mariadb/sql/gcalc_tools.cc
2020-08-02 11:05:29 +02:00

1471 lines
37 KiB
C++

/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
Copyright (C) 2011 Monty Program Ab.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include <my_global.h>
#ifdef HAVE_SPATIAL
#include "gcalc_tools.h"
#include "spatial.h"
#define float_to_coord(d) ((double) d)
/*
Adds new shape to the relation.
After that it can be used as an argument of an operation.
*/
gcalc_shape_info Gcalc_function::add_new_shape(uint32 shape_id,
shape_type shape_kind)
{
shapes_buffer.q_append((uint32) shape_kind);
return n_shapes++;
}
/*
Adds new operation to the constructed relation.
To construct the complex relation one has to specify operations
in prefix style.
*/
void Gcalc_function::add_operation(uint operation, uint32 n_operands)
{
uint32 op_code= (uint32 ) operation + n_operands;
function_buffer.q_append(op_code);
}
/*
Sometimes the number of arguments is unknown at the moment the operation
is added. That allows to specify it later.
*/
void Gcalc_function::add_operands_to_op(uint32 operation_pos, uint32 n_operands)
{
uint32 op_code= uint4korr(function_buffer.ptr() + operation_pos) + n_operands;
function_buffer.write_at_position(operation_pos, op_code);
}
/*
Just like the add_operation() but the result will be the inverted
value of an operation.
*/
void Gcalc_function::add_not_operation(op_type operation, uint32 n_operands)
{
uint32 op_code= ((uint32) op_not | (uint32 ) operation) + n_operands;
function_buffer.q_append(op_code);
}
int Gcalc_function::single_shape_op(shape_type shape_kind, gcalc_shape_info *si)
{
if (reserve_shape_buffer(1) || reserve_op_buffer(1))
return 1;
*si= add_new_shape(0, shape_kind);
add_operation(op_shape, *si);
return 0;
}
int Gcalc_function::repeat_expression(uint32 exp_pos)
{
if (reserve_op_buffer(1))
return 1;
add_operation(op_repeat, exp_pos);
return 0;
}
/*
Specify how many arguments we're going to have.
*/
int Gcalc_function::reserve_shape_buffer(uint n_shapes)
{
return shapes_buffer.reserve(n_shapes * 4, 512);
}
/*
Specify how many operations we're going to have.
*/
int Gcalc_function::reserve_op_buffer(uint n_ops)
{
return function_buffer.reserve(n_ops * 4, 512);
}
int Gcalc_function::alloc_states()
{
if (function_buffer.reserve((n_shapes+1) * 2 * sizeof(int)))
return 1;
i_states= (int *) (function_buffer.ptr() + ALIGN_SIZE(function_buffer.length()));
b_states= i_states + (n_shapes + 1);
return 0;
}
int Gcalc_function::count_internal(const char *cur_func, uint set_type,
const char **end)
{
uint c_op= uint4korr(cur_func);
op_type next_func= (op_type) (c_op & op_any);
int mask= (c_op & op_not) ? 1:0;
uint n_ops= c_op & ~(op_any | op_not | v_mask);
uint n_shape= c_op & ~(op_any | op_not | v_mask); /* same as n_ops */
value v_state= (value) (c_op & v_mask);
int result= 0;
const char *sav_cur_func= cur_func;
// GCALC_DBUG_ENTER("Gcalc_function::count_internal");
cur_func+= 4;
if (next_func == op_shape)
{
if (set_type == 0)
result= i_states[n_shape] | b_states[n_shape];
/* the last call for the count_internal outside of all shapes. */
else if (set_type == 1)
result= 0;
else if (set_type == op_border)
result= b_states[n_shape];
else if (set_type == op_internals)
result= i_states[n_shape] && !b_states[n_shape];
goto exit;
}
if (next_func == op_false)
{
result= 0;
goto exit;
}
if (next_func == op_border || next_func == op_internals)
{
result= count_internal(cur_func,
(set_type == 1) ? set_type : next_func, &cur_func);
goto exit;
}
if (next_func == op_repeat)
{
result= count_internal(function_buffer.ptr() + n_ops, set_type, 0);
goto exit;
}
if (n_ops == 0)
return mask;
//GCALC_DBUG_RETURN(mask);
result= count_internal(cur_func, set_type, &cur_func);
while (--n_ops)
{
int next_res= count_internal(cur_func, set_type, &cur_func);
switch (next_func)
{
case op_union:
if (result == result_true || next_res == result_true)
result= result_true;
else if (result == result_unknown || next_res == result_unknown)
result= result_unknown;
else
result= result_false;
break;
case op_intersection:
if (result == result_false || next_res == result_false)
result= result_false;
else if (result == result_unknown || next_res == result_unknown)
result= result_unknown;
else
result= result_true;
break;
case op_symdifference:
if (result == result_unknown || next_res == result_unknown)
result= result_unknown;
else
result= result ^ next_res;
break;
case op_difference:
if (result == result_false || next_res == result_true)
result= result_false;
else if (result == result_unknown || next_res == result_unknown)
result= result_unknown;
else
result= result_true;
break;
default:
GCALC_DBUG_ASSERT(FALSE);
};
}
exit:
if (result != result_unknown)
result^= mask;
if (v_state != v_empty)
{
switch (v_state)
{
case v_find_t:
if (result == result_true)
{
c_op= (c_op & ~v_mask) | v_t_found;
int4store(sav_cur_func, c_op);
}
else
{
if (set_type != 1)
result= result_unknown;
}
break;
case v_find_f:
if (result == result_false)
{
c_op= (c_op & ~v_mask) | v_f_found;
int4store(sav_cur_func, c_op);
}
else
{
if (set_type != 1)
result= result_unknown;
}
break;
case v_t_found:
result= 1;
break;
case v_f_found:
result= 0;
break;
default:
GCALC_DBUG_ASSERT(0);
};
}
if (end)
*end= cur_func;
return result;
//GCALC_DBUG_RETURN(result);
}
void Gcalc_function::clear_i_states()
{
for (uint i= 0; i < n_shapes; i++)
i_states[i]= 0;
}
void Gcalc_function::clear_b_states()
{
for (uint i= 0; i < n_shapes; i++)
b_states[i]= 0;
}
/*
Clear the state of the object.
