parent'
table may still be incomplete, and we must avoid seeing the indexes
of the parent table in an inconsistent state! */
if (!cascade->is_delete
&& row_ins_cascade_ancestor_updates_table(cascade, table)) {
/* We do not know if this would break foreign key
constraints, but play safe and return an error */
err = DB_ROW_IS_REFERENCED;
row_ins_foreign_report_err(
"Trying an update, possibly causing a cyclic"
" cascaded update\n"
"in the child table,", thr, foreign,
btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
if (row_ins_cascade_n_ancestors(cascade) >= 15) {
err = DB_ROW_IS_REFERENCED;
row_ins_foreign_report_err(
"Trying a too deep cascaded delete or update\n",
thr, foreign, btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
index = btr_pcur_get_btr_cur(pcur)->index;
ut_a(index == foreign->foreign_index);
rec = btr_pcur_get_rec(pcur);
if (dict_index_is_clust(index)) {
/* pcur is already positioned in the clustered index of
the child table */
clust_index = index;
clust_rec = rec;
clust_block = btr_pcur_get_block(pcur);
} else {
/* We have to look for the record in the clustered index
in the child table */
clust_index = dict_table_get_first_index(table);
tmp_heap = mem_heap_create(256);
ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec,
tmp_heap);
btr_pcur_open_with_no_init(clust_index, ref,
PAGE_CUR_LE, BTR_SEARCH_LEAF,
cascade->pcur, 0, mtr);
clust_rec = btr_pcur_get_rec(cascade->pcur);
clust_block = btr_pcur_get_block(cascade->pcur);
if (!page_rec_is_user_rec(clust_rec)
|| btr_pcur_get_low_match(cascade->pcur)
< dict_index_get_n_unique(clust_index)) {
fputs("InnoDB: error in cascade of a foreign key op\n"
"InnoDB: ", stderr);
dict_index_name_print(stderr, trx, index);
fputs("\n"
"InnoDB: record ", stderr);
rec_print(stderr, rec, index);
fputs("\n"
"InnoDB: clustered record ", stderr);
rec_print(stderr, clust_rec, clust_index);
fputs("\n"
"InnoDB: Submit a detailed bug report to"
" http://bugs.mysql.com\n", stderr);
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
}
/* Set an X-lock on the row to delete or update in the child table */
err = lock_table(0, table, LOCK_IX, thr);
if (err == DB_SUCCESS) {
/* Here it suffices to use a LOCK_REC_NOT_GAP type lock;
we already have a normal shared lock on the appropriate
gap if the search criterion was not unique */
err = lock_clust_rec_read_check_and_lock_alt(
0, clust_block, clust_rec, clust_index,
LOCK_X, LOCK_REC_NOT_GAP, thr);
}
if (err != DB_SUCCESS) {
goto nonstandard_exit_func;
}
if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(table))) {
/* This can happen if there is a circular reference of
rows such that cascading delete comes to delete a row
already in the process of being delete marked */
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
if ((node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_DELETE_SET_NULL))
|| (!node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL))) {
/* Build the appropriate update vector which sets
foreign->n_fields first fields in rec to SQL NULL */
update = cascade->update;
update->info_bits = 0;
update->n_fields = foreign->n_fields;
for (i = 0; i < foreign->n_fields; i++) {
upd_field_t* ufield = &update->fields[i];
ufield->field_no = dict_table_get_nth_col_pos(
table,
dict_index_get_nth_col_no(index, i));
ufield->orig_len = 0;
ufield->exp = NULL;
dfield_set_null(&ufield->new_val);
}
}
if (!node->is_delete
&& (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE)) {
/* Build the appropriate update vector which sets changing
foreign->n_fields first fields in rec to new values */
upd_vec_heap = mem_heap_create(256);
n_to_update = row_ins_cascade_calc_update_vec(node, foreign,
upd_vec_heap);
if (n_to_update == ULINT_UNDEFINED) {
err = DB_ROW_IS_REFERENCED;
row_ins_foreign_report_err(
"Trying a cascaded update where the"
" updated value in the child\n"
"table would not fit in the length"
" of the column, or the value would\n"
"be NULL and the column is"
" declared as not NULL in the child table,",
thr, foreign, btr_pcur_get_rec(pcur), entry);
goto nonstandard_exit_func;
}
if (cascade->update->n_fields == 0) {
/* The update does not change any columns referred
to in this foreign key constraint: no need to do
anything */
err = DB_SUCCESS;
goto nonstandard_exit_func;
}
}
/* Store pcur position and initialize or store the cascade node
pcur stored position */
btr_pcur_store_position(pcur, mtr);
if (index == clust_index) {
btr_pcur_copy_stored_position(cascade->pcur, pcur);
} else {
btr_pcur_store_position(cascade->pcur, mtr);
}
mtr_commit(mtr);
ut_a(cascade->pcur->rel_pos == BTR_PCUR_ON);
cascade->state = UPD_NODE_UPDATE_CLUSTERED;
err = row_update_cascade_for_mysql(thr, cascade,
foreign->foreign_table);
if (foreign->foreign_table->n_foreign_key_checks_running == 0) {
fprintf(stderr,
"InnoDB: error: table %s has the counter 0"
" though there is\n"
"InnoDB: a FOREIGN KEY check running on it.\n",
foreign->foreign_table->name);
}
/* Release the data dictionary latch for a while, so that we do not
starve other threads from doing CREATE TABLE etc. if we have a huge
cascaded operation running. The counter n_foreign_key_checks_running
will prevent other users from dropping or ALTERing the table when we
release the latch. */
row_mysql_unfreeze_data_dictionary(thr_get_trx(thr));
row_mysql_freeze_data_dictionary(thr_get_trx(thr));
mtr_start(mtr);
/* Restore pcur position */
btr_pcur_restore_position(BTR_SEARCH_LEAF, pcur, mtr);
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
if (upd_vec_heap) {
mem_heap_free(upd_vec_heap);
}
return(err);
nonstandard_exit_func:
if (tmp_heap) {
mem_heap_free(tmp_heap);
}
if (upd_vec_heap) {
mem_heap_free(upd_vec_heap);
}
btr_pcur_store_position(pcur, mtr);
mtr_commit(mtr);
mtr_start(mtr);
btr_pcur_restore_position(BTR_SEARCH_LEAF, pcur, mtr);
return(err);
}
/*********************************************************************//**
Sets a shared lock on a record. Used in locking possible duplicate key
records and also in checking foreign key constraints.
