mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
651f61fc1f
wt_thd_will_wait_for() was called. That is a caller doesn't need to hold a mutex all the time preventing blockers from releasing a resource.
646 lines
19 KiB
C
646 lines
19 KiB
C
/* Copyright (C) 2008 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
Note that if your lock system satisfy the following condition:
|
|
|
|
there exist four lock levels A, B, C, D, such as
|
|
A is compatible with B
|
|
A is not compatible with C
|
|
D is not compatible with B
|
|
|
|
(example A=IX, B=IS, C=S, D=X)
|
|
|
|
you need to include lock level in the resource identifier - thread 1
|
|
waiting for lock A on resource R and thread 2 waiting for lock B
|
|
on resource R should wait on different WT_RESOURCE structures, on different
|
|
{lock, resource} pairs. Otherwise the following is possible:
|
|
|
|
thread1> take S-lock on R
|
|
thread2> take IS-lock on R
|
|
thread3> wants X-lock on R, starts waiting for threads 1 and 2 on R.
|
|
thread3 is killed (or timeout or whatever)
|
|
WT_RESOURCE structure for R is still in the hash, as it has two owners
|
|
thread4> wants an IX-lock on R
|
|
WT_RESOURCE for R is found in the hash, thread4 starts waiting on it.
|
|
!! now thread4 is waiting for both thread1 and thread2
|
|
!! while, in fact, IX-lock and IS-lock are compatible and
|
|
!! thread4 should not wait for thread2.
|
|
*/
|
|
|
|
#include <waiting_threads.h>
|
|
#include <m_string.h>
|
|
|
|
uint wt_timeout_short=100, wt_deadlock_search_depth_short=4;
|
|
uint wt_timeout_long=10000, wt_deadlock_search_depth_long=15;
|
|
|
|
/*
|
|
status variables:
|
|
distribution of cycle lengths
|
|
wait time log distribution
|
|
|
|
Note:
|
|
|
|
we call deadlock() twice per wait (with different search lengths).
|
|
it means a deadlock will be counted twice. It's difficult to avoid,
|
|
as on the second search we could find a *different* deadlock and we
|
|
*want* to count it too. So we just count all deadlocks - two searches
|
|
mean two increments on the wt_cycle_stats.
|
|
*/
|
|
|
|
ulonglong wt_wait_table[WT_WAIT_STATS];
|
|
uint32 wt_wait_stats[WT_WAIT_STATS+1];
|
|
uint32 wt_cycle_stats[2][WT_CYCLE_STATS+1], wt_success_stats;
|
|
|
|
static my_atomic_rwlock_t cycle_stats_lock, wait_stats_lock, success_stats_lock;
|
|
|
|
#define increment_success_stats() \
|
|
do { \
|
|
my_atomic_rwlock_wrlock(&success_stats_lock); \
|
|
my_atomic_add32(&wt_success_stats, 1); \
|
|
my_atomic_rwlock_wrunlock(&success_stats_lock); \
|
|
} while (0)
|
|
|
|
#define increment_cycle_stats(X,MAX) \
|
|
do { \
|
|
uint i= (X), j= (MAX) == wt_deadlock_search_depth_long; \
|
|
if (i >= WT_CYCLE_STATS) \
|
|
i= WT_CYCLE_STATS; \
|
|
my_atomic_rwlock_wrlock(&cycle_stats_lock); \
|
|
my_atomic_add32(&wt_cycle_stats[j][i], 1); \
|
|
my_atomic_rwlock_wrunlock(&cycle_stats_lock); \
|
|
} while (0)
|
|
|
|
#define increment_wait_stats(X,RET) \
|
|
do { \
|
|
uint i; \
|
|
if ((RET) == ETIMEDOUT) \
|
|
i= WT_WAIT_STATS; \
|
|
else \
|
|
{ \
|
|
ulonglong w=(X)/10; \
|
|
for (i=0; i < WT_WAIT_STATS && w > wt_wait_table[i]; i++) ; \
|
|
} \
|
|
my_atomic_rwlock_wrlock(&wait_stats_lock); \
|
|
my_atomic_add32(wt_wait_stats+i, 1); \
|
|
my_atomic_rwlock_wrunlock(&wait_stats_lock); \
|
|
} while (0)
|
|
|
|
#define rc_rdlock(X) \
|
|
do { \
|
|
WT_RESOURCE *R=(X); \
|
|
DBUG_PRINT("wt", ("LOCK resid=%lld for READ", R->id.value.num)); \
|
|
pthread_rwlock_rdlock(&R->lock); \
|
|
} while (0)
|
|
#define rc_wrlock(X) \
|
|
do { \
|
|
WT_RESOURCE *R=(X); \
|
|