*/
void Gcalc_function::reset()
{
n_shapes= 0;
shapes_buffer.length(0);
function_buffer.length(0);
}
int Gcalc_function::check_function(Gcalc_scan_iterator &scan_it)
{
const Gcalc_scan_iterator::point *eq_start, *cur_eq;
const Gcalc_scan_iterator::event_point *events;
int result;
GCALC_DBUG_ENTER("Gcalc_function::check_function");
while (scan_it.more_points())
{
if (scan_it.step())
GCALC_DBUG_RETURN(-1);
events= scan_it.get_events();
/* these kinds of events don't change the function */
Gcalc_point_iterator pit(&scan_it);
clear_b_states();
clear_i_states();
/* Walk to the event, marking polygons we met */
for (; pit.point() != scan_it.get_event_position(); ++pit)
{
gcalc_shape_info si= pit.point()->get_shape();
if ((get_shape_kind(si) == Gcalc_function::shape_polygon))
invert_i_state(si);
}
if (events->simple_event())
{
if (events->event == scev_end)
set_b_state(events->get_shape());
if ((result= count()) != result_unknown)
GCALC_DBUG_RETURN(result);
clear_b_states();
continue;
}
/* Check the status of the event point */
for (; events; events= events->get_next())
{
gcalc_shape_info si= events->get_shape();
if (events->event == scev_thread ||
events->event == scev_end ||
(get_shape_kind(si) == Gcalc_function::shape_polygon))
set_b_state(si);
else if (events->event == scev_single_point ||
get_shape_kind(si) == Gcalc_function::shape_line)
set_i_state(si);
}
if ((result= count()) != result_unknown)
GCALC_DBUG_RETURN(result);
/* Set back states changed in the loop above. */
for (events= scan_it.get_events(); events; events= events->get_next())
{
gcalc_shape_info si= events->get_shape();
if (events->event == scev_thread ||
events->event == scev_end ||
get_shape_kind(si) == Gcalc_function::shape_polygon)
clear_b_state(si);
else if (events->event == scev_single_point ||
get_shape_kind(si) == Gcalc_function::shape_line)
clear_i_state(si);
}
if (scan_it.get_event_position() == scan_it.get_event_end())
continue;
/* Check the status after the event */
eq_start= pit.point();
do
{
++pit;
if (pit.point() != scan_it.get_event_end() &&
eq_start->cmp_dx_dy(pit.point()) == 0)
continue;
for (cur_eq= eq_start; cur_eq != pit.point();
cur_eq= cur_eq->get_next())
{
gcalc_shape_info si= cur_eq->get_shape();
if (get_shape_kind(si) == Gcalc_function::shape_polygon)
set_b_state(si);
else
invert_i_state(si);
}
if ((result= count()) != result_unknown)
GCALC_DBUG_RETURN(result);
for (cur_eq= eq_start; cur_eq != pit.point(); cur_eq= cur_eq->get_next())
{
gcalc_shape_info si= cur_eq->get_shape();
if ((get_shape_kind(si) == Gcalc_function::shape_polygon))
{
clear_b_state(si);
invert_i_state(si);
}
else
invert_i_state(cur_eq->get_shape());
}
if ((result= count()) != result_unknown)
GCALC_DBUG_RETURN(result);
eq_start= pit.point();
} while (pit.point() != scan_it.get_event_end());
}
GCALC_DBUG_RETURN(count_last());
}
int Gcalc_operation_transporter::single_point(double x, double y)
{
gcalc_shape_info si;
return m_fn->single_shape_op(Gcalc_function::shape_point, &si) ||
int_single_point(si, x, y);
}
int Gcalc_operation_transporter::start_line()
{
int_start_line();
return m_fn->single_shape_op(Gcalc_function::shape_line, &m_si);
}
int Gcalc_operation_transporter::complete_line()
{
int_complete_line();
return 0;
}
int Gcalc_operation_transporter::start_poly()
{
int_start_poly();
return m_fn->single_shape_op(Gcalc_function::shape_polygon, &m_si);
}
int Gcalc_operation_transporter::complete_poly()
