mariadb/bdb/test/testutils.tcl
2001-03-04 19:42:05 -05:00

2380 lines
56 KiB
Tcl

# See the file LICENSE for redistribution information.
#
# Copyright (c) 1996, 1997, 1998, 1999, 2000
# Sleepycat Software. All rights reserved.
#
# $Id: testutils.tcl,v 11.86 2001/01/18 23:21:14 krinsky Exp $
#
# Test system utilities
#
# Timestamp -- print time along with elapsed time since last invocation
# of timestamp.
proc timestamp {{opt ""}} {
global __timestamp_start
if {[string compare $opt "-r"] == 0} {
clock seconds
} elseif {[string compare $opt "-t"] == 0} {
# -t gives us the current time in the format expected by
# db_recover -t.
return [clock format [clock seconds] -format "%y%m%d%H%M.%S"]
} else {
set now [clock seconds]
if {[catch {set start $__timestamp_start}] != 0} {
set __timestamp_start $now
}
set start $__timestamp_start
set elapsed [expr $now - $start]
set the_time [clock format $now -format ""]
set __timestamp_start $now
format "%02d:%02d:%02d (%02d:%02d:%02d)" \
[__fix_num [clock format $now -format "%H"]] \
[__fix_num [clock format $now -format "%M"]] \
[__fix_num [clock format $now -format "%S"]] \
[expr $elapsed / 3600] \
[expr ($elapsed % 3600) / 60] \
[expr ($elapsed % 3600) % 60]
}
}
proc __fix_num { num } {
set num [string trimleft $num "0"]
if {[string length $num] == 0} {
set num "0"
}
return $num
}
# Add a {key,data} pair to the specified database where
# key=filename and data=file contents.
proc put_file { db txn flags file } {
source ./include.tcl
set fid [open $file r]
fconfigure $fid -translation binary
set data [read $fid]
close $fid
set ret [eval {$db put} $txn $flags {$file $data}]
error_check_good put_file $ret 0
}
# Get a {key,data} pair from the specified database where
# key=filename and data=file contents and then write the
# data to the specified file.
proc get_file { db txn flags file outfile } {
source ./include.tcl
set fid [open $outfile w]
fconfigure $fid -translation binary
if [catch {eval {$db get} $txn $flags {$file}} data] {
puts -nonewline $fid $data
} else {
# Data looks like {{key data}}
set data [lindex [lindex $data 0] 1]
puts -nonewline $fid $data
}
close $fid
}
# Add a {key,data} pair to the specified database where
# key=file contents and data=file name.
proc put_file_as_key { db txn flags file } {
source ./include.tcl
set fid [open $file r]
fconfigure $fid -translation binary
set filecont [read $fid]
close $fid
# Use not the file contents, but the file name concatenated
# before the file contents, as a key, to ensure uniqueness.
set data $file$filecont
set ret [eval {$db put} $txn $flags {$data $file}]
error_check_good put_file $ret 0
}
# Get a {key,data} pair from the specified database where
# key=file contents and data=file name
proc get_file_as_key { db txn flags file} {
source ./include.tcl
set fid [open $file r]
fconfigure $fid -translation binary
set filecont [read $fid]
close $fid
set data $file$filecont
return [eval {$db get} $txn $flags {$data}]
}
# open file and call dump_file to dumpkeys to tempfile
proc open_and_dump_file {
dbname dbenv txn outfile checkfunc dump_func beg cont} {
source ./include.tcl
if { $dbenv == "NULL" } {
set db [berkdb open -rdonly -unknown $dbname]
error_check_good dbopen [is_valid_db $db] TRUE
} else {
set db [berkdb open -env $dbenv -rdonly -unknown $dbname]
error_check_good dbopen [is_valid_db $db] TRUE
}
$dump_func $db $txn $outfile $checkfunc $beg $cont
error_check_good db_close [$db close] 0
}
# open file and call dump_file to dumpkeys to tempfile
proc open_and_dump_subfile {
dbname dbenv txn outfile checkfunc dump_func beg cont subdb} {
source ./include.tcl
if { $dbenv == "NULL" } {
set db [berkdb open -rdonly -unknown $dbname $subdb]
error_check_good dbopen [is_valid_db $db] TRUE
} else {
set db [berkdb open -env $dbenv -rdonly -unknown $dbname $subdb]
error_check_good dbopen [is_valid_db $db] TRUE
}
$dump_func $db $txn $outfile $checkfunc $beg $cont
error_check_good db_close [$db close] 0
}
# Sequentially read a file and call checkfunc on each key/data pair.
# Dump the keys out to the file specified by outfile.
proc dump_file { db txn outfile checkfunc } {
source ./include.tcl
dump_file_direction $db $txn $outfile $checkfunc "-first" "-next"
}
proc dump_file_direction { db txn outfile checkfunc start continue } {
source ./include.tcl
set outf [open $outfile w]
# Now we will get each key from the DB and dump to outfile
set c [eval {$db cursor} $txn]
error_check_good db_cursor [is_valid_cursor $c $db] TRUE
for {set d [$c get $start] } { [llength $d] != 0 } {
set d [$c get $continue] } {
set kd [lindex $d 0]
set k [lindex $kd 0]
set d2 [lindex $kd 1]
$checkfunc $k $d2
puts $outf $k
# XXX: Geoff Mainland
# puts $outf "$k $d2"
}
close $outf
error_check_good curs_close [$c close] 0
}
proc dump_binkey_file { db txn outfile checkfunc } {
source ./include.tcl
dump_binkey_file_direction $db $txn $outfile $checkfunc \
"-first" "-next"
}
proc dump_bin_file { db txn outfile checkfunc } {
source ./include.tcl
dump_bin_file_direction $db $txn $outfile $checkfunc "-first" "-next"
}
# Note: the following procedure assumes that the binary-file-as-keys were
# inserted into the database by put_file_as_key, and consist of the file
# name followed by the file contents as key, to ensure uniqueness.
proc dump_binkey_file_direction { db txn outfile checkfunc begin cont } {
source ./include.tcl
set d1 $testdir/d1
set outf [open $outfile w]
# Now we will get each key from the DB and dump to outfile
set c [eval {$db cursor} $txn]
error_check_good db_cursor [is_valid_cursor $c $db] TRUE
set inf $d1
for {set d [$c get $begin] } { [llength $d] != 0 } \
{set d [$c get $cont] } {
set kd [lindex $d 0]
set keyfile [lindex $kd 0]
set data [lindex $kd 1]
set ofid [open $d1 w]
fconfigure $ofid -translation binary
# Chop off the first few bytes--that's the file name,
# added for uniqueness in put_file_as_key, which we don't
# want in the regenerated file.
set namelen [string length $data]
set keyfile [string range $keyfile $namelen end]
puts -nonewline $ofid $keyfile
close $ofid
$checkfunc $data $d1
puts $outf $data
flush $outf
}
close $outf
error_check_good curs_close [$c close] 0
fileremove $d1
}
proc dump_bin_file_direction { db txn outfile checkfunc begin cont } {
source ./include.tcl
set d1 $testdir/d1
set outf [open $outfile w]
# Now we will get each key from the DB and dump to outfile
set c [eval {$db cursor} $txn]
for {set d [$c get $begin] } \
{ [llength $d] != 0 } {set d [$c get $cont] } {
set k [lindex [lindex $d 0] 0]
set data [lindex [lindex $d 0] 1]
set ofid [open $d1 w]
fconfigure $ofid -translation binary
puts -nonewline $ofid $data
close $ofid
$checkfunc $k $d1
puts $outf $k
}
close $outf
error_check_good curs_close [$c close] 0
fileremove -f $d1
}
proc make_data_str { key } {
set datastr ""
for {set i 0} {$i < 10} {incr i} {
append datastr $key
}
return $datastr
}
proc error_check_bad { func result bad {txn 0}} {
if { [binary_compare $result $bad] == 0 } {
if { $txn != 0 } {
$txn abort
}
flush stdout
flush stderr
error "FAIL:[timestamp] $func returned error value $bad"
}
}
proc error_check_good { func result desired {txn 0} } {
if { [binary_compare $desired $result] != 0 } {
if { $txn != 0 } {
$txn abort
}
flush stdout
flush stderr
error "FAIL:[timestamp]\
$func: expected $desired, got $result"