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
static
enum db_err
row_ins_set_shared_rec_lock(
/*========================*/
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP type lock */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
que_thr_t* thr) /*!< in: query thread */
{
enum db_err err;
ut_ad(rec_offs_validate(rec, index, offsets));
if (dict_index_is_clust(index)) {
err = lock_clust_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_S, type, thr);
} else {
err = lock_sec_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_S, type, thr);
}
return(err);
}
/*********************************************************************//**
Sets a exclusive lock on a record. Used in locking possible duplicate key
records
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
static
enum db_err
row_ins_set_exclusive_rec_lock(
/*===========================*/
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP type lock */
const buf_block_t* block, /*!< in: buffer block of rec */
const rec_t* rec, /*!< in: record */
dict_index_t* index, /*!< in: index */
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
que_thr_t* thr) /*!< in: query thread */
{
enum db_err err;
ut_ad(rec_offs_validate(rec, index, offsets));
if (dict_index_is_clust(index)) {
err = lock_clust_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_X, type, thr);
} else {
err = lock_sec_rec_read_check_and_lock(
0, block, rec, index, offsets, LOCK_X, type, thr);
}
return(err);
}
/***************************************************************//**
Checks if foreign key constraint fails for an index entry. Sets shared locks
which lock either the success or the failure of the constraint. NOTE that
the caller must have a shared latch on dict_operation_lock.
@return DB_SUCCESS, DB_NO_REFERENCED_ROW, or DB_ROW_IS_REFERENCED */
UNIV_INTERN
ulint
row_ins_check_foreign_constraint(
/*=============================*/
ibool check_ref,/*!< in: TRUE if we want to check that
the referenced table is ok, FALSE if we
want to check the foreign key table */
dict_foreign_t* foreign,/*!< in: foreign constraint; NOTE that the
tables mentioned in it must be in the
dictionary cache if they exist at all */
dict_table_t* table, /*!< in: if check_ref is TRUE, then the foreign
table, else the referenced table */
dtuple_t* entry, /*!< in: index entry for index */
que_thr_t* thr) /*!< in: query thread */
{
upd_node_t* upd_node;
dict_table_t* check_table;
dict_index_t* check_index;
ulint n_fields_cmp;
btr_pcur_t pcur;
int cmp;
ulint err;
ulint i;
mtr_t mtr;
trx_t* trx = thr_get_trx(thr);
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
run_again:
#ifdef UNIV_SYNC_DEBUG
ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_SHARED));
#endif /* UNIV_SYNC_DEBUG */
err = DB_SUCCESS;
if (trx->check_foreigns == FALSE) {
/* The user has suppressed foreign key checks currently for
this session */
goto exit_func;
}
/* If any of the foreign key fields in entry is SQL NULL, we
suppress the foreign key check: this is compatible with Oracle,
for example */
for (i = 0; i < foreign->n_fields; i++) {
if (UNIV_SQL_NULL == dfield_get_len(
dtuple_get_nth_field(entry, i))) {
goto exit_func;
}
}
if (que_node_get_type(thr->run_node) == QUE_NODE_UPDATE) {
upd_node = thr->run_node;
if (!(upd_node->is_delete) && upd_node->foreign == foreign) {
/* If a cascaded update is done as defined by a
foreign key constraint, do not check that
constraint for the child row. In ON UPDATE CASCADE
the update of the parent row is only half done when
we come here: if we would check the constraint here
for the child row it would fail.
A QUESTION remains: if in the child table there are
several constraints which refer to the same parent
table, we should merge all updates to the child as
one update? And the updates can be contradictory!
