mirror of
https://github.com/MariaDB/server.git
synced 2025-01-22 23:04:20 +01:00
d58b1a3331
git-svn-id: file:///svn/toku/tokudb@43473 c7de825b-a66e-492c-adef-691d508d4ae1
539 lines
17 KiB
C
539 lines
17 KiB
C
/* -*- mode: C; c-basic-offset: 4 -*- */
|
|
|
|
#ident "$Id$"
|
|
#ident "Copyright (c) 2010 Tokutek Inc. All rights reserved."
|
|
|
|
// Here are some timing numbers:
|
|
// (Note: The not-quite-working version with cas can be found in r22519 of https://svn.tokutek.com/tokudb/toku/tokudb.2825/) It's about as fast as "Best cas".)
|
|
//
|
|
// On ramie (2.53GHz E5540)
|
|
// Best nop time= 1.074300ns
|
|
// Best cas time= 8.595600ns
|
|
// Best mutex time= 19.340201ns
|
|
// Best rwlock time= 34.024799ns
|
|
// Best newbrt rwlock time= 38.680500ns
|
|
// Best prelocked time= 2.148700ns
|
|
// Best fair rwlock time= 45.127600ns
|
|
// On laptop
|
|
// Best nop time= 2.876000ns
|
|
// Best cas time= 15.362500ns
|
|
// Best mutex time= 51.951498ns
|
|
// Best rwlock time= 97.721201ns
|
|
// Best newbrt rwlock time=110.456800ns
|
|
// Best prelocked time= 4.240100ns
|
|
// Best fair rwlock time=113.119102ns
|
|
//
|
|
// Analysis: If the mutex can be prelocked (as cachetable does, it uses the same mutex for the cachetable and for the condition variable protecting the cache table)
|
|
// then you can save quite a bit. What does the cachetable do?
|
|
// During pin: (In the common case:) It grabs the mutex, grabs a read lock, and releases the mutex.
|
|
// During unpin: It grabs the mutex, unlocks the rwlock lock in the pair, and releases the mutex.
|
|
// Both actions must acquire a cachetable lock during that time, so definitely saves time to do it that way.
|
|
|
|
#include <toku_pthread.h>
|
|
#include <toku_portability.h>
|
|
#include <toku_time.h>
|
|
#include <pthread.h>
|
|
#include <toku_assert.h>
|
|
#include <sys/time.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include "../../newbrt/rwlock.h"
|
|
#include <sys/types.h>
|
|
|
|
#include "rwlock_condvar.h"
|
|
|
|
static int verbose=1;
|
|
static int timing_only=0;
|
|
|
|
static void parse_args (int argc, const char *argv[]) {
|
|
const char *progname = argv[0];
|
|
argc--; argv++;
|
|
while (argc>0) {
|
|
if (strcmp(argv[0], "-v")==0) {
|
|
verbose++;
|
|
} else if (strcmp(argv[0], "-q")==0) {
|
|
verbose--;
|
|
} else if (strcmp(argv[0], "--timing-only")==0) {
|
|
timing_only=1;
|
|
} else {
|
|
fprintf(stderr, "Usage: %s {-q}* {-v}* {--timing-only}\n", progname);
|
|
exit(1);
|
|
}
|
|
argc--; argv++;
|
|
}
|
|
}
|
|
|
|
static const int T=6;
|
|
static const int N=10000000;
|
|
|
|
static double best_nop_time=1e12;
|
|
static double best_fcall_time=1e12;
|
|
static double best_cas_time=1e12;
|
|
static double best_mutex_time=1e12;
|
|
static double best_rwlock_time=1e12;
|
|
static double best_newbrt_time=1e12;
|
|
static double best_prelocked_time=1e12;
|
|
static double best_cv_fair_rwlock_time=1e12; // fair from condition variables
|
|
static double best_fair_rwlock_time=1e12;
|
|
static double mind(double a, double b) { if (a<b) return a; else return b; }
|
|
|
|
#if 0
|
|
// gcc 4.4.4 (fedora 12) doesn't introduce memory barriers on these writes, so I think that volatile is not enough for sequential consistency.
|
|
// Intel guarantees that writes are seen in the same order as they were performed on one processor. But if there were two processors, funny things could happen.
|
|
volatile int sc_a, sc_b;
|
|
void sequential_consistency (void) {
|
|
sc_a = 1;
|
|
sc_b = 0;
|
|
}
|
|
#endif
|
|
|
|
// Declaring val to be volatile produces essentially identical code as putting the asm volatile memory statements in.