}
}
# Locks have the prefix of their manager.
proc is_substr { l mgr } {
if { [string first $mgr $l] == -1 } {
return 0
} else {
return 1
}
}
proc release_list { l } {
# Now release all the locks
foreach el $l {
set ret [$el put]
error_check_good lock_put $ret 0
}
}
proc debug { {stop 0} } {
global __debug_on
global __debug_print
global __debug_test
set __debug_on 1
set __debug_print 1
set __debug_test $stop
}
# Check if each key appears exactly [llength dlist] times in the file with
# the duplicate tags matching those that appear in dlist.
proc dup_check { db txn tmpfile dlist {extra 0}} {
source ./include.tcl
set outf [open $tmpfile w]
# Now we will get each key from the DB and dump to outfile
set c [eval {$db cursor} $txn]
set lastkey ""
set done 0
while { $done != 1} {
foreach did $dlist {
set rec [$c get "-next"]
if { [string length $rec] == 0 } {
set done 1
break
}
set key [lindex [lindex $rec 0] 0]
set fulldata [lindex [lindex $rec 0] 1]
set id [id_of $fulldata]
set d [data_of $fulldata]
if { [string compare $key $lastkey] != 0 && \
$id != [lindex $dlist 0] } {
set e [lindex $dlist 0]
error "FAIL: \tKey \
$key, expected dup id $e, got $id"
}
error_check_good dupget.data $d $key
error_check_good dupget.id $id $did
set lastkey $key
}
#
# Some tests add an extra dup (like overflow entries)
# Check id if it exists.
if { $extra != 0} {
set okey $key
set rec [$c get "-next"]
if { [string length $rec] != 0 } {
set key [lindex [lindex $rec 0] 0]
#
# If this key has no extras, go back for
# next iteration.
if { [string compare $key $lastkey] != 0 } {
set key $okey
set rec [$c get "-prev"]
} else {
set fulldata [lindex [lindex $rec 0] 1]
set id [id_of $fulldata]
set d [data_of $fulldata]
error_check_bad dupget.data1 $d $key
error_check_good dupget.id1 $id $extra
}
}
}
if { $done != 1 } {
puts $outf $key
}
}
close $outf
error_check_good curs_close [$c close] 0
}
# Parse duplicate data entries of the form N:data. Data_of returns
# the data part; id_of returns the numerical part
proc data_of {str} {
set ndx [string first ":" $str]
if { $ndx == -1 } {
return ""
}
return [ string range $str [expr $ndx + 1] end]
}
proc id_of {str} {
set ndx [string first ":" $str]
if { $ndx == -1 } {
return ""
}
return [ string range $str 0 [expr $ndx - 1]]
}
proc nop { {args} } {
return
}
# Partial put test procedure.
# Munges a data val through three different partial puts. Stores
# the final munged string in the dvals array so that you can check
# it later (dvals should be global). We take the characters that
# are being replaced, make them capitals and then replicate them
# some number of times (n_add). We do this at the beginning of the
# data, at the middle and at the end. The parameters are:
# db, txn, key -- as per usual. Data is the original data element
# from which we are starting. n_replace is the number of characters
# that we will replace. n_add is the number of times we will add
# the replaced string back in.
proc partial_put { method db txn gflags key data n_replace n_add } {
global dvals
source ./include.tcl
# Here is the loop where we put and get each key/data pair
# We will do the initial put and then three Partial Puts
# for the beginning, middle and end of the string.
eval {$db put} $txn {$key [chop_data $method $data]}
# Beginning change
set s [string range $data 0 [ expr $n_replace - 1 ] ]
set repl [ replicate [string toupper $s] $n_add ]
# This is gross, but necessary: if this is a fixed-length
# method, and the chopped length of $repl is zero,
# it's because the original string was zero-length and our data item
# is all nulls. Set repl to something non-NULL.
if { [is_fixed_length $method] && \
[string length [chop_data $method $repl]] == 0 } {
set repl [replicate "." $n_add]
}
set newstr [chop_data $method $repl[string range $data $n_replace end]]
set ret [eval {$db put} $txn {-partial [list 0 $n_replace] \
$key [chop_data $method $repl]}]
error_check_good put $ret 0
set ret [eval {$db get} $gflags $txn {$key}]
error_check_good get $ret [list [list $key [pad_data $method $newstr]]]
# End Change
set len [string length $newstr]
set spl [expr $len - $n_replace]
# Handle case where $n_replace > $len
if { $spl < 0 } {
set spl 0
}
set s [string range $newstr [ expr $len - $n_replace ] end ]
# Handle zero-length keys
if { [string length $s] == 0 } { set s "A" }
set repl [ replicate [string toupper $s] $n_add ]
set newstr [chop_data $method \
[string range $newstr 0 [expr $spl - 1 ] ]$repl]
set ret [eval {$db put} $txn \
{-partial [list $spl $n_replace] $key [chop_data $method $repl]}]
error_check_good put $ret 0
set ret [eval {$db get} $gflags $txn {$key}]
error_check_good get $ret [list [list $key [pad_data $method $newstr]]]
# Middle Change
set len [string length $newstr]
set mid [expr $len / 2 ]
set beg [expr $mid - [expr $n_replace / 2] ]
set end [expr $beg + $n_replace - 1]
set s [string range $newstr $beg $end]
set repl [ replicate [string toupper $s] $n_add ]
set newstr [chop_data $method [string range $newstr 0 \
[expr $beg - 1 ] ]$repl[string range $newstr [expr $end + 1] end]]
set ret [eval {$db put} $txn {-partial [list $beg $n_replace] \
$key [chop_data $method $repl]}]
error_check_good put $ret 0
set ret [eval {$db get} $gflags $txn {$key}]
error_check_good get $ret [list [list $key [pad_data $method $newstr]]]
set dvals($key) [pad_data $method $newstr]
}
proc replicate { str times } {
set res $str
for { set i 1 } { $i < $times } { set i [expr $i * 2] } {
append res $res
}
return $res
}
proc repeat { str n } {
set ret ""
while { $n > 0 } {
set ret $str$ret
incr n -1
}
return $ret
}
proc isqrt { l } {
set s [expr sqrt($l)]
set ndx [expr [string first "." $s] - 1]
return [string range $s 0 $ndx]
}
# If we run watch_procs multiple times without an intervening
# testdir cleanup, it's possible that old sentinel files will confuse
# us. Make sure they're wiped out before we spawn any other processes.
proc sentinel_init { } {
source ./include.tcl
set filelist {}
set ret [catch {glob $testdir/begin.*} result]
if { $ret == 0 } {
set filelist $result
}
set ret [catch {glob $testdir/end.*} result]
if { $ret == 0 } {
set filelist [concat $filelist $result]