{
int_complete_poly();
return 0;
}
int Gcalc_operation_transporter::start_ring()
{
int_start_ring();
return 0;
}
int Gcalc_operation_transporter::complete_ring()
{
int_complete_ring();
return 0;
}
int Gcalc_operation_transporter::add_point(double x, double y)
{
return int_add_point(m_si, x, y);
}
int Gcalc_operation_transporter::start_collection(int n_objects)
{
if (m_fn->reserve_shape_buffer(n_objects) || m_fn->reserve_op_buffer(1))
return 1;
m_fn->add_operation(Gcalc_function::op_union, n_objects);
return 0;
}
int Gcalc_operation_transporter::empty_shape()
{
if (m_fn->reserve_op_buffer(1))
return 1;
m_fn->add_operation(Gcalc_function::op_false, 0);
return 0;
}
int Gcalc_result_receiver::start_shape(Gcalc_function::shape_type shape)
{
GCALC_DBUG_ENTER("Gcalc_result_receiver::start_shape");
if (buffer.reserve(4*2, 512))
GCALC_DBUG_RETURN(1);
cur_shape= shape;
shape_pos= buffer.length();
buffer.length(shape_pos + ((shape == Gcalc_function::shape_point) ? 4:8));
n_points= 0;
shape_area= 0.0;
GCALC_DBUG_RETURN(0);
}
int Gcalc_result_receiver::add_point(double x, double y)
{
GCALC_DBUG_ENTER("Gcalc_result_receiver::add_point");
if (n_points && x == prev_x && y == prev_y)
GCALC_DBUG_RETURN(0);
if (!n_points++)
{
prev_x= first_x= x;
prev_y= first_y= y;
GCALC_DBUG_RETURN(0);
}
shape_area+= prev_x*y - prev_y*x;
if (buffer.reserve(8*2, 512))
GCALC_DBUG_RETURN(1);
buffer.q_append(prev_x);
buffer.q_append(prev_y);
prev_x= x;
prev_y= y;
GCALC_DBUG_RETURN(0);
}
int Gcalc_result_receiver::complete_shape()
{
GCALC_DBUG_ENTER("Gcalc_result_receiver::complete_shape");
if (n_points == 0)
{
buffer.length(shape_pos);
GCALC_DBUG_RETURN(0);
}
if (n_points == 1)
{
if (cur_shape != Gcalc_function::shape_point)
{
if (cur_shape == Gcalc_function::shape_hole)
{
buffer.length(shape_pos);
GCALC_DBUG_RETURN(0);
}
cur_shape= Gcalc_function::shape_point;
buffer.length(buffer.length()-4);
}
}
else
{
GCALC_DBUG_ASSERT(cur_shape != Gcalc_function::shape_point);
if (cur_shape == Gcalc_function::shape_hole)
{
shape_area+= prev_x*first_y - prev_y*first_x;
if (fabs(shape_area) < 1e-8)
{
buffer.length(shape_pos);
GCALC_DBUG_RETURN(0);
}
}
if ((cur_shape == Gcalc_function::shape_polygon ||
cur_shape == Gcalc_function::shape_hole) &&
prev_x == first_x && prev_y == first_y)
{
n_points--;
buffer.write_at_position(shape_pos+4, n_points);
goto do_complete;
}
buffer.write_at_position(shape_pos+4, n_points);
}
if (buffer.reserve(8*2, 512))
GCALC_DBUG_RETURN(1);
buffer.q_append(prev_x);
buffer.q_append(prev_y);
do_complete:
buffer.write_at_position(shape_pos, (uint32) cur_shape);
if (!n_shapes++)
{
GCALC_DBUG_ASSERT(cur_shape != Gcalc_function::shape_hole);
common_shapetype= cur_shape;
}
else if (cur_shape == Gcalc_function::shape_hole)
{
++n_holes;
}
else if (!collection_result && (cur_shape != common_shapetype))
{
collection_result= true;
}
GCALC_DBUG_RETURN(0);
}
int Gcalc_result_receiver::single_point(double x, double y)
{
return start_shape(Gcalc_function::shape_point) ||
add_point(x, y) ||
complete_shape();
}
int Gcalc_result_receiver::done()
{
return 0;
}
void Gcalc_result_receiver::reset()
{
buffer.length(0);
collection_result= FALSE;
n_shapes= n_holes= 0;
}
int Gcalc_result_receiver::get_result_typeid()
{
if (!n_shapes || collection_result)
return Geometry::wkb_geometrycollection;
switch (common_shapetype)
{
case Gcalc_function::shape_polygon:
return (n_shapes - n_holes == 1) ?