DBUG_PRINT("wt", ("LOCK resid=%lld for WRITE", R->id.value.num)); \
|
|
pthread_rwlock_wrlock(&R->lock); \
|
|
} while (0)
|
|
#define rc_unlock(X) \
|
|
do { \
|
|
WT_RESOURCE *R=(X); \
|
|
DBUG_PRINT("wt", ("UNLOCK resid=%lld", R->id.value.num)); \
|
|
pthread_rwlock_unlock(&R->lock); \
|
|
} while (0)
|
|
|
|
static LF_HASH reshash;
|
|
|
|
static void wt_resource_init(uchar *arg)
|
|
{
|
|
WT_RESOURCE *rc=(WT_RESOURCE*)(arg+LF_HASH_OVERHEAD);
|
|
DBUG_ENTER("wt_resource_init");
|
|
|
|
bzero(rc, sizeof(*rc));
|
|
pthread_rwlock_init(&rc->lock, 0);
|
|
pthread_cond_init(&rc->cond, 0);
|
|
my_init_dynamic_array(&rc->owners, sizeof(WT_THD *), 5, 5);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
static void wt_resource_destroy(uchar *arg)
|
|
{
|
|
WT_RESOURCE *rc=(WT_RESOURCE*)(arg+LF_HASH_OVERHEAD);
|
|
DBUG_ENTER("wt_resource_destroy");
|
|
|
|
DBUG_ASSERT(rc->owners.elements == 0);
|
|
pthread_rwlock_destroy(&rc->lock);
|
|
pthread_cond_destroy(&rc->cond);
|
|
delete_dynamic(&rc->owners);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void wt_init()
|
|
{
|
|
DBUG_ENTER("wt_init");
|
|
|
|
lf_hash_init(&reshash, sizeof(WT_RESOURCE), LF_HASH_UNIQUE, 0,
|
|
sizeof(struct st_wt_resource_id), 0, 0);
|
|
reshash.alloc.constructor= wt_resource_init;
|
|
reshash.alloc.destructor= wt_resource_destroy;
|
|
/*
|
|
Note a trick: we initialize the hash with the real element size,
|
|
but fix it later to a shortened element size. This way
|
|
the allocator will allocate elements correctly, but
|
|
lf_hash_insert() will only overwrite part of the element with memcpy().
|
|
lock, condition, and dynamic array will be intact.
|
|
*/
|
|
reshash.element_size= offsetof(WT_RESOURCE, lock);
|
|
bzero(wt_wait_stats, sizeof(wt_wait_stats));
|
|
bzero(wt_cycle_stats, sizeof(wt_cycle_stats));
|
|
wt_success_stats=0;
|
|
{
|
|
int i;
|
|
double from=log(1); /* 1 us */
|
|
double to=log(60e6); /* 1 min */
|
|
for (i=0; i < WT_WAIT_STATS; i++)
|
|
{
|
|
wt_wait_table[i]=(ulonglong)exp((to-from)/(WT_WAIT_STATS-1)*i+from);
|
|
DBUG_ASSERT(i==0 || wt_wait_table[i-1] != wt_wait_table[i]);
|
|
}
|
|
}
|
|
my_atomic_rwlock_init(&cycle_stats_lock);
|
|
my_atomic_rwlock_init(&success_stats_lock);
|
|
my_atomic_rwlock_init(&wait_stats_lock);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void wt_end()
|
|
{
|
|
DBUG_ENTER("wt_end");
|
|
|
|
DBUG_ASSERT(reshash.count == 0);
|
|
lf_hash_destroy(&reshash);
|
|
my_atomic_rwlock_destroy(&cycle_stats_lock);
|
|
my_atomic_rwlock_destroy(&success_stats_lock);
|
|
my_atomic_rwlock_destroy(&wait_stats_lock);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void wt_thd_init(WT_THD *thd)
|
|
{
|
|
DBUG_ENTER("wt_thd_init");
|
|
|
|
my_init_dynamic_array(&thd->my_resources, sizeof(WT_RESOURCE *), 10, 5);
|
|
thd->pins=lf_hash_get_pins(&reshash);
|
|
thd->waiting_for=0;
|
|
thd->weight=0;
|
|
#ifndef DBUG_OFF
|
|
thd->name=my_thread_name();
|
|
#endif
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
void wt_thd_destroy(WT_THD *thd)
|
|
{
|
|
DBUG_ENTER("wt_thd_destroy");
|
|
|
|
DBUG_ASSERT(thd->my_resources.elements == 0);
|
|
delete_dynamic(&thd->my_resources);
|
|
lf_hash_put_pins(thd->pins);
|
|
thd->waiting_for=0;
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
int wt_resource_id_memcmp(void *a, void *b)
|
|
{
|
|
return memcmp(a, b, sizeof(WT_RESOURCE_ID));
|
|
}
|
|
|
|
struct deadlock_arg {
|
|
WT_THD *thd;
|
|
uint max_depth;
|
|
WT_THD *victim;
|
|
WT_RESOURCE *rc;
|
|
};
|
|
|
|
/*
|
|
loop detection in a wait-for graph with a limited search depth.