}
foreach f $filelist {
fileremove $f
}
}
proc watch_procs { {delay 30} {max 3600} } {
source ./include.tcl
set elapsed 0
while { 1 } {
tclsleep $delay
incr elapsed $delay
# Find the list of processes withoutstanding sentinel
# files (i.e. a begin.pid and no end.pid).
set beginlist {}
set endlist {}
set ret [catch {glob $testdir/begin.*} result]
if { $ret == 0 } {
set beginlist $result
}
set ret [catch {glob $testdir/end.*} result]
if { $ret == 0 } {
set endlist $result
}
set bpids {}
catch {unset epids}
foreach begfile $beginlist {
lappend bpids [string range $begfile \
[string length $testdir/begin.] end]
}
foreach endfile $endlist {
set epids([string range $endfile \
[string length $testdir/end.] end]) 1
}
# The set of processes that we still want to watch, $l,
# is the set of pids that have begun but not ended
# according to their sentinel files.
set l {}
foreach p $bpids {
if { [info exists epids($p)] == 0 } {
lappend l $p
}
}
set rlist {}
foreach i $l {
set r [ catch { exec $KILL -0 $i } result ]
if { $r == 0 } {
lappend rlist $i
}
}
if { [ llength $rlist] == 0 } {
break
} else {
puts "[timestamp] processes running: $rlist"
}
if { $elapsed > $max } {
# We have exceeded the limit; kill processes
# and report an error
set rlist {}
foreach i $l {
set r [catch { exec $KILL $i } result]
if { $r == 0 } {
lappend rlist $i
}
}
error_check_good "Processes still running" \
[llength $rlist] 0
}
}
puts "All processes have exited."
}
# These routines are all used from within the dbscript.tcl tester.
proc db_init { dbp do_data } {
global a_keys
global l_keys
source ./include.tcl
set txn ""
set nk 0
set lastkey ""
set a_keys() BLANK
set l_keys ""
set c [$dbp cursor]
for {set d [$c get -first] } { [llength $d] != 0 } {
set d [$c get -next] } {
set k [lindex [lindex $d 0] 0]
set d2 [lindex [lindex $d 0] 1]
incr nk
if { $do_data == 1 } {
if { [info exists a_keys($k)] } {
lappend a_keys($k) $d2]
} else {
set a_keys($k) $d2
}
}
lappend l_keys $k
}
error_check_good curs_close [$c close] 0
return $nk
}
proc pick_op { min max n } {
if { $n == 0 } {
return add
}
set x [berkdb random_int 1 12]
if {$n < $min} {
if { $x <= 4 } {
return put
} elseif { $x <= 8} {
return get
} else {
return add
}
} elseif {$n > $max} {
if { $x <= 4 } {
return put
} elseif { $x <= 8 } {
return get
} else {
return del
}
} elseif { $x <= 3 } {
return del
} elseif { $x <= 6 } {
return get
} elseif { $x <= 9 } {
return put
} else {
return add
}
}
# random_data: Generate a string of random characters.
# If recno is 0 - Use average to pick a length between 1 and 2 * avg.
# If recno is non-0, generate a number between 1 and 2 ^ (avg * 2),
# that will fit into a 32-bit integer.
# If the unique flag is 1, then make sure that the string is unique
# in the array "where".
proc random_data { avg unique where {recno 0} } {
upvar #0 $where arr
global debug_on
set min 1
set max [expr $avg+$avg-1]
if { $recno } {
#
# Tcl seems to have problems with values > 30.
#
if { $max > 30 } {
set max 30
}
set maxnum [expr int(pow(2, $max))]
}
while {1} {
set len [berkdb random_int $min $max]
set s ""
if {$recno} {
set s [berkdb random_int 1 $maxnum]
} else {
for {set i 0} {$i < $len} {incr i} {
append s [int_to_char [berkdb random_int 0 25]]
}
}
if { $unique == 0 || [info exists arr($s)] == 0 } {
break
}
}
return $s
}
proc random_key { } {
global l_keys
global nkeys
set x [berkdb random_int 0 [expr $nkeys - 1]]
return [lindex $l_keys $x]
}
proc is_err { desired } {
set x [berkdb random_int 1 100]
if { $x <= $desired } {
return 1
} else {
return 0
}
}
proc pick_cursput { } {
set x [berkdb random_int 1 4]
switch $x {
1 { return "-keylast" }
2 { return "-keyfirst" }
3 { return "-before" }
4 { return "-after" }
}
}
proc random_cursor { curslist } {
global l_keys
global nkeys
set x [berkdb random_int 0 [expr [llength $curslist] - 1]]
set dbc [lindex $curslist $x]
# We want to randomly set the cursor. Pick a key.
set k [random_key]
set r [$dbc get "-set" $k]
error_check_good cursor_get:$k [is_substr Error $r] 0
# Now move forward or backward some hops to randomly
# position the cursor.
set dist [berkdb random_int -10 10]
set dir "-next"
set boundary "-first"
if { $dist < 0 } {
set dir "-prev"
set boundary "-last"
set dist [expr 0 - $dist]
}
for { set i 0 } { $i < $dist } { incr i } {
set r [ record $dbc get $dir $k ]
if { [llength $d] == 0 } {
set r [ record $dbc get $k $boundary ]
}
error_check_bad dbcget [llength $r] 0
}
return { [linsert r 0 $dbc] }
}
proc record { args } {
# Recording every operation makes tests ridiculously slow on
# NT, so we are commenting this out; for debugging purposes,
# it will undoubtedly be useful to uncomment this.
# puts $args
# flush stdout
return [eval $args]
}
proc newpair { k data } {
global l_keys
global a_keys
global nkeys
set a_keys($k) $data
lappend l_keys $k
incr nkeys
}
proc rempair { k } {
global l_keys
global a_keys
global nkeys
unset a_keys($k)
set n [lsearch $l_keys $k]
error_check_bad rempair:$k $n -1
set l_keys [lreplace $l_keys $n $n]
incr nkeys -1
}
proc changepair { k data } {
global l_keys
global a_keys
global nkeys
set a_keys($k) $data
}
proc changedup { k olddata newdata } {
global l_keys
global a_keys
global nkeys
set d $a_keys($k)
error_check_bad changedup:$k [llength $d] 0
set n [lsearch $d $olddata]
error_check_bad changedup:$k $n -1
set a_keys($k) [lreplace $a_keys($k) $n $n $newdata]
}
# Insert a dup into the a_keys array with DB_KEYFIRST.
proc adddup { k olddata newdata } {
global l_keys
global a_keys
global nkeys
set d $a_keys($k)
if { [llength $d] == 0 } {
lappend l_keys $k
incr nkeys
set a_keys($k) { $newdata }
}
set ndx 0
set d [linsert d $ndx $newdata]
set a_keys($k) $d
}
proc remdup { k data } {
global l_keys
global a_keys
global nkeys
set d [$a_keys($k)]
error_check_bad changedup:$k [llength $d] 0
set n [lsearch $d $olddata]
error_check_bad changedup:$k $n -1
set a_keys($k) [lreplace $a_keys($k) $n $n]
}
proc dump_full_file { db txn outfile checkfunc start continue } {
source ./include.tcl
set outf [open $outfile w]
# Now we will get each key from the DB and dump to outfile
set c [eval {$db cursor} $txn]
error_check_good dbcursor [is_valid_cursor $c $db] TRUE
for {set d [$c get $start] } { [string length $d] != 0 } {
set d [$c get $continue] } {
set k [lindex [lindex $d 0] 0]
set d2 [lindex [lindex $d 0] 1]
$checkfunc $k $d2
puts $outf "$k\t$d2"
}
close $outf
error_check_good curs_close [$c close] 0
}
proc int_to_char { i } {
global alphabet
return [string index $alphabet $i]
}
proc dbcheck { key data } {
global l_keys
global a_keys
global nkeys
global check_array
if { [lsearch $l_keys $key] == -1 } {
error "FAIL: Key |$key| not in list of valid keys"
}
set d $a_keys($key)
if { [info exists check_array($key) ] } {
set check $check_array($key)
} else {
set check {}
}
if { [llength $d] > 1 } {
if { [llength $check] != [llength $d] } {
# Make the check array the right length
for { set i [llength $check] } { $i < [llength $d] } \
{incr i} {
lappend check 0
}
set check_array($key) $check
}
# Find this data's index
set ndx [lsearch $d $data]
if { $ndx == -1 } {
error "FAIL: \
Data |$data| not found for key $key. Found |$d|"
}
# Set the bit in the check array
set check_array($key) [lreplace $check_array($key) $ndx $ndx 1]
} elseif { [string compare $d $data] != 0 } {
error "FAIL: \
Invalid data |$data| for key |$key|. Expected |$d|."