Geometry::wkb_polygon : Geometry::wkb_multipolygon;
case Gcalc_function::shape_point:
return (n_shapes == 1) ? Geometry::wkb_point : Geometry::wkb_multipoint;
case Gcalc_function::shape_line:
return (n_shapes == 1) ? Geometry::wkb_linestring :
Geometry::wkb_multilinestring;
default:
GCALC_DBUG_ASSERT(0);
}
return 0;
}
int Gcalc_result_receiver::move_hole(uint32 dest_position, uint32 source_position,
uint32 *position_shift)
{
char *ptr;
int source_len;
GCALC_DBUG_ENTER("Gcalc_result_receiver::move_hole");
GCALC_DBUG_PRINT(("ps %d %d", dest_position, source_position));
*position_shift= source_len= buffer.length() - source_position;
if (dest_position == source_position)
GCALC_DBUG_RETURN(0);
if (buffer.reserve(source_len, MY_ALIGN(source_len, 512)))
GCALC_DBUG_RETURN(1);
ptr= (char *) buffer.ptr();
memmove(ptr + dest_position + source_len, ptr + dest_position,
buffer.length() - dest_position);
memcpy(ptr + dest_position, ptr + buffer.length(), source_len);
GCALC_DBUG_RETURN(0);
}
Gcalc_operation_reducer::Gcalc_operation_reducer(size_t blk_size) :
Gcalc_dyn_list(blk_size, sizeof(res_point)),
#ifndef GCALC_DBUG_OFF
n_res_points(0),
#endif /*GCALC_DBUG_OFF*/
m_res_hook((Gcalc_dyn_list::Item **)&m_result),
m_first_active_thread(NULL)
{}
Gcalc_operation_reducer::Gcalc_operation_reducer(
const Gcalc_operation_reducer &gor) :
Gcalc_dyn_list(gor),
#ifndef GCALC_DBUG_OFF
n_res_points(0),
#endif /*GCALC_DBUG_OFF*/
m_res_hook((Gcalc_dyn_list::Item **)&m_result),
m_first_active_thread(NULL)
{}
void Gcalc_operation_reducer::init(Gcalc_function *fn, modes mode)
{
m_fn= fn;
m_mode= mode;
m_first_active_thread= NULL;
m_lines= NULL;
m_lines_hook= (Gcalc_dyn_list::Item **) &m_lines;
m_poly_borders= NULL;
m_poly_borders_hook= (Gcalc_dyn_list::Item **) &m_poly_borders;
GCALC_SET_TERMINATED(killed, 0);
}
Gcalc_operation_reducer::
Gcalc_operation_reducer(Gcalc_function *fn, modes mode, size_t blk_size) :
Gcalc_dyn_list(blk_size, sizeof(res_point)),
m_res_hook((Gcalc_dyn_list::Item **)&m_result)
{
init(fn, mode);
}
void Gcalc_operation_reducer::res_point::set(const Gcalc_scan_iterator *si)
{
intersection_point= si->intersection_step();
pi= si->get_cur_pi();
}
Gcalc_operation_reducer::res_point *
Gcalc_operation_reducer::add_res_point(Gcalc_function::shape_type type)
{
GCALC_DBUG_ENTER("Gcalc_operation_reducer::add_res_point");
res_point *result= (res_point *)new_item();
*m_res_hook= result;
result->prev_hook= m_res_hook;
m_res_hook= &result->next;
result->type= type;
#ifndef GCALC_DBUG_OFF
result->point_n= n_res_points++;
#endif /*GCALC_DBUG_OFF*/
GCALC_DBUG_RETURN(result);
}
int Gcalc_operation_reducer::add_line(int incoming, active_thread *t,
const Gcalc_scan_iterator::point *p)
{
line *l= new_line();
GCALC_DBUG_ENTER("Gcalc_operation_reducer::add_line");
if (!l)
GCALC_DBUG_RETURN(1);
l->incoming= incoming;
l->t= t;
l->p= p;
*m_lines_hook= l;
m_lines_hook= &l->next;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::add_poly_border(int incoming,
active_thread *t, int prev_state, const Gcalc_scan_iterator::point *p)
{
poly_border *b= new_poly_border();
GCALC_DBUG_ENTER("Gcalc_operation_reducer::add_poly_border");
if (!b)
GCALC_DBUG_RETURN(1);
b->incoming= incoming;
b->t= t;
b->prev_state= prev_state;
b->p= p;
*m_poly_borders_hook= b;
m_poly_borders_hook= &b->next;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::continue_range(active_thread *t,
const Gcalc_heap::Info *p,
const Gcalc_heap::Info *p_next)
{
res_point *rp= add_res_point(t->rp->type);
GCALC_DBUG_ENTER("Gcalc_operation_reducer::continue_range");
if (!rp)
GCALC_DBUG_RETURN(1);
rp->glue= NULL;
rp->down= t->rp;
t->rp->up= rp;
rp->intersection_point= false;
rp->pi= p;
t->rp= rp;
t->p1= p;
t->p2= p_next;
GCALC_DBUG_RETURN(0);
}
inline int Gcalc_operation_reducer::continue_i_range(active_thread *t,
const Gcalc_heap::Info *ii)
{
