mariadb/newbrt/tests/test-inc-split.c
Yoni Fogel a522ceda16 Closes #2153 refs[t:2153] fopen logged only once (unless closed and reopened). Removed logger from cachefile_close,
removed txnid from logging of fopen.

git-svn-id: file:///svn/toku/tokudb.2037b@15691 c7de825b-a66e-492c-adef-691d508d4ae1
2013-04-16 23:58:06 -04:00

156 lines
4.6 KiB
C

/* The goal of this test: Make sure that when we aggressively promote
* that we don't get a fencepost error on the size. (#399, I think)
*
* For various values of I do the following:
*
* Make a tree of height 3 (that is, the root is of height 2)
* use small nodes (say 4KB)
* you have this tree:
* A
* B
* C0 C1 C2 .. C15
* A has only one child. B has as many children as it can get.
* Fill the C nodes (the leaves) all almost full.
* Fill B's buffer up with a big message X for C15, and a slightly smaller message Y for C1.
* Put into A's buffer a little message Z aimed at C0.
* Now when insert a message of size I aimed at C0. I and Z together are too big to fit in A.
* First: X will be pushed into C15, resulting in this split
* A
* B0
* C0 C1 ... C8
* B1
* C9 C10 ... C15 C16
* At this point C0 through C14 are full, Y is in B0's buffer, and A's buffer contains I and Z.
* So we try to push Z if it fits. Which it does.
* So then we try to I if it fits. If we calculated wrong, everything breaks now.
*
*/
#include "test.h"
#include "includes.h"
static TOKUTXN const null_txn = 0;
static DB * const null_db = 0;
enum { NODESIZE = 1024, KSIZE=NODESIZE-100, TOKU_PSIZE=20 };
CACHETABLE ct;
BRT t;
int fnamelen;
char *fname;
static void
doit (int ksize __attribute__((__unused__))) {
BLOCKNUM cnodes[BRT_FANOUT], bnode, anode;
u_int32_t fingerprints[BRT_FANOUT];
char *keys[BRT_FANOUT-1];
int keylens[BRT_FANOUT-1];
int i;
int r;
fnamelen = strlen(__FILE__) + 20;
fname = toku_malloc(fnamelen);
assert(fname!=0);
snprintf(fname, fnamelen, "%s.brt", __FILE__);
r = toku_brt_create_cachetable(&ct, 16*1024, ZERO_LSN, NULL_LOGGER); assert(r==0);
unlink(fname);
r = toku_open_brt(fname, 1, &t, NODESIZE, ct, null_txn, toku_builtin_compare_fun, null_db);
assert(r==0);
toku_free(fname);
for (i=0; i<BRT_FANOUT; i++) {
r=toku_testsetup_leaf(t, &cnodes[i]);
assert(r==0);
fingerprints[i]=0;
char key[KSIZE+10];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", i*10000+1, KSIZE-9, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_leaf(t, cnodes[i], key, keylen, val, vallen, &fingerprints[i]);
assert(r==0);
}
// Now we have a bunch of leaves, all of which are with 100 bytes of full.
for (i=0; i+1<BRT_FANOUT; i++) {
char key[TOKU_PSIZE];
keylens[i]=1+snprintf(key, TOKU_PSIZE, "%08d", (i+1)*10000);
keys[i]=toku_strdup(key);
}
r = toku_testsetup_nonleaf(t, 1, &bnode, BRT_FANOUT, cnodes, fingerprints, keys, keylens);
assert(r==0);
for (i=0; i+1<BRT_FANOUT; i++) {
toku_free(keys[i]);
}
u_int32_t bfingerprint=0;
{
const int magic_size = (NODESIZE-toku_testsetup_get_sersize(t, bnode))/2-25;
//printf("magic_size=%d\n", magic_size);
char key [KSIZE];
int keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 150002, magic_size, 0);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, bnode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
keylen = 1+snprintf(key, KSIZE, "%08d%0*d", 2, magic_size-1, 0);
r=toku_testsetup_insert_to_nonleaf(t, bnode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
}
//printf("%lld sersize=%d\n", bnode, toku_testsetup_get_sersize(t, bnode));
// Now we have an internal node which has full children and the buffers are nearly full
r = toku_testsetup_nonleaf(t, 2, &anode, 1, &bnode, &bfingerprint, 0, 0);
assert(r==0);
{
char key[20];
int keylen = 1+snprintf(key, 20, "%08d", 3);
char val[1];
char vallen=0;
r=toku_testsetup_insert_to_nonleaf(t, anode, BRT_INSERT, key, keylen, val, vallen, &bfingerprint);
}
if (0)
{
const int magic_size = 1; //NODESIZE-toku_testsetup_get_sersize(t, anode)-100;
DBT k,v;
char key[20];
char data[magic_size];
int keylen=1+snprintf(key, sizeof(key), "%08d", 4);
int vallen=magic_size;
snprintf(data, magic_size, "%*s", magic_size-1, " ");
r=toku_brt_insert(t,
toku_fill_dbt(&k, key, keylen),
toku_fill_dbt(&v, data, vallen),
null_txn);
}
r = toku_testsetup_root(t, anode);
assert(r==0);
r = toku_close_brt(t, 0); assert(r==0);
r = toku_cachetable_close(&ct); assert(r==0);
//printf("ksize=%d, unused\n", ksize);
}
int
test_main (int argc __attribute__((__unused__)), const char *argv[] __attribute__((__unused__))) {
doit(53);
#if 0
//Skip remaining tests.
{
int i;
for (i=1; i<NODESIZE/2; i++) {
printf("extrasize=%d\n", i);
doit(i);
}
}
#endif
toku_malloc_cleanup();
return 0;
}