mariadb/bdb/os/os_alloc.c
2001-03-04 19:42:05 -05:00

342 lines
7.3 KiB
C

/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1997, 1998, 1999, 2000
* Sleepycat Software. All rights reserved.
*/
#include "db_config.h"
#ifndef lint
static const char revid[] = "$Id: os_alloc.c,v 11.18 2000/11/30 00:58:42 ubell Exp $";
#endif /* not lint */
#ifndef NO_SYSTEM_INCLUDES
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
#endif
#include "db_int.h"
#include "os_jump.h"
#ifdef DIAGNOSTIC
static void __os_guard __P((void));
#endif
/*
* !!!
* Correct for systems that return NULL when you allocate 0 bytes of memory.
* There are several places in DB where we allocate the number of bytes held
* by the key/data item, and it can be 0. Correct here so that malloc never
* returns a NULL for that reason (which behavior is permitted by ANSI). We
* could make these calls macros on non-Alpha architectures (that's where we
* saw the problem), but it's probably not worth the autoconf complexity.
*
* !!!
* Correct for systems that don't set errno when malloc and friends fail.
*
* Out of memory.
* We wish to hold the whole sky,
* But we never will.
*/
/*
* __os_strdup --
* The strdup(3) function for DB.
*
* PUBLIC: int __os_strdup __P((DB_ENV *, const char *, void *));
*/
int
__os_strdup(dbenv, str, storep)
DB_ENV *dbenv;
const char *str;
void *storep;
{
size_t size;
int ret;
void *p;
*(void **)storep = NULL;
size = strlen(str) + 1;
if ((ret = __os_malloc(dbenv, size, NULL, &p)) != 0)
return (ret);
memcpy(p, str, size);
*(void **)storep = p;
return (0);
}
/*
* __os_calloc --
* The calloc(3) function for DB.
*
* PUBLIC: int __os_calloc __P((DB_ENV *, size_t, size_t, void *));
*/
int
__os_calloc(dbenv, num, size, storep)
DB_ENV *dbenv;
size_t num, size;
void *storep;
{
void *p;
int ret;
size *= num;
if ((ret = __os_malloc(dbenv, size, NULL, &p)) != 0)
return (ret);
memset(p, 0, size);
*(void **)storep = p;
return (0);
}
/*
* __os_malloc --
* The malloc(3) function for DB.
*
* PUBLIC: int __os_malloc __P((DB_ENV *, size_t, void *(*)(size_t), void *));
*/
int
__os_malloc(dbenv, size, db_malloc, storep)
DB_ENV *dbenv;
size_t size;
void *(*db_malloc) __P((size_t)), *storep;
{
int ret;
void *p;
*(void **)storep = NULL;
/* Never allocate 0 bytes -- some C libraries don't like it. */
if (size == 0)
++size;
#ifdef DIAGNOSTIC
else
++size; /* Add room for a guard byte. */
#endif
/* Some C libraries don't correctly set errno when malloc(3) fails. */
__os_set_errno(0);
if (db_malloc != NULL)
p = db_malloc(size);
else if (__db_jump.j_malloc != NULL)
p = __db_jump.j_malloc(size);
else
p = malloc(size);
if (p == NULL) {
ret = __os_get_errno();
if (ret == 0) {
__os_set_errno(ENOMEM);
ret = ENOMEM;
}
__db_err(dbenv,
"malloc: %s: %lu", strerror(ret), (u_long)size);
return (ret);
}
#ifdef DIAGNOSTIC
/*
* Guard bytes: if #DIAGNOSTIC is defined, we allocate an additional
* byte after the memory and set it to a special value that we check
* for when the memory is free'd. This is fine for structures, but
* not quite so fine for strings. There are places in DB where memory
* is allocated sufficient to hold the largest possible string that
* we'll see, and then only some subset of the memory is used. To
* support this usage, the __os_freestr() function checks the byte
* after the string's nul, which may or may not be the last byte in
* the originally allocated memory.
*/
memset(p, CLEAR_BYTE, size); /* Initialize guard byte. */
#endif
*(void **)storep = p;
return (0);
}
/*
* __os_realloc --
* The realloc(3) function for DB.