res_point *rp= add_res_point(t->rp->type);
GCALC_DBUG_ENTER("Gcalc_operation_reducer::continue_i_range");
if (!rp)
GCALC_DBUG_RETURN(1);
rp->glue= NULL;
rp->down= t->rp;
t->rp->up= rp;
rp->intersection_point= true;
rp->pi= ii;
t->rp= rp;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::end_couple(active_thread *t0, active_thread *t1,
const Gcalc_heap::Info *p)
{
res_point *rp0, *rp1;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::end_couple");
GCALC_DBUG_ASSERT(t0->rp->type == t1->rp->type);
if (!(rp0= add_res_point(t0->rp->type)) ||
!(rp1= add_res_point(t0->rp->type)))
GCALC_DBUG_RETURN(1);
rp0->down= t0->rp;
rp1->down= t1->rp;
rp1->glue= rp0;
rp0->glue= rp1;
rp0->up= rp1->up= NULL;
t0->rp->up= rp0;
t1->rp->up= rp1;
rp0->intersection_point= rp1->intersection_point= false;
rp0->pi= rp1->pi= p;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::count_slice(Gcalc_scan_iterator *si)
{
Gcalc_point_iterator pi(si);
int prev_state= 0;
int sav_prev_state;
active_thread *prev_range= NULL;
const Gcalc_scan_iterator::event_point *events;
const Gcalc_scan_iterator::point *eq_start;
active_thread **cur_t_hook= &m_first_active_thread;
active_thread **starting_t_hook;
active_thread *bottom_threads= NULL;
active_thread *eq_thread, *point_thread;;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::count_slice");
m_fn->clear_i_states();
/* Walk to the event, remembering what is needed. */
for (; pi.point() != si->get_event_position();
++pi, cur_t_hook= (active_thread **) &(*cur_t_hook)->next)
{
active_thread *cur_t= *cur_t_hook;
if (cur_t->enabled() &&
cur_t->rp->type == Gcalc_function::shape_polygon)
{
prev_state^= 1;
prev_range= prev_state ? cur_t : 0;
}
if (m_fn->get_shape_kind(pi.get_shape()) == Gcalc_function::shape_polygon)
m_fn->invert_i_state(pi.get_shape());
}
events= si->get_events();
if (events->simple_event())
{
active_thread *cur_t= *cur_t_hook;
switch (events->event)
{
case scev_point:
{
if (cur_t->enabled() &&
continue_range(cur_t, events->pi, events->next_pi))
GCALC_DBUG_RETURN(1);
break;
}
case scev_end:
{
if (cur_t->enabled() && end_line(cur_t, si))
GCALC_DBUG_RETURN(1);
*cur_t_hook= cur_t->get_next();
free_item(cur_t);
break;
}
case scev_two_ends:
{
if (cur_t->enabled() && cur_t->get_next()->enabled())
{
/* When two threads are ended here */
if (end_couple(cur_t, cur_t->get_next(), events->pi))
GCALC_DBUG_RETURN(1);
}
else if (cur_t->enabled() || cur_t->get_next()->enabled())
{
/* Rare case when edges of a polygon coincide */
if (end_line(cur_t->enabled() ? cur_t : cur_t->get_next(), si))
GCALC_DBUG_RETURN(1);
}
*cur_t_hook= cur_t->get_next()->get_next();
free_item(cur_t->next);
free_item(cur_t);
break;
}
default:
GCALC_DBUG_ASSERT(0);
}
GCALC_DBUG_RETURN(0);
}
starting_t_hook= cur_t_hook;
sav_prev_state= prev_state;
/* Walk through the event, collecting all the 'incoming' threads */
for (; events; events= events->get_next())
{
active_thread *cur_t= *cur_t_hook;
if (events->event == scev_single_point)
continue;
if (events->event == scev_thread ||
events->event == scev_two_threads)
{
active_thread *new_t= new_active_thread();
if (!new_t)
GCALC_DBUG_RETURN(1);
new_t->rp= NULL;
/* Insert into the main thread list before the current */
new_t->next= cur_t;
*cur_t_hook= new_t;
cur_t_hook= (active_thread **) &new_t->next;
}
else
{
if (events->is_bottom())
{
/* Move thread from the main list to the bottom_threads. */
*cur_t_hook= cur_t->get_next();
cur_t->next= bottom_threads;
bottom_threads= cur_t;
}
if (cur_t->enabled())
{
if (cur_t->rp->type == Gcalc_function::shape_line)
{
GCALC_DBUG_ASSERT(!prev_state);
add_line(1, cur_t, events);
}
else
{
add_poly_border(1, cur_t, prev_state, events);
prev_state^= 1;
}
if (!events->is_bottom())
{
active_thread *new_t= new_active_thread();
if (!new_t)
GCALC_DBUG_RETURN(1);
new_t->rp= NULL;
/* Replace the current thread with the new. */
new_t->next= cur_t->next;
