mariadb/myisam/mi_write.c
konstantin@mysql.com f08bbd1f12 assert.h needed for my_dbug.h now is included in my_dbug.h, where it for
some reason wasn't included before.
A lot of files cleaned up from #include <assert.h>
2004-06-10 23:58:39 +04:00

993 lines
31 KiB
C

/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Write a row to a MyISAM table */
#include "fulltext.h"
#include "rt_index.h"
#define MAX_POINTER_LENGTH 8
/* Functions declared in this file */
static int w_search(MI_INFO *info,MI_KEYDEF *keyinfo,
uint comp_flag, uchar *key,
uint key_length, my_off_t pos, uchar *father_buff,
uchar *father_keypos, my_off_t father_page,
my_bool insert_last);
static int _mi_balance_page(MI_INFO *info,MI_KEYDEF *keyinfo,uchar *key,
uchar *curr_buff,uchar *father_buff,
uchar *father_keypos,my_off_t father_page);
static uchar *_mi_find_last_pos(MI_KEYDEF *keyinfo, uchar *page,
uchar *key, uint *return_key_length,
uchar **after_key);
int _mi_ck_write_tree(register MI_INFO *info, uint keynr,uchar *key,
uint key_length);
int _mi_ck_write_btree(register MI_INFO *info, uint keynr,uchar *key,
uint key_length);
/* Write new record to database */
int mi_write(MI_INFO *info, byte *record)
{
MYISAM_SHARE *share=info->s;
uint i;
int save_errno;
my_off_t filepos;
uchar *buff;
my_bool lock_tree= share->concurrent_insert;
DBUG_ENTER("mi_write");
DBUG_PRINT("enter",("isam: %d data: %d",info->s->kfile,info->dfile));
if (share->options & HA_OPTION_READ_ONLY_DATA)
{
DBUG_RETURN(my_errno=EACCES);
}
if (_mi_readinfo(info,F_WRLCK,1))
DBUG_RETURN(my_errno);
dont_break(); /* Dont allow SIGHUP or SIGINT */
#if !defined(NO_LOCKING) && defined(USE_RECORD_LOCK)
if (!info->locked && my_lock(info->dfile,F_WRLCK,0L,F_TO_EOF,
MYF(MY_SEEK_NOT_DONE) | info->lock_wait))
goto err;
#endif
filepos= ((share->state.dellink != HA_OFFSET_ERROR) ?
share->state.dellink :
info->state->data_file_length);
if (share->base.reloc == (ha_rows) 1 &&
share->base.records == (ha_rows) 1 &&
info->state->records == (ha_rows) 1)
{ /* System file */
my_errno=HA_ERR_RECORD_FILE_FULL;
goto err2;
}
if (info->state->key_file_length >= share->base.margin_key_file_length)
{
my_errno=HA_ERR_INDEX_FILE_FULL;
goto err2;
}
if (_mi_mark_file_changed(info))
goto err2;
/* Calculate and check all unique constraints */
for (i=0 ; i < share->state.header.uniques ; i++)
{
if (mi_check_unique(info,share->uniqueinfo+i,record,
mi_unique_hash(share->uniqueinfo+i,record),
HA_OFFSET_ERROR))
goto err2;
}
/* Write all keys to indextree */
buff=info->lastkey2;
for (i=0 ; i < share->base.keys ; i++)
{
if (((ulonglong) 1 << i) & share->state.key_map)
{
bool local_lock_tree= (lock_tree &&
!(info->bulk_insert &&
is_tree_inited(&info->bulk_insert[i])));
if (local_lock_tree)
{
rw_wrlock(&share->key_root_lock[i]);
share->keyinfo[i].version++;
}
if (share->keyinfo[i].flag & HA_FULLTEXT )
{
if (_mi_ft_add(info,i,(char*) buff,record,filepos))
{
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
DBUG_PRINT("error",("Got error: %d on write",my_errno));
goto err;
}
}
else
{
if (share->keyinfo[i].ck_insert(info,i,buff,
_mi_make_key(info,i,buff,record,filepos)))
{
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
DBUG_PRINT("error",("Got error: %d on write",my_errno));
goto err;
}
}
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