Currently we just perform the update associated
with each foreign key constraint, one after
another, and the user has problems predicting in
which order they are performed. */
goto exit_func;
}
}
if (check_ref) {
check_table = foreign->referenced_table;
check_index = foreign->referenced_index;
} else {
check_table = foreign->foreign_table;
check_index = foreign->foreign_index;
}
if (check_table == NULL || check_table->ibd_file_missing) {
if (check_ref) {
FILE* ef = dict_foreign_err_file;
row_ins_set_detailed(trx, foreign);
mutex_enter(&dict_foreign_err_mutex);
rewind(ef);
ut_print_timestamp(ef);
fputs(" Transaction:\n", ef);
trx_print(ef, trx, 600);
fputs("Foreign key constraint fails for table ", ef);
ut_print_name(ef, trx, TRUE,
foreign->foreign_table_name);
fputs(":\n", ef);
dict_print_info_on_foreign_key_in_create_format(
ef, trx, foreign, TRUE);
fputs("\nTrying to add to index ", ef);
ut_print_name(ef, trx, FALSE,
foreign->foreign_index->name);
fputs(" tuple:\n", ef);
dtuple_print(ef, entry);
fputs("\nBut the parent table ", ef);
ut_print_name(ef, trx, TRUE,
foreign->referenced_table_name);
fputs("\nor its .ibd file does"
" not currently exist!\n", ef);
mutex_exit(&dict_foreign_err_mutex);
err = DB_NO_REFERENCED_ROW;
}
goto exit_func;
}
ut_a(check_table);
ut_a(check_index);
if (check_table != table) {
/* We already have a LOCK_IX on table, but not necessarily
on check_table */
err = lock_table(0, check_table, LOCK_IS, thr);
if (err != DB_SUCCESS) {
goto do_possible_lock_wait;
}
}
mtr_start(&mtr);
/* Store old value on n_fields_cmp */
n_fields_cmp = dtuple_get_n_fields_cmp(entry);
dtuple_set_n_fields_cmp(entry, foreign->n_fields);
btr_pcur_open(check_index, entry, PAGE_CUR_GE,
BTR_SEARCH_LEAF, &pcur, &mtr);
/* Scan index records and check if there is a matching record */
do {
const rec_t* rec = btr_pcur_get_rec(&pcur);
const buf_block_t* block = btr_pcur_get_block(&pcur);
if (srv_pass_corrupt_table && !block) {
err = DB_CORRUPTION;
break;
}
ut_a(block);
if (page_rec_is_infimum(rec)) {
continue;
}
offsets = rec_get_offsets(rec, check_index,
offsets, ULINT_UNDEFINED, &heap);
if (page_rec_is_supremum(rec)) {
err = row_ins_set_shared_rec_lock(LOCK_ORDINARY, block,
rec, check_index,
offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
continue;
default:
goto end_scan;
}
}
cmp = cmp_dtuple_rec(entry, rec, offsets);
if (cmp == 0) {
if (rec_get_deleted_flag(rec,
rec_offs_comp(offsets))) {
err = row_ins_set_shared_rec_lock(
LOCK_ORDINARY, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto end_scan;
}
} else {
/* Found a matching record. Lock only
a record because we can allow inserts
into gaps */
err = row_ins_set_shared_rec_lock(
LOCK_REC_NOT_GAP, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto end_scan;
}
if (check_ref) {
err = DB_SUCCESS;
goto end_scan;
} else if (foreign->type != 0) {
/* There is an ON UPDATE or ON DELETE
condition: check them in a separate
function */
err = row_ins_foreign_check_on_constraint(
thr, foreign, &pcur, entry,
&mtr);
if (err != DB_SUCCESS) {
/* Since reporting a plain
"duplicate key" error
message to the user in
cases where a long CASCADE
operation would lead to a
duplicate key in some
other table is very
confusing, map duplicate
key errors resulting from
FK constraints to a
separate error code. */
if (err == DB_DUPLICATE_KEY) {
err = DB_FOREIGN_DUPLICATE_KEY;
}
goto end_scan;
}
/* row_ins_foreign_check_on_constraint
may have repositioned pcur on a
different block */
block = btr_pcur_get_block(&pcur);
} else {
row_ins_foreign_report_err(
"Trying to delete or update",
thr, foreign, rec, entry);
err = DB_ROW_IS_REFERENCED;
goto end_scan;
}
}
} else {
ut_a(cmp < 0);
err = row_ins_set_shared_rec_lock(
LOCK_GAP, block,
rec, check_index, offsets, thr);
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
if (check_ref) {
err = DB_NO_REFERENCED_ROW;
row_ins_foreign_report_add_err(
trx, foreign, rec, entry);
} else {
err = DB_SUCCESS;
}
}
goto end_scan;
}
} while (btr_pcur_move_to_next(&pcur, &mtr));
if (check_ref) {
row_ins_foreign_report_add_err(
trx, foreign, btr_pcur_get_rec(&pcur), entry);
err = DB_NO_REFERENCED_ROW;
} else {
err = DB_SUCCESS;
}
end_scan:
btr_pcur_close(&pcur);
mtr_commit(&mtr);
/* Restore old value */
dtuple_set_n_fields_cmp(entry, n_fields_cmp);
do_possible_lock_wait:
if (err == DB_LOCK_WAIT) {
trx->error_state = err;
que_thr_stop_for_mysql(thr);
srv_suspend_mysql_thread(thr);
if (trx->error_state == DB_SUCCESS) {
goto run_again;
}
err = trx->error_state;
}
exit_func:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
if (trx->fake_changes) {
err = DB_SUCCESS;
}
return(err);
}
/***************************************************************//**
Checks if foreign key constraints fail for an index entry. If index
is not mentioned in any constraint, this function does nothing,
Otherwise does searches to the indexes of referenced tables and
sets shared locks which lock either the success or the failure of
a constraint.
