mariadb/sql/ha_archive.cc
unknown 607c224969 Prevent bugs by making DBUG_* expressions syntactically equivalent
to a single statement.
---
Bug#24795: SHOW PROFILE

Profiling is only partially functional on some architectures.  Where 
there is no getrusage() system call, presently Null values are 
returned where it would be required.  Notably, Windows needs some love 
applied to make it as useful.

  Syntax this adds:
  
  SHOW PROFILES
  
  SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
   where "n" is an integer
   and "types" is zero or many (comma-separated) of
      "CPU"
      "MEMORY" (not presently supported)
      "BLOCK IO"
      "CONTEXT SWITCHES"
      "PAGE FAULTS"
      "IPC"
      "SWAPS"
      "SOURCE"
      "ALL"

It also adds a session variable (boolean) "profiling", set to "no"
by default, and (integer) profiling_history_size, set to 15 by 
default.

This patch abstracts setting THDs' "proc_info" behind a macro that 
can be used as a hook into the profiling code when profiling 
support is compiled in.  All future code in this line should use
that mechanism for setting thd->proc_info.

---

Tests are now set to omit the statistics.

---

Adds an Information_schema table, "profiling" for access to 
"show profile" data.
---
Merge zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community-3--bug24795
into  zippy.cornsilk.net:/home/cmiller/work/mysql/mysql-5.0-community
---
Fix merge problems.
---
Fixed one bug in the query_source being NULL.  

Updated test results.
---
Include more thorough profiling tests.

Improve support for prepared statements.

Use session-specific query IDs, starting at zero.
---
Selecting from I_S.profiling is no longer quashed in profiling, as
requested by Giuseppe.

Limit the size of captured query text.

No longer log queries that are zero length.


BitKeeper/deleted/.del-profile.result:
  Rename: mysql-test/r/profile.result -> BitKeeper/deleted/.del-profile.result
BitKeeper/deleted/.del-profile.test:
  Rename: mysql-test/t/profile.test -> BitKeeper/deleted/.del-profile.test
BitKeeper/deleted/.del-sql_profile.cc:
  Rename: sql/sql_profile.cc -> BitKeeper/deleted/.del-sql_profile.cc
BitKeeper/deleted/.del-sql_profile.h:
  Rename: sql/sql_profile.h -> BitKeeper/deleted/.del-sql_profile.h
configure.in:
  Add a configure-time option to enable/disable query profiling.  The
  default is enabled.
include/my_dbug.h:
  
  
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
myisam/mi_open.c:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
mysql-test/r/information_schema.result:
  Updated (re-recorded) tests that I missed somehow.  I verified these
  for correctness.
mysql-test/r/information_schema_db.result:
  Updated test results I missed.
mysql-test/r/mysqlshow.result:
  Fix merge problems.
ndb/src/ndbapi/DictCache.cpp:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
sql/ha_archive.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/ha_berkeley.cc:
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/ha_myisam.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/ha_myisammrg.cc:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
sql/ha_ndbcluster.cc:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
sql/item_cmpfunc.cc:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
sql/item_func.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/lock.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/log_event.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/mysql_priv.h:
  Use 64-bit constants for the 64-bit bit field.
  
  Add a new option bit for whether profiling is active or not.
sql/mysqld.cc:
  Add semicolon to DBUG statement.
  
  Add a new system variable and set it.
  ---
  Set the minimum, which is zero and not 50.
sql/repl_failsafe.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/set_var.cc:
  Make a new system global variable and session variable, to determine
  behavior of profiling.	
  ---
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/set_var.h:
  The THD::options bit field is ulonglong, not ulong.
sql/slave.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
  ---
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/sp_head.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/sql_base.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
  ---
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/sql_cache.cc:
  DBUG_* statements should be syntactically equivalent to a single 
  statement.
  ---
  Fix merge problems.
sql/sql_class.cc:
  Insert a pointer to the current thread in the profiling code.
  ---
  Manual merge, undoing first patch.
  ---
  Fix merge problems.
sql/sql_class.h:
  Create a new system variable, profiling_history_size, and add a 
  member to THD to hold profiling information about this thread's 
  execution.
  ---
  Manual merge, undoing first patch.
sql/sql_delete.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
  ---
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/sql_insert.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
  ---
  Fix merge problems.
sql/sql_lex.cc:
  Initialize profiling options to empty.
  ---
  Manual merge, undoing first patch.
sql/sql_lex.h:
  Add info to the lexer object so that we can hold data that comes from
  parsing statements.
  
