mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 04:53:01 +01:00
2834 lines
82 KiB
C++
2834 lines
82 KiB
C++
/*
|
|
Copyright (c) 2006, 2010, Oracle and/or its affiliates.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
/* Some general useful functions */
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation
|
|
#endif
|
|
|
|
#include "sql_priv.h"
|
|
// Required to get server definitions for mysql/plugin.h right
|
|
#include "sql_plugin.h"
|
|
#include "sql_partition.h" // partition_info.h: LIST_PART_ENTRY
|
|
// NOT_A_PARTITION_ID
|
|
#include "partition_info.h"
|
|
#include "sql_parse.h" // test_if_data_home_dir
|
|
#include "sql_acl.h" // *_ACL
|
|
#include "sql_base.h" // fill_record
|
|
|
|
#ifdef WITH_PARTITION_STORAGE_ENGINE
|
|
#include "ha_partition.h"
|
|
|
|
|
|
partition_info *partition_info::get_clone()
|
|
{
|
|
DBUG_ENTER("partition_info::get_clone");
|
|
if (!this)
|
|
DBUG_RETURN(NULL);
|
|
List_iterator<partition_element> part_it(partitions);
|
|
partition_element *part;
|
|
partition_info *clone= new partition_info();
|
|
if (!clone)
|
|
{
|
|
mem_alloc_error(sizeof(partition_info));
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
memcpy(clone, this, sizeof(partition_info));
|
|
memset(&(clone->read_partitions), 0, sizeof(clone->read_partitions));
|
|
memset(&(clone->lock_partitions), 0, sizeof(clone->lock_partitions));
|
|
clone->bitmaps_are_initialized= FALSE;
|
|
clone->partitions.empty();
|
|
|
|
while ((part= (part_it++)))
|
|
{
|
|
List_iterator<partition_element> subpart_it(part->subpartitions);
|
|
partition_element *subpart;
|
|
partition_element *part_clone= new partition_element();
|
|
if (!part_clone)
|
|
{
|
|
mem_alloc_error(sizeof(partition_element));
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
memcpy(part_clone, part, sizeof(partition_element));
|
|
part_clone->subpartitions.empty();
|
|
while ((subpart= (subpart_it++)))
|
|
{
|
|
partition_element *subpart_clone= new partition_element();
|
|
if (!subpart_clone)
|
|
{
|
|
mem_alloc_error(sizeof(partition_element));
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
memcpy(subpart_clone, subpart, sizeof(partition_element));
|
|
part_clone->subpartitions.push_back(subpart_clone);
|
|
}
|
|
clone->partitions.push_back(part_clone);
|
|
}
|
|
DBUG_RETURN(clone);
|
|
}
|
|
|
|
/**
|
|
Mark named [sub]partition to be used/locked.
|
|
|
|
@param part_name Partition name to match.
|
|
@param length Partition name length.
|
|
|
|
@return Success if partition found
|
|
@retval true Partition found
|
|
@retval false Partition not found
|
|
*/
|
|
|
|
bool partition_info::add_named_partition(const char *part_name,
|
|
uint length)
|
|
{
|
|
HASH *part_name_hash;
|
|
PART_NAME_DEF *part_def;
|
|
Partition_share *part_share;
|
|
DBUG_ENTER("partition_info::add_named_partition");
|
|
DBUG_ASSERT(table && table->s && table->s->ha_share);
|
|
part_share= static_cast<Partition_share*>((table->s->ha_share));
|
|
DBUG_ASSERT(part_share->partition_name_hash_initialized);
|
|
part_name_hash= &part_share->partition_name_hash;
|
|
DBUG_ASSERT(part_name_hash->records);
|
|
|
|
part_def= (PART_NAME_DEF*) my_hash_search(part_name_hash,
|
|
(const uchar*) part_name,
|
|
length);
|
|
if (!part_def)
|
|
{
|
|
my_error(ER_UNKNOWN_PARTITION, MYF(0), part_name, table->alias.c_ptr());
|
|
DBUG_RETURN(true);
|
|
}
|
|
|
|
if (part_def->is_subpart)
|
|
{
|
|
bitmap_set_bit(&read_partitions, part_def->part_id);
|
|
}
|
|
else
|
|
{
|
|
if (is_sub_partitioned())
|
|
{
|
|
/* Mark all subpartitions in the partition */
|
|
uint j, start= part_def->part_id;
|
|
uint end= start + num_subparts;
|
|
for (j= start; j < end; j++)
|
|
bitmap_set_bit(&read_partitions, j);
|
|
}
|
|
else
|
|
bitmap_set_bit(&read_partitions, part_def->part_id);
|
|
}
|
|
DBUG_PRINT("info", ("Found partition %u is_subpart %d for name %s",
|
|
part_def->part_id, part_def->is_subpart,
|
|
part_name));
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
/**
|
|
Mark named [sub]partition to be used/locked.
|
|
|
|
@param part_elem Partition element that matched.
|
|
*/
|
|
|
|
bool partition_info::set_named_partition_bitmap(const char *part_name,
|
|
uint length)
|
|
{
|
|
DBUG_ENTER("partition_info::set_named_partition_bitmap");
|
|
bitmap_clear_all(&read_partitions);
|
|
if (add_named_partition(part_name, length))
|
|
DBUG_RETURN(true);
|
|
bitmap_copy(&lock_partitions, &read_partitions);
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
Prune away partitions not mentioned in the PARTITION () clause,
|
|
if used.
|
|
|
|
@param table_list Table list pointing to table to prune.
|
|
|
|
@return Operation status
|
|
@retval true Failure
|
|
@retval false Success
|
|
*/
|
|
bool partition_info::prune_partition_bitmaps(TABLE_LIST *table_list)
|
|
{
|
|
List_iterator<String> partition_names_it(*(table_list->partition_names));
|
|
uint num_names= table_list->partition_names->elements;
|
|
uint i= 0;
|
|
DBUG_ENTER("partition_info::prune_partition_bitmaps");
|
|
|
|
if (num_names < 1)
|
|
DBUG_RETURN(true);
|
|
|
|
/*
|
|
TODO: When adding support for FK in partitioned tables, the referenced
|
|
table must probably lock all partitions for read, and also write depending
|
|
of ON DELETE/UPDATE.
|
|
*/
|
|
bitmap_clear_all(&read_partitions);
|
|
|
|
/* No check for duplicate names or overlapping partitions/subpartitions. */
|
|
|
|
DBUG_PRINT("info", ("Searching through partition_name_hash"));
|
|
do
|
|
{
|
|
String *part_name_str= partition_names_it++;
|
|
if (add_named_partition(part_name_str->c_ptr(), part_name_str->length()))
|
|
DBUG_RETURN(true);
|
|
} while (++i < num_names);
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
/**
|
|
Set read/lock_partitions bitmap over non pruned partitions
|
|
|
|
@param table_list Possible TABLE_LIST which can contain
|
|
list of partition names to query
|
|
|
|
@return Operation status
|
|
@retval FALSE OK
|
|
@retval TRUE Failed to allocate memory for bitmap or list of partitions
|
|
did not match
|
|
|
|
@note OK to call multiple times without the need for free_bitmaps.
|
|
*/
|
|
|
|
bool partition_info::set_partition_bitmaps(TABLE_LIST *table_list)
|
|
{
|
|
DBUG_ENTER("partition_info::set_partition_bitmaps");
|
|
|
|
DBUG_ASSERT(bitmaps_are_initialized);
|
|
DBUG_ASSERT(table);
|
|
is_pruning_completed= false;
|
|
if (!bitmaps_are_initialized)
|
|
DBUG_RETURN(TRUE);
|
|
|
|
if (table_list &&
|
|
table_list->partition_names &&
|
|
table_list->partition_names->elements)
|
|
{
|
|
if (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)
|
|
{
|
|
/*
|
|
Don't allow PARTITION () clause on a NDB tables yet.
|
|
TODO: Add partition name handling to NDB/partition_info.
|
|
which is currently ha_partition specific.
|
|
*/
|
|
my_error(ER_PARTITION_CLAUSE_ON_NONPARTITIONED, MYF(0));
|
|
DBUG_RETURN(true);
|
|
}
|
|
if (prune_partition_bitmaps(table_list))
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
else
|
|
{
|
|
bitmap_set_all(&read_partitions);
|
|
DBUG_PRINT("info", ("Set all partitions"));
|
|
}
|
|
bitmap_copy(&lock_partitions, &read_partitions);
|
|
DBUG_ASSERT(bitmap_get_first_set(&lock_partitions) != MY_BIT_NONE);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/**
|
|
Checks if possible to do prune partitions on insert.
|
|
|
|
@param thd Thread context
|
|
@param duplic How to handle duplicates
|
|
@param update In case of ON DUPLICATE UPDATE, default function fields
|
|
@param update_fields In case of ON DUPLICATE UPDATE, which fields to update
|
|
@param fields Listed fields
|
|
@param empty_values True if values is empty (only defaults)
|
|
@param[out] prune_needs_default_values Set on return if copying of default
|
|
values is needed
|
|
@param[out] can_prune_partitions Enum showing if possible to prune
|
|
@param[inout] used_partitions If possible to prune the bitmap
|
|
is initialized and cleared
|
|
|
|
@return Operation status
|
|
@retval false Success
|
|
@retval true Failure
|
|
*/
|
|
|
|
bool partition_info::can_prune_insert(THD* thd,
|
|
enum_duplicates duplic,
|
|
COPY_INFO &update,
|
|
List<Item> &update_fields,
|
|
List<Item> &fields,
|
|
bool empty_values,
|
|
enum_can_prune *can_prune_partitions,
|
|
bool *prune_needs_default_values,
|
|
MY_BITMAP *used_partitions)
|
|
{
|
|
uint32 *bitmap_buf;
|
|
uint bitmap_bytes;
|
|
uint num_partitions= 0;
|
|
*can_prune_partitions= PRUNE_NO;
|
|
DBUG_ASSERT(bitmaps_are_initialized);
|
|
DBUG_ENTER("partition_info::can_prune_insert");
|
|
|
|
if (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)
|
|
DBUG_RETURN(false); /* Should not insert prune NDB tables */
|
|
|
|
/*
|
|
If under LOCK TABLES pruning will skip start_stmt instead of external_lock
|
|
for unused partitions.
|
|
|
|
Cannot prune if there are BEFORE INSERT triggers that changes any
|
|
partitioning column, since they may change the row to be in another
|
|
partition.
|
|
*/
|
|
if (table->triggers &&
|
|
table->triggers->has_triggers(TRG_EVENT_INSERT, TRG_ACTION_BEFORE) &&
|
|
table->triggers->is_fields_updated_in_trigger(&full_part_field_set,
|
|
TRG_EVENT_INSERT,
|
|
TRG_ACTION_BEFORE))
|
|
DBUG_RETURN(false);
|
|
|
|
if (table->found_next_number_field)
|
|
{
|
|
/*
|
|
If the field is used in the partitioning expression, we cannot prune.
|
|
TODO: If all rows have not null values and
|
|
is not 0 (with NO_AUTO_VALUE_ON_ZERO sql_mode), then pruning is possible!
|
|
*/
|
|
if (bitmap_is_set(&full_part_field_set,
|
|
table->found_next_number_field->field_index))
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
/*
|
|
If updating a field in the partitioning expression, we cannot prune.
|
|
|
|
Note: TIMESTAMP_AUTO_SET_ON_INSERT is handled by converting Item_null
|
|
to the start time of the statement. Which will be the same as in
|
|
write_row(). So pruning of TIMESTAMP DEFAULT CURRENT_TIME will work.
|
|
But TIMESTAMP_AUTO_SET_ON_UPDATE cannot be pruned if the timestamp
|
|
column is a part of any part/subpart expression.