*cur_t_hook= new_t;
cur_t_hook= (active_thread **) &new_t->next;
/* And move old to the bottom list */
cur_t->next= bottom_threads;
bottom_threads= cur_t;
}
}
else if (!events->is_bottom())
cur_t_hook= (active_thread **) &cur_t->next;
}
}
prev_state= sav_prev_state;
cur_t_hook= starting_t_hook;
eq_start= pi.point();
eq_thread= point_thread= *starting_t_hook;
m_fn->clear_b_states();
while (eq_start != si->get_event_end())
{
const Gcalc_scan_iterator::point *cur_eq;
int in_state, after_state;
++pi;
point_thread= point_thread->get_next();
if (pi.point() != si->get_event_end() &&
eq_start->cmp_dx_dy(pi.point()) == 0)
continue;
for (cur_eq= eq_start; cur_eq != pi.point(); cur_eq= cur_eq->get_next())
m_fn->set_b_state(cur_eq->get_shape());
in_state= m_fn->count();
m_fn->clear_b_states();
for (cur_eq= eq_start; cur_eq != pi.point(); cur_eq= cur_eq->get_next())
{
gcalc_shape_info si= cur_eq->get_shape();
if ((m_fn->get_shape_kind(si) == Gcalc_function::shape_polygon))
m_fn->invert_i_state(si);
}
after_state= m_fn->count();
if (prev_state != after_state)
{
if (add_poly_border(0, eq_thread, prev_state, eq_start))
GCALC_DBUG_RETURN(1);
}
else if (!prev_state /* &&!after_state */ && in_state)
{
if (add_line(0, eq_thread, eq_start))
GCALC_DBUG_RETURN(1);
}
prev_state= after_state;
eq_start= pi.point();
eq_thread= point_thread;
}
if (!sav_prev_state && !m_poly_borders && !m_lines)
{
/* Check if we need to add the event point itself */
m_fn->clear_i_states();
/* b_states supposed to be clean already */
for (pi.restart(si); pi.point() != si->get_event_position(); ++pi)
{
if (m_fn->get_shape_kind(pi.get_shape()) == Gcalc_function::shape_polygon)
m_fn->invert_i_state(pi.get_shape());
}
for (events= si->get_events(); events; events= events->get_next())
m_fn->set_b_state(events->get_shape());
GCALC_DBUG_RETURN(m_fn->count() ? add_single_point(si) : 0);
}
if (m_poly_borders)
{
*m_poly_borders_hook= NULL;
while (m_poly_borders)
{
poly_border *pb1, *pb2;
pb1= m_poly_borders;
GCALC_DBUG_ASSERT(m_poly_borders->next);
pb2= get_pair_border(pb1);
/* Remove pb1 from the list. The pb2 already removed in get_pair_border. */
m_poly_borders= pb1->get_next();
if (connect_threads(pb1->incoming, pb2->incoming,
pb1->t, pb2->t, pb1->p, pb2->p,
prev_range, si, Gcalc_function::shape_polygon))
GCALC_DBUG_RETURN(1);
free_item(pb1);
free_item(pb2);
}
m_poly_borders_hook= (Gcalc_dyn_list::Item **) &m_poly_borders;
m_poly_borders= NULL;
}
if (m_lines)
{
*m_lines_hook= NULL;
if (m_lines->get_next() &&
!m_lines->get_next()->get_next())
{
if (connect_threads(m_lines->incoming, m_lines->get_next()->incoming,
m_lines->t, m_lines->get_next()->t,
m_lines->p, m_lines->get_next()->p,
NULL, si, Gcalc_function::shape_line))
GCALC_DBUG_RETURN(1);
}
else
{
for (line *cur_line= m_lines; cur_line; cur_line= cur_line->get_next())
{
if (cur_line->incoming)
{
if (end_line(cur_line->t, si))
GCALC_DBUG_RETURN(1);
}
else
start_line(cur_line->t, cur_line->p, si);
}
}
free_list(m_lines);
m_lines= NULL;
m_lines_hook= (Gcalc_dyn_list::Item **) &m_lines;
}
if (bottom_threads)
free_list(bottom_threads);
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::add_single_point(const Gcalc_scan_iterator *si)
{
res_point *rp= add_res_point(Gcalc_function::shape_point);
GCALC_DBUG_ENTER("Gcalc_operation_reducer::add_single_point");
if (!rp)
GCALC_DBUG_RETURN(1);
rp->glue= rp->up= rp->down= NULL;
rp->set(si);
GCALC_DBUG_RETURN(0);
}
Gcalc_operation_reducer::poly_border
*Gcalc_operation_reducer::get_pair_border(poly_border *b1)
{
poly_border *prev_b= b1;
poly_border *result= b1->get_next();
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_pair_border");
if (b1->prev_state)
{
if (b1->incoming)
{
/* Find the first outgoing, otherwise the last one. */
while (result->incoming && result->get_next())
{
prev_b= result;
result= result->get_next();
}
}