|
|
// gcc is not introducing memory barriers to force sequential consistency on volatile memory writes.
|
|
// That's probably good enough for us, since we'll have a barrier instruction anywhere it matters.
|
|
volatile int val = 0;
|
|
|
|
static
|
|
void time_nop (void) {
|
|
struct timeval start,end;
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
if (val!=0) abort();
|
|
val=1;
|
|
//__asm__ volatile ("" : : : "memory");
|
|
val=0;
|
|
//__asm__ volatile ("" : : : "memory");
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "nop = %.6fns/(lock+unlock)\n", diff);
|
|
best_nop_time=mind(best_nop_time,diff);
|
|
}
|
|
}
|
|
|
|
static
|
|
void time_fcall (void) {
|
|
struct timeval start,end;
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
fcall_nop(i);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "fcall = %.6fns/(lock+unlock)\n", diff);
|
|
best_fcall_time=mind(best_fcall_time,diff);
|
|
}
|
|
}
|
|
|
|
static
|
|
void time_cas (void) {
|
|
volatile int64_t myval = 0;
|
|
struct timeval start,end;
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
{ int r = __sync_val_compare_and_swap(&myval, 0, 1); assert(r==0); }
|
|
{ int r = __sync_val_compare_and_swap(&myval, 1, 0); assert(r==1); }
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "cas = %.6fns/(lock+unlock)\n", diff);
|
|
best_cas_time=mind(best_cas_time,diff);
|
|
}
|
|
}
|
|
|
|
|
|
static
|
|
void time_pthread_mutex (void) {
|
|
pthread_mutex_t mutex;
|
|
{ int r = pthread_mutex_init(&mutex, NULL); assert(r==0); }
|
|
struct timeval start,end;
|
|
pthread_mutex_lock(&mutex);
|
|
pthread_mutex_unlock(&mutex);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
pthread_mutex_lock(&mutex);
|
|
pthread_mutex_unlock(&mutex);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "pthread_mutex = %.6fns/(lock+unlock)\n", diff);
|
|
best_mutex_time=mind(best_mutex_time,diff);
|
|
}
|
|
{ int r = pthread_mutex_destroy(&mutex); assert(r==0); }
|
|
}
|
|
|
|
static
|
|
void time_pthread_rwlock (void) {
|
|
pthread_rwlock_t mutex;
|
|
{ int r = pthread_rwlock_init(&mutex, NULL); assert(r==0); }
|
|
struct timeval start,end;
|
|
pthread_rwlock_rdlock(&mutex);
|
|
pthread_rwlock_unlock(&mutex);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
pthread_rwlock_rdlock(&mutex);
|
|
pthread_rwlock_unlock(&mutex);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "pthread_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
|
|
best_rwlock_time=mind(best_rwlock_time,diff);
|
|
}
|
|
{ int r = pthread_rwlock_destroy(&mutex); assert(r==0); }
|
|
}
|
|
|
|
static void newbrt_rwlock_lock (RWLOCK rwlock, toku_pthread_mutex_t *mutex) {
|
|
{ int r = toku_pthread_mutex_lock(mutex); assert(r==0); }
|
|
rwlock_read_lock(rwlock, mutex);
|
|
{ int r = toku_pthread_mutex_unlock(mutex); assert(r==0); }
|
|
}
|
|
|
|
static void newbrt_rwlock_unlock (RWLOCK rwlock, toku_pthread_mutex_t *mutex) {
|
|
{ int r = toku_pthread_mutex_lock(mutex); assert(r==0); }
|
|
rwlock_read_unlock(rwlock);
|
|
{ int r = toku_pthread_mutex_unlock(mutex); assert(r==0); }
|
|
}
|
|
|
|
// Time the read lock that's in newbrt/rwlock.h
|
|
static
|
|
void time_newbrt_rwlock (void) {
|
|
struct rwlock rwlock;
|
|
toku_pthread_mutex_t external_mutex;
|
|
{ int r = pthread_mutex_init(&external_mutex, NULL); assert(r==0); }
|
|
rwlock_init(&rwlock);
|
|
struct timeval start,end;
|
|
|
|
newbrt_rwlock_lock(&rwlock, &external_mutex);
|
|
newbrt_rwlock_unlock(&rwlock, &external_mutex);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
newbrt_rwlock_lock(&rwlock, &external_mutex);
|
|
newbrt_rwlock_unlock(&rwlock, &external_mutex);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "newbrt_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
|
|
best_newbrt_time=mind(best_newbrt_time,diff);
|
|
}
|
|
rwlock_destroy(&rwlock);
|
|
{ int r = pthread_mutex_destroy(&external_mutex); assert(r==0); }
|
|
}
|
|
|
|
// Time the read lock that's in newbrt/rwlock.h, assuming the mutex is already held.