|
|
*/
|
|
if (duplic == DUP_UPDATE)
|
|
{
|
|
/*
|
|
TODO: add check for static update values, which can be pruned.
|
|
*/
|
|
if (is_field_in_part_expr(update_fields))
|
|
DBUG_RETURN(false);
|
|
|
|
/*
|
|
Cannot prune if there are BEFORE UPDATE triggers that changes any
|
|
partitioning column, since they may change the row to be in another
|
|
partition.
|
|
*/
|
|
if (table->triggers &&
|
|
table->triggers->has_triggers(TRG_EVENT_UPDATE,
|
|
TRG_ACTION_BEFORE) &&
|
|
table->triggers->is_fields_updated_in_trigger(&full_part_field_set,
|
|
TRG_EVENT_UPDATE,
|
|
TRG_ACTION_BEFORE))
|
|
{
|
|
DBUG_RETURN(false);
|
|
}
|
|
}
|
|
|
|
/*
|
|
If not all partitioning fields are given,
|
|
we also must set all non given partitioning fields
|
|
to get correct defaults.
|
|
TODO: If any gain, we could enhance this by only copy the needed default
|
|
fields by
|
|
1) check which fields needs to be set.
|
|
2) only copy those fields from the default record.
|
|
*/
|
|
*prune_needs_default_values= false;
|
|
if (fields.elements)
|
|
{
|
|
if (!is_full_part_expr_in_fields(fields))
|
|
*prune_needs_default_values= true;
|
|
}
|
|
else if (empty_values)
|
|
{
|
|
*prune_needs_default_values= true; // like 'INSERT INTO t () VALUES ()'
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
In case of INSERT INTO t VALUES (...) we must get values for
|
|
all fields in table from VALUES (...) part, so no defaults
|
|
are needed.
|
|
*/
|
|
}
|
|
|
|
/* Pruning possible, have to initialize the used_partitions bitmap. */
|
|
num_partitions= lock_partitions.n_bits;
|
|
bitmap_bytes= bitmap_buffer_size(num_partitions);
|
|
if (!(bitmap_buf= (uint32*) thd->alloc(bitmap_bytes)))
|
|
{
|
|
mem_alloc_error(bitmap_bytes);
|
|
DBUG_RETURN(true);
|
|
}
|
|
/* Also clears all bits. */
|
|
if (bitmap_init(used_partitions, bitmap_buf, num_partitions, false))
|
|
{
|
|
/* purecov: begin deadcode */
|
|
/* Cannot happen, due to pre-alloc. */
|
|
mem_alloc_error(bitmap_bytes);
|
|
DBUG_RETURN(true);
|
|
/* purecov: end */
|
|
}
|
|
/*
|
|
If no partitioning field in set (e.g. defaults) check pruning only once.
|
|
*/
|
|
if (fields.elements &&
|
|
!is_field_in_part_expr(fields))
|
|
*can_prune_partitions= PRUNE_DEFAULTS;
|
|
else
|
|
*can_prune_partitions= PRUNE_YES;
|
|
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
/**
|
|
Mark the partition, the record belongs to, as used.
|
|
|
|
@param fields Fields to set
|
|
@param values Values to use
|
|
@param info COPY_INFO used for default values handling
|
|
@param copy_default_values True if we should copy default values
|
|
@param used_partitions Bitmap to set
|
|
|
|
@returns Operational status
|
|
@retval false Success
|
|
@retval true Failure
|
|
*/
|
|
|
|
bool partition_info::set_used_partition(List<Item> &fields,
|
|
List<Item> &values,
|
|
COPY_INFO &info,
|
|
bool copy_default_values,
|
|
MY_BITMAP *used_partitions)
|
|
{
|
|
THD *thd= table->in_use;
|
|
uint32 part_id;
|
|
longlong func_value;
|
|
Dummy_error_handler error_handler;
|
|
bool ret= true;
|
|
DBUG_ENTER("set_partition");
|
|
DBUG_ASSERT(thd);
|
|
|
|
/* Only allow checking of constant values */
|
|
List_iterator_fast<Item> v(values);
|
|
Item *item;
|
|
thd->push_internal_handler(&error_handler);
|
|
while ((item= v++))
|
|
{
|
|
if (!item->const_item())
|
|
goto err;
|
|
}
|
|
|
|
if (copy_default_values)
|
|
restore_record(table,s->default_values);
|
|
|
|
if (fields.elements || !values.elements)
|
|
{
|
|
if (fill_record(thd, table, fields, values, false))
|
|
goto err;
|
|
}
|
|
else
|
|
{
|
|
if (fill_record(thd, table, table->field, values, false, false))
|
|
goto err;
|
|
}
|
|
DBUG_ASSERT(!table->auto_increment_field_not_null);
|
|
|
|
/*
|
|
Evaluate DEFAULT functions like CURRENT_TIMESTAMP.
|
|
TODO: avoid setting non partitioning fields default value, to avoid
|
|
overhead. Not yet done, since mostly only one DEFAULT function per
|
|
table, or at least very few such columns.
|
|
*/
|
|
// if (info.function_defaults_apply_on_columns(&full_part_field_set))
|
|
// info.set_function_defaults(table);
|
|
|
|
{
|
|
/*
|
|
This function is used in INSERT; 'values' are supplied by user,
|
|
or are default values, not values read from a table, so read_set is
|
|
irrelevant.
|
|
*/
|
|
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set);
|
|
const int rc= get_partition_id(this, &part_id, &func_value);
|
|
dbug_tmp_restore_column_map(table->read_set, old_map);
|
|
if (rc)
|
|
goto err;
|
|
}
|
|
|
|
DBUG_PRINT("info", ("Insert into partition %u", part_id));
|
|
bitmap_set_bit(used_partitions, part_id);
|
|
ret= false;
|
|
|
|
err:
|
|
thd->pop_internal_handler();
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
|
|
/*
|
|
Create a memory area where default partition names are stored and fill it
|
|
up with the names.
|
|
|
|
SYNOPSIS
|
|
create_default_partition_names()
|
|
part_no Partition number for subparts
|
|
num_parts Number of partitions
|
|
start_no Starting partition number
|
|
subpart Is it subpartitions
|
|
|
|
RETURN VALUE
|
|
A pointer to the memory area of the default partition names
|
|
|
|
DESCRIPTION
|
|
A support routine for the partition code where default values are
|
|
generated.
|
|
The external routine needing this code is check_partition_info
|
|
*/
|
|
|
|
#define MAX_PART_NAME_SIZE 8
|
|
|
|
char *partition_info::create_default_partition_names(uint part_no,
|
|
uint num_parts_arg,
|
|
uint start_no)
|
|
{
|
|
char *ptr= (char*) sql_calloc(num_parts_arg*MAX_PART_NAME_SIZE);
|
|
char *move_ptr= ptr;
|
|
uint i= 0;
|
|
DBUG_ENTER("create_default_partition_names");
|
|
|
|
if (likely(ptr != 0))
|
|
{
|
|
do
|
|
{
|
|
sprintf(move_ptr, "p%u", (start_no + i));
|
|
move_ptr+= MAX_PART_NAME_SIZE;
|
|
} while (++i < num_parts_arg);
|
|
}
|
|
else
|
|
{
|
|
mem_alloc_error(num_parts_arg*MAX_PART_NAME_SIZE);
|
|
}
|
|
DBUG_RETURN(ptr);
|
|
}
|
|
|
|
|
|
/*
|
|
Generate a version string for partition expression
|
|
This function must be updated every time there is a possibility for
|
|
a new function of a higher version number than 5.5.0.
|
|
|
|
SYNOPSIS
|
|
set_show_version_string()
|
|
RETURN VALUES
|
|
None
|
|
*/
|
|
void partition_info::set_show_version_string(String *packet)
|
|
{
|
|
int version= 0;
|
|
if (column_list)
|
|
packet->append(STRING_WITH_LEN("\n/*!50500"));
|
|
else
|
|
{
|
|
if (part_expr)
|
|
part_expr->walk(&Item::intro_version, 0, (uchar*)&version);
|
|
if (subpart_expr)
|
|
subpart_expr->walk(&Item::intro_version, 0, (uchar*)&version);
|
|
if (version == 0)
|
|
{
|
|
/* No new functions in partition function */
|
|
packet->append(STRING_WITH_LEN("\n/*!50100"));
|
|
}
|
|
else
|
|
{
|
|
char buf[65];
|
|
char *buf_ptr= longlong10_to_str((longlong)version, buf, 10);
|
|
packet->append(STRING_WITH_LEN("\n/*!"));
|
|
packet->append(buf, (size_t)(buf_ptr - buf));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Create a unique name for the subpartition as part_name'sp''subpart_no'
|
|
|
|
SYNOPSIS
|
|
create_default_subpartition_name()
|
|
subpart_no Number of subpartition
|
|
part_name Name of partition
|
|
RETURN VALUES
|
|
>0 A reference to the created name string
|
|
0 Memory allocation error
|
|
*/
|
|
|
|
char *partition_info::create_default_subpartition_name(uint subpart_no,
|
|
const char *part_name)
|
|
{
|
|
uint size_alloc= strlen(part_name) + MAX_PART_NAME_SIZE;
|
|
char *ptr= (char*) sql_calloc(size_alloc);
|
|
DBUG_ENTER("create_default_subpartition_name");
|
|
|
|
if (likely(ptr != NULL))
|
|
{
|
|
my_snprintf(ptr, size_alloc, "%ssp%u", part_name, subpart_no);
|
|
}
|
|
else
|
|
{
|
|
mem_alloc_error(size_alloc);
|
|
}
|
|
DBUG_RETURN(ptr);
|
|
}
|
|
|
|
|
|
/*
|
|
Set up all the default partitions not set-up by the user in the SQL
|
|
statement. Also perform a number of checks that the user hasn't tried
|
|
to use default values where no defaults exists.
|
|
|
|
SYNOPSIS
|
|
set_up_default_partitions()
|
|
file A reference to a handler of the table
|
|
info Create info
|
|
start_no Starting partition number
|
|
|
|
RETURN VALUE
|
|
TRUE Error, attempted default values not possible
|
|
FALSE Ok, default partitions set-up
|
|
|
|
DESCRIPTION
|
|
The routine uses the underlying handler of the partitioning to define
|
|
the default number of partitions. For some handlers this requires
|
|
knowledge of the maximum number of rows to be stored in the table.
|
|
This routine only accepts HASH and KEY partitioning and thus there is
|
|
no subpartitioning if this routine is successful.
|
|
The external routine needing this code is check_partition_info
|
|
*/
|
|
|
|
bool partition_info::set_up_default_partitions(handler *file,
|
|
HA_CREATE_INFO *info,
|
|
uint start_no)
|
|
{
|
|
uint i;
|
|
char *default_name;
|
|
bool result= TRUE;
|
|
DBUG_ENTER("partition_info::set_up_default_partitions");
|
|
|
|
if (part_type != HASH_PARTITION)
|
|
{
|
|
const char *error_string;
|
|
if (part_type == RANGE_PARTITION)
|
|
error_string= partition_keywords[PKW_RANGE].str;
|
|
else
|
|
error_string= partition_keywords[PKW_LIST].str;
|
|
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
|
|
goto end;
|
|
}
|
|
|
|
if ((num_parts == 0) &&
|
|
((num_parts= file->get_default_no_partitions(info)) == 0))
|
|
{
|
|
my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions");
|
|
goto end;
|
|
}
|
|
|
|
if (unlikely(num_parts > MAX_PARTITIONS))
|
|
{
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
if (unlikely((!(default_name= create_default_partition_names(0, num_parts,
|
|
start_no)))))
|
|
goto end;
|
|
i= 0;
|
|
do
|
|
{
|
|
partition_element *part_elem= new partition_element();
|
|
if (likely(part_elem != 0 &&
|
|
(!partitions.push_back(part_elem))))
|
|
{
|
|
part_elem->engine_type= default_engine_type;
|
|
part_elem->partition_name= default_name;
|
|
default_name+=MAX_PART_NAME_SIZE;
|
|
}
|
|
else
|
|
{
|
|
mem_alloc_error(sizeof(partition_element));
|
|
goto end;
|
|
}
|
|
} while (++i < num_parts);
|
|
result= FALSE;
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Set up all the default subpartitions not set-up by the user in the SQL
|
|
statement. Also perform a number of checks that the default partitioning
|
|
becomes an allowed partitioning scheme.