|
|
*/
|
|
static int deadlock_search(struct deadlock_arg *arg, WT_THD *blocker,
|
|
uint depth)
|
|
{
|
|
WT_RESOURCE *rc, *volatile *shared_ptr= &blocker->waiting_for;
|
|
WT_THD *cursor;
|
|
uint i;
|
|
int ret= WT_OK;
|
|
DBUG_ENTER("deadlock_search");
|
|
DBUG_PRINT("wt", ("enter: thd=%s, blocker=%s, depth=%u",
|
|
arg->thd->name, blocker->name, depth));
|
|
|
|
LF_REQUIRE_PINS(1);
|
|
|
|
arg->rc= 0;
|
|
|
|
if (depth > arg->max_depth)
|
|
{
|
|
DBUG_PRINT("wt", ("exit: WT_DEPTH_EXCEEDED (early)"));
|
|
DBUG_RETURN(WT_DEPTH_EXCEEDED);
|
|
}
|
|
|
|
retry:
|
|
/* safe dereference as explained in lf_alloc-pin.c */
|
|
do
|
|
{
|
|
rc= *shared_ptr;
|
|
lf_pin(arg->thd->pins, 0, rc);
|
|
} while (rc != *shared_ptr && LF_BACKOFF);
|
|
|
|
if (rc == 0)
|
|
{
|
|
DBUG_PRINT("wt", ("exit: OK (early)"));
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
rc_rdlock(rc);
|
|
if (rc->state != ACTIVE || *shared_ptr != rc)
|
|
{
|
|
rc_unlock(rc);
|
|
lf_unpin(arg->thd->pins, 0);
|
|
goto retry;
|
|
}
|
|
lf_unpin(arg->thd->pins, 0);
|
|
|
|
for (i=0; i < rc->owners.elements; i++)
|
|
{
|
|
cursor= *dynamic_element(&rc->owners, i, WT_THD**);
|
|
if (cursor == arg->thd)
|
|
{
|
|
ret= WT_DEADLOCK;
|
|
increment_cycle_stats(depth, arg->max_depth);
|
|
arg->victim= cursor;
|
|
goto end;
|
|
}
|
|
}
|
|
for (i=0; i < rc->owners.elements; i++)
|
|
{
|
|
cursor= *dynamic_element(&rc->owners, i, WT_THD**);
|
|
switch (deadlock_search(arg, cursor, depth+1)) {
|
|
case WT_DEPTH_EXCEEDED:
|
|
ret= WT_DEPTH_EXCEEDED;
|
|
break;
|
|
case WT_DEADLOCK:
|
|
ret= WT_DEADLOCK;
|
|
if (cursor->weight < arg->victim->weight)
|
|
{
|
|
if (arg->victim != arg->thd)
|
|
{
|
|
rc_unlock(arg->victim->waiting_for); /* release the previous victim */
|
|
DBUG_ASSERT(arg->rc == cursor->waiting_for);
|
|
}
|
|
arg->victim= cursor;
|
|
}
|
|
else if (arg->rc)
|
|
rc_unlock(arg->rc);
|
|
goto end;
|
|
case WT_OK:
|
|
break;
|
|
default:
|
|
DBUG_ASSERT(0);
|
|
}
|
|
if (arg->rc)
|
|
rc_unlock(arg->rc);
|
|
}
|
|
end:
|
|
arg->rc= rc;
|
|
DBUG_PRINT("wt", ("exit: %s",
|
|
ret == WT_DEPTH_EXCEEDED ? "WT_DEPTH_EXCEEDED" :
|
|
ret ? "WT_DEADLOCK" : "OK"));
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
static int deadlock(WT_THD *thd, WT_THD *blocker, uint depth,
|
|
uint max_depth)
|
|
{
|
|
struct deadlock_arg arg= {thd, max_depth, 0, 0};
|
|
int ret;
|
|
DBUG_ENTER("deadlock");
|
|
ret= deadlock_search(&arg, blocker, depth);
|
|
if (arg.rc)
|
|
rc_unlock(arg.rc);
|
|
if (ret == WT_DEPTH_EXCEEDED)
|
|
{
|
|
increment_cycle_stats(WT_CYCLE_STATS, max_depth);
|
|
ret= WT_OK;