} else {
set check_array($key) 1
}
}
# Dump out the file and verify it
proc filecheck { file txn } {
global check_array
global l_keys
global nkeys
global a_keys
source ./include.tcl
if { [info exists check_array] == 1 } {
unset check_array
}
open_and_dump_file $file NULL $txn $file.dump dbcheck dump_full_file \
"-first" "-next"
# Check that everything we checked had all its data
foreach i [array names check_array] {
set count 0
foreach j $check_array($i) {
if { $j != 1 } {
puts -nonewline "Key |$i| never found datum"
puts " [lindex $a_keys($i) $count]"
}
incr count
}
}
# Check that all keys appeared in the checked array
set count 0
foreach k $l_keys {
if { [info exists check_array($k)] == 0 } {
puts "filecheck: key |$k| not found. Data: $a_keys($k)"
}
incr count
}
if { $count != $nkeys } {
puts "filecheck: Got $count keys; expected $nkeys"
}
}
proc esetup { dir } {
source ./include.tcl
set ret [berkdb envremove -home $dir]
fileremove -f $dir/file0 $dir/file1 $dir/file2 $dir/file3
set mp [memp $dir 0644 -create -cachesize { 0 10240 }]
set lp [lock_open "" -create 0644]
error_check_good memp_close [$mp close] 0
error_check_good lock_close [$lp close] 0
}
proc cleanup { dir env } {
global gen_upgrade
global upgrade_dir
global upgrade_be
global upgrade_method
global upgrade_name
source ./include.tcl
if { $gen_upgrade == 1 } {
set vers [berkdb version]
set maj [lindex $vers 0]
set min [lindex $vers 1]
if { $upgrade_be == 1 } {
set version_dir "$maj.${min}be"
} else {
set version_dir "$maj.${min}le"
}
set dest $upgrade_dir/$version_dir/$upgrade_method/$upgrade_name
catch {exec mkdir -p $dest}
catch {exec sh -c "mv $dir/*.db $dest"}
catch {exec sh -c "mv $dir/__dbq.* $dest"}
}
# check_handles
set remfiles {}
set ret [catch { glob $dir/* } result]
if { $ret == 0 } {
foreach file $result {
#
# We:
# - Ignore any env-related files, which are
# those that have __db.* or log.* if we are
# running in an env.
# - Call 'dbremove' on any databases.
# Remove any remaining temp files.
#
switch -glob -- $file {
*/__db.* -
*/log.* {
if { $env != "NULL" } {
continue
} else {
lappend remfiles $file
}
}
*.db {
set envargs ""
if { $env != "NULL"} {
set file [file tail $file]
set envargs " -env $env "
}
# If a database is left in a corrupt
# state, dbremove might not be able to handle
# it (it does an open before the remove).
# Be prepared for this, and if necessary,
# just forcibly remove the file with a warning
# message.
set ret [catch \
{eval {berkdb dbremove} $envargs $file} res]
if { $ret != 0 } {
puts \
"FAIL: dbremove in cleanup failed: $res"
lappend remfiles $file
}
}
default {
lappend remfiles $file
}
}
}
if {[llength $remfiles] > 0} {
eval fileremove -f $remfiles
}
}
}
proc log_cleanup { dir } {
source ./include.tcl
set files [glob -nocomplain $dir/log.*]
if { [llength $files] != 0} {
foreach f $files {
fileremove -f $f
}
}
}
proc env_cleanup { dir } {
source ./include.tcl
set stat [catch {berkdb envremove -home $dir} ret]
#
# If something failed and we are left with a region entry
# in /dev/shmem that is zero-length, the envremove will
# succeed, and the shm_unlink will succeed, but it will not
# remove the zero-length entry from /dev/shmem. Remove it
# using fileremove or else all other tests using an env
# will immediately fail.
#
if { $is_qnx_test == 1 } {
set region_files [glob -nocomplain /dev/shmem/$dir*]
if { [llength $region_files] != 0 } {
foreach f $region_files {
fileremove -f $f
}
}
}
log_cleanup $dir
cleanup $dir NULL
}
proc remote_cleanup { server dir localdir } {
set home [file tail $dir]
error_check_good cleanup:remove [berkdb envremove -home $home \
-server $server] 0
catch {exec rsh $server rm -f $dir/*} ret
cleanup $localdir NULL
}
proc help { cmd } {
if { [info command $cmd] == $cmd } {
set is_proc [lsearch [info procs $cmd] $cmd]
if { $is_proc == -1 } {
# Not a procedure; must be a C command
# Let's hope that it takes some parameters
# and that it prints out a message
puts "Usage: [eval $cmd]"
} else {
# It is a tcl procedure
puts -nonewline "Usage: $cmd"
set args [info args $cmd]
foreach a $args {
set is_def [info default $cmd $a val]
if { $is_def != 0 } {
# Default value
puts -nonewline " $a=$val"
} elseif {$a == "args"} {
# Print out flag values
puts " options"
args
} else {
# No default value
puts -nonewline " $a"
}
}
puts ""
}
} else {
puts "$cmd is not a command"
}
}
# Run a recovery test for a particular operation
# Notice that we catch the return from CP and do not do anything with it.
# This is because Solaris CP seems to exit non-zero on occasion, but
# everything else seems to run just fine.
proc op_recover { encodedop dir env_cmd dbfile cmd msg } {
global log_log_record_types
global recd_debug
global recd_id
global recd_op
source ./include.tcl
#puts "op_recover: $encodedop $dir $env_cmd $dbfile $cmd $msg"
set init_file $dir/t1
set afterop_file $dir/t2
set final_file $dir/t3
set op ""
set op2 ""
if { $encodedop == "prepare-abort" } {
set op "prepare"
set op2 "abort"
} elseif { $encodedop == "prepare-commit" } {
set op "prepare"
set op2 "commit"
} else {
set op $encodedop
}
puts "\t$msg $encodedop"
# Keep track of the log types we've seen
if { $log_log_record_types == 1} {
logtrack_read $dir
}
# Save the initial file and open the environment and the file
catch { file copy -force $dir/$dbfile $dir/$dbfile.init } res
copy_extent_file $dir $dbfile init
set env [eval $env_cmd]
set db [berkdb open -env $env $dbfile]
error_check_good dbopen [is_valid_db $db] TRUE
# Dump out file contents for initial case
set tflags ""
open_and_dump_file $dbfile $env $tflags $init_file nop \
dump_file_direction "-first" "-next"
set t [$env txn]
error_check_bad txn_begin $t NULL
error_check_good txn_begin [is_substr $t "txn"] 1
# Now fill in the db, tmgr, and the txnid in the command
set exec_cmd $cmd
set i [lsearch $cmd ENV]
if { $i != -1 } {
set exec_cmd [lreplace $exec_cmd $i $i $env]
}
set i [lsearch $cmd TXNID]
if { $i != -1 } {
set exec_cmd [lreplace $exec_cmd $i $i $t]
}
set i [lsearch $exec_cmd DB]
if { $i != -1 } {
set exec_cmd [lreplace $exec_cmd $i $i $db]