@return DB_SUCCESS or error code */
static
ulint
row_ins_check_foreign_constraints(
/*==============================*/
dict_table_t* table, /*!< in: table */
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry for index */
que_thr_t* thr) /*!< in: query thread */
{
dict_foreign_t* foreign;
ulint err;
trx_t* trx;
ibool got_s_lock = FALSE;
trx = thr_get_trx(thr);
foreign = UT_LIST_GET_FIRST(table->foreign_list);
while (foreign) {
if (foreign->foreign_index == index) {
if (foreign->referenced_table == NULL) {
dict_table_get(foreign->referenced_table_name_lookup,
FALSE);
}
if (0 == trx->dict_operation_lock_mode) {
got_s_lock = TRUE;
row_mysql_freeze_data_dictionary(trx);
}
if (foreign->referenced_table) {
mutex_enter(&(dict_sys->mutex));
(foreign->referenced_table
->n_foreign_key_checks_running)++;
mutex_exit(&(dict_sys->mutex));
}
/* NOTE that if the thread ends up waiting for a lock
we will release dict_operation_lock temporarily!
But the counter on the table protects the referenced
table from being dropped while the check is running. */
err = row_ins_check_foreign_constraint(
TRUE, foreign, table, entry, thr);
if (foreign->referenced_table) {
mutex_enter(&(dict_sys->mutex));
ut_a(foreign->referenced_table
->n_foreign_key_checks_running > 0);
(foreign->referenced_table
->n_foreign_key_checks_running)--;
mutex_exit(&(dict_sys->mutex));
}
if (got_s_lock) {
row_mysql_unfreeze_data_dictionary(trx);
}
if (err != DB_SUCCESS) {
return(err);
}
}
foreign = UT_LIST_GET_NEXT(foreign_list, foreign);
}
return(DB_SUCCESS);
}
/***************************************************************//**
Checks if a unique key violation to rec would occur at the index entry
insert.
@return TRUE if error */
static
ibool
row_ins_dupl_error_with_rec(
/*========================*/
const rec_t* rec, /*!< in: user record; NOTE that we assume
that the caller already has a record lock on
the record! */
const dtuple_t* entry, /*!< in: entry to insert */
dict_index_t* index, /*!< in: index */
const ulint* offsets)/*!< in: rec_get_offsets(rec, index) */
{
ulint matched_fields;
ulint matched_bytes;
ulint n_unique;
ulint i;
ut_ad(rec_offs_validate(rec, index, offsets));
n_unique = dict_index_get_n_unique(index);
matched_fields = 0;
matched_bytes = 0;
cmp_dtuple_rec_with_match(entry, rec, offsets,
&matched_fields, &matched_bytes);
if (matched_fields < n_unique) {
return(FALSE);
}
/* In a unique secondary index we allow equal key values if they
contain SQL NULLs */
if (!dict_index_is_clust(index)) {
for (i = 0; i < n_unique; i++) {
if (UNIV_SQL_NULL == dfield_get_len(
dtuple_get_nth_field(entry, i))) {
return(FALSE);
}
}
}
return(!rec_get_deleted_flag(rec, rec_offs_comp(offsets)));
}
/***************************************************************//**
Scans a unique non-clustered index at a given index entry to determine
whether a uniqueness violation has occurred for the key value of the entry.
Set shared locks on possible duplicate records.
@return DB_SUCCESS, DB_DUPLICATE_KEY, or DB_LOCK_WAIT */
static
ulint
row_ins_scan_sec_index_for_duplicate(
/*=================================*/
dict_index_t* index, /*!< in: non-clustered unique index */
dtuple_t* entry, /*!< in: index entry */
que_thr_t* thr) /*!< in: query thread */
{
ulint n_unique;
ulint i;
int cmp;
ulint n_fields_cmp;
btr_pcur_t pcur;
ulint err = DB_SUCCESS;
unsigned allow_duplicates;
mtr_t mtr;
mem_heap_t* heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
n_unique = dict_index_get_n_unique(index);
/* If the secondary index is unique, but one of the fields in the
n_unique first fields is NULL, a unique key violation cannot occur,
since we define NULL != NULL in this case */
for (i = 0; i < n_unique; i++) {
if (UNIV_SQL_NULL == dfield_get_len(
dtuple_get_nth_field(entry, i))) {
return(DB_SUCCESS);
}
}
mtr_start(&mtr);
/* Store old value on n_fields_cmp */
n_fields_cmp = dtuple_get_n_fields_cmp(entry);
dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique(index));
btr_pcur_open(index, entry, PAGE_CUR_GE, BTR_SEARCH_LEAF, &pcur, &mtr);
allow_duplicates = thr_get_trx(thr)->duplicates & TRX_DUP_IGNORE;
/* Scan index records and check if there is a duplicate */
do {
const rec_t* rec = btr_pcur_get_rec(&pcur);
const buf_block_t* block = btr_pcur_get_block(&pcur);
if (page_rec_is_infimum(rec)) {
continue;
}
offsets = rec_get_offsets(rec, index, offsets,
ULINT_UNDEFINED, &heap);
if (allow_duplicates) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
LOCK_ORDINARY, block,
rec, index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
LOCK_ORDINARY, block,
rec, index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
err = DB_SUCCESS;
case DB_SUCCESS:
break;
default:
goto end_scan;
}
if (page_rec_is_supremum(rec)) {
continue;
}
cmp = cmp_dtuple_rec(entry, rec, offsets);
if (cmp == 0) {
if (row_ins_dupl_error_with_rec(rec, entry,
index, offsets)) {
err = DB_DUPLICATE_KEY;
thr_get_trx(thr)->error_info = index;
goto end_scan;
}
} else {
ut_a(cmp < 0);
goto end_scan;
}
} while (btr_pcur_move_to_next(&pcur, &mtr));
end_scan:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
mtr_commit(&mtr);
/* Restore old value */
dtuple_set_n_fields_cmp(entry, n_fields_cmp);
return(err);
}
/***************************************************************//**
Checks if a unique key violation error would occur at an index entry
insert. Sets shared locks on possible duplicate records. Works only
for a clustered index!