|
|
static
|
|
void time_newbrt_prelocked_rwlock (void) {
|
|
struct rwlock rwlock;
|
|
toku_pthread_mutex_t external_mutex;
|
|
{ int r = pthread_mutex_init(&external_mutex, NULL); assert(r==0); }
|
|
{ int r = toku_pthread_mutex_lock(&external_mutex); assert(r==0); }
|
|
rwlock_init(&rwlock);
|
|
struct timeval start,end;
|
|
|
|
rwlock_read_lock(&rwlock, &external_mutex);
|
|
rwlock_read_unlock(&rwlock);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
rwlock_read_lock(&rwlock, &external_mutex);
|
|
rwlock_read_unlock(&rwlock);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "newbrt_rwlock(r) = %.6fns/(lock+unlock)\n", diff);
|
|
best_prelocked_time=mind(best_prelocked_time,diff);
|
|
}
|
|
rwlock_destroy(&rwlock);
|
|
{ int r = toku_pthread_mutex_unlock(&external_mutex); assert(r==0); }
|
|
{ int r = pthread_mutex_destroy(&external_mutex); assert(r==0); }
|
|
}
|
|
|
|
static
|
|
void time_toku_fair_rwlock (void) {
|
|
toku_fair_rwlock_t mutex;
|
|
{ int r = toku_fair_rwlock_init(&mutex); assert(r==0); }
|
|
struct timeval start,end;
|
|
toku_fair_rwlock_rdlock(&mutex);
|
|
toku_fair_rwlock_unlock(&mutex);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
toku_fair_rwlock_rdlock(&mutex);
|
|
toku_fair_rwlock_unlock(&mutex);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "pthread_fair(r) = %.6fns/(lock+unlock)\n", diff);
|
|
best_fair_rwlock_time=mind(best_fair_rwlock_time,diff);
|
|
}
|
|
{ int r = toku_fair_rwlock_destroy(&mutex); assert(r==0); }
|
|
}
|
|
|
|
static
|
|
void time_toku_cv_fair_rwlock (void) {
|
|
toku_cv_fair_rwlock_t mutex;
|
|
{ int r = toku_cv_fair_rwlock_init(&mutex); assert(r==0); }
|
|
struct timeval start,end;
|
|
toku_cv_fair_rwlock_rdlock(&mutex);
|
|
toku_cv_fair_rwlock_unlock(&mutex);
|
|
for (int t=0; t<T; t++) {
|
|
gettimeofday(&start, NULL);
|
|
for (int i=0; i<N; i++) {
|
|
toku_cv_fair_rwlock_rdlock(&mutex);
|
|
toku_cv_fair_rwlock_unlock(&mutex);
|
|
}
|
|
gettimeofday(&end, NULL);
|
|
double diff = 1e9*toku_tdiff(&end, &start)/N;
|
|
if (verbose>1)
|
|
fprintf(stderr, "pthread_fair(r) = %.6fns/(lock+unlock)\n", diff);
|
|
best_cv_fair_rwlock_time=mind(best_cv_fair_rwlock_time,diff);
|
|
}
|
|
{ int r = toku_cv_fair_rwlock_destroy(&mutex); assert(r==0); }
|
|
}
|
|
|
|
#define N 6
|
|
#define T 100000
|
|
#define L 5
|
|
#define N_LOG_ENTRIES (L*N*4)
|
|
|
|
static toku_fair_rwlock_t rwlock;
|
|
|
|
static struct log_s {
|
|
int threadid, loopid;
|
|
char action;
|
|
} actionlog[N_LOG_ENTRIES];
|
|
static int log_counter=0;
|
|
|
|
static void logit (int threadid, int loopid, char action) {
|
|
//printf("%d %d %c\n", threadid, loopid, action);
|
|
int my_log_counter = __sync_fetch_and_add(&log_counter, 1);
|
|
assert(my_log_counter<N_LOG_ENTRIES);
|
|
actionlog[my_log_counter].threadid = threadid;
|
|
actionlog[my_log_counter].loopid = loopid;
|
|
actionlog[my_log_counter].action = action;
|
|
}
|
|
|
|
// The action should look like this:
|
|
// Threads 0-2 are reader threads.