  Reuse memory addresses of uints that can't occur in the same state-
  ment.
  
  This is dangerous because it involves knowledge of what symbols are 
  never used together, which is information stored obliquely in another
  file.
  ---
  Manual merge, undoing first patch.
sql/sql_parse.cc:
  Add hooks to the parser to jump to profiling code.
  
  If profiling is not present, then return an error message upon being
  used.
  ---
  Manual merge, undoing first patch.
  ---
  Fix merge problems.
  ---
  Include patch backported to 5.0-global.
  
  THD::options is a ulonglong, not ulong.
sql/sql_prepare.cc:
  From prepared statement execution, set the query source in the 
  profiler, as we can't get it from  thd .
  ---
  Make it less expensive to limit the size of the queries.
sql/sql_repl.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/sql_select.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
  ---
  Fix merge problems.
sql/sql_show.cc:
  Abstract setting thread-info into a function or macro.
  
  Also, remove "static" qualification on schema_table_store_record()
  so that external functions may use it.
  ---
  Manual merge, undoing first patch.
sql/sql_table.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/sql_update.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/sql_view.cc:
  Abstract setting thread-info into a function or macro.
  ---
  Manual merge, undoing first patch.
sql/sql_yacc.yy:
  Add new lexer symbols and insert new grammatical rules necessary to 
  retreive profiling information.
  ---
  Manual merge, undoing first patch.
  ---
  Fix merge problems.
sql/table.h:
  Add enum item for query profiling.
BitKeeper/deleted/.del-profiling-master.opt:
  New BitKeeper file ``mysql-test/t/profiling-master.opt''
mysql-test/r/profiling.result:
  New BitKeeper file ``mysql-test/r/profiling.result''
  ---
  Include more verbose that describes the queries so far.
  
  Include Giuseppe's tests.
  ---
  Selecting from I_S.profiling is no longer quashed in profiling, as
  requested by Giuseppe.
mysql-test/t/profiling.test:
  New BitKeeper file ``mysql-test/t/profiling.test''
  ---
  Include more verbose that describes the queries so far.
  
  Include Giuseppe's tests.
  ---
  Selecting from I_S.profiling is no longer quashed in profiling, as
  requested by Giuseppe.
sql/sql_profile.cc:
  New BitKeeper file ``sql/sql_profile.cc''
  ---
  If query_source is NULL, as can sometimes happen, then don't try
  to copy that memory.
  ---
  Make each new session use its own numbering of query_ids, and not
  show the global-pool numbers to the user.
  
  Provide a way for prepared statements to set the query_source.
  ---
  Selecting from I_S.profiling is no longer quashed in profiling, as
  requested by Giuseppe.
  
  Limit the size of captured query text.
  
  No longer log queries that are zero length.
sql/sql_profile.h:
  New BitKeeper file ``sql/sql_profile.h''
  ---
  Make each new session use its own numbering of query_ids, and not
  show the global-pool numbers to the user.
  
  Provide a way for prepared statements to set the query_source.
  ---
  Make it less expensive to limit the size of the queries.
2007-02-22 10:03:08 -05:00