@return DB_SUCCESS if no error, DB_DUPLICATE_KEY if error,
DB_LOCK_WAIT if we have to wait for a lock on a possible duplicate
record */
static
ulint
row_ins_duplicate_error_in_clust(
/*=============================*/
btr_cur_t* cursor, /*!< in: B-tree cursor */
const dtuple_t* entry, /*!< in: entry to insert */
que_thr_t* thr, /*!< in: query thread */
mtr_t* mtr) /*!< in: mtr */
{
ulint err;
rec_t* rec;
ulint n_unique;
trx_t* trx = thr_get_trx(thr);
mem_heap_t*heap = NULL;
ulint offsets_[REC_OFFS_NORMAL_SIZE];
ulint* offsets = offsets_;
rec_offs_init(offsets_);
UT_NOT_USED(mtr);
ut_a(dict_index_is_clust(cursor->index));
ut_ad(dict_index_is_unique(cursor->index));
/* NOTE: For unique non-clustered indexes there may be any number
of delete marked records with the same value for the non-clustered
index key (remember multiversioning), and which differ only in
the row refererence part of the index record, containing the
clustered index key fields. For such a secondary index record,
to avoid race condition, we must FIRST do the insertion and after
that check that the uniqueness condition is not breached! */
/* NOTE: A problem is that in the B-tree node pointers on an
upper level may match more to the entry than the actual existing
user records on the leaf level. So, even if low_match would suggest
that a duplicate key violation may occur, this may not be the case. */
n_unique = dict_index_get_n_unique(cursor->index);
if (cursor->low_match >= n_unique) {
rec = btr_cur_get_rec(cursor);
if (!page_rec_is_infimum(rec)) {
offsets = rec_get_offsets(rec, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
/* We set a lock on the possible duplicate: this
is needed in logical logging of MySQL to make
sure that in roll-forward we get the same duplicate
errors as in original execution */
if (trx->duplicates & TRX_DUP_IGNORE) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor), rec,
cursor->index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto func_exit;
}
if (row_ins_dupl_error_with_rec(
rec, entry, cursor->index, offsets)) {
trx->error_info = cursor->index;
err = DB_DUPLICATE_KEY;
goto func_exit;
}
}
}
if (cursor->up_match >= n_unique) {
rec = page_rec_get_next(btr_cur_get_rec(cursor));
if (!page_rec_is_supremum(rec)) {
offsets = rec_get_offsets(rec, cursor->index, offsets,
ULINT_UNDEFINED, &heap);
if (trx->duplicates & TRX_DUP_IGNORE) {
/* If the SQL-query will update or replace
duplicate key we will take X-lock for
duplicates ( REPLACE, LOAD DATAFILE REPLACE,
INSERT ON DUPLICATE KEY UPDATE). */
err = row_ins_set_exclusive_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
} else {
err = row_ins_set_shared_rec_lock(
LOCK_REC_NOT_GAP,
btr_cur_get_block(cursor),
rec, cursor->index, offsets, thr);
}
switch (err) {
case DB_SUCCESS_LOCKED_REC:
case DB_SUCCESS:
break;
default:
goto func_exit;
}
if (row_ins_dupl_error_with_rec(
rec, entry, cursor->index, offsets)) {
trx->error_info = cursor->index;
err = DB_DUPLICATE_KEY;
goto func_exit;
}
}
ut_a(!dict_index_is_clust(cursor->index));
/* This should never happen */
}
err = DB_SUCCESS;
func_exit:
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
/***************************************************************//**
Checks if an index entry has long enough common prefix with an existing
record so that the intended insert of the entry must be changed to a modify of
the existing record. In the case of a clustered index, the prefix must be
n_unique fields long, and in the case of a secondary index, all fields must be
equal.
@return 0 if no update, ROW_INS_PREV if previous should be updated;
currently we do the search so that only the low_match record can match
enough to the search tuple, not the next record */
UNIV_INLINE
ulint
row_ins_must_modify(
/*================*/
btr_cur_t* cursor) /*!< in: B-tree cursor */
{
ulint enough_match;
rec_t* rec;
/* NOTE: (compare to the note in row_ins_duplicate_error) Because node
pointers on upper levels of the B-tree may match more to entry than
to actual user records on the leaf level, we have to check if the
candidate record is actually a user record. In a clustered index
node pointers contain index->n_unique first fields, and in the case
of a secondary index, all fields of the index. */
enough_match = dict_index_get_n_unique_in_tree(cursor->index);
if (cursor->low_match >= enough_match) {
rec = btr_cur_get_rec(cursor);
if (!page_rec_is_infimum(rec)) {
return(ROW_INS_PREV);
}
}
return(0);
}
/***************************************************************//**
Tries to insert an index entry to an index. If the index is clustered
and a record with the same unique key is found, the other record is
necessarily marked deleted by a committed transaction, or a unique key
violation error occurs. The delete marked record is then updated to an
existing record, and we must write an undo log record on the delete
marked record. If the index is secondary, and a record with exactly the
same fields is found, the other record is necessarily marked deleted.