}
}
if (share->calc_checksum)
info->checksum=(*share->calc_checksum)(info,record);
if (!(info->opt_flag & OPT_NO_ROWS))
{
if ((*share->write_record)(info,record))
goto err;
share->state.checksum+=info->checksum;
}
if (share->base.auto_key)
update_auto_increment(info,record);
info->update= (HA_STATE_CHANGED | HA_STATE_AKTIV | HA_STATE_WRITTEN |
HA_STATE_ROW_CHANGED);
info->state->records++;
info->lastpos=filepos;
myisam_log_record(MI_LOG_WRITE,info,record,filepos,0);
VOID(_mi_writeinfo(info, WRITEINFO_UPDATE_KEYFILE));
if (info->invalidator != 0)
{
DBUG_PRINT("info", ("invalidator... '%s' (update)", info->filename));
(*info->invalidator)(info->filename);
info->invalidator=0;
}
allow_break(); /* Allow SIGHUP & SIGINT */
DBUG_RETURN(0);
err:
save_errno=my_errno;
if (my_errno == HA_ERR_FOUND_DUPP_KEY || my_errno == HA_ERR_RECORD_FILE_FULL)
{
if (info->bulk_insert)
{
uint j;
for (j=0 ; j < share->base.keys ; j++)
{
if (is_tree_inited(&info->bulk_insert[j]))
{
reset_tree(&info->bulk_insert[j]);
}
}
}
info->errkey= (int) i;
while ( i-- > 0)
{
if (((ulonglong) 1 << i) & share->state.key_map)
{
bool local_lock_tree= (lock_tree &&
!(info->bulk_insert &&
is_tree_inited(&info->bulk_insert[i])));
if (local_lock_tree)
rw_wrlock(&share->key_root_lock[i]);
if (share->keyinfo[i].flag & HA_FULLTEXT)
{
if (_mi_ft_del(info,i,(char*) buff,record,filepos))
{
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
break;
}
}
else
{
uint key_length=_mi_make_key(info,i,buff,record,filepos);
if (_mi_ck_delete(info,i,buff,key_length))
{
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
break;
}
}
if (local_lock_tree)
rw_unlock(&share->key_root_lock[i]);
}
}
}
else
mi_mark_crashed(info);
info->update= (HA_STATE_CHANGED | HA_STATE_WRITTEN | HA_STATE_ROW_CHANGED);
my_errno=save_errno;
err2:
save_errno=my_errno;
myisam_log_record(MI_LOG_WRITE,info,record,filepos,my_errno);
VOID(_mi_writeinfo(info,WRITEINFO_UPDATE_KEYFILE));
allow_break(); /* Allow SIGHUP & SIGINT */
DBUG_RETURN(my_errno=save_errno);
} /* mi_write */
/* Write one key to btree */
int _mi_ck_write(MI_INFO *info, uint keynr, uchar *key, uint key_length)
{
DBUG_ENTER("_mi_ck_write");
if (info->bulk_insert && is_tree_inited(&info->bulk_insert[keynr]))
{
DBUG_RETURN(_mi_ck_write_tree(info, keynr, key, key_length));
}
else
{
DBUG_RETURN(_mi_ck_write_btree(info, keynr, key, key_length));
}
} /* _mi_ck_write */
/**********************************************************************
* Normal insert code *
**********************************************************************/
int _mi_ck_write_btree(register MI_INFO *info, uint keynr, uchar *key,
uint key_length)
{
int error;
uint comp_flag;
MI_KEYDEF *keyinfo=info->s->keyinfo+keynr;
my_off_t *root=&info->s->state.key_root[keynr];
DBUG_ENTER("_mi_ck_write_btree");
if (keyinfo->flag & HA_SORT_ALLOWS_SAME)
comp_flag=SEARCH_BIGGER; /* Put after same key */
else if (keyinfo->flag & (HA_NOSAME|HA_FULLTEXT))
{
comp_flag=SEARCH_FIND | SEARCH_UPDATE; /* No dupplicates */
if (keyinfo->flag & HA_NULL_ARE_EQUAL)
comp_flag|= SEARCH_NULL_ARE_EQUAL;
}
else
comp_flag=SEARCH_SAME; /* Keys in rec-pos order */
error=_mi_ck_real_write_btree(info, keyinfo, key, key_length,
root, comp_flag);
if (info->ft1_to_ft2)
{
if (!error)