|
|
|
|
SYNOPSIS
|
|
set_up_default_subpartitions()
|
|
file A reference to a handler of the table
|
|
info Create info
|
|
|
|
RETURN VALUE
|
|
TRUE Error, attempted default values not possible
|
|
FALSE Ok, default partitions set-up
|
|
|
|
DESCRIPTION
|
|
The routine uses the underlying handler of the partitioning to define
|
|
the default number of partitions. For some handlers this requires
|
|
knowledge of the maximum number of rows to be stored in the table.
|
|
This routine is only called for RANGE or LIST partitioning and those
|
|
need to be specified so only subpartitions are specified.
|
|
The external routine needing this code is check_partition_info
|
|
*/
|
|
|
|
bool partition_info::set_up_default_subpartitions(handler *file,
|
|
HA_CREATE_INFO *info)
|
|
{
|
|
uint i, j;
|
|
bool result= TRUE;
|
|
partition_element *part_elem;
|
|
List_iterator<partition_element> part_it(partitions);
|
|
DBUG_ENTER("partition_info::set_up_default_subpartitions");
|
|
|
|
if (num_subparts == 0)
|
|
num_subparts= file->get_default_no_partitions(info);
|
|
if (unlikely((num_parts * num_subparts) > MAX_PARTITIONS))
|
|
{
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
i= 0;
|
|
do
|
|
{
|
|
part_elem= part_it++;
|
|
j= 0;
|
|
do
|
|
{
|
|
partition_element *subpart_elem= new partition_element(part_elem);
|
|
if (likely(subpart_elem != 0 &&
|
|
(!part_elem->subpartitions.push_back(subpart_elem))))
|
|
{
|
|
char *ptr= create_default_subpartition_name(j,
|
|
part_elem->partition_name);
|
|
if (!ptr)
|
|
goto end;
|
|
subpart_elem->engine_type= default_engine_type;
|
|
subpart_elem->partition_name= ptr;
|
|
}
|
|
else
|
|
{
|
|
mem_alloc_error(sizeof(partition_element));
|
|
goto end;
|
|
}
|
|
} while (++j < num_subparts);
|
|
} while (++i < num_parts);
|
|
result= FALSE;
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Support routine for check_partition_info
|
|
|
|
SYNOPSIS
|
|
set_up_defaults_for_partitioning()
|
|
file A reference to a handler of the table
|
|
info Create info
|
|
start_no Starting partition number
|
|
|
|
RETURN VALUE
|
|
TRUE Error, attempted default values not possible
|
|
FALSE Ok, default partitions set-up
|
|
|
|
DESCRIPTION
|
|
Set up defaults for partition or subpartition (cannot set-up for both,
|
|
this will return an error.
|
|
*/
|
|
|
|
bool partition_info::set_up_defaults_for_partitioning(handler *file,
|
|
HA_CREATE_INFO *info,
|
|
uint start_no)
|
|
{
|
|
DBUG_ENTER("partition_info::set_up_defaults_for_partitioning");
|
|
|
|
if (!default_partitions_setup)
|
|
{
|
|
default_partitions_setup= TRUE;
|
|
if (use_default_partitions)
|
|
DBUG_RETURN(set_up_default_partitions(file, info, start_no));
|
|
if (is_sub_partitioned() &&
|
|
use_default_subpartitions)
|
|
DBUG_RETURN(set_up_default_subpartitions(file, info));
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Support routine for check_partition_info
|
|
|
|
SYNOPSIS
|
|
find_duplicate_field
|
|
no parameters
|
|
|
|
RETURN VALUE
|
|
Erroneus field name Error, there are two fields with same name
|
|
NULL Ok, no field defined twice
|
|
|
|
DESCRIPTION
|
|
Check that the user haven't defined the same field twice in
|
|
key or column list partitioning.
|
|
*/
|
|
char* partition_info::find_duplicate_field()
|
|
{
|
|
char *field_name_outer, *field_name_inner;
|
|
List_iterator<char> it_outer(part_field_list);
|
|
uint num_fields= part_field_list.elements;
|
|
uint i,j;
|
|
DBUG_ENTER("partition_info::find_duplicate_field");
|
|
|
|
for (i= 0; i < num_fields; i++)
|
|
{
|
|
field_name_outer= it_outer++;
|
|
List_iterator<char> it_inner(part_field_list);
|
|
for (j= 0; j < num_fields; j++)
|
|
{
|
|
field_name_inner= it_inner++;
|
|
if (i >= j)
|
|
continue;
|
|
if (!(my_strcasecmp(system_charset_info,
|
|
field_name_outer,
|
|
field_name_inner)))
|
|
{
|
|
DBUG_RETURN(field_name_outer);
|
|
}
|
|
}
|
|
}
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
|
|
/**
|
|
@brief Get part_elem and part_id from partition name
|
|
|
|
@param partition_name Name of partition to search for.
|
|
@param file_name[out] Partition file name (part after table name,
|
|
#P#<part>[#SP#<subpart>]), skipped if NULL.
|
|
@param part_id[out] Id of found partition or NOT_A_PARTITION_ID.
|
|
|
|
@retval Pointer to part_elem of [sub]partition, if not found NULL
|
|
|
|
@note Since names of partitions AND subpartitions must be unique,
|
|
this function searches both partitions and subpartitions and if name of
|
|
a partition is given for a subpartitioned table, part_elem will be
|
|
the partition, but part_id will be NOT_A_PARTITION_ID and file_name not set.
|
|
*/
|
|
partition_element *partition_info::get_part_elem(const char *partition_name,
|
|
char *file_name,
|
|
uint32 *part_id)
|
|
{
|
|
List_iterator<partition_element> part_it(partitions);
|
|
uint i= 0;
|
|
DBUG_ENTER("partition_info::get_part_elem");
|
|
DBUG_ASSERT(part_id);
|
|
*part_id= NOT_A_PARTITION_ID;
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
if (is_sub_partitioned())
|
|
{
|
|
List_iterator<partition_element> sub_part_it(part_elem->subpartitions);
|
|
uint j= 0;
|
|
do
|
|
{
|
|
partition_element *sub_part_elem= sub_part_it++;
|
|
if (!my_strcasecmp(system_charset_info,
|
|
sub_part_elem->partition_name, partition_name))
|
|
{
|
|
if (file_name)
|
|
create_subpartition_name(file_name, "",
|
|
part_elem->partition_name,
|
|
partition_name,
|
|
NORMAL_PART_NAME);
|
|
*part_id= j + (i * num_subparts);
|
|
DBUG_RETURN(sub_part_elem);
|
|
}
|
|
} while (++j < num_subparts);
|
|
|
|
/* Naming a partition (first level) on a subpartitioned table. */
|
|
if (!my_strcasecmp(system_charset_info,
|
|
part_elem->partition_name, partition_name))
|
|
DBUG_RETURN(part_elem);
|
|
}
|
|
else if (!my_strcasecmp(system_charset_info,
|
|
part_elem->partition_name, partition_name))
|
|
{
|
|
if (file_name)
|
|
create_partition_name(file_name, "", partition_name,
|
|
NORMAL_PART_NAME, TRUE);
|
|
*part_id= i;
|
|
DBUG_RETURN(part_elem);
|
|
}
|
|
} while (++i < num_parts);
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
|
|
/**
|
|
Helper function to find_duplicate_name.
|
|
*/
|
|
|
|
static const char *get_part_name_from_elem(const char *name, size_t *length,
|
|
my_bool not_used __attribute__((unused)))
|
|
{
|
|
*length= strlen(name);
|
|
return name;
|
|
}
|
|
|
|
/*
|
|
A support function to check partition names for duplication in a
|
|
partitioned table
|
|
|
|
SYNOPSIS
|
|
find_duplicate_name()
|
|
|
|
RETURN VALUES
|
|
NULL Has unique part and subpart names
|
|
!NULL Pointer to duplicated name
|
|
|
|
DESCRIPTION
|
|
Checks that the list of names in the partitions doesn't contain any
|
|
duplicated names.
|
|
*/
|
|
|
|
char *partition_info::find_duplicate_name()
|
|
{
|
|
HASH partition_names;
|
|
uint max_names;
|
|
const uchar *curr_name= NULL;
|
|
List_iterator<partition_element> parts_it(partitions);
|
|
partition_element *p_elem;
|
|
|
|
DBUG_ENTER("partition_info::find_duplicate_name");
|
|
|
|
/*
|
|
TODO: If table->s->ha_part_data->partition_name_hash.elements is > 0,
|
|
then we could just return NULL, but that has not been verified.
|
|
And this only happens when in ALTER TABLE with full table copy.
|
|
*/
|
|
|
|
max_names= num_parts;
|
|
if (is_sub_partitioned())
|
|
max_names+= num_parts * num_subparts;
|
|
if (my_hash_init(&partition_names, system_charset_info, max_names, 0, 0,
|
|
(my_hash_get_key) get_part_name_from_elem, 0, HASH_UNIQUE))
|
|
{
|
|
DBUG_ASSERT(0);
|
|
curr_name= (const uchar*) "Internal failure";
|
|
goto error;
|
|
}
|
|
while ((p_elem= (parts_it++)))
|
|
{
|
|
curr_name= (const uchar*) p_elem->partition_name;
|
|
if (my_hash_insert(&partition_names, curr_name))
|
|
goto error;
|
|
|
|
if (!p_elem->subpartitions.is_empty())
|
|
{
|
|
List_iterator<partition_element> subparts_it(p_elem->subpartitions);
|
|
partition_element *subp_elem;
|
|
while ((subp_elem= (subparts_it++)))
|
|
{
|
|
curr_name= (const uchar*) subp_elem->partition_name;
|
|
if (my_hash_insert(&partition_names, curr_name))
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
my_hash_free(&partition_names);
|
|
DBUG_RETURN(NULL);
|
|
error:
|
|
my_hash_free(&partition_names);
|
|
DBUG_RETURN((char*) curr_name);
|
|
}
|
|
|
|
|
|
/*
|
|
Check that the partition/subpartition is setup to use the correct
|
|
storage engine
|
|
SYNOPSIS
|
|
check_engine_condition()
|
|
p_elem Partition element
|
|
table_engine_set Have user specified engine on table level
|
|
inout::engine_type Current engine used
|
|
inout::first Is it first partition
|
|
RETURN VALUE
|
|
TRUE Failed check
|
|
FALSE Ok
|
|
DESCRIPTION
|
|
Specified engine for table and partitions p0 and pn
|
|
Must be correct both on CREATE and ALTER commands
|
|
table p0 pn res (0 - OK, 1 - FAIL)
|
|
- - - 0
|
|
- - x 1
|
|
- x - 1
|
|
- x x 0
|
|
x - - 0
|
|
x - x 0
|
|
x x - 0
|
|
x x x 0
|
|
i.e:
|
|
- All subpartitions must use the same engine
|
|
AND it must be the same as the partition.
|
|
- All partitions must use the same engine
|
|
AND it must be the same as the table.