1257 lines
35 KiB
C++

/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#if defined(HAVE_ARCHIVE_DB)
#include "ha_archive.h"
#include <my_dir.h>
/*
First, if you want to understand storage engines you should look at
ha_example.cc and ha_example.h.
This example was written as a test case for a customer who needed
a storage engine without indexes that could compress data very well.
So, welcome to a completely compressed storage engine. This storage
engine only does inserts. No replace, deletes, or updates. All reads are
complete table scans. Compression is done through gzip (bzip compresses
better, but only marginally, if someone asks I could add support for
it too, but beaware that it costs a lot more in CPU time then gzip).
We keep a file pointer open for each instance of ha_archive for each read
but for writes we keep one open file handle just for that. We flush it
only if we have a read occur. gzip handles compressing lots of records
at once much better then doing lots of little records between writes.
It is possible to not lock on writes but this would then mean we couldn't
handle bulk inserts as well (that is if someone was trying to read at
the same time since we would want to flush).
A "meta" file is kept alongside the data file. This file serves two purpose.
The first purpose is to track the number of rows in the table. The second
purpose is to determine if the table was closed properly or not. When the
meta file is first opened it is marked as dirty. It is opened when the table
itself is opened for writing. When the table is closed the new count for rows
is written to the meta file and the file is marked as clean. If the meta file
is opened and it is marked as dirty, it is assumed that a crash occured. At
this point an error occurs and the user is told to rebuild the file.
A rebuild scans the rows and rewrites the meta file. If corruption is found
in the data file then the meta file is not repaired.
At some point a recovery method for such a drastic case needs to be divised.
Locks are row level, and you will get a consistant read.
For performance as far as table scans go it is quite fast. I don't have
good numbers but locally it has out performed both Innodb and MyISAM. For
Innodb the question will be if the table can be fit into the buffer
pool. For MyISAM its a question of how much the file system caches the
MyISAM file. With enough free memory MyISAM is faster. Its only when the OS
doesn't have enough memory to cache entire table that archive turns out
to be any faster. For writes it is always a bit slower then MyISAM. It has no
internal limits though for row length.
Examples between MyISAM (packed) and Archive.
Table with 76695844 identical rows:
29680807 a_archive.ARZ
920350317 a.MYD
Table with 8991478 rows (all of Slashdot's comments):
1922964506 comment_archive.ARZ
2944970297 comment_text.MYD
TODO:
Add bzip optional support.
Allow users to set compression level.
Add truncate table command.
Implement versioning, should be easy.
Allow for errors, find a way to mark bad rows.
Talk to the gzip guys, come up with a writable format so that updates are doable
without switching to a block method.
Add optional feature so that rows can be flushed at interval (which will cause less
compression but may speed up ordered searches).
Checkpoint the meta file to allow for faster rebuilds.
Dirty open (right now the meta file is repaired if a crash occured).
Option to allow for dirty reads, this would lower the sync calls, which would make
inserts a lot faster, but would mean highly arbitrary reads.
-Brian
*/
/*
Notes on file formats.
The Meta file is layed out as:
check - Just an int of 254 to make sure that the the file we are opening was
never corrupted.
version - The current version of the file format.
rows - This is an unsigned long long which is the number of rows in the data
file.
check point - Reserved for future use
dirty - Status of the file, whether or not its values are the latest. This
flag is what causes a repair to occur
The data file:
check - Just an int of 254 to make sure that the the file we are opening was
never corrupted.
version - The current version of the file format.
data - The data is stored in a "row +blobs" format.
*/
/* If the archive storage engine has been inited */
static bool archive_inited= FALSE;
/* Variables for archive share methods */