error= _mi_ft_convert_to_ft2(info, keynr, key);
delete_dynamic(info->ft1_to_ft2);
my_free((gptr)info->ft1_to_ft2, MYF(0));
info->ft1_to_ft2=0;
}
DBUG_RETURN(error);
} /* _mi_ck_write_btree */
int _mi_ck_real_write_btree(MI_INFO *info, MI_KEYDEF *keyinfo,
uchar *key, uint key_length, my_off_t *root, uint comp_flag)
{
int error;
DBUG_ENTER("_mi_ck_real_write_btree");
/* key_length parameter is used only if comp_flag is SEARCH_FIND */
if (*root == HA_OFFSET_ERROR ||
(error=w_search(info, keyinfo, comp_flag, key, key_length,
*root, (uchar *) 0, (uchar*) 0,
(my_off_t) 0, 1)) > 0)
error=_mi_enlarge_root(info,keyinfo,key,root);
DBUG_RETURN(error);
} /* _mi_ck_real_write_btree */
/* Make a new root with key as only pointer */
int _mi_enlarge_root(MI_INFO *info, MI_KEYDEF *keyinfo, uchar *key,
my_off_t *root)
{
uint t_length,nod_flag;
MI_KEY_PARAM s_temp;
MYISAM_SHARE *share=info->s;
DBUG_ENTER("_mi_enlarge_root");
nod_flag= (*root != HA_OFFSET_ERROR) ? share->base.key_reflength : 0;
_mi_kpointer(info,info->buff+2,*root); /* if nod */
t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(uchar*) 0,
(uchar*) 0, (uchar*) 0, key,&s_temp);
mi_putint(info->buff,t_length+2+nod_flag,nod_flag);
(*keyinfo->store_key)(keyinfo,info->buff+2+nod_flag,&s_temp);
info->buff_used=info->page_changed=1; /* info->buff is used */
if ((*root= _mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR ||
_mi_write_keypage(info,keyinfo,*root,DFLT_INIT_HITS,info->buff))
DBUG_RETURN(-1);
DBUG_RETURN(0);
} /* _mi_enlarge_root */
/*
Search after a position for a key and store it there
Returns -1 = error
0 = ok
1 = key should be stored in higher tree
*/
static int w_search(register MI_INFO *info, register MI_KEYDEF *keyinfo,
uint comp_flag, uchar *key, uint key_length, my_off_t page,
uchar *father_buff, uchar *father_keypos,
my_off_t father_page, my_bool insert_last)
{
int error,flag;
uint nod_flag, search_key_length;
uchar *temp_buff,*keypos;
uchar keybuff[MI_MAX_KEY_BUFF];
my_bool was_last_key;
my_off_t next_page;
DBUG_ENTER("w_search");
DBUG_PRINT("enter",("page: %ld",page));
search_key_length= (comp_flag & SEARCH_FIND) ? key_length : USE_WHOLE_KEY;
if (!(temp_buff= (uchar*) my_alloca((uint) keyinfo->block_length+
MI_MAX_KEY_BUFF*2)))
DBUG_RETURN(-1);
if (!_mi_fetch_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff,0))
goto err;
flag=(*keyinfo->bin_search)(info,keyinfo,temp_buff,key,search_key_length,
comp_flag, &keypos, keybuff, &was_last_key);
nod_flag=mi_test_if_nod(temp_buff);
if (flag == 0)
{
uint tmp_key_length;
/* get position to record with duplicated key */
tmp_key_length=(*keyinfo->get_key)(keyinfo,nod_flag,&keypos,keybuff);
if (tmp_key_length)
info->dupp_key_pos=_mi_dpos(info,0,keybuff+tmp_key_length);
else
info->dupp_key_pos= HA_OFFSET_ERROR;
if (keyinfo->flag & HA_FULLTEXT)
{
uint off;
int subkeys;
get_key_full_length_rdonly(off, keybuff);
subkeys=ft_sintXkorr(keybuff+off);
comp_flag=SEARCH_SAME;
if (subkeys >= 0)
{
/* normal word, one-level tree structure */
flag=(*keyinfo->bin_search)(info, keyinfo, temp_buff, key,
USE_WHOLE_KEY, comp_flag,
&keypos, keybuff, &was_last_key);
}
else
{
/* popular word. two-level tree. going down */
my_off_t root=info->dupp_key_pos;
keyinfo=&info->s->ft2_keyinfo;
key+=off;