}
# To test DB_CONSUME, we need to expect a record return, not "0".
set i [lsearch $exec_cmd "-consume"]
if { $i != -1 } {
set record_exec_cmd_ret 1
} else {
set record_exec_cmd_ret 0
}
# For the DB_APPEND test, we need to expect a return other than
# 0; set this flag to be more lenient in the error_check_good.
set i [lsearch $exec_cmd "-append"]
if { $i != -1 } {
set lenient_exec_cmd_ret 1
} else {
set lenient_exec_cmd_ret 0
}
# Execute command and commit/abort it.
set ret [eval $exec_cmd]
if { $record_exec_cmd_ret == 1 } {
error_check_good "\"$exec_cmd\"" [llength [lindex $ret 0]] 2
} elseif { $lenient_exec_cmd_ret == 1 } {
error_check_good "\"$exec_cmd\"" [expr $ret > 0] 1
} else {
error_check_good "\"$exec_cmd\"" $ret 0
}
set record_exec_cmd_ret 0
set lenient_exec_cmd_ret 0
# Sync the file so that we can capture a snapshot to test
# recovery.
error_check_good sync:$db [$db sync] 0
catch { file copy -force $dir/$dbfile $dir/$dbfile.afterop } res
copy_extent_file $dir $dbfile afterop
#set tflags "-txn $t"
open_and_dump_file $dir/$dbfile.afterop NULL $tflags \
$afterop_file nop dump_file_direction \
"-first" "-next"
#puts "\t\t\tExecuting txn_$op:$t"
error_check_good txn_$op:$t [$t $op] 0
if { $op2 != "" } {
#puts "\t\t\tExecuting txn_$op2:$t"
error_check_good txn_$op2:$t [$t $op2] 0
}
switch $encodedop {
"commit" { puts "\t\tCommand executed and committed." }
"abort" { puts "\t\tCommand executed and aborted." }
"prepare" { puts "\t\tCommand executed and prepared." }
"prepare-commit" {
puts "\t\tCommand executed, prepared, and committed."
}
"prepare-abort" {
puts "\t\tCommand executed, prepared, and aborted."
}
}
# Dump out file and save a copy.
error_check_good sync:$db [$db sync] 0
open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \
dump_file_direction "-first" "-next"
catch { file copy -force $dir/$dbfile $dir/$dbfile.final } res
copy_extent_file $dir $dbfile final
# If this is an abort or prepare-abort, it should match the
# original file.
# If this was a commit or prepare-commit, then this file should
# match the afterop file.
# If this was a prepare without an abort or commit, we still
# have transactions active, and peering at the database from
# another environment will show data from uncommitted transactions.
# Thus we just skip this in the prepare-only case; what
# we care about are the results of a prepare followed by a
# recovery, which we test later.
if { $op == "commit" || $op2 == "commit" } {
filesort $afterop_file $afterop_file.sort
filesort $final_file $final_file.sort
error_check_good \
diff(post-$op,pre-commit):diff($afterop_file,$final_file) \
[filecmp $afterop_file.sort $final_file.sort] 0
} elseif { $op == "abort" || $op2 == "abort" } {
filesort $init_file $init_file.sort
filesort $final_file $final_file.sort
error_check_good \
diff(initial,post-$op):diff($init_file,$final_file) \
[filecmp $init_file.sort $final_file.sort] 0
} else {
# Make sure this really is a prepare-only
error_check_good assert:prepare-only $encodedop "prepare"
}
# Running recovery on this database should not do anything.
# Flush all data to disk, close the environment and save the
# file.
error_check_good close:$db [$db close] 0
# If all we've done is a prepare, then there's still a
# transaction active, and an env close will return DB_RUNRECOVERY
if { $encodedop == "prepare" } {
catch {$env close} ret
error_check_good env_close \
[is_substr $ret DB_RUNRECOVERY] 1
} else {
reset_env $env
}
berkdb debug_check
puts -nonewline "\t\tRunning recovery ... "
flush stdout
set stat [catch {exec $util_path/db_recover -h $dir -c} result]
if { $stat == 1 } {
error "FAIL: Recovery error: $result."
}
puts -nonewline "complete ... "
error_check_good db_verify [verify_dir $testdir "\t\t" 0 1] 0
puts "verified"
berkdb debug_check
set env [eval $env_cmd]
error_check_good dbenv [is_valid_widget $env env] TRUE
open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \
dump_file_direction "-first" "-next"
if { $op == "commit" || $op2 == "commit" } {
filesort $afterop_file $afterop_file.sort
filesort $final_file $final_file.sort
error_check_good \
diff(post-$op,pre-commit):diff($afterop_file,$final_file) \
[filecmp $afterop_file.sort $final_file.sort] 0
} else {
filesort $init_file $init_file.sort
filesort $final_file $final_file.sort
error_check_good \
diff(initial,post-$op):diff($init_file,$final_file) \
[filecmp $init_file.sort $final_file.sort] 0
}
# Now close the environment, substitute a file that will need
# recovery and try running recovery again.
reset_env $env
if { $op == "commit" || $op2 == "commit" } {
catch { file copy -force $dir/$dbfile.init $dir/$dbfile } res
move_file_extent $dir $dbfile init copy
} else {
catch { file copy -force $dir/$dbfile.afterop $dir/$dbfile } res
move_file_extent $dir $dbfile afterop copy
}
berkdb debug_check
puts -nonewline \
"\t\tRunning recovery on pre-op database ... "
flush stdout
set stat [catch {exec $util_path/db_recover -h $dir -c} result]
if { $stat == 1 } {
error "FAIL: Recovery error: $result."
}
puts -nonewline "complete ... "
error_check_good db_verify_preop [verify_dir $testdir "\t\t" 0 1] 0
puts "verified"
set env [eval $env_cmd]
open_and_dump_file $dir/$dbfile NULL $tflags $final_file nop \
dump_file_direction "-first" "-next"
if { $op == "commit" || $op2 == "commit" } {
filesort $final_file $final_file.sort
filesort $afterop_file $afterop_file.sort
error_check_good \
diff(post-$op,recovered):diff($afterop_file,$final_file) \
[filecmp $afterop_file.sort $final_file.sort] 0
} else {
filesort $init_file $init_file.sort
filesort $final_file $final_file.sort
error_check_good \
diff(initial,post-$op):diff($init_file,$final_file) \
[filecmp $init_file.sort $final_file.sort] 0
}
# This should just close the environment, not blow it away.
reset_env $env
}
proc populate { db method txn n dups bigdata } {
source ./include.tcl
set did [open $dict]
set count 0
while { [gets $did str] != -1 && $count < $n } {
if { [is_record_based $method] == 1 } {
set key [expr $count + 1]
} elseif { $dups == 1 } {
set key duplicate_key
} else {
set key $str
}
if { $bigdata == 1 && [berkdb random_int 1 3] == 1} {
set str [replicate $str 1000]
}
set ret [$db put -txn $txn $key $str]
error_check_good db_put:$key $ret 0
incr count
}
close $did
return 0
}
proc big_populate { db txn n } {
source ./include.tcl
set did [open $dict]
set count 0
while { [gets $did str] != -1 && $count < $n } {
set key [replicate $str 50]
set ret [$db put -txn $txn $key $str]
error_check_good db_put:$key $ret 0
incr count
}
close $did
return 0
}
proc unpopulate { db txn num } {
source ./include.tcl
set c [eval {$db cursor} "-txn $txn"]