|
|
- if one does NOT specify an engine on the table level
|
|
then one must either NOT specify any engine on any
|
|
partition/subpartition OR for ALL partitions/subpartitions
|
|
Note:
|
|
When ALTER a table, the engines are already set for all levels
|
|
(table, all partitions and subpartitions). So if one want to
|
|
change the storage engine, one must specify it on the table level
|
|
|
|
*/
|
|
|
|
static bool check_engine_condition(partition_element *p_elem,
|
|
bool table_engine_set,
|
|
handlerton **engine_type,
|
|
bool *first)
|
|
{
|
|
DBUG_ENTER("check_engine_condition");
|
|
|
|
DBUG_PRINT("enter", ("p_eng %s t_eng %s t_eng_set %u first %u state %u",
|
|
ha_resolve_storage_engine_name(p_elem->engine_type),
|
|
ha_resolve_storage_engine_name(*engine_type),
|
|
table_engine_set, *first, p_elem->part_state));
|
|
if (*first && !table_engine_set)
|
|
{
|
|
*engine_type= p_elem->engine_type;
|
|
DBUG_PRINT("info", ("setting table_engine = %s",
|
|
ha_resolve_storage_engine_name(*engine_type)));
|
|
}
|
|
*first= FALSE;
|
|
if ((table_engine_set &&
|
|
(p_elem->engine_type != (*engine_type) &&
|
|
p_elem->engine_type)) ||
|
|
(!table_engine_set &&
|
|
p_elem->engine_type != (*engine_type)))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check engine mix that it is correct
|
|
Current limitation is that all partitions and subpartitions
|
|
must use the same storage engine.
|
|
SYNOPSIS
|
|
check_engine_mix()
|
|
inout::engine_type Current engine used
|
|
table_engine_set Have user specified engine on table level
|
|
RETURN VALUE
|
|
TRUE Error, mixed engines
|
|
FALSE Ok, no mixed engines
|
|
DESCRIPTION
|
|
Current check verifies only that all handlers are the same.
|
|
Later this check will be more sophisticated.
|
|
(specified partition handler ) specified table handler
|
|
(NDB, NDB) NDB OK
|
|
(MYISAM, MYISAM) - OK
|
|
(MYISAM, -) - NOT OK
|
|
(MYISAM, -) MYISAM OK
|
|
(- , MYISAM) - NOT OK
|
|
(- , -) MYISAM OK
|
|
(-,-) - OK
|
|
(NDB, MYISAM) * NOT OK
|
|
*/
|
|
|
|
bool partition_info::check_engine_mix(handlerton *engine_type,
|
|
bool table_engine_set)
|
|
{
|
|
handlerton *old_engine_type= engine_type;
|
|
bool first= TRUE;
|
|
uint n_parts= partitions.elements;
|
|
DBUG_ENTER("partition_info::check_engine_mix");
|
|
DBUG_PRINT("info", ("in: engine_type = %s, table_engine_set = %u",
|
|
ha_resolve_storage_engine_name(engine_type),
|
|
table_engine_set));
|
|
if (n_parts)
|
|
{
|
|
List_iterator<partition_element> part_it(partitions);
|
|
uint i= 0;
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
DBUG_PRINT("info", ("part = %d engine = %s table_engine_set %u",
|
|
i, ha_resolve_storage_engine_name(part_elem->engine_type),
|
|
table_engine_set));
|
|
if (is_sub_partitioned() &&
|
|
part_elem->subpartitions.elements)
|
|
{
|
|
uint n_subparts= part_elem->subpartitions.elements;
|
|
uint j= 0;
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
do
|
|
{
|
|
partition_element *sub_elem= sub_it++;
|
|
DBUG_PRINT("info", ("sub = %d engine = %s table_engie_set %u",
|
|
j, ha_resolve_storage_engine_name(sub_elem->engine_type),
|
|
table_engine_set));
|
|
if (check_engine_condition(sub_elem, table_engine_set,
|
|
&engine_type, &first))
|
|
goto error;
|
|
} while (++j < n_subparts);
|
|
/* ensure that the partition also has correct engine */
|
|
if (check_engine_condition(part_elem, table_engine_set,
|
|
&engine_type, &first))
|
|
goto error;
|
|
}
|
|
else if (check_engine_condition(part_elem, table_engine_set,
|
|
&engine_type, &first))
|
|
goto error;
|
|
} while (++i < n_parts);
|
|
}
|
|
DBUG_PRINT("info", ("engine_type = %s",
|
|
ha_resolve_storage_engine_name(engine_type)));
|
|
if (!engine_type)
|
|
engine_type= old_engine_type;
|
|
if (engine_type->flags & HTON_NO_PARTITION)
|
|
{
|
|
my_error(ER_PARTITION_MERGE_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
DBUG_PRINT("info", ("out: engine_type = %s",
|
|
ha_resolve_storage_engine_name(engine_type)));
|
|
DBUG_ASSERT(engine_type != partition_hton);
|
|
DBUG_RETURN(FALSE);
|
|
error:
|
|
/*
|
|
Mixed engines not yet supported but when supported it will need
|
|
the partition handler
|
|
*/
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
This routine allocates an array for all range constants to achieve a fast
|
|
check what partition a certain value belongs to. At the same time it does
|
|
also check that the range constants are defined in increasing order and
|
|
that the expressions are constant integer expressions.
|
|
|
|
SYNOPSIS
|
|
check_range_constants()
|
|
thd Thread object
|
|
|
|
RETURN VALUE
|
|
TRUE An error occurred during creation of range constants
|
|
FALSE Successful creation of range constant mapping
|
|
|
|
DESCRIPTION
|
|
This routine is called from check_partition_info to get a quick error
|
|
before we came too far into the CREATE TABLE process. It is also called
|
|
from fix_partition_func every time we open the .frm file. It is only
|
|
called for RANGE PARTITIONed tables.
|
|
*/
|
|
|
|
bool partition_info::check_range_constants(THD *thd)
|
|
{
|
|
partition_element* part_def;
|
|
bool first= TRUE;
|
|
uint i;
|
|
List_iterator<partition_element> it(partitions);
|
|
int result= TRUE;
|
|
DBUG_ENTER("partition_info::check_range_constants");
|
|
DBUG_PRINT("enter", ("RANGE with %d parts, column_list = %u", num_parts,
|
|
column_list));
|
|
|
|
if (column_list)
|
|
{
|
|
part_column_list_val *loc_range_col_array;
|
|
part_column_list_val *UNINIT_VAR(current_largest_col_val);
|
|
uint num_column_values= part_field_list.elements;
|
|
uint size_entries= sizeof(part_column_list_val) * num_column_values;
|
|
range_col_array= (part_column_list_val*)sql_calloc(num_parts *
|
|
size_entries);
|
|
if (unlikely(range_col_array == NULL))
|
|
{
|
|
mem_alloc_error(num_parts * size_entries);
|
|
goto end;
|
|
}
|
|
loc_range_col_array= range_col_array;
|
|
i= 0;
|
|
do
|
|
{
|
|
part_def= it++;
|
|
{
|
|
List_iterator<part_elem_value> list_val_it(part_def->list_val_list);
|
|
part_elem_value *range_val= list_val_it++;
|
|
part_column_list_val *col_val= range_val->col_val_array;
|
|
|
|
if (fix_column_value_functions(thd, range_val, i))
|
|
goto end;
|
|
memcpy(loc_range_col_array, (const void*)col_val, size_entries);
|
|
loc_range_col_array+= num_column_values;
|
|
if (!first)
|
|
{
|
|
if (compare_column_values((const void*)current_largest_col_val,
|
|
(const void*)col_val) >= 0)
|
|
goto range_not_increasing_error;
|
|
}
|
|
current_largest_col_val= col_val;
|
|
}
|
|
first= FALSE;
|
|
} while (++i < num_parts);
|
|
}
|
|
else
|
|
{
|
|
longlong UNINIT_VAR(current_largest);
|
|
longlong part_range_value;
|
|
bool signed_flag= !part_expr->unsigned_flag;
|
|
|
|
range_int_array= (longlong*)sql_alloc(num_parts * sizeof(longlong));
|
|
if (unlikely(range_int_array == NULL))
|
|
{
|
|
mem_alloc_error(num_parts * sizeof(longlong));
|
|
goto end;
|
|
}
|
|
i= 0;
|
|
do
|
|
{
|
|
part_def= it++;
|
|
if ((i != (num_parts - 1)) || !defined_max_value)
|
|
{
|
|
part_range_value= part_def->range_value;
|
|
if (!signed_flag)
|
|
part_range_value-= 0x8000000000000000ULL;
|
|
}
|
|
else
|
|
part_range_value= LONGLONG_MAX;
|
|
|
|
if (!first)
|
|
{
|
|
if (unlikely(current_largest > part_range_value) ||
|
|
(unlikely(current_largest == part_range_value) &&
|
|
(part_range_value < LONGLONG_MAX ||
|
|
i != (num_parts - 1) ||
|
|
!defined_max_value)))
|
|
goto range_not_increasing_error;
|
|
}
|
|
range_int_array[i]= part_range_value;
|
|
current_largest= part_range_value;
|
|
first= FALSE;
|
|
} while (++i < num_parts);
|
|
}
|
|
result= FALSE;
|
|
end:
|
|
DBUG_RETURN(result);
|
|
|
|
range_not_increasing_error:
|
|
my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
|
|
|
|
/*
|
|
Support routines for check_list_constants used by qsort to sort the
|
|
constant list expressions. One routine for integers and one for
|
|
column lists.
|
|
|
|
SYNOPSIS
|
|
list_part_cmp()
|
|
a First list constant to compare with
|
|
b Second list constant to compare with
|
|
|
|
RETURN VALUE
|
|
+1 a > b
|
|
0 a == b
|
|
-1 a < b
|
|
*/
|
|
|
|
extern "C"
|
|
int partition_info_list_part_cmp(const void* a, const void* b)
|
|
{
|
|
longlong a1= ((LIST_PART_ENTRY*)a)->list_value;
|
|
longlong b1= ((LIST_PART_ENTRY*)b)->list_value;
|
|
if (a1 < b1)
|
|
return -1;
|
|
else if (a1 > b1)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
int partition_info::list_part_cmp(const void* a, const void* b)
|
|
{
|
|
return partition_info_list_part_cmp(a, b);
|
|
}
|
|
|
|
|
|
/*
|
|
Compare two lists of column values in RANGE/LIST partitioning
|
|
SYNOPSIS
|
|
compare_column_values()
|
|
first First column list argument
|
|
second Second column list argument
|
|
RETURN VALUES
|
|
0 Equal
|
|
-1 First argument is smaller
|
|
+1 First argument is larger
|
|
*/
|
|
|
|
extern "C"
|
|
int partition_info_compare_column_values(const void *first_arg,
|
|
const void *second_arg)
|
|
{
|
|
const part_column_list_val *first= (part_column_list_val*)first_arg;
|
|
const part_column_list_val *second= (part_column_list_val*)second_arg;
|
|
partition_info *part_info= first->part_info;
|
|
Field **field;
|
|
|
|
for (field= part_info->part_field_array; *field;
|
|
field++, first++, second++)
|
|
{
|
|
if (first->max_value || second->max_value)
|
|
{
|
|
if (first->max_value && second->max_value)
|
|
return 0;
|
|
if (second->max_value)
|
|
return -1;
|
|
else
|
|
return +1;
|
|
}
|
|
if (first->null_value || second->null_value)
|
|
{
|
|
if (first->null_value && second->null_value)
|
|
continue;
|
|
if (second->null_value)
|
|
return +1;
|
|
else
|
|
return -1;
|
|
}
|
|
int res= (*field)->cmp((const uchar*)first->column_value,
|
|
(const uchar*)second->column_value);
|
|
if (res)
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int partition_info::compare_column_values(const void *first_arg,
|
|
const void *second_arg)
|
|
{
|
|
return partition_info_compare_column_values(first_arg, second_arg);
|
|
}
|
|
|
|
|
|
/*
|
|
This routine allocates an array for all list constants to achieve a fast
|
|
check what partition a certain value belongs to. At the same time it does
|
|
also check that there are no duplicates among the list constants and that
|
|
that the list expressions are constant integer expressions.