|
|
// Threads 3-6 are writer threads.
|
|
// The threads all repeatedly grab the lock, wait T steps, and release.
|
|
// If the readers can starve the writers, then most of the writers will be at the end.
|
|
// If the writers can starve the readers, then most of the readers will be at the end.
|
|
// The reader threads all grab the lock, wait T*2 steps, and release the lock.
|
|
// The writer threads
|
|
// First the writer threads wait time T while the reader threads all go for the lock.
|
|
// Before the first one lets go, the writer threads wake up and try to grab the lock. But the readers are still
|
|
|
|
// 3 threads (0-2) try to grab the lock all at once. They'll get it. They each sleep for time T*2
|
|
// 3 threads (3-6) try to grab the write lock. They'll get it one after another.
|
|
|
|
|
|
static void grab_rdlock (int threadid, int iteration) {
|
|
logit(threadid, iteration, 't');
|
|
{ int r = toku_fair_rwlock_rdlock(&rwlock); assert(r==0); }
|
|
logit(threadid, iteration, 'R');
|
|
}
|
|
|
|
static void release_rdlock (int threadid, int iteration) {
|
|
logit(threadid, iteration, 'u');
|
|
{ int r = toku_fair_rwlock_unlock(&rwlock); assert(r==0); }
|
|
}
|
|
|
|
static void grab_wrlock (int threadid, int iteration) {
|
|
logit(threadid, iteration, 'T');
|
|
{ int r = toku_fair_rwlock_wrlock(&rwlock); assert(r==0); }
|
|
logit(threadid, iteration, 'W');
|
|
}
|
|
|
|
static void release_wrlock (int threadid, int iteration) {
|
|
logit(threadid, iteration, 'U');
|
|
{ int r = toku_fair_rwlock_unlock(&rwlock); assert(r==0);}
|
|
}
|
|
|
|
static void *start_thread (void *vv) {
|
|
int *vp=(int*)vv;
|
|
int v=*vp;
|
|
|
|
//printf("T%d=%ld\n", v, pthread_self());
|
|
switch(v) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
for (int i=0; i<L; i++) {
|
|
grab_rdlock(v, i);
|
|
usleep(T);
|
|
release_rdlock(v, i);
|
|
}
|
|
break;
|
|
case 3:
|
|
case 4:
|
|
case 5:
|
|
for (int i=0; i<L; i++) {
|
|
grab_wrlock(v, i);
|
|
usleep(T);
|
|
release_wrlock(v, i);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *start_thread_random (void *vv) {
|
|
int *vp=(int*)vv;
|
|
int v=*vp;
|
|
|
|
for (int i=0; i<L; i++) {
|
|
if (random()%2==0) {
|
|
grab_rdlock(v, i);
|
|
for (int j=0; j<random()%20; j++) sched_yield();
|
|
release_rdlock(v, i);
|
|
for (int j=0; j<random()%20; j++) sched_yield();
|
|
} else {
|
|
grab_wrlock(v, i);
|
|
for (int j=0; j<random()%20; j++) sched_yield();
|
|
release_wrlock(v, i);
|
|
for (int j=0; j<random()%20; j++) sched_yield();
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void check_actionlog (int expected_writer_max_count,
|
|
int expected_reader_parallelism_min,
|
|
int expected_reader_parallelism_max)
|
|
// Effect:
|
|
// Make sure that writers are exclusive.
|
|
// Make sure that anyone who asks for a lock doesn't have one.
|
|
// Make sure that anyone granted a lock actually asked for a lock.
|
|
// Make sure that anyone who releases a lock has it.
|
|
// Make sure that readers don't starve writers, and writers don't starve readers. (Not sure how to code this up...)