pthread_mutex_t archive_mutex;
static HASH archive_open_tables;
static z_off_t max_zfile_size;
static int zoffset_size;
/* The file extension */
#define ARZ ".ARZ" // The data file
#define ARN ".ARN" // Files used during an optimize call
#define ARM ".ARM" // Meta file
/*
uchar + uchar + ulonglong + ulonglong + uchar
*/
#define META_BUFFER_SIZE 19 // Size of the data used in the meta file
/*
uchar + uchar
*/
#define DATA_BUFFER_SIZE 2 // Size of the data used in the data file
#define ARCHIVE_CHECK_HEADER 254 // The number we use to determine corruption
/*
Number of rows that will force a bulk insert.
*/
#define ARCHIVE_MIN_ROWS_TO_USE_BULK_INSERT 2
/* dummy handlerton - only to have something to return from archive_db_init */
handlerton archive_hton = {
"ARCHIVE",
SHOW_OPTION_YES,
"Archive storage engine",
DB_TYPE_ARCHIVE_DB,
archive_db_init,
0, /* slot */
0, /* savepoint size. */
NULL, /* close_connection */
NULL, /* savepoint */
NULL, /* rollback to savepoint */
NULL, /* releas savepoint */
NULL, /* commit */
NULL, /* rollback */
NULL, /* prepare */
NULL, /* recover */
NULL, /* commit_by_xid */
NULL, /* rollback_by_xid */
NULL, /* create_cursor_read_view */
NULL, /* set_cursor_read_view */
NULL, /* close_cursor_read_view */
HTON_NO_FLAGS
};
/*
Used for hash table that tracks open tables.
*/
static byte* archive_get_key(ARCHIVE_SHARE *share,uint *length,
my_bool not_used __attribute__((unused)))
{
*length=share->table_name_length;
return (byte*) share->table_name;
}
/*
Initialize the archive handler.
SYNOPSIS
archive_db_init()
void
RETURN
FALSE OK
TRUE Error
*/
bool archive_db_init()
{
DBUG_ENTER("archive_db_init");
if (pthread_mutex_init(&archive_mutex, MY_MUTEX_INIT_FAST))
goto error;
if (hash_init(&archive_open_tables, system_charset_info, 32, 0, 0,
(hash_get_key) archive_get_key, 0, 0))
{
VOID(pthread_mutex_destroy(&archive_mutex));
}
else
{
zoffset_size= 2 << ((zlibCompileFlags() >> 6) & 3);
switch (sizeof(z_off_t)) {
case 2:
max_zfile_size= INT_MAX16;
break;
case 8:
max_zfile_size= (z_off_t) LONGLONG_MAX;
break;
case 4:
default:
max_zfile_size= INT_MAX32;
}
archive_inited= TRUE;
DBUG_RETURN(FALSE);
}
error:
have_archive_db= SHOW_OPTION_DISABLED; // If we couldn't use handler
DBUG_RETURN(TRUE);
}
/*
Release the archive handler.
SYNOPSIS
archive_db_end()
void
RETURN
FALSE OK
*/
bool archive_db_end()
{
if (archive_inited)
{
hash_free(&archive_open_tables);
VOID(pthread_mutex_destroy(&archive_mutex));
}
archive_inited= 0;
return FALSE;
}
ha_archive::ha_archive(TABLE *table_arg)
:handler(&archive_hton, table_arg), delayed_insert(0), bulk_insert(0)
{
/* Set our original buffer from pre-allocated memory */
buffer.set((char *)byte_buffer, IO_SIZE, system_charset_info);
/* The size of the offset value we will use for position() */
ref_length = zoffset_size;
DBUG_ASSERT(ref_length <= sizeof(z_off_t));
}
/*
This method reads the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::read_data_header(gzFile file_to_read)
{
uchar data_buffer[DATA_BUFFER_SIZE];
DBUG_ENTER("ha_archive::read_data_header");
if (gzrewind(file_to_read) == -1)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
if (gzread(file_to_read, data_buffer, DATA_BUFFER_SIZE) != DATA_BUFFER_SIZE)
DBUG_RETURN(errno ? errno : -1);
DBUG_PRINT("ha_archive::read_data_header", ("Check %u", data_buffer[0]));
DBUG_PRINT("ha_archive::read_data_header", ("Version %u", data_buffer[1]));
if ((data_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) &&
(data_buffer[1] != (uchar)ARCHIVE_VERSION))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
DBUG_RETURN(0);
}
/*
This method writes out the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::write_data_header(gzFile file_to_write)
{
uchar data_buffer[DATA_BUFFER_SIZE];
DBUG_ENTER("ha_archive::write_data_header");
data_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
data_buffer[1]= (uchar)ARCHIVE_VERSION;
if (gzwrite(file_to_write, &data_buffer, DATA_BUFFER_SIZE) !=
DATA_BUFFER_SIZE)
goto error;
DBUG_PRINT("ha_archive::write_data_header", ("Check %u", (uint)data_buffer[0]));
DBUG_PRINT("ha_archive::write_data_header", ("Version %u", (uint)data_buffer[1]));
DBUG_RETURN(0);
error:
DBUG_RETURN(errno);
}
/*
This method reads the header of a meta file and returns whether or not it was successful.
*rows will contain the current number of rows in the data file upon success.