keypos-=keyinfo->keylength+nod_flag; /* we'll modify key entry 'in vivo' */
error=_mi_ck_real_write_btree(info, keyinfo, key, 0,
&root, comp_flag);
_mi_dpointer(info, keypos+HA_FT_WLEN, root);
subkeys--; /* should there be underflow protection ? */
DBUG_ASSERT(subkeys < 0);
ft_intXstore(keypos, subkeys);
if (!error)
error=_mi_write_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff);
my_afree((byte*) temp_buff);
DBUG_RETURN(error);
}
}
else /* not HA_FULLTEXT, normal HA_NOSAME key */
{
my_afree((byte*) temp_buff);
my_errno=HA_ERR_FOUND_DUPP_KEY;
DBUG_RETURN(-1);
}
}
if (flag == MI_FOUND_WRONG_KEY)
DBUG_RETURN(-1);
if (!was_last_key)
insert_last=0;
next_page=_mi_kpos(nod_flag,keypos);
if (next_page == HA_OFFSET_ERROR ||
(error=w_search(info, keyinfo, comp_flag, key, key_length, next_page,
temp_buff, keypos, page, insert_last)) >0)
{
error=_mi_insert(info,keyinfo,key,temp_buff,keypos,keybuff,father_buff,
father_keypos,father_page, insert_last);
if (_mi_write_keypage(info,keyinfo,page,DFLT_INIT_HITS,temp_buff))
goto err;
}
my_afree((byte*) temp_buff);
DBUG_RETURN(error);
err:
my_afree((byte*) temp_buff);
DBUG_PRINT("exit",("Error: %d",my_errno));
DBUG_RETURN (-1);
} /* w_search */
/* Insert new key at right of key_pos */
/* Returns 2 if key contains key to upper level */
int _mi_insert(register MI_INFO *info, register MI_KEYDEF *keyinfo,
uchar *key, uchar *anc_buff, uchar *key_pos, uchar *key_buff,
uchar *father_buff, uchar *father_key_pos, my_off_t father_page,
my_bool insert_last)
{
uint a_length,nod_flag;
int t_length;
uchar *endpos, *prev_key;
MI_KEY_PARAM s_temp;
DBUG_ENTER("_mi_insert");
DBUG_PRINT("enter",("key_pos: %lx",key_pos));
DBUG_EXECUTE("key",_mi_print_key(DBUG_FILE,keyinfo->seg,key,USE_WHOLE_KEY););
nod_flag=mi_test_if_nod(anc_buff);
a_length=mi_getint(anc_buff);
endpos= anc_buff+ a_length;
prev_key=(key_pos == anc_buff+2+nod_flag ? (uchar*) 0 : key_buff);
t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,
(key_pos == endpos ? (uchar*) 0 : key_pos),
prev_key, prev_key,
key,&s_temp);
#ifndef DBUG_OFF
if (key_pos != anc_buff+2+nod_flag && (keyinfo->flag &
(HA_BINARY_PACK_KEY | HA_PACK_KEY)))
{
DBUG_DUMP("prev_key",(byte*) key_buff,_mi_keylength(keyinfo,key_buff));
}
if (keyinfo->flag & HA_PACK_KEY)
{
DBUG_PRINT("test",("t_length: %d ref_len: %d",
t_length,s_temp.ref_length));
DBUG_PRINT("test",("n_ref_len: %d n_length: %d key_pos: %lx",
s_temp.n_ref_length,s_temp.n_length,s_temp.key));
}
#endif
if (t_length > 0)
{
if (t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH)
{
my_errno=HA_ERR_CRASHED;
DBUG_RETURN(-1);
}
bmove_upp((byte*) endpos+t_length,(byte*) endpos,(uint) (endpos-key_pos));
}
else
{
if (-t_length >= keyinfo->maxlength*2+MAX_POINTER_LENGTH)
{
my_errno=HA_ERR_CRASHED;
DBUG_RETURN(-1);
}
bmove(key_pos,key_pos-t_length,(uint) (endpos-key_pos)+t_length);
}
(*keyinfo->store_key)(keyinfo,key_pos,&s_temp);
a_length+=t_length;
mi_putint(anc_buff,a_length,nod_flag);
if (a_length <= keyinfo->block_length)
{
if (keyinfo->block_length - a_length < 32 &&
keyinfo->flag & HA_FULLTEXT && key_pos == endpos &&
info->s->base.key_reflength <= info->s->base.rec_reflength &&
info->s->options & (HA_OPTION_PACK_RECORD | HA_OPTION_COMPRESS_RECORD))
{
/*
Normal word. One-level tree. Page is almost full.
Let's consider converting.