else
{
/* Get the last one */
while (result->get_next())
{
prev_b= result;
result= result->get_next();
}
}
}
else /* !b1->prev_state */
{
if (b1->incoming)
{
/* Get the next incoming, otherwise the last one. */
while (!result->incoming && result->get_next())
{
prev_b= result;
result= result->get_next();
}
}
else
{
/* Just pick the next one */
}
}
/* Delete the result from the list. */
prev_b->next= result->next;
GCALC_DBUG_RETURN(result);
}
int Gcalc_operation_reducer::connect_threads(
int incoming_a, int incoming_b,
active_thread *ta, active_thread *tb,
const Gcalc_scan_iterator::point *pa, const Gcalc_scan_iterator::point *pb,
active_thread *prev_range,
const Gcalc_scan_iterator *si, Gcalc_function::shape_type s_t)
{
GCALC_DBUG_ENTER("Gcalc_operation_reducer::connect_threads");
GCALC_DBUG_PRINT(("incoming %d %d", incoming_a, incoming_b));
if (incoming_a && incoming_b)
{
res_point *rpa, *rpb;
GCALC_DBUG_ASSERT(ta->rp->type == tb->rp->type);
if (!(rpa= add_res_point(ta->rp->type)) ||
!(rpb= add_res_point(ta->rp->type)))
GCALC_DBUG_RETURN(1);
rpa->down= ta->rp;
rpb->down= tb->rp;
rpb->glue= rpa;
rpa->glue= rpb;
rpa->up= rpb->up= NULL;
ta->rp->up= rpa;
tb->rp->up= rpb;
rpa->set(si);
rpb->set(si);
ta->rp= tb->rp= NULL;
GCALC_DBUG_RETURN(0);
}
if (!incoming_a)
{
GCALC_DBUG_ASSERT(!incoming_b);
res_point *rp0, *rp1;
if (!(rp0= add_res_point(s_t)) || !(rp1= add_res_point(s_t)))
GCALC_DBUG_RETURN(1);
rp0->glue= rp1;
rp1->glue= rp0;
rp0->set(si);
rp1->set(si);
rp0->down= rp1->down= NULL;
ta->rp= rp0;
tb->rp= rp1;
ta->p1= pa->pi;
ta->p2= pa->next_pi;
tb->p1= pb->pi;
tb->p2= pb->next_pi;
if (prev_range)
{
rp0->outer_poly= prev_range->thread_start;
tb->thread_start= prev_range->thread_start;
/* Check if needed */
ta->thread_start= prev_range->thread_start;
}
else
{
rp0->outer_poly= 0;
ta->thread_start= rp0;
/* Check if needed */
tb->thread_start= rp0;
}
GCALC_DBUG_RETURN(0);
}
/* else, if only ta is incoming */
GCALC_DBUG_ASSERT(tb != ta);
tb->rp= ta->rp;
tb->thread_start= ta->thread_start;
if (Gcalc_scan_iterator::point::
cmp_dx_dy(ta->p1, ta->p2, pb->pi, pb->next_pi) != 0)
{
if (si->intersection_step() ?
continue_i_range(tb, si->get_cur_pi()) :
continue_range(tb, si->get_cur_pi(), pb->next_pi))
GCALC_DBUG_RETURN(1);
}
tb->p1= pb->pi;
tb->p2= pb->next_pi;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::start_line(active_thread *t,
const Gcalc_scan_iterator::point *p,
const Gcalc_scan_iterator *si)
{
res_point *rp= add_res_point(Gcalc_function::shape_line);
GCALC_DBUG_ENTER("Gcalc_operation_reducer::start_line");
if (!rp)
GCALC_DBUG_RETURN(1);
rp->glue= rp->down= NULL;
rp->set(si);
t->rp= rp;
t->p1= p->pi;
t->p2= p->next_pi;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::end_line(active_thread *t,
const Gcalc_scan_iterator *si)
{
GCALC_DBUG_ENTER("Gcalc_operation_reducer::end_line");
GCALC_DBUG_ASSERT(t->rp->type == Gcalc_function::shape_line);
res_point *rp= add_res_point(Gcalc_function::shape_line);
if (!rp)
GCALC_DBUG_RETURN(1);
rp->glue= rp->up= NULL;
rp->down= t->rp;
rp->set(si);
t->rp->up= rp;
t->rp= NULL;
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::count_all(Gcalc_heap *hp)
{
Gcalc_scan_iterator si;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::count_all");
si.init(hp);
GCALC_SET_TERMINATED(si.killed, killed);
while (si.more_points())
{
if (si.step())
GCALC_DBUG_RETURN(1);
if (count_slice(&si))
GCALC_DBUG_RETURN(1);
}
GCALC_DBUG_RETURN(0);
}
inline void Gcalc_operation_reducer::free_result(res_point *res)
{
if ((*res->prev_hook= res->next))
{
res->get_next()->prev_hook= res->prev_hook;
}
free_item(res);
}
inline int Gcalc_operation_reducer::get_single_result(res_point *res,
Gcalc_result_receiver *storage)
{
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_single_result");
if (res->intersection_point)
{
double x, y;
res->pi->calc_xy(&x, &y);