error_check_bad $db:cursor $c NULL
error_check_good $db:cursor [is_substr $c $db] 1
set i 0
for {set d [$c get -first] } { [llength $d] != 0 } {
set d [$c get -next] } {
$c del
incr i
if { $num != 0 && $ >= $num } {
break
}
}
error_check_good cursor_close [$c close] 0
return 0
}
proc reset_env { env } {
error_check_good env_close [$env close] 0
}
# This routine will let us obtain a ring of deadlocks.
# Each locker will get a lock on obj_id, then sleep, and
# then try to lock (obj_id + 1) % num.
# When the lock is finally granted, we release our locks and
# return 1 if we got both locks and DEADLOCK if we deadlocked.
# The results here should be that 1 locker deadlocks and the
# rest all finish successfully.
proc ring { myenv locker_id obj_id num } {
source ./include.tcl
if {[catch {$myenv lock_get write $locker_id $obj_id} lock1] != 0} {
puts $errorInfo
return ERROR
} else {
error_check_good lockget:$obj_id [is_substr $lock1 $myenv] 1
}
tclsleep 30
set nextobj [expr ($obj_id + 1) % $num]
set ret 1
if {[catch {$myenv lock_get write $locker_id $nextobj} lock2] != 0} {
if {[string match "*DEADLOCK*" $lock2] == 1} {
set ret DEADLOCK
} else {
set ret ERROR
}
} else {
error_check_good lockget:$obj_id [is_substr $lock2 $myenv] 1
}
# Now release the first lock
error_check_good lockput:$lock1 [$lock1 put] 0
if {$ret == 1} {
error_check_bad lockget:$obj_id $lock2 NULL
error_check_good lockget:$obj_id [is_substr $lock2 $myenv] 1
error_check_good lockput:$lock2 [$lock2 put] 0
}
return $ret
}
# This routine will create massive deadlocks.
# Each locker will get a readlock on obj_id, then sleep, and
# then try to upgrade the readlock to a write lock.
# When the lock is finally granted, we release our first lock and
# return 1 if we got both locks and DEADLOCK if we deadlocked.
# The results here should be that 1 locker succeeds in getting all
# the locks and everyone else deadlocks.
proc clump { myenv locker_id obj_id num } {
source ./include.tcl
set obj_id 10
if {[catch {$myenv lock_get read $locker_id $obj_id} lock1] != 0} {
puts $errorInfo
return ERROR
} else {
error_check_good lockget:$obj_id \
[is_valid_lock $lock1 $myenv] TRUE
}
tclsleep 30
set ret 1
if {[catch {$myenv lock_get write $locker_id $obj_id} lock2] != 0} {
if {[string match "*DEADLOCK*" $lock2] == 1} {
set ret DEADLOCK
} else {
set ret ERROR
}
} else {
error_check_good \
lockget:$obj_id [is_valid_lock $lock2 $myenv] TRUE
}
# Now release the first lock
error_check_good lockput:$lock1 [$lock1 put] 0
if {$ret == 1} {
error_check_good \
lockget:$obj_id [is_valid_lock $lock2 $myenv] TRUE
error_check_good lockput:$lock2 [$lock2 put] 0
}
return $ret
}
proc dead_check { t procs dead clean other } {
error_check_good $t:$procs:other $other 0
switch $t {
ring {
error_check_good $t:$procs:deadlocks $dead 1
error_check_good $t:$procs:success $clean \
[expr $procs - 1]
}
clump {
error_check_good $t:$procs:deadlocks $dead \
[expr $procs - 1]
error_check_good $t:$procs:success $clean 1
}
default {
error "Test $t not implemented"
}
}
}
proc rdebug { id op where } {
global recd_debug
global recd_id
global recd_op
set recd_debug $where
set recd_id $id
set recd_op $op
}
proc rtag { msg id } {
set tag [lindex $msg 0]
set tail [expr [string length $tag] - 2]
set tag [string range $tag $tail $tail]
if { $id == $tag } {
return 1
} else {
return 0
}
}
proc zero_list { n } {
set ret ""
while { $n > 0 } {
lappend ret 0
incr n -1
}
return $ret
}
proc check_dump { k d } {
puts "key: $k data: $d"
}
proc reverse { s } {
set res ""
for { set i 0 } { $i < [string length $s] } { incr i } {
set res "[string index $s $i]$res"
}
return $res
}
proc is_valid_widget { w expected } {
# First N characters must match "expected"
set l [string length $expected]
incr l -1
if { [string compare [string range $w 0 $l] $expected] != 0 } {
return $w
}
# Remaining characters must be digits
incr l 1
for { set i $l } { $i < [string length $w] } { incr i} {
set c [string index $w $i]
if { $c < "0" || $c > "9" } {
return $w
}
}
return TRUE
}
proc is_valid_db { db } {
return [is_valid_widget $db db]
}
proc is_valid_env { env } {
return [is_valid_widget $env env]
}
proc is_valid_cursor { dbc db } {
return [is_valid_widget $dbc $db.c]
}
proc is_valid_lock { lock env } {
return [is_valid_widget $lock $env.lock]
}
proc is_valid_mpool { mpool env } {
return [is_valid_widget $mpool $env.mp]
}
proc is_valid_page { page mpool } {
return [is_valid_widget $page $mpool.pg]
}
proc is_valid_txn { txn env } {
return [is_valid_widget $txn $env.txn]
}
proc is_valid_mutex { m env } {
return [is_valid_widget $m $env.mutex]
}
proc send_cmd { fd cmd {sleep 2}} {
source ./include.tcl
puts $fd "set v \[$cmd\]"
puts $fd "puts \$v"
puts $fd "flush stdout"
flush $fd
berkdb debug_check
tclsleep $sleep
set r [rcv_result $fd]
return $r
}
proc rcv_result { fd } {
set r [gets $fd result]
error_check_bad remote_read $r -1
return $result
}
proc send_timed_cmd { fd rcv_too cmd } {
set c1 "set start \[timestamp -r\]; "
set c2 "puts \[expr \[timestamp -r\] - \$start\]"
set full_cmd [concat $c1 $cmd ";" $c2]
puts $fd $full_cmd
puts $fd "flush stdout"