|
|
|
|
SYNOPSIS
|
|
check_list_constants()
|
|
thd Thread object
|
|
|
|
RETURN VALUE
|
|
TRUE An error occurred during creation of list constants
|
|
FALSE Successful creation of list constant mapping
|
|
|
|
DESCRIPTION
|
|
This routine is called from check_partition_info to get a quick error
|
|
before we came too far into the CREATE TABLE process. It is also called
|
|
from fix_partition_func every time we open the .frm file. It is only
|
|
called for LIST PARTITIONed tables.
|
|
*/
|
|
|
|
bool partition_info::check_list_constants(THD *thd)
|
|
{
|
|
uint i, size_entries, num_column_values;
|
|
uint list_index= 0;
|
|
part_elem_value *list_value;
|
|
bool result= TRUE;
|
|
longlong type_add, calc_value;
|
|
void *curr_value;
|
|
void *UNINIT_VAR(prev_value);
|
|
partition_element* part_def;
|
|
bool found_null= FALSE;
|
|
qsort_cmp compare_func;
|
|
void *ptr;
|
|
List_iterator<partition_element> list_func_it(partitions);
|
|
DBUG_ENTER("partition_info::check_list_constants");
|
|
|
|
num_list_values= 0;
|
|
/*
|
|
We begin by calculating the number of list values that have been
|
|
defined in the first step.
|
|
|
|
We use this number to allocate a properly sized array of structs
|
|
to keep the partition id and the value to use in that partition.
|
|
In the second traversal we assign them values in the struct array.
|
|
|
|
Finally we sort the array of structs in order of values to enable
|
|
a quick binary search for the proper value to discover the
|
|
partition id.
|
|
After sorting the array we check that there are no duplicates in the
|
|
list.
|
|
*/
|
|
|
|
i= 0;
|
|
do
|
|
{
|
|
part_def= list_func_it++;
|
|
if (part_def->has_null_value)
|
|
{
|
|
if (found_null)
|
|
{
|
|
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
has_null_value= TRUE;
|
|
has_null_part_id= i;
|
|
found_null= TRUE;
|
|
}
|
|
List_iterator<part_elem_value> list_val_it1(part_def->list_val_list);
|
|
while (list_val_it1++)
|
|
num_list_values++;
|
|
} while (++i < num_parts);
|
|
list_func_it.rewind();
|
|
num_column_values= part_field_list.elements;
|
|
size_entries= column_list ?
|
|
(num_column_values * sizeof(part_column_list_val)) :
|
|
sizeof(LIST_PART_ENTRY);
|
|
ptr= sql_calloc((num_list_values+1) * size_entries);
|
|
if (unlikely(ptr == NULL))
|
|
{
|
|
mem_alloc_error(num_list_values * size_entries);
|
|
goto end;
|
|
}
|
|
if (column_list)
|
|
{
|
|
part_column_list_val *loc_list_col_array;
|
|
loc_list_col_array= (part_column_list_val*)ptr;
|
|
list_col_array= (part_column_list_val*)ptr;
|
|
compare_func= partition_info_compare_column_values;
|
|
i= 0;
|
|
do
|
|
{
|
|
part_def= list_func_it++;
|
|
List_iterator<part_elem_value> list_val_it2(part_def->list_val_list);
|
|
while ((list_value= list_val_it2++))
|
|
{
|
|
part_column_list_val *col_val= list_value->col_val_array;
|
|
if (unlikely(fix_column_value_functions(thd, list_value, i)))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
memcpy(loc_list_col_array, (const void*)col_val, size_entries);
|
|
loc_list_col_array+= num_column_values;
|
|
}
|
|
} while (++i < num_parts);
|
|
}
|
|
else
|
|
{
|
|
compare_func= partition_info_list_part_cmp;
|
|
list_array= (LIST_PART_ENTRY*)ptr;
|
|
i= 0;
|
|
/*
|
|
Fix to be able to reuse signed sort functions also for unsigned
|
|
partition functions.
|
|
*/
|
|
type_add= (longlong)(part_expr->unsigned_flag ?
|
|
0x8000000000000000ULL :
|
|
0ULL);
|
|
|
|
do
|
|
{
|
|
part_def= list_func_it++;
|
|
List_iterator<part_elem_value> list_val_it2(part_def->list_val_list);
|
|
while ((list_value= list_val_it2++))
|
|
{
|
|
calc_value= list_value->value - type_add;
|
|
list_array[list_index].list_value= calc_value;
|
|
list_array[list_index++].partition_id= i;
|
|
}
|
|
} while (++i < num_parts);
|
|
}
|
|
DBUG_ASSERT(fixed);
|
|
if (num_list_values)
|
|
{
|
|
bool first= TRUE;
|
|
/*
|
|
list_array and list_col_array are unions, so this works for both
|
|
variants of LIST partitioning.
|
|
*/
|
|
my_qsort((void*)list_array, num_list_values, size_entries,
|
|
compare_func);
|
|
|
|
i= 0;
|
|
do
|
|
{
|
|
DBUG_ASSERT(i < num_list_values);
|
|
curr_value= column_list ? (void*)&list_col_array[num_column_values * i] :
|
|
(void*)&list_array[i];
|
|
if (likely(first || compare_func(curr_value, prev_value)))
|
|
{
|
|
prev_value= curr_value;
|
|
first= FALSE;
|
|
}
|
|
else
|
|
{
|
|
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
} while (++i < num_list_values);
|
|
}
|
|
result= FALSE;
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/**
|
|
Check if we allow DATA/INDEX DIRECTORY, if not warn and set them to NULL.
|
|
|
|
@param thd THD also containing sql_mode (looks from MODE_NO_DIR_IN_CREATE).
|
|
@param part_elem partition_element to check.
|
|
*/
|
|
static void warn_if_dir_in_part_elem(THD *thd, partition_element *part_elem)
|
|
{
|
|
#ifdef HAVE_READLINK
|
|
if (!my_use_symdir || (thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE))
|
|
#endif
|
|
{
|
|
if (part_elem->data_file_name)
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
|
|
WARN_OPTION_IGNORED, ER(WARN_OPTION_IGNORED),
|
|
"DATA DIRECTORY");
|
|
if (part_elem->index_file_name)
|
|
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
|
|
WARN_OPTION_IGNORED, ER(WARN_OPTION_IGNORED),
|
|
"INDEX DIRECTORY");
|
|
part_elem->data_file_name= part_elem->index_file_name= NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
This code is used early in the CREATE TABLE and ALTER TABLE process.
|
|
|
|
SYNOPSIS
|
|
check_partition_info()
|
|
thd Thread object
|
|
eng_type Return value for used engine in partitions
|
|
file A reference to a handler of the table
|
|
info Create info
|
|
add_or_reorg_part Is it ALTER TABLE ADD/REORGANIZE command
|
|
|
|
RETURN VALUE
|
|
TRUE Error, something went wrong
|
|
FALSE Ok, full partition data structures are now generated
|
|
|
|
DESCRIPTION
|
|
We will check that the partition info requested is possible to set-up in
|
|
this version. This routine is an extension of the parser one could say.
|
|
If defaults were used we will generate default data structures for all
|
|
partitions.
|
|
|
|
*/
|
|
|
|
bool partition_info::check_partition_info(THD *thd, handlerton **eng_type,
|
|
handler *file, HA_CREATE_INFO *info,
|
|
bool add_or_reorg_part)
|
|
{
|
|
handlerton *table_engine= default_engine_type;
|
|
uint i, tot_partitions;
|
|
bool result= TRUE, table_engine_set;
|
|
char *same_name;
|
|
DBUG_ENTER("partition_info::check_partition_info");
|
|
DBUG_ASSERT(default_engine_type != partition_hton);
|
|
|
|
DBUG_PRINT("info", ("default table_engine = %s",
|
|
ha_resolve_storage_engine_name(table_engine)));
|
|
if (!add_or_reorg_part)
|
|
{
|
|
int err= 0;
|
|
|
|
if (!list_of_part_fields)
|
|
{
|
|
DBUG_ASSERT(part_expr);
|
|
err= part_expr->walk(&Item::check_partition_func_processor, 0,
|
|
NULL);
|
|
if (!err && is_sub_partitioned() && !list_of_subpart_fields)
|
|
err= subpart_expr->walk(&Item::check_partition_func_processor, 0,
|
|
NULL);
|
|
}
|
|
if (err)
|
|
{
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
goto end;
|
|
}
|
|
if (thd->lex->sql_command == SQLCOM_CREATE_TABLE &&
|
|
fix_parser_data(thd))
|
|
goto end;
|
|
}
|
|
if (unlikely(!is_sub_partitioned() &&
|
|
!(use_default_subpartitions && use_default_num_subpartitions)))
|
|
{
|
|
my_error(ER_SUBPARTITION_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
if (unlikely(is_sub_partitioned() &&
|
|
(!(part_type == RANGE_PARTITION ||
|
|
part_type == LIST_PARTITION))))
|
|
{
|
|
/* Only RANGE and LIST partitioning can be subpartitioned */
|
|
my_error(ER_SUBPARTITION_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
if (unlikely(set_up_defaults_for_partitioning(file, info, (uint)0)))
|
|
goto end;
|
|
if (!(tot_partitions= get_tot_partitions()))
|
|
{
|
|
my_error(ER_PARTITION_NOT_DEFINED_ERROR, MYF(0), "partitions");
|
|
goto end;
|
|
}
|
|
if (unlikely(tot_partitions > MAX_PARTITIONS))
|
|
{
|
|
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
/*
|
|
if NOT specified ENGINE = <engine>:
|
|
If Create, always use create_info->db_type
|
|
else, use previous tables db_type
|
|
either ALL or NONE partition should be set to
|
|
default_engine_type when not table_engine_set
|
|
Note: after a table is created its storage engines for
|
|
the table and all partitions/subpartitions are set.