We'll compare 'key' and the first key at anc_buff
*/
uchar *a=key, *b=anc_buff+2+nod_flag;
uint alen, blen, ft2len=info->s->ft2_keyinfo.keylength;
/* the very first key on the page is always unpacked */
DBUG_ASSERT((*b & 128) == 0);
#if HA_FT_MAXLEN >= 127
blen= mi_uint2korr(b); b+=2;
#else
blen= *b++;
#endif
get_key_length(alen,a);
DBUG_ASSERT(info->ft1_to_ft2==0);
if (alen == blen &&
mi_compare_text(keyinfo->seg->charset, a, alen, b, blen, 0, 0)==0)
{
/* yup. converting */
info->ft1_to_ft2=(DYNAMIC_ARRAY *)
my_malloc(sizeof(DYNAMIC_ARRAY), MYF(MY_WME));
my_init_dynamic_array(info->ft1_to_ft2, ft2len, 300, 50);
/*
now, adding all keys from the page to dynarray
if the page is a leaf (if not keys will be deleted later)
*/
if (!nod_flag)
{
/* let's leave the first key on the page, though, because
we cannot easily dispatch an empty page here */
b+=blen+ft2len+2;
for (a=anc_buff+a_length ; b < a ; b+=ft2len+2)
insert_dynamic(info->ft1_to_ft2, (char*) b);
/* fixing the page's length - it contains only one key now */
mi_putint(anc_buff,2+blen+ft2len+2,0);
}
/* the rest will be done when we're back from recursion */
}
}
DBUG_RETURN(0); /* There is room on page */
}
/* Page is full */
if (nod_flag)
insert_last=0;
if (!(keyinfo->flag & (HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY)) &&
father_buff && !insert_last)
DBUG_RETURN(_mi_balance_page(info,keyinfo,key,anc_buff,father_buff,
father_key_pos,father_page));
DBUG_RETURN(_mi_split_page(info,keyinfo,key,anc_buff,key_buff, insert_last));
} /* _mi_insert */
/* split a full page in two and assign emerging item to key */
int _mi_split_page(register MI_INFO *info, register MI_KEYDEF *keyinfo,
uchar *key, uchar *buff, uchar *key_buff,
my_bool insert_last_key)
{
uint length,a_length,key_ref_length,t_length,nod_flag,key_length;
uchar *key_pos,*pos, *after_key;
my_off_t new_pos;
MI_KEY_PARAM s_temp;
DBUG_ENTER("mi_split_page");
DBUG_DUMP("buff",(byte*) buff,mi_getint(buff));
if (info->s->keyinfo+info->lastinx == keyinfo)
info->page_changed=1; /* Info->buff is used */
info->buff_used=1;
nod_flag=mi_test_if_nod(buff);
key_ref_length=2+nod_flag;
if (insert_last_key)
key_pos=_mi_find_last_pos(keyinfo,buff,key_buff, &key_length, &after_key);
else
key_pos=_mi_find_half_pos(nod_flag,keyinfo,buff,key_buff, &key_length,
&after_key);
if (!key_pos)
DBUG_RETURN(-1);
length=(uint) (key_pos-buff);
a_length=mi_getint(buff);
mi_putint(buff,length,nod_flag);
key_pos=after_key;
if (nod_flag)
{
DBUG_PRINT("test",("Splitting nod"));
pos=key_pos-nod_flag;
memcpy((byte*) info->buff+2,(byte*) pos,(size_t) nod_flag);
}
/* Move middle item to key and pointer to new page */
if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR)
DBUG_RETURN(-1);
_mi_kpointer(info,_mi_move_key(keyinfo,key,key_buff),new_pos);
/* Store new page */
if (!(*keyinfo->get_key)(keyinfo,nod_flag,&key_pos,key_buff))
DBUG_RETURN(-1);
t_length=(*keyinfo->pack_key)(keyinfo,nod_flag,(uchar *) 0,
(uchar*) 0, (uchar*) 0,
key_buff, &s_temp);
length=(uint) ((buff+a_length)-key_pos);
memcpy((byte*) info->buff+key_ref_length+t_length,(byte*) key_pos,
(size_t) length);
(*keyinfo->store_key)(keyinfo,info->buff+key_ref_length,&s_temp);
mi_putint(info->buff,length+t_length+key_ref_length,nod_flag);
if (_mi_write_keypage(info,keyinfo,new_pos,DFLT_INIT_HITS,info->buff))
DBUG_RETURN(-1);
DBUG_DUMP("key",(byte*) key,_mi_keylength(keyinfo,key));
DBUG_RETURN(2); /* Middle key up */
} /* _mi_split_page */
/*
Calculate how to much to move to split a page in two
Returns pointer to start of key.
key will contain the key.