flush $fd
return 0
}
#
# The rationale behind why we have *two* "data padding" routines is outlined
# below:
#
# Both pad_data and chop_data truncate data that is too long. However,
# pad_data also adds the pad character to pad data out to the fixed length
# record length.
#
# Which routine you call does not depend on the length of the data you're
# using, but on whether you're doing a put or a get. When we do a put, we
# have to make sure the data isn't longer than the size of a record because
# otherwise we'll get an error (use chop_data). When we do a get, we want to
# check that db padded everything correctly (use pad_data on the value against
# which we are comparing).
#
# We don't want to just use the pad_data routine for both purposes, because
# we want to be able to test whether or not db is padding correctly. For
# example, the queue access method had a bug where when a record was
# overwritten (*not* a partial put), only the first n bytes of the new entry
# were written, n being the new entry's (unpadded) length. So, if we did
# a put with key,value pair (1, "abcdef") and then a put (1, "z"), we'd get
# back (1,"zbcdef"). If we had used pad_data instead of chop_data, we would
# have gotten the "correct" result, but we wouldn't have found this bug.
proc chop_data {method data} {
global fixed_len
if {[is_fixed_length $method] == 1 && \
[string length $data] > $fixed_len} {
return [eval {binary format a$fixed_len $data}]
} else {
return $data
}
}
proc pad_data {method data} {
global fixed_len
if {[is_fixed_length $method] == 1} {
return [eval {binary format a$fixed_len $data}]
} else {
return $data
}
}
proc make_fixed_length {method data {pad 0}} {
global fixed_len
global fixed_pad
if {[is_fixed_length $method] == 1} {
if {[string length $data] > $fixed_len } {
error_check_bad make_fixed_len:TOO_LONG 1 1
}
while { [string length $data] < $fixed_len } {
set data [format $data%c $fixed_pad]
}
}
return $data
}
# shift data for partial
# pad with fixed pad (which is NULL)
proc partial_shift { data offset direction} {
global fixed_len
set len [expr $fixed_len - 1]
if { [string compare $direction "right"] == 0 } {
for { set i 1} { $i <= $offset } {incr i} {
set data [binary format x1a$len $data]
}
} elseif { [string compare $direction "left"] == 0 } {
for { set i 1} { $i <= $offset } {incr i} {
set data [string range $data 1 end]
set data [binary format a$len $data]
}
}
return $data
}
# string compare does not always work to compare
# this data, nor does expr (==)
# specialized routine for comparison
# (for use in fixed len recno and q)
proc binary_compare { data1 data2 } {
if { [string length $data1] != [string length $data2] || \
[string compare -length \
[string length $data1] $data1 $data2] != 0 } {
return 1
} else {
return 0
}
}
proc convert_method { method } {
switch -- $method {
-btree -
-dbtree -
-ddbtree -
-rbtree -
BTREE -
DB_BTREE -
DB_RBTREE -
RBTREE -
bt -
btree -
db_btree -
db_rbtree -
rbt -
rbtree { return "-btree" }
-dhash -
-hash -
DB_HASH -
HASH -
db_hash -
h -
hash { return "-hash" }
-queue -
DB_QUEUE -
QUEUE -
db_queue -
q -
qam -
queue { return "-queue" }
-queueextent -
QUEUEEXTENT -
qe -
qamext -
-queueext -
queueextent -
queueext { return "-queue" }
-frecno -
-recno -
-rrecno -
DB_FRECNO -
DB_RECNO -
DB_RRECNO -
FRECNO -
RECNO -
RRECNO -
db_frecno -
db_recno -
db_rrecno -
frec -
frecno -
rec -
recno -
rrec -
rrecno { return "-recno" }
default { error "FAIL:[timestamp] $method: unknown method" }
}
}
# If recno-with-renumbering or btree-with-renumbering is specified, then
# fix the arguments to specify the DB_RENUMBER/DB_RECNUM option for the
# -flags argument.
proc convert_args { method {largs ""} } {
global fixed_len
global fixed_pad
global gen_upgrade
global upgrade_be
source ./include.tcl
if { [string first - $largs] == -1 &&\
[string compare $largs ""] != 0 } {
set errstring "args must contain a hyphen; does this test\
have no numeric args?"
puts "FAIL:[timestamp] $errstring"
return -code return
}
if { $gen_upgrade == 1 && $upgrade_be == 1 } {
append largs " -lorder 4321 "
} elseif { $gen_upgrade == 1 && $upgrade_be != 1 } {
append largs " -lorder 1234 "
}
if { [is_rrecno $method] == 1 } {
append largs " -renumber "
} elseif { [is_rbtree $method] == 1 } {
append largs " -recnum "
} elseif { [is_dbtree $method] == 1 } {
append largs " -dup "
} elseif { [is_ddbtree $method] == 1 } {
append largs " -dup "
append largs " -dupsort "
} elseif { [is_dhash $method] == 1 } {
append largs " -dup "
} elseif { [is_queueext $method] == 1 } {
append largs " -extent 2 "
}
if {[is_fixed_length $method] == 1} {
append largs " -len $fixed_len -pad $fixed_pad "
}
return $largs
}
proc is_btree { method } {
set names { -btree BTREE DB_BTREE bt btree }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_dbtree { method } {
set names { -dbtree }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_ddbtree { method } {
set names { -ddbtree }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_rbtree { method } {
set names { -rbtree rbtree RBTREE db_rbtree DB_RBTREE rbt }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_recno { method } {
set names { -recno DB_RECNO RECNO db_recno rec recno}
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_rrecno { method } {
set names { -rrecno rrecno RRECNO db_rrecno DB_RRECNO rrec }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_frecno { method } {
set names { -frecno frecno frec FRECNO db_frecno DB_FRECNO}
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_hash { method } {
set names { -hash DB_HASH HASH db_hash h hash }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_dhash { method } {
set names { -dhash }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_queue { method } {
if { [is_queueext $method] == 1 } {
return 1
}
set names { -queue DB_QUEUE QUEUE db_queue q queue qam }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_queueext { method } {
set names { -queueextent queueextent QUEUEEXTENT qe qamext \
queueext -queueext }
if { [lsearch $names $method] >= 0 } {
return 1
} else {
return 0
}
}
proc is_record_based { method } {
if { [is_recno $method] || [is_frecno $method] ||
[is_rrecno $method] || [is_queue $method] } {
return 1
} else {
return 0
}
}
proc is_fixed_length { method } {
if { [is_queue $method] || [is_frecno $method] } {
return 1
} else {
return 0
}
}
# Sort lines in file $in and write results to file $out.
# This is a more portable alternative to execing the sort command,
# which has assorted issues on NT [#1576].
# The addition of a "-n" argument will sort numerically.
proc filesort { in out { arg "" } } {
set i [open $in r]
set ilines {}
while { [gets $i line] >= 0 } {
lappend ilines $line
}
if { [string compare $arg "-n"] == 0 } {
set olines [lsort -integer $ilines]
} else {
set olines [lsort $ilines]
}
close $i
set o [open $out w]
foreach line $olines {
puts $o $line
}
close $o
}
# Print lines up to the nth line of infile out to outfile, inclusive.
# The optional beg argument tells us where to start.
proc filehead { n infile outfile { beg 0 } } {
set in [open $infile r]
set out [open $outfile w]