|
|
So when ALTER it is already set on table level
|
|
*/
|
|
if (info && info->used_fields & HA_CREATE_USED_ENGINE)
|
|
{
|
|
table_engine_set= TRUE;
|
|
table_engine= info->db_type;
|
|
/* if partition_hton, use thd->lex->create_info */
|
|
if (table_engine == partition_hton)
|
|
table_engine= thd->lex->create_info.db_type;
|
|
DBUG_ASSERT(table_engine != partition_hton);
|
|
DBUG_PRINT("info", ("Using table_engine = %s",
|
|
ha_resolve_storage_engine_name(table_engine)));
|
|
}
|
|
else
|
|
{
|
|
table_engine_set= FALSE;
|
|
if (thd->lex->sql_command != SQLCOM_CREATE_TABLE)
|
|
{
|
|
table_engine_set= TRUE;
|
|
DBUG_PRINT("info", ("No create, table_engine = %s",
|
|
ha_resolve_storage_engine_name(table_engine)));
|
|
DBUG_ASSERT(table_engine && table_engine != partition_hton);
|
|
}
|
|
}
|
|
|
|
if (part_field_list.elements > 0 &&
|
|
(same_name= find_duplicate_field()))
|
|
{
|
|
my_error(ER_SAME_NAME_PARTITION_FIELD, MYF(0), same_name);
|
|
goto end;
|
|
}
|
|
if ((same_name= find_duplicate_name()))
|
|
{
|
|
my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
|
|
goto end;
|
|
}
|
|
i= 0;
|
|
{
|
|
List_iterator<partition_element> part_it(partitions);
|
|
uint num_parts_not_set= 0;
|
|
uint prev_num_subparts_not_set= num_subparts + 1;
|
|
do
|
|
{
|
|
partition_element *part_elem= part_it++;
|
|
warn_if_dir_in_part_elem(thd, part_elem);
|
|
if (!is_sub_partitioned())
|
|
{
|
|
if (part_elem->engine_type == NULL)
|
|
{
|
|
num_parts_not_set++;
|
|
part_elem->engine_type= default_engine_type;
|
|
}
|
|
if (check_table_name(part_elem->partition_name,
|
|
strlen(part_elem->partition_name), FALSE))
|
|
{
|
|
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
|
|
goto end;
|
|
}
|
|
DBUG_PRINT("info", ("part = %d engine = %s",
|
|
i, ha_resolve_storage_engine_name(part_elem->engine_type)));
|
|
}
|
|
else
|
|
{
|
|
uint j= 0;
|
|
uint num_subparts_not_set= 0;
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
partition_element *sub_elem;
|
|
do
|
|
{
|
|
sub_elem= sub_it++;
|
|
warn_if_dir_in_part_elem(thd, sub_elem);
|
|
if (check_table_name(sub_elem->partition_name,
|
|
strlen(sub_elem->partition_name), FALSE))
|
|
{
|
|
my_error(ER_WRONG_PARTITION_NAME, MYF(0));
|
|
goto end;
|
|
}
|
|
if (sub_elem->engine_type == NULL)
|
|
{
|
|
if (part_elem->engine_type != NULL)
|
|
sub_elem->engine_type= part_elem->engine_type;
|
|
else
|
|
{
|
|
sub_elem->engine_type= default_engine_type;
|
|
num_subparts_not_set++;
|
|
}
|
|
}
|
|
DBUG_PRINT("info", ("part = %d sub = %d engine = %s", i, j,
|
|
ha_resolve_storage_engine_name(sub_elem->engine_type)));
|
|
} while (++j < num_subparts);
|
|
|
|
if (prev_num_subparts_not_set == (num_subparts + 1) &&
|
|
(num_subparts_not_set == 0 ||
|
|
num_subparts_not_set == num_subparts))
|
|
prev_num_subparts_not_set= num_subparts_not_set;
|
|
|
|
if (!table_engine_set &&
|
|
prev_num_subparts_not_set != num_subparts_not_set)
|
|
{
|
|
DBUG_PRINT("info", ("num_subparts_not_set = %u num_subparts = %u",
|
|
num_subparts_not_set, num_subparts));
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
|
|
if (part_elem->engine_type == NULL)
|
|
{
|
|
if (num_subparts_not_set == 0)
|
|
part_elem->engine_type= sub_elem->engine_type;
|
|
else
|
|
{
|
|
num_parts_not_set++;
|
|
part_elem->engine_type= default_engine_type;
|
|
}
|
|
}
|
|
}
|
|
} while (++i < num_parts);
|
|
if (!table_engine_set &&
|
|
num_parts_not_set != 0 &&
|
|
num_parts_not_set != num_parts)
|
|
{
|
|
DBUG_PRINT("info", ("num_parts_not_set = %u num_parts = %u",
|
|
num_parts_not_set, num_subparts));
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
}
|
|
if (unlikely(check_engine_mix(table_engine, table_engine_set)))
|
|
{
|
|
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
|
|
goto end;
|
|
}
|
|
|
|
DBUG_ASSERT(table_engine != partition_hton &&
|
|
default_engine_type == table_engine);
|
|
if (eng_type)
|
|
*eng_type= table_engine;
|
|
|
|
|
|
/*
|
|
We need to check all constant expressions that they are of the correct
|
|
type and that they are increasing for ranges and not overlapping for
|
|
list constants.
|
|
*/
|
|
|
|
if (add_or_reorg_part)
|
|
{
|
|
if (unlikely((part_type == RANGE_PARTITION &&
|
|
check_range_constants(thd)) ||
|
|
(part_type == LIST_PARTITION &&
|
|
check_list_constants(thd))))
|
|
goto end;
|
|
}
|
|
result= FALSE;
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
|
|
/*
|
|
Print error for no partition found
|
|
|
|
SYNOPSIS
|
|
print_no_partition_found()
|
|
table Table object
|
|
|
|
RETURN VALUES
|
|
*/
|
|
|
|
void partition_info::print_no_partition_found(TABLE *table_arg)
|
|
{
|
|
char buf[100];
|
|
char *buf_ptr= (char*)&buf;
|
|
TABLE_LIST table_list;
|
|
|
|
bzero(&table_list, sizeof(table_list));
|
|
table_list.db= table_arg->s->db.str;
|
|
table_list.table_name= table_arg->s->table_name.str;
|
|
|
|
if (check_single_table_access(current_thd,
|
|
SELECT_ACL, &table_list, TRUE))
|
|
{
|
|
my_message(ER_NO_PARTITION_FOR_GIVEN_VALUE,
|
|
ER(ER_NO_PARTITION_FOR_GIVEN_VALUE_SILENT), MYF(0));
|
|
}
|
|
else
|
|
{
|
|
if (column_list)
|
|
buf_ptr= (char*)"from column_list";
|
|
else
|
|
{
|
|
my_bitmap_map *old_map= dbug_tmp_use_all_columns(table_arg, table_arg->read_set);
|
|
if (part_expr->null_value)
|
|
buf_ptr= (char*)"NULL";
|
|
else
|
|
longlong10_to_str(err_value, buf,
|
|
part_expr->unsigned_flag ? 10 : -10);
|
|
dbug_tmp_restore_column_map(table_arg->read_set, old_map);
|
|
}
|
|
my_error(ER_NO_PARTITION_FOR_GIVEN_VALUE, MYF(0), buf_ptr);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Set fields related to partition expression
|
|
SYNOPSIS
|
|
set_part_expr()
|
|
start_token Start of partition function string
|
|
item_ptr Pointer to item tree
|
|
end_token End of partition function string
|
|
is_subpart Subpartition indicator
|
|
RETURN VALUES
|
|
TRUE Memory allocation error
|
|
FALSE Success
|
|
*/
|
|
|
|
bool partition_info::set_part_expr(char *start_token, Item *item_ptr,
|
|
char *end_token, bool is_subpart)
|
|
{
|
|
uint expr_len= end_token - start_token;
|
|
char *func_string= (char*) sql_memdup(start_token, expr_len);
|
|
|
|
if (!func_string)
|
|
{
|
|
mem_alloc_error(expr_len);
|
|
return TRUE;
|
|
}
|
|
if (is_subpart)
|
|
{
|
|
list_of_subpart_fields= FALSE;
|
|
subpart_expr= item_ptr;
|
|
subpart_func_string= func_string;
|
|
subpart_func_len= expr_len;
|
|
}
|
|
else
|
|
{
|
|
list_of_part_fields= FALSE;
|
|
part_expr= item_ptr;
|
|
part_func_string= func_string;
|
|
part_func_len= expr_len;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/*
|
|
Check that partition fields and subpartition fields are not too long
|
|
|
|
SYNOPSIS
|
|
check_partition_field_length()
|
|
|
|
RETURN VALUES
|
|
TRUE Total length was too big
|
|
FALSE Length is ok
|
|
*/
|
|
|
|
bool partition_info::check_partition_field_length()
|
|
{
|
|
uint store_length= 0;
|
|
uint i;
|
|
DBUG_ENTER("partition_info::check_partition_field_length");
|
|
|
|
for (i= 0; i < num_part_fields; i++)
|
|
store_length+= get_partition_field_store_length(part_field_array[i]);
|
|
if (store_length > MAX_KEY_LENGTH)
|
|
DBUG_RETURN(TRUE);
|
|
store_length= 0;
|
|
for (i= 0; i < num_subpart_fields; i++)
|
|
store_length+= get_partition_field_store_length(subpart_field_array[i]);
|
|
if (store_length > MAX_KEY_LENGTH)
|
|
DBUG_RETURN(TRUE);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Set up buffers and arrays for fields requiring preparation
|
|
SYNOPSIS
|
|
set_up_charset_field_preps()
|
|
|
|
RETURN VALUES
|
|
TRUE Memory Allocation error
|
|
FALSE Success
|
|
|
|
DESCRIPTION
|
|
Set up arrays and buffers for fields that require special care for
|
|
calculation of partition id. This is used for string fields with
|
|
variable length or string fields with fixed length that isn't using
|
|
the binary collation.
|
|
*/
|
|
|
|
bool partition_info::set_up_charset_field_preps()
|
|
{
|
|
Field *field, **ptr;
|
|
uchar **char_ptrs;
|
|
unsigned i;
|
|
size_t size;
|
|
uint tot_fields= 0;
|
|
uint tot_part_fields= 0;
|
|
uint tot_subpart_fields= 0;
|
|
DBUG_ENTER("set_up_charset_field_preps");
|
|
|
|
if (!(part_type == HASH_PARTITION &&
|
|
list_of_part_fields) &&
|
|
check_part_func_fields(part_field_array, FALSE))
|
|
{
|
|
ptr= part_field_array;
|
|
/* Set up arrays and buffers for those fields */
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field_is_partition_charset(field))
|
|
{
|
|
tot_part_fields++;
|
|
tot_fields++;
|
|
}
|
|
}
|
|
size= tot_part_fields * sizeof(char*);
|
|
if (!(char_ptrs= (uchar**)sql_calloc(size)))
|
|
goto error;
|
|
part_field_buffers= char_ptrs;
|
|
if (!(char_ptrs= (uchar**)sql_calloc(size)))
|
|
goto error;
|
|
restore_part_field_ptrs= char_ptrs;
|
|
size= (tot_part_fields + 1) * sizeof(Field*);
|
|
if (!(char_ptrs= (uchar**)sql_alloc(size)))
|
|
goto error;
|
|
part_charset_field_array= (Field**)char_ptrs;
|
|
ptr= part_field_array;
|
|
i= 0;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field_is_partition_charset(field))
|
|
{
|
|
uchar *field_buf;
|
|
size= field->pack_length();
|
|
if (!(field_buf= (uchar*) sql_calloc(size)))
|
|
goto error;
|
|
part_charset_field_array[i]= field;
|
|
part_field_buffers[i++]= field_buf;
|
|
}
|
|
}
|
|
part_charset_field_array[i]= NULL;
|
|
}
|
|
if (is_sub_partitioned() && !list_of_subpart_fields &&
|
|
check_part_func_fields(subpart_field_array, FALSE))
|
|
{
|
|
/* Set up arrays and buffers for those fields */
|
|
ptr= subpart_field_array;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
if (field_is_partition_charset(field))
|
|
{
|
|
tot_subpart_fields++;
|
|
tot_fields++;
|
|
}
|
|
}
|
|
size= tot_subpart_fields * sizeof(char*);
|
|
if (!(char_ptrs= (uchar**) sql_calloc(size)))
|
|
goto error;
|
|
subpart_field_buffers= char_ptrs;
|
|
if (!(char_ptrs= (uchar**) sql_calloc(size)))
|
|
goto error;
|
|
restore_subpart_field_ptrs= char_ptrs;
|
|
size= (tot_subpart_fields + 1) * sizeof(Field*);
|
|
if (!(char_ptrs= (uchar**) sql_alloc(size)))
|
|
goto error;
|
|
subpart_charset_field_array= (Field**)char_ptrs;
|
|
ptr= subpart_field_array;
|
|
i= 0;
|
|
while ((field= *(ptr++)))
|
|
{
|
|
uchar *field_buf;
|
|
LINT_INIT(field_buf);
|
|
|
|
if (!field_is_partition_charset(field))
|
|
continue;
|
|
size= field->pack_length();
|
|
if (!(field_buf= (uchar*) sql_calloc(size)))
|
|
goto error;
|
|
subpart_charset_field_array[i]= field;
|
|
subpart_field_buffers[i++]= field_buf;
|
|
}
|
|
subpart_charset_field_array[i]= NULL;
|
|
}
|
|
DBUG_RETURN(FALSE);
|
|
error:
|
|
mem_alloc_error(size);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
Check if path does not contain mysql data home directory
|
|
for partition elements with data directory and index directory
|
|
|
|
SYNOPSIS
|
|
check_partition_dirs()
|
|
part_info partition_info struct
|
|
|
|
RETURN VALUES
|
|
0 ok
|
|
1 error
|
|
*/
|
|
|
|
bool check_partition_dirs(partition_info *part_info)
|
|
{
|
|
if (!part_info)
|
|
return 0;
|
|
|
|
partition_element *part_elem;
|
|
List_iterator<partition_element> part_it(part_info->partitions);
|
|
while ((part_elem= part_it++))
|
|
{
|
|
if (part_elem->subpartitions.elements)
|
|
{
|
|
List_iterator<partition_element> sub_it(part_elem->subpartitions);
|
|
partition_element *subpart_elem;
|
|
while ((subpart_elem= sub_it++))
|
|
{
|
|
if (test_if_data_home_dir(subpart_elem->data_file_name))
|
|
goto dd_err;
|
|
if (test_if_data_home_dir(subpart_elem->index_file_name))
|
|
goto id_err;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (test_if_data_home_dir(part_elem->data_file_name))
|
|
goto dd_err;
|
|
if (test_if_data_home_dir(part_elem->index_file_name))
|
|
goto id_err;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
dd_err:
|
|
my_error(ER_WRONG_ARGUMENTS,MYF(0),"DATA DIRECTORY");
|
|
return 1;
|
|
|
|
id_err:
|
|
my_error(ER_WRONG_ARGUMENTS,MYF(0),"INDEX DIRECTORY");
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
Check what kind of error to report
|
|
|
|
@param use_subpart_expr Use the subpart_expr instead of part_expr
|
|
@param part_str Name of partition to report error (or NULL)
|
|
*/
|
|
void partition_info::report_part_expr_error(bool use_subpart_expr)
|
|
{
|
|
Item *expr= part_expr;
|
|
DBUG_ENTER("partition_info::report_part_expr_error");
|
|
if (use_subpart_expr)
|
|
expr= subpart_expr;
|
|
|
|
if (expr->type() == Item::FIELD_ITEM)
|
|
{
|
|
partition_type type= part_type;
|
|
bool list_of_fields= list_of_part_fields;
|
|
Item_field *item_field= (Item_field*) expr;
|
|
/*
|
|
The expression consists of a single field.