It is then unmarked. Otherwise, the entry is just inserted to the index.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_FAIL if pessimistic retry needed,
or error code */
static
ulint
row_ins_index_entry_low(
/*====================*/
ulint mode, /*!< in: BTR_MODIFY_LEAF or BTR_MODIFY_TREE,
depending on whether we wish optimistic or
pessimistic descent down the index tree */
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in/out: index entry to insert */
ulint n_ext, /*!< in: number of externally stored columns */
que_thr_t* thr) /*!< in: query thread */
{
btr_cur_t cursor;
ulint search_mode;
ulint modify = 0; /* remove warning */
rec_t* insert_rec;
rec_t* rec;
ulint err;
ulint n_unique;
big_rec_t* big_rec = NULL;
mtr_t mtr;
mem_heap_t* heap = NULL;
log_free_check();
mtr_start(&mtr);
cursor.thr = thr;
/* Note that we use PAGE_CUR_LE as the search mode, because then
the function will return in both low_match and up_match of the
cursor sensible values */
if (dict_index_is_clust(index)) {
search_mode = mode;
} else if (!(thr_get_trx(thr)->check_unique_secondary)) {
search_mode = mode | BTR_INSERT | BTR_IGNORE_SEC_UNIQUE;
} else {
search_mode = mode | BTR_INSERT;
}
btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE,
thr_get_trx(thr)->fake_changes ? BTR_SEARCH_LEAF : search_mode,
&cursor, 0, __FILE__, __LINE__, &mtr);
if (cursor.flag == BTR_CUR_INSERT_TO_IBUF) {
/* The insertion was made to the insert buffer already during
the search: we are done */
ut_ad(search_mode & BTR_INSERT);
err = DB_SUCCESS;
goto function_exit;
}
#ifdef UNIV_DEBUG
if (!srv_use_sys_stats_table
|| index != UT_LIST_GET_FIRST(dict_sys->sys_stats->indexes))
{
page_t* page = btr_cur_get_page(&cursor);
rec_t* first_rec = page_rec_get_next(
page_get_infimum_rec(page));
ut_ad(page_rec_is_supremum(first_rec)
|| rec_get_n_fields(first_rec, index)
== dtuple_get_n_fields(entry));
}
#endif
n_unique = dict_index_get_n_unique(index);
if (dict_index_is_unique(index) && (cursor.up_match >= n_unique
|| cursor.low_match >= n_unique)) {
if (dict_index_is_clust(index)) {
/* Note that the following may return also
DB_LOCK_WAIT */
err = row_ins_duplicate_error_in_clust(
&cursor, entry, thr, &mtr);
if (err != DB_SUCCESS) {
goto function_exit;
}
} else {
mtr_commit(&mtr);
err = row_ins_scan_sec_index_for_duplicate(
index, entry, thr);
mtr_start(&mtr);
if (err != DB_SUCCESS) {
goto function_exit;
}
/* We did not find a duplicate and we have now
locked with s-locks the necessary records to
prevent any insertion of a duplicate by another
transaction. Let us now reposition the cursor and
continue the insertion. */
btr_cur_search_to_nth_level(index, 0, entry,
PAGE_CUR_LE,
thr_get_trx(thr)->fake_changes ? BTR_SEARCH_LEAF : (mode | BTR_INSERT),
&cursor, 0,
__FILE__, __LINE__, &mtr);
}
}
modify = row_ins_must_modify(&cursor);
if (modify != 0) {
/* There is already an index entry with a long enough common
prefix, we must convert the insert into a modify of an
existing record */
if (modify == ROW_INS_NEXT) {
rec = page_rec_get_next(btr_cur_get_rec(&cursor));
btr_cur_position(index, rec,
btr_cur_get_block(&cursor),&cursor);
}
if (dict_index_is_clust(index)) {
err = row_ins_clust_index_entry_by_modify(
mode, &cursor, &heap, &big_rec, entry,
thr, &mtr);
} else {
ut_ad(!n_ext);
err = row_ins_sec_index_entry_by_modify(
mode, &cursor, entry, thr, &mtr);
}
} else {
if (mode == BTR_MODIFY_LEAF) {
err = btr_cur_optimistic_insert(
0, &cursor, entry, &insert_rec, &big_rec,
n_ext, thr, &mtr);
} else {
ut_a(mode == BTR_MODIFY_TREE);
if (buf_LRU_buf_pool_running_out()) {
err = DB_LOCK_TABLE_FULL;
goto function_exit;
}
err = btr_cur_pessimistic_insert(
0, &cursor, entry, &insert_rec, &big_rec,
n_ext, thr, &mtr);
}
}
function_exit:
mtr_commit(&mtr);
if (UNIV_LIKELY_NULL(big_rec)) {
rec_t* rec;
ulint* offsets;
if (thr_get_trx(thr)->fake_changes) {
/* skip store extern */
if (modify) {
dtuple_big_rec_free(big_rec);
} else {
dtuple_convert_back_big_rec(index, entry, big_rec);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
mtr_start(&mtr);
btr_cur_search_to_nth_level(index, 0, entry, PAGE_CUR_LE,
BTR_MODIFY_TREE, &cursor, 0,
__FILE__, __LINE__, &mtr);
rec = btr_cur_get_rec(&cursor);
offsets = rec_get_offsets(rec, index, NULL,
ULINT_UNDEFINED, &heap);
err = btr_store_big_rec_extern_fields(
index, btr_cur_get_block(&cursor),
rec, offsets, &mtr, FALSE, big_rec);
if (modify) {
dtuple_big_rec_free(big_rec);
} else {
dtuple_convert_back_big_rec(index, entry, big_rec);
}
mtr_commit(&mtr);
}
if (UNIV_LIKELY_NULL(heap)) {
mem_heap_free(heap);
}
return(err);
}
/***************************************************************//**
Inserts an index entry to index. Tries first optimistic, then pessimistic
descent down the tree. If the entry matches enough to a delete marked record,
performs the insert by updating or delete unmarking the delete marked
record.