# Sed uses 1-based line numbers, and so we do too.
for { set i 1 } { $i < $beg } { incr i } {
if { [gets $in junk] < 0 } {
break
}
}
for { } { $i <= $n } { incr i } {
if { [gets $in line] < 0 } {
break
}
puts $out $line
}
close $in
close $out
}
# Remove file (this replaces $RM).
# Usage: fileremove filenames =~ rm; fileremove -f filenames =~ rm -rf.
proc fileremove { args } {
set forceflag ""
foreach a $args {
if { [string first - $a] == 0 } {
# It's a flag. Better be f.
if { [string first f $a] != 1 } {
return -code error "bad flag to fileremove"
} else {
set forceflag "-force"
}
} else {
eval {file delete $forceflag $a}
}
}
}
proc findfail { args } {
foreach a $args {
if { [file exists $a] == 0 } {
continue
}
set f [open $a r]
while { [gets $f line] >= 0 } {
if { [string first FAIL $line] == 0 } {
close $f
return 1
}
}
close $f
}
return 0
}
# Sleep for s seconds.
proc tclsleep { s } {
# On Windows, the system time-of-day clock may update as much
# as 55 ms late due to interrupt timing. Don't take any
# chances; sleep extra-long so that when tclsleep 1 returns,
# it's guaranteed to be a new second.
after [expr $s * 1000 + 56]
}
# Compare two files, a la diff. Returns 1 if non-identical, 0 if identical.
proc filecmp { file_a file_b } {
set fda [open $file_a r]
set fdb [open $file_b r]
set nra 0
set nrb 0
# The gets can't be in the while condition because we'll
# get short-circuit evaluated.
while { $nra >= 0 && $nrb >= 0 } {
set nra [gets $fda aline]
set nrb [gets $fdb bline]
if { $nra != $nrb || [string compare $aline $bline] != 0} {
close $fda
close $fdb
return 1
}
}
close $fda
close $fdb
return 0
}
# Verify all .db files in the specified directory.
proc verify_dir { \
{directory "./TESTDIR"} { pref "" } { noredo 0 } { quiet 0 } } {
# If we're doing database verification between tests, we don't
# want to do verification twice without an intervening cleanup--some
# test was skipped. Always verify by default (noredo == 0) so
# that explicit calls to verify_dir during tests don't require
# cleanup commands.
if { $noredo == 1 } {
if { [file exists $directory/NOREVERIFY] == 1 } {
if { $quiet == 0 } {
puts "Skipping verification."
}
return
}
set f [open $directory/NOREVERIFY w]
close $f
}
if { [catch {glob $directory/*.db} dbs] != 0 } {
# No files matched
return
}
if { [file exists /dev/stderr] == 1 } {
set errfilearg "-errfile /dev/stderr "
} else {
set errfilearg ""
}
set errpfxarg {-errpfx "FAIL: verify" }
set errarg $errfilearg$errpfxarg
set ret 0
foreach db $dbs {
if { [catch {eval {berkdb dbverify} $errarg $db} res] != 0 } {
puts $res
puts "FAIL:[timestamp] Verification of $db failed."
set ret 1
} else {
error_check_good verify:$db $res 0
if { $quiet == 0 } {
puts "${pref}Verification of $db succeeded."
}
}
}
return $ret
}
# Generate randomly ordered, guaranteed-unique four-character strings that can
# be used to differentiate duplicates without creating duplicate duplicates.
# (test031 & test032) randstring_init is required before the first call to
# randstring and initializes things for up to $i distinct strings; randstring
# gets the next string.
proc randstring_init { i } {
global rs_int_list alphabet
# Fail if we can't generate sufficient unique strings.
if { $i > [expr 26 * 26 * 26 * 26] } {
set errstring\
"Duplicate set too large for random string generator"
puts "FAIL:[timestamp] $errstring"
return -code return $errstring
}
set rs_int_list {}
# generate alphabet array
for { set j 0 } { $j < 26 } { incr j } {
set a($j) [string index $alphabet $j]
}
# Generate a list with $i elements, { aaaa, aaab, ... aaaz, aaba ...}
for { set d1 0 ; set j 0 } { $d1 < 26 && $j < $i } { incr d1 } {
for { set d2 0 } { $d2 < 26 && $j < $i } { incr d2 } {
for { set d3 0 } { $d3 < 26 && $j < $i } { incr d3 } {
for { set d4 0 } { $d4 < 26 && $j < $i } \
{ incr d4 } {
lappend rs_int_list \
$a($d1)$a($d2)$a($d3)$a($d4)
incr j
}
}
}
}
# Randomize the list.
set rs_int_list [randomize_list $rs_int_list]
}
# Randomize a list. Returns a randomly-reordered copy of l.
proc randomize_list { l } {
set i [llength $l]
for { set j 0 } { $j < $i } { incr j } {
# Pick a random element from $j to the end
set k [berkdb random_int $j [expr $i - 1]]
# Swap it with element $j
set t1 [lindex $l $j]
set t2 [lindex $l $k]
set l [lreplace $l $j $j $t2]
set l [lreplace $l $k $k $t1]
}
return $l
}
proc randstring {} {
global rs_int_list
if { [info exists rs_int_list] == 0 || [llength $rs_int_list] == 0 } {
set errstring "randstring uninitialized or used too often"
puts "FAIL:[timestamp] $errstring"
return -code return $errstring
}
set item [lindex $rs_int_list 0]
set rs_int_list [lreplace $rs_int_list 0 0]
return $item
}
# Takes a variable-length arg list, and returns a list containing the list of
# the non-hyphenated-flag arguments, followed by a list of each alphanumeric
# flag it finds.
proc extractflags { args } {
set inflags 1
set flags {}
while { $inflags == 1 } {
set curarg [lindex $args 0]
if { [string first "-" $curarg] == 0 } {
set i 1
while {[string length [set f \
[string index $curarg $i]]] > 0 } {
incr i
if { [string compare $f "-"] == 0 } {
set inflags 0
break
} else {
lappend flags $f
}
}
set args [lrange $args 1 end]
} else {
set inflags 0
}
}
return [list $args $flags]
}
# Wrapper for berkdb open, used throughout the test suite so that we can
# set an errfile/errpfx as appropriate.
proc berkdb_open { args } {
set errargs {}
if { [file exists /dev/stderr] == 1 } {
append errargs " -errfile /dev/stderr "
append errargs " -errpfx \\F\\A\\I\\L "
}
eval {berkdb open} $errargs $args
}
# Version without errpfx/errfile, used when we're expecting a failure.
proc berkdb_open_noerr { args } {
eval {berkdb open} $args
}
proc check_handles { {outf stdout} } {
global ohandles
set handles [berkdb handles]
if {[llength $handles] != [llength $ohandles]} {
puts $outf "WARNING: Open handles during cleanup: $handles"
}
set ohandles $handles
}
proc open_handles { } {
return [llength [berkdb handles]]
}
proc move_file_extent { dir dbfile tag op } {
set files [get_extfiles $dir $dbfile $tag]
foreach extfile $files {
set i [string last "." $extfile]
incr i
set extnum [string range $extfile $i end]
set dbq [make_ext_filename $dir $dbfile $extnum]
#
# We can either copy or rename
#
file $op -force $extfile $dbq
}
}
proc copy_extent_file { dir dbfile tag { op copy } } {
set files [get_extfiles $dir $dbfile ""]
foreach extfile $files {
set i [string last "." $extfile]
incr i
set extnum [string range $extfile $i end]
file $op -force $extfile $dir/__dbq.$dbfile.$tag.$extnum
}
}
proc get_extfiles { dir dbfile tag } {
if { $tag == "" } {
set filepat $dir/__dbq.$dbfile.\[0-9\]*
} else {
set filepat $dir/__dbq.$dbfile.$tag.\[0-9\]*
}
return [glob -nocomplain -- $filepat]
}
proc make_ext_filename { dir dbfile extnum } {
return $dir/__dbq.$dbfile.$extnum
}
# All pids for Windows 9X are negative values. When we want to have
# unsigned int values, unique to the process, we'll take the absolute
# value of the pid. This avoids unsigned/signed mistakes, yet
# guarantees uniqueness, since each system has pids that are all
# either positive or negative.
#
proc sanitized_pid { } {
set mypid [pid]
if { $mypid < 0 } {
set mypid [expr - $mypid]
}
puts "PID: [pid] $mypid\n"
return $mypid
}
#
# Extract the page size field from a stat record. Return -1 if
# none is found.
#
proc get_pagesize { stat } {
foreach field $stat {
set title [lindex $field 0]
if {[string compare $title "Page size"] == 0} {
return [lindex $field 1]
}
}
return -1
}