return_key_length will contain the length of key
after_key will contain the position to where the next key starts
*/
uchar *_mi_find_half_pos(uint nod_flag, MI_KEYDEF *keyinfo, uchar *page,
uchar *key, uint *return_key_length,
uchar **after_key)
{
uint keys,length,key_ref_length;
uchar *end,*lastpos;
DBUG_ENTER("_mi_find_half_pos");
key_ref_length=2+nod_flag;
length=mi_getint(page)-key_ref_length;
page+=key_ref_length;
if (!(keyinfo->flag &
(HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY |
HA_BINARY_PACK_KEY)))
{
key_ref_length=keyinfo->keylength+nod_flag;
keys=length/(key_ref_length*2);
*return_key_length=keyinfo->keylength;
end=page+keys*key_ref_length;
*after_key=end+key_ref_length;
memcpy(key,end,key_ref_length);
DBUG_RETURN(end);
}
end=page+length/2-key_ref_length; /* This is aprox. half */
*key='\0';
do
{
lastpos=page;
if (!(length=(*keyinfo->get_key)(keyinfo,nod_flag,&page,key)))
DBUG_RETURN(0);
} while (page < end);
*return_key_length=length;
*after_key=page;
DBUG_PRINT("exit",("returns: %lx page: %lx half: %lx",lastpos,page,end));
DBUG_RETURN(lastpos);
} /* _mi_find_half_pos */
/*
Split buffer at last key
Returns pointer to the start of the key before the last key
key will contain the last key
*/
static uchar *_mi_find_last_pos(MI_KEYDEF *keyinfo, uchar *page,
uchar *key, uint *return_key_length,
uchar **after_key)
{
uint keys,length,last_length,key_ref_length;
uchar *end,*lastpos,*prevpos;
uchar key_buff[MI_MAX_KEY_BUFF];
DBUG_ENTER("_mi_find_last_pos");
key_ref_length=2;
length=mi_getint(page)-key_ref_length;
page+=key_ref_length;
if (!(keyinfo->flag &
(HA_PACK_KEY | HA_SPACE_PACK_USED | HA_VAR_LENGTH_KEY |
HA_BINARY_PACK_KEY)))
{
keys=length/keyinfo->keylength-2;
*return_key_length=length=keyinfo->keylength;
end=page+keys*length;
*after_key=end+length;
memcpy(key,end,length);
DBUG_RETURN(end);
}
LINT_INIT(prevpos);
LINT_INIT(last_length);
end=page+length-key_ref_length;
*key='\0';
length=0;
lastpos=page;
while (page < end)
{
prevpos=lastpos; lastpos=page;
last_length=length;
memcpy(key, key_buff, length); /* previous key */
if (!(length=(*keyinfo->get_key)(keyinfo,0,&page,key_buff)))
{
my_errno=HA_ERR_CRASHED;
DBUG_RETURN(0);
}
}
*return_key_length=last_length;
*after_key=lastpos;
DBUG_PRINT("exit",("returns: %lx page: %lx end: %lx",prevpos,page,end));
DBUG_RETURN(prevpos);
} /* _mi_find_last_pos */
/* Balance page with not packed keys with page on right/left */
/* returns 0 if balance was done */
static int _mi_balance_page(register MI_INFO *info, MI_KEYDEF *keyinfo,
uchar *key, uchar *curr_buff, uchar *father_buff,
uchar *father_key_pos, my_off_t father_page)
{
my_bool right;
uint k_length,father_length,father_keylength,nod_flag,curr_keylength,
right_length,left_length,new_right_length,new_left_length,extra_length,
length,keys;
uchar *pos,*buff,*extra_buff;
my_off_t next_page,new_pos;
byte tmp_part_key[MI_MAX_KEY_BUFF];
DBUG_ENTER("_mi_balance_page");
k_length=keyinfo->keylength;
father_length=mi_getint(father_buff);
father_keylength=k_length+info->s->base.key_reflength;
nod_flag=mi_test_if_nod(curr_buff);
curr_keylength=k_length+nod_flag;
info->page_changed=1;
if ((father_key_pos != father_buff+father_length &&
(info->state->records & 1)) ||
father_key_pos == father_buff+2+info->s->base.key_reflength)
{
right=1;
next_page= _mi_kpos(info->s->base.key_reflength,
father_key_pos+father_keylength);
buff=info->buff;
DBUG_PRINT("test",("use right page: %lu",next_page));
}
else
{
right=0;
father_key_pos-=father_keylength;
next_page= _mi_kpos(info->s->base.key_reflength,father_key_pos);
/* Fix that curr_buff is to left */
buff=curr_buff; curr_buff=info->buff;
DBUG_PRINT("test",("use left page: %lu",next_page));
} /* father_key_pos ptr to parting key */
if (!_mi_fetch_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff,0))
goto err;
DBUG_DUMP("next",(byte*) info->buff,mi_getint(info->buff));
/* Test if there is room to share keys */
left_length=mi_getint(curr_buff);
right_length=mi_getint(buff);
keys=(left_length+right_length-4-nod_flag*2)/curr_keylength;
if ((right ? right_length : left_length) + curr_keylength <=