@return DB_SUCCESS, DB_LOCK_WAIT, DB_DUPLICATE_KEY, or some other error code */
UNIV_INTERN
ulint
row_ins_index_entry(
/*================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in/out: index entry to insert */
ulint n_ext, /*!< in: number of externally stored columns */
ibool foreign,/*!< in: TRUE=check foreign key constraints
(foreign=FALSE only during CREATE INDEX) */
que_thr_t* thr) /*!< in: query thread */
{
ulint err;
if (foreign && UT_LIST_GET_FIRST(index->table->foreign_list)) {
err = row_ins_check_foreign_constraints(index->table, index,
entry, thr);
if (err != DB_SUCCESS) {
return(err);
}
}
/* Try first optimistic descent to the B-tree */
err = row_ins_index_entry_low(BTR_MODIFY_LEAF, index, entry,
n_ext, thr);
if (err != DB_FAIL) {
return(err);
}
/* Try then pessimistic descent to the B-tree */
err = row_ins_index_entry_low(BTR_MODIFY_TREE, index, entry,
n_ext, thr);
return(err);
}
/***********************************************************//**
Sets the values of the dtuple fields in entry from the values of appropriate
columns in row. */
static
void
row_ins_index_entry_set_vals(
/*=========================*/
dict_index_t* index, /*!< in: index */
dtuple_t* entry, /*!< in: index entry to make */
const dtuple_t* row) /*!< in: row */
{
ulint n_fields;
ulint i;
ut_ad(entry && row);
n_fields = dtuple_get_n_fields(entry);
for (i = 0; i < n_fields; i++) {
dict_field_t* ind_field;
dfield_t* field;
const dfield_t* row_field;
ulint len;
field = dtuple_get_nth_field(entry, i);
ind_field = dict_index_get_nth_field(index, i);
row_field = dtuple_get_nth_field(row, ind_field->col->ind);
len = dfield_get_len(row_field);
/* Check column prefix indexes */
if (ind_field->prefix_len > 0
&& dfield_get_len(row_field) != UNIV_SQL_NULL) {
const dict_col_t* col
= dict_field_get_col(ind_field);
len = dtype_get_at_most_n_mbchars(
col->prtype, col->mbminmaxlen,
ind_field->prefix_len,
len, dfield_get_data(row_field));
ut_ad(!dfield_is_ext(row_field));
}
dfield_set_data(field, dfield_get_data(row_field), len);
if (dfield_is_ext(row_field)) {
ut_ad(dict_index_is_clust(index));
dfield_set_ext(field);
}
}
}
/***********************************************************//**
Inserts a single index entry to the table.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static
ulint
row_ins_index_entry_step(
/*=====================*/
ins_node_t* node, /*!< in: row insert node */
que_thr_t* thr) /*!< in: query thread */
{
ulint err;
ut_ad(dtuple_check_typed(node->row));
row_ins_index_entry_set_vals(node->index, node->entry, node->row);
ut_ad(dtuple_check_typed(node->entry));
err = row_ins_index_entry(node->index, node->entry, 0, TRUE, thr);
return(err);
}
/***********************************************************//**
Allocates a row id for row and inits the node->index field. */
UNIV_INLINE
void
row_ins_alloc_row_id_step(
/*======================*/
ins_node_t* node) /*!< in: row insert node */
{
row_id_t row_id;
ut_ad(node->state == INS_NODE_ALLOC_ROW_ID);
if (dict_index_is_unique(dict_table_get_first_index(node->table))) {
/* No row id is stored if the clustered index is unique */
return;
}
/* Fill in row id value to row */
row_id = dict_sys_get_new_row_id();
dict_sys_write_row_id(node->row_id_buf, row_id);
}
/***********************************************************//**
Gets a row to insert from the values list. */
UNIV_INLINE
void
row_ins_get_row_from_values(
/*========================*/
ins_node_t* node) /*!< in: row insert node */
{
que_node_t* list_node;
dfield_t* dfield;
dtuple_t* row;
ulint i;
/* The field values are copied in the buffers of the select node and
it is safe to use them until we fetch from select again: therefore
we can just copy the pointers */
row = node->row;
i = 0;
list_node = node->values_list;
while (list_node) {
eval_exp(list_node);
dfield = dtuple_get_nth_field(row, i);
dfield_copy_data(dfield, que_node_get_val(list_node));
i++;
list_node = que_node_get_next(list_node);
}
}
/***********************************************************//**
Gets a row to insert from the select list. */
UNIV_INLINE
void
row_ins_get_row_from_select(
/*========================*/
ins_node_t* node) /*!< in: row insert node */
{
que_node_t* list_node;
dfield_t* dfield;
dtuple_t* row;
ulint i;
/* The field values are copied in the buffers of the select node and
it is safe to use them until we fetch from select again: therefore
we can just copy the pointers */
row = node->row;
i = 0;
list_node = node->select->select_list;
while (list_node) {
dfield = dtuple_get_nth_field(row, i);
dfield_copy_data(dfield, que_node_get_val(list_node));
i++;
list_node = que_node_get_next(list_node);
}
}
/***********************************************************//**
Inserts a row to a table.