*
* PUBLIC: int __os_realloc __P((DB_ENV *,
* PUBLIC: size_t, void *(*)(void *, size_t), void *));
*/
int
__os_realloc(dbenv, size, db_realloc, storep)
DB_ENV *dbenv;
size_t size;
void *(*db_realloc) __P((void *, size_t)), *storep;
{
int ret;
void *p, *ptr;
ptr = *(void **)storep;
/* If we haven't yet allocated anything yet, simply call malloc. */
if (ptr == NULL && db_realloc == NULL)
return (__os_malloc(dbenv, size, NULL, storep));
/* Never allocate 0 bytes -- some C libraries don't like it. */
if (size == 0)
++size;
#ifdef DIAGNOSTIC
else
++size; /* Add room for a guard byte. */
#endif
/*
* Some C libraries don't correctly set errno when realloc(3) fails.
*
* Don't overwrite the original pointer, there are places in DB we
* try to continue after realloc fails.
*/
__os_set_errno(0);
if (db_realloc != NULL)
p = db_realloc(ptr, size);
else if (__db_jump.j_realloc != NULL)
p = __db_jump.j_realloc(ptr, size);
else
p = realloc(ptr, size);
if (p == NULL) {
if ((ret = __os_get_errno()) == 0) {
ret = ENOMEM;
__os_set_errno(ENOMEM);
}
__db_err(dbenv,
"realloc: %s: %lu", strerror(ret), (u_long)size);
return (ret);
}
#ifdef DIAGNOSTIC
((u_int8_t *)p)[size - 1] = CLEAR_BYTE; /* Initialize guard byte. */
#endif
*(void **)storep = p;
return (0);
}
/*
* __os_free --
* The free(3) function for DB.
*
* PUBLIC: void __os_free __P((void *, size_t));
*/
void
__os_free(ptr, size)
void *ptr;
size_t size;
{
#ifdef DIAGNOSTIC
if (size != 0) {
/*
* Check that the guard byte (one past the end of the memory) is
* still CLEAR_BYTE.
*/
if (((u_int8_t *)ptr)[size] != CLEAR_BYTE)
__os_guard();
/* Clear memory. */
if (size != 0)
memset(ptr, CLEAR_BYTE, size);
}
#else
COMPQUIET(size, 0);
#endif
if (__db_jump.j_free != NULL)
__db_jump.j_free(ptr);
else
free(ptr);
}
/*
* __os_freestr --
* The free(3) function for DB, freeing a string.
*
* PUBLIC: void __os_freestr __P((void *));
*/
void
__os_freestr(ptr)
void *ptr;
{
#ifdef DIAGNOSTIC
size_t size;
size = strlen(ptr) + 1;
/*
* Check that the guard byte (one past the end of the memory) is
* still CLEAR_BYTE.
*/
if (((u_int8_t *)ptr)[size] != CLEAR_BYTE)
__os_guard();
/* Clear memory. */
memset(ptr, CLEAR_BYTE, size);
#endif
if (__db_jump.j_free != NULL)
__db_jump.j_free(ptr);
else
free(ptr);
}
#ifdef DIAGNOSTIC
/*
* __os_guard --
* Complain and abort.
*/
static void
__os_guard()
{
/*
* Eventually, once we push a DB_ENV handle down to these
* routines, we should use the standard output channels.
*/
fprintf(stderr, "Guard byte incorrect during free.\n");
abort();
/* NOTREACHED */
}
#endif
/*
* __ua_memcpy --
* Copy memory to memory without relying on any kind of alignment.
*
* There are places in DB that we have unaligned data, for example,
* when we've stored a structure in a log record as a DBT, and now
* we want to look at it. Unfortunately, if you have code like:
*
* struct a {
* int x;
* } *p;
*
* void *func_argument;
* int local;
*
* p = (struct a *)func_argument;
* memcpy(&local, p->x, sizeof(local));
*
* compilers optimize to use inline instructions requiring alignment,
* and records in the log don't have any particular alignment. (This
* isn't a compiler bug, because it's a structure they're allowed to
* assume alignment.)
*
* Casting the memcpy arguments to (u_int8_t *) appears to work most
* of the time, but we've seen examples where it wasn't sufficient
* and there's nothing in ANSI C that requires that work.
*
* PUBLIC: void *__ua_memcpy __P((void *, const void *, size_t));
*/
void *
__ua_memcpy(dst, src, len)
void *dst;
const void *src;
size_t len;
{
return ((void *)memcpy(dst, src, len));
}