keyinfo->block_length)
{ /* Merge buffs */
new_left_length=2+nod_flag+(keys/2)*curr_keylength;
new_right_length=2+nod_flag+((keys+1)/2)*curr_keylength;
mi_putint(curr_buff,new_left_length,nod_flag);
mi_putint(buff,new_right_length,nod_flag);
if (left_length < new_left_length)
{ /* Move keys buff -> leaf */
pos=curr_buff+left_length;
memcpy((byte*) pos,(byte*) father_key_pos, (size_t) k_length);
memcpy((byte*) pos+k_length, (byte*) buff+2,
(size_t) (length=new_left_length - left_length - k_length));
pos=buff+2+length;
memcpy((byte*) father_key_pos,(byte*) pos,(size_t) k_length);
bmove((byte*) buff+2,(byte*) pos+k_length,new_right_length);
}
else
{ /* Move keys -> buff */
bmove_upp((byte*) buff+new_right_length,(byte*) buff+right_length,
right_length-2);
length=new_right_length-right_length-k_length;
memcpy((byte*) buff+2+length,father_key_pos,(size_t) k_length);
pos=curr_buff+new_left_length;
memcpy((byte*) father_key_pos,(byte*) pos,(size_t) k_length);
memcpy((byte*) buff+2,(byte*) pos+k_length,(size_t) length);
}
if (_mi_write_keypage(info,keyinfo,next_page,DFLT_INIT_HITS,info->buff) ||
_mi_write_keypage(info,keyinfo,father_page,DFLT_INIT_HITS,father_buff))
goto err;
DBUG_RETURN(0);
}
/* curr_buff[] and buff[] are full, lets split and make new nod */
extra_buff=info->buff+info->s->base.max_key_block_length;
new_left_length=new_right_length=2+nod_flag+(keys+1)/3*curr_keylength;
if (keys == 5) /* Too few keys to balance */
new_left_length-=curr_keylength;
extra_length=nod_flag+left_length+right_length-
new_left_length-new_right_length-curr_keylength;
DBUG_PRINT("info",("left_length: %d right_length: %d new_left_length: %d new_right_length: %d extra_length: %d",
left_length, right_length,
new_left_length, new_right_length,
extra_length));
mi_putint(curr_buff,new_left_length,nod_flag);
mi_putint(buff,new_right_length,nod_flag);
mi_putint(extra_buff,extra_length+2,nod_flag);
/* move first largest keys to new page */
pos=buff+right_length-extra_length;
memcpy((byte*) extra_buff+2,pos,(size_t) extra_length);
/* Save new parting key */
memcpy(tmp_part_key, pos-k_length,k_length);
/* Make place for new keys */
bmove_upp((byte*) buff+new_right_length,(byte*) pos-k_length,
right_length-extra_length-k_length-2);
/* Copy keys from left page */
pos= curr_buff+new_left_length;
memcpy((byte*) buff+2,(byte*) pos+k_length,
(size_t) (length=left_length-new_left_length-k_length));
/* Copy old parting key */
memcpy((byte*) buff+2+length,father_key_pos,(size_t) k_length);
/* Move new parting keys up to caller */
memcpy((byte*) (right ? key : father_key_pos),pos,(size_t) k_length);
memcpy((byte*) (right ? father_key_pos : key),tmp_part_key, k_length);
if ((new_pos=_mi_new(info,keyinfo,DFLT_INIT_HITS)) == HA_OFFSET_ERROR)
goto err;
_mi_kpointer(info,key+k_length,new_pos);
if (_mi_write_keypage(info,keyinfo,(right ? new_pos : next_page),
DFLT_INIT_HITS,info->buff) ||
_mi_write_keypage(info,keyinfo,(right ? next_page : new_pos),
DFLT_INIT_HITS,extra_buff))
goto err;
DBUG_RETURN(1); /* Middle key up */
err:
DBUG_RETURN(-1);
} /* _mi_balance_page */
/**********************************************************************
* Bulk insert code *
**********************************************************************/
typedef struct {
MI_INFO *info;
uint keynr;
} bulk_insert_param;
int _mi_ck_write_tree(register MI_INFO *info, uint keynr, uchar *key,
uint key_length)
{
int error;
DBUG_ENTER("_mi_ck_write_tree");
error= tree_insert(&info->bulk_insert[keynr], key,
key_length + info->s->rec_reflength,
info->bulk_insert[keynr].custom_arg) ? 0 : HA_ERR_OUT_OF_MEM ;
DBUG_RETURN(error);
} /* _mi_ck_write_tree */
/* typeof(_mi_keys_compare)=qsort_cmp2 */
static int keys_compare(bulk_insert_param *param, uchar *key1, uchar *key2)
{
uint not_used;
return ha_key_cmp(param->info->s->keyinfo[param->keynr].seg,
key1, key2, USE_WHOLE_KEY, SEARCH_SAME,
&not_used);
}
static int keys_free(uchar *key, TREE_FREE mode, bulk_insert_param *param)
{
/*
Probably I can use info->lastkey here, but I'm not sure,
and to be safe I'd better use local lastkey.