if (storage->single_point(x,y))
GCALC_DBUG_RETURN(1);
}
else
if (storage->single_point(res->pi->node.shape.x, res->pi->node.shape.y))
GCALC_DBUG_RETURN(1);
free_result(res);
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::get_result_thread(res_point *cur,
Gcalc_result_receiver *storage,
int move_upward,
res_point *first_poly_node)
{
res_point *next;
bool glue_step= false;
double x, y;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_result_thread");
while (cur)
{
if (!glue_step)
{
if (cur->intersection_point)
{
cur->pi->calc_xy(&x, &y);
}
else
{
x= cur->pi->node.shape.x;
y= cur->pi->node.shape.y;
}
if (storage->add_point(x, y))
GCALC_DBUG_RETURN(1);
}
next= move_upward ? cur->up : cur->down;
if (!next && !glue_step)
{
next= cur->glue;
move_upward^= 1;
glue_step= true;
if (next)
next->glue= NULL;
}
else
glue_step= false;
cur->first_poly_node= first_poly_node;
free_result(cur);
cur= next;
}
GCALC_DBUG_RETURN(0);
}
int Gcalc_operation_reducer::get_polygon_result(res_point *cur,
Gcalc_result_receiver *storage,
res_point *first_poly_node)
{
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_polygon_result");
res_point *glue= cur->glue;
glue->up->down= NULL;
free_result(glue);
GCALC_DBUG_RETURN(get_result_thread(cur, storage, 1, first_poly_node) ||
storage->complete_shape());
}
int Gcalc_operation_reducer::get_line_result(res_point *cur,
Gcalc_result_receiver *storage)
{
res_point *next;
res_point *cur_orig= cur;
int move_upward= 1;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_line_result");
if (cur->glue)
{
/* Here we have to find the beginning of the line */
next= cur->up;
move_upward= 1;
while (next)
{
cur= next;
next= move_upward ? next->up : next->down;
if (!next)
{
next= cur->glue;
if (next == cur_orig)
{
/* It's the line loop */
cur= cur_orig;
cur->glue->glue= NULL;
move_upward= 1;
break;
}
move_upward^= 1;
}
}
}
GCALC_DBUG_RETURN(get_result_thread(cur, storage, move_upward, 0) ||
storage->complete_shape());
}
int Gcalc_operation_reducer::get_result(Gcalc_result_receiver *storage)
{
poly_instance *polygons= NULL;
GCALC_DBUG_ENTER("Gcalc_operation_reducer::get_result");
*m_res_hook= NULL;
/* This is to workaround an old gcc's bug */
if (m_res_hook == (Gcalc_dyn_list::Item **) &m_result)
goto done;
while (m_result)
{
Gcalc_function::shape_type shape= m_result->type;
if (shape == Gcalc_function::shape_point)
{
if (get_single_result(m_result, storage))
GCALC_DBUG_RETURN(1);
continue;
}
if (shape == Gcalc_function::shape_polygon)
{
if (m_result->outer_poly)
{
uint32 insert_position, hole_position, position_shift;
poly_instance *cur_poly;
insert_position= m_result->outer_poly->first_poly_node->poly_position;
GCALC_DBUG_ASSERT(insert_position);
hole_position= storage->position();
storage->start_shape(Gcalc_function::shape_hole);
if (get_polygon_result(m_result, storage,
m_result->outer_poly->first_poly_node) ||
storage->move_hole(insert_position, hole_position,
&position_shift))
GCALC_DBUG_RETURN(1);
for (cur_poly= polygons;
cur_poly && *cur_poly->after_poly_position >= insert_position;
cur_poly= cur_poly->get_next())
*cur_poly->after_poly_position+= position_shift;
}
else
{
uint32 *poly_position= &m_result->poly_position;
poly_instance *p= new_poly();
p->after_poly_position= poly_position;
p->next= polygons;
polygons= p;
storage->start_shape(Gcalc_function::shape_polygon);
if (get_polygon_result(m_result, storage, m_result))
GCALC_DBUG_RETURN(1);
*poly_position= storage->position();
}
}
else
{
storage->start_shape(shape);
if (get_line_result(m_result, storage))
GCALC_DBUG_RETURN(1);
}
}
done:
m_res_hook= (Gcalc_dyn_list::Item **)&m_result;
storage->done();
GCALC_DBUG_RETURN(0);
}
void Gcalc_operation_reducer::reset()
{
free_list((Gcalc_heap::Item **) &m_result, m_res_hook);
m_res_hook= (Gcalc_dyn_list::Item **)&m_result;
free_list(m_first_active_thread);
}
#endif /*HAVE_SPATIAL*/