|
|
}
|
|
if (ret == WT_DEADLOCK && arg.victim != thd)
|
|
{
|
|
DBUG_PRINT("wt", ("killing %s", arg.victim->name));
|
|
arg.victim->killed=1;
|
|
pthread_cond_broadcast(&arg.victim->waiting_for->cond);
|
|
rc_unlock(arg.victim->waiting_for);
|
|
ret= WT_OK;
|
|
}
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
|
|
/*
|
|
Deletes an element from reshash.
|
|
rc->lock must be locked by the caller and it's unlocked on return.
|
|
*/
|
|
static void unlock_lock_and_free_resource(WT_THD *thd, WT_RESOURCE *rc)
|
|
{
|
|
uint keylen;
|
|
const void *key;
|
|
DBUG_ENTER("unlock_lock_and_free_resource");
|
|
|
|
DBUG_ASSERT(rc->state == ACTIVE);
|
|
|
|
if (rc->owners.elements || rc->waiter_count)
|
|
{
|
|
DBUG_PRINT("wt", ("nothing to do, %d owners, %d waiters",
|
|
rc->owners.elements, rc->waiter_count));
|
|
rc_unlock(rc);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
/* XXX if (rc->id.type->make_key) key= rc->id.type->make_key(&rc->id, &keylen); else */
|
|
{
|
|
key= &rc->id;
|
|
keylen= sizeof(rc->id);
|
|
}
|
|
|
|
/*
|
|
To free the element correctly we need to:
|
|
1. take its lock (already done).
|
|
2. set the state to FREE
|
|
3. release the lock
|
|
4. remove from the hash
|
|
|
|
I *think* it's safe to release the lock while the element is still
|
|
in the hash. If not, the corrected procedure should be
|
|
3. pin; 4; remove; 5; release; 6; unpin and it'll need pin[3].
|
|
*/
|
|
rc->state=FREE;
|
|
rc_unlock(rc);
|
|
lf_hash_delete(&reshash, thd->pins, key, keylen);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
int wt_thd_dontwait_locked(WT_THD *thd)
|
|
{
|
|
WT_RESOURCE *rc= thd->waiting_for;
|
|
DBUG_ENTER("wt_thd_dontwait_locked");
|
|
|
|
DBUG_ASSERT(rc->waiter_count);
|
|
DBUG_ASSERT(rc->state == ACTIVE);
|
|
rc->waiter_count--;
|
|
thd->waiting_for= 0;
|
|
unlock_lock_and_free_resource(thd, rc);
|
|
DBUG_RETURN(thd->killed ? WT_DEADLOCK : WT_OK);
|
|
}
|
|
|
|
int wt_thd_dontwait(WT_THD *thd)
|
|
{
|
|
int ret;
|
|
WT_RESOURCE *rc= thd->waiting_for;
|
|
DBUG_ENTER("wt_thd_dontwait");
|
|
|
|
if (!rc)
|
|
DBUG_RETURN(WT_OK);
|
|
/*
|
|
nobody's trying to free the resource now,
|
|
as its waiter_count is guaranteed to be non-zero
|
|
*/
|
|
rc_wrlock(rc);
|
|
ret= wt_thd_dontwait_locked(thd);
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
/*
|
|
called by a *waiter* to declare what resource it will wait for.
|
|
can be called many times, if many blockers own a blocking resource.
|
|
but must always be called with the same resource id - a thread cannot
|
|
wait for more than one resource at a time.