*/
uchar lastkey[MI_MAX_KEY_BUFF];
uint keylen;
MI_KEYDEF *keyinfo;
switch (mode) {
case free_init:
if (param->info->s->concurrent_insert)
{
rw_wrlock(&param->info->s->key_root_lock[param->keynr]);
param->info->s->keyinfo[param->keynr].version++;
}
return 0;
case free_free:
keyinfo=param->info->s->keyinfo+param->keynr;
keylen=_mi_keylength(keyinfo, key);
memcpy(lastkey, key, keylen);
return _mi_ck_write_btree(param->info,param->keynr,lastkey,
keylen - param->info->s->rec_reflength);
case free_end:
if (param->info->s->concurrent_insert)
rw_unlock(&param->info->s->key_root_lock[param->keynr]);
return 0;
}
return -1;
}
int mi_init_bulk_insert(MI_INFO *info, ulong cache_size, ha_rows rows)
{
MYISAM_SHARE *share=info->s;
MI_KEYDEF *key=share->keyinfo;
bulk_insert_param *params;
uint i, num_keys, total_keylength;
ulonglong key_map=0;
DBUG_ENTER("_mi_init_bulk_insert");
DBUG_PRINT("enter",("cache_size: %lu", cache_size));
DBUG_ASSERT(!info->bulk_insert &&
(!rows || rows >= MI_MIN_ROWS_TO_USE_BULK_INSERT));
for (i=total_keylength=num_keys=0 ; i < share->base.keys ; i++)
{
if (!(key[i].flag & HA_NOSAME) && share->base.auto_key != i+1
&& test(share->state.key_map & ((ulonglong) 1 << i)))
{
num_keys++;
key_map |=((ulonglong) 1 << i);
total_keylength+=key[i].maxlength+TREE_ELEMENT_EXTRA_SIZE;
}
}
if (num_keys==0 ||
num_keys * MI_MIN_SIZE_BULK_INSERT_TREE > cache_size)
DBUG_RETURN(0);
if (rows && rows*total_keylength < cache_size)
cache_size=rows;
else
cache_size/=total_keylength*16;
info->bulk_insert=(TREE *)
my_malloc((sizeof(TREE)*share->base.keys+
sizeof(bulk_insert_param)*num_keys),MYF(0));
if (!info->bulk_insert)
DBUG_RETURN(HA_ERR_OUT_OF_MEM);
params=(bulk_insert_param *)(info->bulk_insert+share->base.keys);
for (i=0 ; i < share->base.keys ; i++)
{
if (test(key_map & ((ulonglong) 1 << i)))
{
params->info=info;
params->keynr=i;
/* Only allocate a 16'th of the buffer at a time */
init_tree(&info->bulk_insert[i],
cache_size * key[i].maxlength,
cache_size * key[i].maxlength, 0,
(qsort_cmp2)keys_compare, 0,
(tree_element_free) keys_free, (void *)params++);
}
else
info->bulk_insert[i].root=0;
}
DBUG_RETURN(0);
}
void mi_flush_bulk_insert(MI_INFO *info, uint inx)
{
if (info->bulk_insert)
{
if (is_tree_inited(&info->bulk_insert[inx]))
reset_tree(&info->bulk_insert[inx]);
}
}
void mi_end_bulk_insert(MI_INFO *info)
{
if (info->bulk_insert)
{
uint i;
for (i=0 ; i < info->s->base.keys ; i++)
{
if (is_tree_inited(& info->bulk_insert[i]))
{
delete_tree(& info->bulk_insert[i]);
}
}
my_free((void *)info->bulk_insert, MYF(0));
info->bulk_insert=0;
}
}