|
|
{
|
|
int reader_max=0;
|
|
int writer_max=0;
|
|
int state=0;
|
|
char tstate[N];
|
|
for (int i=0; i<N; i++) tstate[i]=0;
|
|
for (int i=0; i<log_counter; i++) {
|
|
switch (actionlog[i].action) {
|
|
case 't': // fall through to 'T'
|
|
case 'T':
|
|
assert(tstate[actionlog[i].threadid]==0);
|
|
tstate[actionlog[i].threadid]=actionlog[i].action;
|
|
break;
|
|
case 'W':
|
|
assert(tstate[actionlog[i].threadid]=='T');
|
|
tstate[actionlog[i].threadid]=actionlog[i].action;
|
|
assert(state==0);
|
|
state=-1;
|
|
writer_max = 1;
|
|
break;
|
|
case 'U':
|
|
assert(tstate[actionlog[i].threadid]=='W');
|
|
tstate[actionlog[i].threadid]=0;
|
|
assert(state==-1);
|
|
state=0;
|
|
break;
|
|
case 'R':
|
|
assert(tstate[actionlog[i].threadid]=='t');
|
|
tstate[actionlog[i].threadid]=actionlog[i].action;
|
|
if (state<0) { printf("On step %d\n", i); }
|
|
assert(state>=0);
|
|
state++;
|
|
if (state>reader_max) reader_max=state;
|
|
break;
|
|
case 'u':
|
|
assert(tstate[actionlog[i].threadid]=='R');
|
|
tstate[actionlog[i].threadid]=0;
|
|
assert(state>=0);
|
|
state--;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
assert(reader_max>=expected_reader_parallelism_min);
|
|
assert(reader_max<=expected_reader_parallelism_max);
|
|
assert(writer_max==expected_writer_max_count);
|
|
}
|
|
|
|
|
|
static void test_rwlock_internal (void *(*start_th)(void*), int max_wr, int min_rd, int max_rd) {
|
|
if (verbose>=2) printf("Running threads:\n");
|
|
log_counter=0;
|
|
pthread_t threads[N];
|
|
int v[N];
|
|
{
|
|
int r = toku_fair_rwlock_init(&rwlock);
|
|
assert(r==0);
|
|
}
|
|
for (int i=0; i<N; i++) {
|
|
v[i]=i;
|
|
int r = pthread_create(&threads[i], NULL, start_th, &v[i]);
|
|
assert(r==0);
|
|
}
|
|
for (int i=0; i<N; i++) {
|
|
void *rv;
|
|
int r = pthread_join(threads[i], &rv);
|
|
assert(rv==NULL);
|
|
assert(r==0);
|
|
}
|
|
if (verbose>1) {
|
|
for (int i=0; i<log_counter; i++) {
|
|
printf("%d: %*s%c%d\n", i, actionlog[i].threadid*4, "", actionlog[i].action, actionlog[i].loopid);
|
|
}
|
|
}
|
|
check_actionlog(max_wr, min_rd, max_rd);
|
|
{
|
|
int r = toku_fair_rwlock_destroy(&rwlock);
|
|
assert(r==0);
|
|
}
|
|
if (verbose>2) printf("OK\n");
|
|
}
|
|
|
|
static void test_rwlock (void) {
|
|
test_rwlock_internal(start_thread, 1, 2, 3);
|
|
for (int i=0; i<10; i++) {
|
|
test_rwlock_internal(start_thread_random, 1, 0, N);
|
|
}
|
|
}
|
|
int main (int argc, const char *argv[]) {
|
|
parse_args(argc, argv);
|
|
if (timing_only) {
|
|
time_nop();
|
|
time_fcall();
|
|
time_cas();
|
|
time_pthread_mutex();
|
|
time_pthread_rwlock();
|
|
time_newbrt_rwlock();
|
|
time_newbrt_prelocked_rwlock();
|
|
time_toku_cv_fair_rwlock();
|
|
time_toku_fair_rwlock();
|
|
if (verbose>0) {
|
|
printf("// Best nop time=%10.6fns\n", best_nop_time);
|
|
printf("// Best fcall time=%10.6fns\n", best_fcall_time);
|
|
printf("// Best cas time=%10.6fns\n", best_cas_time);
|
|
printf("// Best mutex time=%10.6fns\n", best_mutex_time);
|
|
printf("// Best rwlock time=%10.6fns\n", best_rwlock_time);
|
|
printf("// Best newbrt rwlock time=%10.6fns\n", best_newbrt_time);
|
|
printf("// Best prelocked time=%10.6fns\n", best_prelocked_time);
|
|
printf("// Best fair cv rwlock time=%10.6fns\n", best_cv_fair_rwlock_time);
|
|
printf("// Best fair fast rwlock time=%10.6fns\n", best_fair_rwlock_time);
|
|
}
|
|
} else {
|
|
test_rwlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|