@return DB_SUCCESS if operation successfully completed, else error
code or DB_LOCK_WAIT */
static
ulint
row_ins(
/*====*/
ins_node_t* node, /*!< in: row insert node */
que_thr_t* thr) /*!< in: query thread */
{
ulint err;
ut_ad(node && thr);
if (node->state == INS_NODE_ALLOC_ROW_ID) {
row_ins_alloc_row_id_step(node);
node->index = dict_table_get_first_index(node->table);
node->entry = UT_LIST_GET_FIRST(node->entry_list);
if (node->ins_type == INS_SEARCHED) {
row_ins_get_row_from_select(node);
} else if (node->ins_type == INS_VALUES) {
row_ins_get_row_from_values(node);
}
node->state = INS_NODE_INSERT_ENTRIES;
}
ut_ad(node->state == INS_NODE_INSERT_ENTRIES);
while (node->index != NULL) {
err = row_ins_index_entry_step(node, thr);
if (err != DB_SUCCESS) {
return(err);
}
node->index = dict_table_get_next_index(node->index);
node->entry = UT_LIST_GET_NEXT(tuple_list, node->entry);
/* Skip corrupted secondar index and its entry */
while (node->index && dict_index_is_corrupted(node->index)) {
node->index = dict_table_get_next_index(node->index);
node->entry = UT_LIST_GET_NEXT(tuple_list, node->entry);
}
}
ut_ad(node->entry == NULL);
node->state = INS_NODE_ALLOC_ROW_ID;
return(DB_SUCCESS);
}
/***********************************************************//**
Inserts a row to a table. This is a high-level function used in SQL execution
graphs.
@return query thread to run next or NULL */
UNIV_INTERN
que_thr_t*
row_ins_step(
/*=========*/
que_thr_t* thr) /*!< in: query thread */
{
ins_node_t* node;
que_node_t* parent;
sel_node_t* sel_node;
trx_t* trx;
ulint err;
ut_ad(thr);
trx = thr_get_trx(thr);
trx_start_if_not_started(trx);
node = thr->run_node;
ut_ad(que_node_get_type(node) == QUE_NODE_INSERT);
parent = que_node_get_parent(node);
sel_node = node->select;
if (thr->prev_node == parent) {
node->state = INS_NODE_SET_IX_LOCK;
}
/* If this is the first time this node is executed (or when
execution resumes after wait for the table IX lock), set an
IX lock on the table and reset the possible select node. MySQL's
partitioned table code may also call an insert within the same
SQL statement AFTER it has used this table handle to do a search.
This happens, for example, when a row update moves it to another
partition. In that case, we have already set the IX lock on the
table during the search operation, and there is no need to set
it again here. But we must write trx->id to node->trx_id_buf. */
trx_write_trx_id(node->trx_id_buf, trx->id);
if (node->state == INS_NODE_SET_IX_LOCK) {
/* It may be that the current session has not yet started
its transaction, or it has been committed: */
if (trx->id == node->trx_id) {
/* No need to do IX-locking */
goto same_trx;
}
err = lock_table(0, node->table, LOCK_IX, thr);
if (err != DB_SUCCESS) {
goto error_handling;
}
node->trx_id = trx->id;
same_trx:
node->state = INS_NODE_ALLOC_ROW_ID;
if (node->ins_type == INS_SEARCHED) {
/* Reset the cursor */
sel_node->state = SEL_NODE_OPEN;
/* Fetch a row to insert */
thr->run_node = sel_node;
return(thr);
}
}
if ((node->ins_type == INS_SEARCHED)
&& (sel_node->state != SEL_NODE_FETCH)) {
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS);
/* No more rows to insert */
thr->run_node = parent;
return(thr);
}
/* DO THE CHECKS OF THE CONSISTENCY CONSTRAINTS HERE */
err = row_ins(node, thr);
error_handling:
trx->error_state = err;
if (err != DB_SUCCESS) {
/* err == DB_LOCK_WAIT or SQL error detected */
return(NULL);
}
/* DO THE TRIGGER ACTIONS HERE */
if (node->ins_type == INS_SEARCHED) {
/* Fetch a row to insert */
thr->run_node = sel_node;
} else {
thr->run_node = que_node_get_parent(node);
}
return(thr);
}