|
|
*/
|
|
int wt_thd_will_wait_for(WT_THD *thd, WT_THD *blocker, WT_RESOURCE_ID *resid)
|
|
{
|
|
uint i;
|
|
WT_RESOURCE *rc;
|
|
DBUG_ENTER("wt_thd_will_wait_for");
|
|
|
|
LF_REQUIRE_PINS(3);
|
|
|
|
DBUG_PRINT("wt", ("enter: thd=%s, blocker=%s, resid=%llu",
|
|
thd->name, blocker->name, resid->value.num));
|
|
|
|
if (thd->waiting_for == 0)
|
|
{
|
|
uint keylen;
|
|
const void *key;
|
|
/* XXX if (restype->make_key) key= restype->make_key(resid, &keylen); else */
|
|
{
|
|
key= resid;
|
|
keylen= sizeof(*resid);
|
|
}
|
|
|
|
DBUG_PRINT("wt", ("first blocker"));
|
|
|
|
retry:
|
|
while ((rc= lf_hash_search(&reshash, thd->pins, key, keylen)) == 0)
|
|
{
|
|
WT_RESOURCE tmp;
|
|
|
|
DBUG_PRINT("wt", ("failed to find rc in hash, inserting"));
|
|
bzero(&tmp, sizeof(tmp));
|
|
tmp.waiter_count= 0;
|
|
tmp.id= *resid;
|
|
tmp.state= ACTIVE;
|
|
#ifndef DBUG_OFF
|
|
tmp.mutex= 0;
|
|
#endif
|
|
|
|
lf_hash_insert(&reshash, thd->pins, &tmp);
|
|
/*
|
|
Two cases: either lf_hash_insert() failed - because another thread
|
|
has just inserted a resource with the same id - and we need to retry.
|
|
Or lf_hash_insert() succeeded, and then we need to repeat
|
|
lf_hash_search() to find a real address of the newly inserted element.
|
|
That is, we don't care what lf_hash_insert() has returned.
|
|
And we need to repeat the loop anyway.
|
|
*/
|
|
}
|
|
DBUG_PRINT("wt", ("found in hash rc=%p", rc));
|
|
|
|
rc_wrlock(rc);
|
|
if (rc->state != ACTIVE)
|
|
{
|
|
DBUG_PRINT("wt", ("but it's not active, retrying"));
|
|
/* Somebody has freed the element while we weren't looking */
|
|
rc_unlock(rc);
|
|
lf_hash_search_unpin(thd->pins);
|
|
goto retry;
|
|
}
|
|
|
|
lf_hash_search_unpin(thd->pins); /* the element cannot go away anymore */
|
|
thd->waiting_for= rc;
|
|
rc->waiter_count++;
|
|
thd->killed= 0;
|
|
|
|
}
|
|
else
|
|
{
|
|
DBUG_ASSERT(thd->waiting_for->id.type == resid->type);
|
|
DBUG_ASSERT(resid->type->compare(&thd->waiting_for->id, resid) == 0);
|
|
DBUG_PRINT("wt", ("adding another blocker"));
|
|
|
|
/*
|
|
we can safely access the resource here, it's in the hash as it has
|
|
at least one owner, and non-zero waiter_count
|
|
*/
|
|
rc= thd->waiting_for;
|
|
rc_wrlock(rc);
|
|
DBUG_ASSERT(rc->waiter_count);
|
|
DBUG_ASSERT(rc->state == ACTIVE);
|
|
|
|
if (thd->killed)
|
|
{
|
|
wt_thd_dontwait_locked(thd);
|
|
DBUG_RETURN(WT_DEADLOCK);
|
|
}
|
|
}
|
|
for (i=0; i < rc->owners.elements; i++)
|
|
if (*dynamic_element(&rc->owners, i, WT_THD**) == blocker)
|
|
break;
|
|
if (i >= rc->owners.elements)
|
|
{
|
|
push_dynamic(&blocker->my_resources, (void*)&rc);
|
|
push_dynamic(&rc->owners, (void*)&blocker);
|
|
}
|
|
rc_unlock(rc);
|
|
|
|
if (deadlock(thd, blocker, 1, wt_deadlock_search_depth_short))
|
|
{
|
|
wt_thd_dontwait(thd);
|
|
DBUG_RETURN(WT_DEADLOCK);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/*
|
|
called by a *waiter* to start waiting
|
|
|
|
It's supposed to be a drop-in replacement for
|
|
pthread_cond_timedwait(), and it takes mutex as an argument.