|
|
It must be of integer type unless KEY or COLUMNS partitioning.
|
|
*/
|
|
if (use_subpart_expr)
|
|
{
|
|
type= subpart_type;
|
|
list_of_fields= list_of_subpart_fields;
|
|
}
|
|
if (!column_list &&
|
|
item_field->field &&
|
|
item_field->field->result_type() != INT_RESULT &&
|
|
!(type == HASH_PARTITION && list_of_fields))
|
|
{
|
|
my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0),
|
|
item_field->name);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
}
|
|
if (use_subpart_expr)
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), "SUBPARTITION");
|
|
else
|
|
my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), "PARTITION");
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/**
|
|
Check if fields are in the partitioning expression.
|
|
|
|
@param fields List of Items (fields)
|
|
|
|
@return True if any field in the fields list is used by a partitioning expr.
|
|
@retval true At least one field in the field list is found.
|
|
@retval false No field is within any partitioning expression.
|
|
*/
|
|
|
|
bool partition_info::is_field_in_part_expr(List<Item> &fields)
|
|
{
|
|
List_iterator<Item> it(fields);
|
|
Item *item;
|
|
Item_field *field;
|
|
DBUG_ENTER("is_fields_in_part_expr");
|
|
while ((item= it++))
|
|
{
|
|
field= item->field_for_view_update();
|
|
DBUG_ASSERT(field->field->table == table);
|
|
if (bitmap_is_set(&full_part_field_set, field->field->field_index))
|
|
DBUG_RETURN(true);
|
|
}
|
|
DBUG_RETURN(false);
|
|
}
|
|
|
|
|
|
/**
|
|
Check if all partitioning fields are included.
|
|
*/
|
|
|
|
bool partition_info::is_full_part_expr_in_fields(List<Item> &fields)
|
|
{
|
|
Field **part_field= full_part_field_array;
|
|
DBUG_ASSERT(*part_field);
|
|
DBUG_ENTER("is_full_part_expr_in_fields");
|
|
/*
|
|
It is very seldom many fields in full_part_field_array, so it is OK
|
|
to loop over all of them instead of creating a bitmap fields argument
|
|
to compare with.
|
|
*/
|
|
do
|
|
{
|
|
List_iterator<Item> it(fields);
|
|
Item *item;
|
|
Item_field *field;
|
|
bool found= false;
|
|
|
|
while ((item= it++))
|
|
{
|
|
field= item->field_for_view_update();
|
|
DBUG_ASSERT(field->field->table == table);
|
|
if (*part_field == field->field)
|
|
{
|
|
found= true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found)
|
|
DBUG_RETURN(false);
|
|
} while (*(++part_field));
|
|
DBUG_RETURN(true);
|
|
}
|
|
|
|
|
|
/*
|
|
Create a new column value in current list with maxvalue
|
|
Called from parser
|
|
|
|
SYNOPSIS
|
|
add_max_value()
|
|
RETURN
|
|
TRUE Error
|
|
FALSE Success
|
|
*/
|
|
|
|
int partition_info::add_max_value()
|
|
{
|
|
DBUG_ENTER("partition_info::add_max_value");
|
|
|
|
part_column_list_val *col_val;
|
|
if (!(col_val= add_column_value()))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
col_val->max_value= TRUE;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
Create a new column value in current list
|
|
Called from parser
|
|
|
|
SYNOPSIS
|
|
add_column_value()
|
|
RETURN
|
|
>0 A part_column_list_val object which have been
|
|
inserted into its list
|
|
0 Memory allocation failure
|
|
*/
|
|
|
|
part_column_list_val *partition_info::add_column_value()
|
|
{
|
|
uint max_val= num_columns ? num_columns : MAX_REF_PARTS;
|
|
DBUG_ENTER("add_column_value");
|
|
DBUG_PRINT("enter", ("num_columns = %u, curr_list_object %u, max_val = %u",
|
|
num_columns, curr_list_object, max_val));
|
|
if (curr_list_object < max_val)
|
|
{
|
|
curr_list_val->added_items++;
|
|
DBUG_RETURN(&curr_list_val->col_val_array[curr_list_object++]);
|
|
}
|
|
if (!num_columns && part_type == LIST_PARTITION)
|
|
{
|
|
/*
|
|
We're trying to add more than MAX_REF_PARTS, this can happen
|
|
in ALTER TABLE using List partitions where the first partition
|
|
uses VALUES IN (1,2,3...,17) where the number of fields in
|
|
the list is more than MAX_REF_PARTS, in this case we know
|
|
that the number of columns must be 1 and we thus reorganize
|
|
into the structure used for 1 column. After this we call
|
|
ourselves recursively which should always succeed.
|
|
*/
|
|
if (!reorganize_into_single_field_col_val())
|
|
{
|
|
DBUG_RETURN(add_column_value());
|
|
}
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
if (column_list)
|
|
{
|
|
my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0));
|
|
}
|
|
else
|
|
{
|
|
if (part_type == RANGE_PARTITION)
|
|
my_error(ER_TOO_MANY_VALUES_ERROR, MYF(0), "RANGE");
|
|
else
|
|
my_error(ER_TOO_MANY_VALUES_ERROR, MYF(0), "LIST");
|
|
}
|
|
DBUG_RETURN(NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
Initialise part_elem_value object at setting of a new object
|
|
(Helper functions to functions called by parser)
|
|
|
|
SYNOPSIS
|
|
init_col_val
|
|
col_val Column value object to be initialised
|
|
item Item object representing column value
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
void partition_info::init_col_val(part_column_list_val *col_val, Item *item)
|
|
{
|
|
DBUG_ENTER("partition_info::init_col_val");
|
|
|
|
col_val->item_expression= item;
|
|
col_val->null_value= item->null_value;
|
|
if (item->result_type() == INT_RESULT)
|
|
{
|
|
/*
|
|
This could be both column_list partitioning and function
|
|
partitioning, but it doesn't hurt to set the function
|
|
partitioning flags about unsignedness.
|
|
*/
|
|
curr_list_val->value= item->val_int();
|
|
curr_list_val->unsigned_flag= TRUE;
|
|
if (!item->unsigned_flag &&
|
|
curr_list_val->value < 0)
|
|
curr_list_val->unsigned_flag= FALSE;
|
|
if (!curr_list_val->unsigned_flag)
|
|
curr_part_elem->signed_flag= TRUE;
|
|
}
|
|
col_val->part_info= NULL;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
/*
|
|
Add a column value in VALUES LESS THAN or VALUES IN
|
|
(Called from parser)
|
|
|
|
SYNOPSIS
|
|
add_column_list_value()
|
|
lex Parser's lex object
|
|
thd Thread object
|
|
item Item object representing column value
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
bool partition_info::add_column_list_value(THD *thd, Item *item)
|
|
{
|
|
part_column_list_val *col_val;
|
|
Name_resolution_context *context= &thd->lex->current_select->context;
|
|
TABLE_LIST *save_list= context->table_list;
|
|
const char *save_where= thd->where;
|
|
DBUG_ENTER("partition_info::add_column_list_value");
|
|
|
|
if (part_type == LIST_PARTITION &&
|
|
num_columns == 1U)
|
|
{
|
|
if (init_column_part())
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
|
|
context->table_list= 0;
|
|
if (column_list)
|
|
thd->where= "field list";
|
|
else
|
|
thd->where= "partition function";
|
|
|
|
if (item->walk(&Item::check_partition_func_processor, 0,
|
|
NULL))
|
|
{
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (item->fix_fields(thd, (Item**)0) ||
|
|
((context->table_list= save_list), FALSE) ||
|
|
(!item->const_item()))
|
|
{
|
|
context->table_list= save_list;
|
|
thd->where= save_where;
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
thd->where= save_where;
|
|
|
|
if (!(col_val= add_column_value()))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
init_col_val(col_val, item);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
Initialise part_info object for receiving a set of column values
|
|
for a partition, called when parser reaches VALUES LESS THAN or
|
|
VALUES IN.
|
|
|
|
SYNOPSIS
|
|
init_column_part()
|
|
lex Parser's lex object
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
bool partition_info::init_column_part()
|
|
{
|
|
partition_element *p_elem= curr_part_elem;
|
|
part_column_list_val *col_val_array;
|
|
part_elem_value *list_val;
|
|
uint loc_num_columns;
|
|
DBUG_ENTER("partition_info::init_column_part");
|
|
|
|
if (!(list_val=
|
|
(part_elem_value*)sql_calloc(sizeof(part_elem_value))) ||
|
|
p_elem->list_val_list.push_back(list_val))
|
|
{
|
|
mem_alloc_error(sizeof(part_elem_value));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (num_columns)
|
|
loc_num_columns= num_columns;
|
|
else
|
|
loc_num_columns= MAX_REF_PARTS;
|
|
if (!(col_val_array=
|
|
(part_column_list_val*)sql_calloc(loc_num_columns *
|
|
sizeof(part_column_list_val))))
|
|
{
|
|
mem_alloc_error(loc_num_columns * sizeof(part_elem_value));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
list_val->col_val_array= col_val_array;
|
|
list_val->added_items= 0;
|
|
curr_list_val= list_val;
|
|
curr_list_object= 0;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
In the case of ALTER TABLE ADD/REORGANIZE PARTITION for LIST
|
|
partitions we can specify list values as:
|
|
VALUES IN (v1, v2,,,, v17) if we're using the first partitioning
|
|
variant with a function or a column list partitioned table with
|
|
one partition field. In this case the parser knows not the
|
|
number of columns start with and allocates MAX_REF_PARTS in the
|
|
array. If we try to allocate something beyond MAX_REF_PARTS we
|
|
will call this function to reorganize into a structure with
|
|
num_columns = 1. Also when the parser knows that we used LIST
|
|
partitioning and we used a VALUES IN like above where number of
|
|
values was smaller than MAX_REF_PARTS or equal, then we will
|
|
reorganize after discovering this in the parser.