|
|
*/
|
|
int wt_thd_cond_timedwait(WT_THD *thd, pthread_mutex_t *mutex)
|
|
{
|
|
int ret= WT_TIMEOUT;
|
|
struct timespec timeout;
|
|
ulonglong before, after, starttime;
|
|
WT_RESOURCE *rc= thd->waiting_for;
|
|
DBUG_ENTER("wt_thd_cond_timedwait");
|
|
DBUG_PRINT("wt", ("enter: thd=%s, rc=%p", thd->name, rc));
|
|
|
|
#ifndef DBUG_OFF
|
|
if (rc->mutex)
|
|
DBUG_ASSERT(rc->mutex == mutex);
|
|
else
|
|
rc->mutex= mutex;
|
|
safe_mutex_assert_owner(mutex);
|
|
#endif
|
|
|
|
before= starttime= my_getsystime();
|
|
|
|
#ifdef __WIN__
|
|
/*
|
|
only for the sake of Windows we distinguish between
|
|
'before' and 'starttime'
|
|
*/
|
|
GetSystemTimeAsFileTime((PFILETIME)&starttime);
|
|
#endif
|
|
|
|
rc_wrlock(rc);
|
|
if (rc->owners.elements == 0 && thd->killed)
|
|
ret= WT_OK;
|
|
rc_unlock(rc);
|
|
|
|
set_timespec_time_nsec(timeout, starttime, wt_timeout_short*1000);
|
|
if (ret == WT_TIMEOUT)
|
|
ret= pthread_cond_timedwait(&rc->cond, mutex, &timeout);
|
|
if (ret == WT_TIMEOUT)
|
|
{
|
|
if (deadlock(thd, thd, 0, wt_deadlock_search_depth_long))
|
|
ret= WT_DEADLOCK;
|
|
else if (wt_timeout_long > wt_timeout_short)
|
|
{
|
|
set_timespec_time_nsec(timeout, starttime, wt_timeout_long*1000);
|
|
if (!thd->killed)
|
|
ret= pthread_cond_timedwait(&rc->cond, mutex, &timeout);
|
|
}
|
|
}
|
|
after= my_getsystime();
|
|
if (wt_thd_dontwait(thd) == WT_DEADLOCK)
|
|
ret= WT_DEADLOCK;
|
|
increment_wait_stats(after-before, ret);
|
|
if (ret == WT_OK)
|
|
increment_success_stats();
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
/*
|
|
called by a *blocker* when it releases a resource
|
|
|
|
when resid==0 all resources will be freed
|
|
|
|
Note: it's conceptually similar to pthread_cond_broadcast, and must be done
|
|
under the same mutex as wt_thd_cond_timedwait().
|
|
*/
|
|
void wt_thd_release(WT_THD *thd, WT_RESOURCE_ID *resid)
|
|
{
|
|
WT_RESOURCE *rc;
|
|
uint i, j;
|
|
DBUG_ENTER("wt_thd_release");
|
|
|
|
for (i=0; i < thd->my_resources.elements; i++)
|
|
{
|
|
rc= *dynamic_element(&thd->my_resources, i, WT_RESOURCE**);
|
|
if (!resid || (resid->type->compare(&rc->id, resid) == 0))
|
|
{
|
|
rc_wrlock(rc);
|
|
/*
|
|
nobody's trying to free the resource now,
|
|
as its owners[] array is not empty (at least thd must be there)
|
|
*/
|
|
DBUG_ASSERT(rc->state == ACTIVE);
|
|
for (j=0; j < rc->owners.elements; j++)
|
|
if (*dynamic_element(&rc->owners, j, WT_THD**) == thd)
|
|
break;
|
|
DBUG_ASSERT(j < rc->owners.elements);
|
|
delete_dynamic_element(&rc->owners, j);
|
|
if (rc->owners.elements == 0)
|
|
{
|
|
pthread_cond_broadcast(&rc->cond);
|
|
#ifndef DBUG_OFF
|
|
if (rc->mutex)
|
|
safe_mutex_assert_owner(rc->mutex);
|
|
#endif
|
|
}
|
|
unlock_lock_and_free_resource(thd, rc);
|
|
if (resid)
|
|
{
|
|
delete_dynamic_element(&thd->my_resources, i);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
}
|
|
}
|
|
DBUG_ASSERT(!resid);
|
|
reset_dynamic(&thd->my_resources);
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|