|
|
|
|
SYNOPSIS
|
|
reorganize_into_single_field_col_val()
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
int partition_info::reorganize_into_single_field_col_val()
|
|
{
|
|
part_column_list_val *col_val, *new_col_val;
|
|
part_elem_value *val= curr_list_val;
|
|
uint loc_num_columns= num_columns;
|
|
uint i;
|
|
DBUG_ENTER("partition_info::reorganize_into_single_field_col_val");
|
|
|
|
num_columns= 1;
|
|
val->added_items= 1U;
|
|
col_val= &val->col_val_array[0];
|
|
init_col_val(col_val, col_val->item_expression);
|
|
for (i= 1; i < loc_num_columns; i++)
|
|
{
|
|
col_val= &val->col_val_array[i];
|
|
DBUG_ASSERT(part_type == LIST_PARTITION);
|
|
if (init_column_part())
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (!(new_col_val= add_column_value()))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
memcpy(new_col_val, col_val, sizeof(*col_val));
|
|
init_col_val(new_col_val, col_val->item_expression);
|
|
}
|
|
curr_list_val= val;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
This function handles the case of function-based partitioning.
|
|
It fixes some data structures created in the parser and puts
|
|
them in the format required by the rest of the partitioning
|
|
code.
|
|
|
|
SYNOPSIS
|
|
fix_partition_values()
|
|
thd Thread object
|
|
col_val Array of one value
|
|
part_elem The partition instance
|
|
part_id Id of partition instance
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
int partition_info::fix_partition_values(THD *thd,
|
|
part_elem_value *val,
|
|
partition_element *part_elem,
|
|
uint part_id)
|
|
{
|
|
part_column_list_val *col_val= val->col_val_array;
|
|
DBUG_ENTER("partition_info::fix_partition_values");
|
|
|
|
if (col_val->fixed)
|
|
{
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
if (val->added_items != 1)
|
|
{
|
|
my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (col_val->max_value)
|
|
{
|
|
/* The parser ensures we're not LIST partitioned here */
|
|
DBUG_ASSERT(part_type == RANGE_PARTITION);
|
|
if (defined_max_value)
|
|
{
|
|
my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (part_id == (num_parts - 1))
|
|
{
|
|
defined_max_value= TRUE;
|
|
part_elem->max_value= TRUE;
|
|
part_elem->range_value= LONGLONG_MAX;
|
|
}
|
|
else
|
|
{
|
|
my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Item *item_expr= col_val->item_expression;
|
|
if ((val->null_value= item_expr->null_value))
|
|
{
|
|
if (part_elem->has_null_value)
|
|
{
|
|
my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
part_elem->has_null_value= TRUE;
|
|
}
|
|
else if (item_expr->result_type() != INT_RESULT)
|
|
{
|
|
my_error(ER_VALUES_IS_NOT_INT_TYPE_ERROR, MYF(0),
|
|
part_elem->partition_name);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (part_type == RANGE_PARTITION)
|
|
{
|
|
if (part_elem->has_null_value)
|
|
{
|
|
my_error(ER_NULL_IN_VALUES_LESS_THAN, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
part_elem->range_value= val->value;
|
|
}
|
|
}
|
|
col_val->fixed= 2;
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
/*
|
|
Get column item with a proper character set according to the field
|
|
|
|
SYNOPSIS
|
|
get_column_item()
|
|
item Item object to start with
|
|
field Field for which the item will be compared to
|
|
|
|
RETURN VALUES
|
|
NULL Error
|
|
item Returned item
|
|
*/
|
|
|
|
Item* partition_info::get_column_item(Item *item, Field *field)
|
|
{
|
|
if (field->result_type() == STRING_RESULT &&
|
|
item->collation.collation != field->charset())
|
|
{
|
|
if (!(item= convert_charset_partition_constant(item,
|
|
field->charset())))
|
|
{
|
|
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
|
|
return NULL;
|
|
}
|
|
}
|
|
return item;
|
|
}
|
|
|
|
|
|
/*
|
|
Evaluate VALUES functions for column list values
|
|
SYNOPSIS
|
|
fix_column_value_functions()
|
|
thd Thread object
|
|
col_val List of column values
|
|
part_id Partition id we are fixing
|
|
|
|
RETURN VALUES
|
|
TRUE Error
|
|
FALSE Success
|
|
DESCRIPTION
|
|
Fix column VALUES and store in memory array adapted to the data type
|
|
*/
|
|
|
|
bool partition_info::fix_column_value_functions(THD *thd,
|
|
part_elem_value *val,
|
|
uint part_id)
|
|
{
|
|
uint n_columns= part_field_list.elements;
|
|
bool result= FALSE;
|
|
uint i;
|
|
part_column_list_val *col_val= val->col_val_array;
|
|
DBUG_ENTER("partition_info::fix_column_value_functions");
|
|
|
|
if (col_val->fixed > 1)
|
|
{
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
for (i= 0; i < n_columns; col_val++, i++)
|
|
{
|
|
Item *column_item= col_val->item_expression;
|
|
Field *field= part_field_array[i];
|
|
col_val->part_info= this;
|
|
col_val->partition_id= part_id;
|
|
if (col_val->max_value)
|
|
col_val->column_value= NULL;
|
|
else
|
|
{
|
|
col_val->column_value= NULL;
|
|
if (!col_val->null_value)
|
|
{
|
|
uchar *val_ptr;
|
|
uint len= field->pack_length();
|
|
ulonglong save_sql_mode;
|
|
bool save_got_warning;
|
|
|
|
if (!(column_item= get_column_item(column_item,
|
|
field)))
|
|
{
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
save_sql_mode= thd->variables.sql_mode;
|
|
thd->variables.sql_mode= 0;
|
|
save_got_warning= thd->got_warning;
|
|
thd->got_warning= 0;
|
|
if (column_item->save_in_field(field, TRUE) ||
|
|
thd->got_warning)
|
|
{
|
|
my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0));
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
thd->got_warning= save_got_warning;
|
|
thd->variables.sql_mode= save_sql_mode;
|
|
if (!(val_ptr= (uchar*) sql_calloc(len)))
|
|
{
|
|
mem_alloc_error(len);
|
|
result= TRUE;
|
|
goto end;
|
|
}
|
|
col_val->column_value= val_ptr;
|
|
memcpy(val_ptr, field->ptr, len);
|
|
}
|
|
}
|
|
col_val->fixed= 2;
|
|
}
|
|
end:
|
|
DBUG_RETURN(result);
|
|
}
|
|
|
|
/*
|
|
The parser generates generic data structures, we need to set them up
|
|
as the rest of the code expects to find them. This is in reality part
|
|
of the syntax check of the parser code.
|
|
|
|
It is necessary to call this function in the case of a CREATE TABLE
|
|
statement, in this case we do it early in the check_partition_info
|
|
function.
|
|
|
|
It is necessary to call this function for ALTER TABLE where we
|
|
assign a completely new partition structure, in this case we do it
|
|
in prep_alter_part_table after discovering that the partition
|
|
structure is entirely redefined.
|
|
|
|
It's necessary to call this method also for ALTER TABLE ADD/REORGANIZE
|
|
of partitions, in this we call it in prep_alter_part_table after
|
|
making some initial checks but before going deep to check the partition
|
|
info, we also assign the column_list variable before calling this function
|
|
here.
|
|
|
|
Finally we also call it immediately after returning from parsing the
|
|
partitioning text found in the frm file.
|
|
|
|
This function mainly fixes the VALUES parts, these are handled differently
|
|
whether or not we use column list partitioning. Since the parser doesn't
|
|
know which we are using we need to set-up the old data structures after
|
|
the parser is complete when we know if what type of partitioning the
|
|
base table is using.
|
|
|
|
For column lists we will handle this in the fix_column_value_function.
|
|
For column lists it is sufficient to verify that the number of columns
|
|
and number of elements are in synch with each other. So only partitioning
|
|
using functions need to be set-up to their data structures.
|
|
|
|
SYNOPSIS
|
|
fix_parser_data()
|
|
thd Thread object
|
|
|
|
RETURN VALUES
|
|
TRUE Failure
|
|
FALSE Success
|
|
*/
|
|
|
|
int partition_info::fix_parser_data(THD *thd)
|
|
{
|
|
List_iterator<partition_element> it(partitions);
|
|
partition_element *part_elem;
|
|
uint num_elements;
|
|
uint i= 0, j, k;
|
|
DBUG_ENTER("partition_info::fix_parser_data");
|
|
|
|
if (!(part_type == RANGE_PARTITION ||
|
|
part_type == LIST_PARTITION))
|
|
{
|
|
/* Nothing to do for HASH/KEY partitioning */
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
do
|
|
{
|
|
part_elem= it++;
|
|
List_iterator<part_elem_value> list_val_it(part_elem->list_val_list);
|
|
j= 0;
|
|
num_elements= part_elem->list_val_list.elements;
|
|
DBUG_ASSERT(part_type == RANGE_PARTITION ?
|
|
num_elements == 1U : TRUE);
|
|
do
|
|
{
|
|
part_elem_value *val= list_val_it++;
|
|
if (column_list)
|
|
{
|
|
if (val->added_items != num_columns)
|
|
{
|
|
my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
for (k= 0; k < num_columns; k++)
|
|
{
|
|
part_column_list_val *col_val= &val->col_val_array[k];
|
|
if (col_val->null_value && part_type == RANGE_PARTITION)
|
|
{
|
|
my_error(ER_NULL_IN_VALUES_LESS_THAN, MYF(0));
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (fix_partition_values(thd, val, part_elem, i))
|
|
{
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (val->null_value)
|
|
{
|
|
/*
|
|
Null values aren't required in the value part, they are kept per
|
|
partition instance, only LIST partitions have NULL values.
|
|
*/
|
|
list_val_it.remove();
|
|
}
|
|
}
|
|
} while (++j < num_elements);
|
|
} while (++i < num_parts);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
void partition_info::print_debug(const char *str, uint *value)
|
|
{
|
|
DBUG_ENTER("print_debug");
|
|
if (value)
|
|
DBUG_PRINT("info", ("parser: %s, val = %u", str, *value));
|
|
else
|
|
DBUG_PRINT("info", ("parser: %s", str));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
#else /* WITH_PARTITION_STORAGE_ENGINE */
|
|
/*
|
|
For builds without partitioning we need to define these functions
|
|
since we they are called from the parser. The parser cannot
|
|
remove code parts using ifdef, but the code parts cannot be called
|
|
so we simply need to add empty functions to make the linker happy.
|
|
*/
|
|
part_column_list_val *partition_info::add_column_value()
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
bool partition_info::set_part_expr(char *start_token, Item *item_ptr,
|
|
char *end_token, bool is_subpart)
|
|
{
|
|
(void)start_token;
|
|
(void)item_ptr;
|
|
(void)end_token;
|
|
(void)is_subpart;
|
|
return FALSE;
|
|
}
|
|
|
|
int partition_info::reorganize_into_single_field_col_val()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
bool partition_info::init_column_part()
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
bool partition_info::add_column_list_value(THD *thd, Item *item)
|
|
{
|
|
return FALSE;
|
|
}
|
|
int partition_info::add_max_value()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void partition_info::print_debug(const char *str, uint *value)
|
|
{
|
|
}
|
|
|
|
#endif /* WITH_PARTITION_STORAGE_ENGINE */
|