*/
int ha_archive::read_meta_file(File meta_file, ha_rows *rows)
{
uchar meta_buffer[META_BUFFER_SIZE];
ulonglong check_point;
DBUG_ENTER("ha_archive::read_meta_file");
VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
if (my_read(meta_file, (byte*)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
DBUG_RETURN(-1);
/*
Parse out the meta data, we ignore version at the moment
*/
*rows= (ha_rows)uint8korr(meta_buffer + 2);
check_point= uint8korr(meta_buffer + 10);
DBUG_PRINT("ha_archive::read_meta_file", ("Check %d", (uint)meta_buffer[0]));
DBUG_PRINT("ha_archive::read_meta_file", ("Version %d", (uint)meta_buffer[1]));
DBUG_PRINT("ha_archive::read_meta_file", ("Rows %lu", (ulong) *rows));
DBUG_PRINT("ha_archive::read_meta_file", ("Checkpoint %lu", (ulong) check_point));
DBUG_PRINT("ha_archive::read_meta_file", ("Dirty %d", (int)meta_buffer[18]));
if ((meta_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) ||
((bool)meta_buffer[18] == TRUE))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
my_sync(meta_file, MYF(MY_WME));
DBUG_RETURN(0);
}
/*
This method writes out the header of a meta file and returns whether or not it was successful.
By setting dirty you say whether or not the file represents the actual state of the data file.
Upon ::open() we set to dirty, and upon ::close() we set to clean.
*/
int ha_archive::write_meta_file(File meta_file, ha_rows rows, bool dirty)
{
uchar meta_buffer[META_BUFFER_SIZE];
ulonglong check_point= 0; //Reserved for the future
DBUG_ENTER("ha_archive::write_meta_file");
meta_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
meta_buffer[1]= (uchar)ARCHIVE_VERSION;
int8store(meta_buffer + 2, (ulonglong)rows);
int8store(meta_buffer + 10, check_point);
*(meta_buffer + 18)= (uchar)dirty;
DBUG_PRINT("ha_archive::write_meta_file", ("Check %d", (uint)ARCHIVE_CHECK_HEADER));
DBUG_PRINT("ha_archive::write_meta_file", ("Version %d", (uint)ARCHIVE_VERSION));
DBUG_PRINT("ha_archive::write_meta_file", ("Rows %lu", (ulong)rows));
DBUG_PRINT("ha_archive::write_meta_file", ("Checkpoint %lu", (ulong) check_point));
DBUG_PRINT("ha_archive::write_meta_file", ("Dirty %d", (uint)dirty));
VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
if (my_write(meta_file, (byte *)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
DBUG_RETURN(-1);
my_sync(meta_file, MYF(MY_WME));
DBUG_RETURN(0);
}
/*
We create the shared memory space that we will use for the open table.
No matter what we try to get or create a share. This is so that a repair
table operation can occur.
See ha_example.cc for a longer description.
*/
ARCHIVE_SHARE *ha_archive::get_share(const char *table_name,
TABLE *table, int *rc)
{
ARCHIVE_SHARE *share;
char meta_file_name[FN_REFLEN];
uint length;
char *tmp_name;
DBUG_ENTER("ha_archive::get_share");
pthread_mutex_lock(&archive_mutex);
length=(uint) strlen(table_name);
if (!(share=(ARCHIVE_SHARE*) hash_search(&archive_open_tables,
(byte*) table_name,
length)))
{
if (!my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
&share, sizeof(*share),
&tmp_name, length+1,
NullS))
{
pthread_mutex_unlock(&archive_mutex);
*rc= HA_ERR_OUT_OF_MEM;
DBUG_RETURN(NULL);
}
share->use_count= 0;
share->table_name_length= length;
share->table_name= tmp_name;
share->crashed= FALSE;
share->archive_write_open= FALSE;
fn_format(share->data_file_name,table_name,"",ARZ,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
fn_format(meta_file_name,table_name,"",ARM,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
strmov(share->table_name,table_name);
/*
We will use this lock for rows.
*/
VOID(pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST));
if ((share->meta_file= my_open(meta_file_name, O_RDWR, MYF(0))) == -1)
share->crashed= TRUE;
/*
After we read, we set the file to dirty. When we close, we will do the
opposite. If the meta file will not open we assume it is crashed and
leave it up to the user to fix.
*/
if (read_meta_file(share->meta_file, &share->rows_recorded))
share->crashed= TRUE;
VOID(my_hash_insert(&archive_open_tables, (byte*) share));
thr_lock_init(&share->lock);
}
share->use_count++;
DBUG_PRINT("info", ("archive table %.*s has %d open handles now",
share->table_name_length, share->table_name,
share->use_count));
if (share->crashed)
*rc= HA_ERR_CRASHED_ON_USAGE;
pthread_mutex_unlock(&archive_mutex);
DBUG_RETURN(share);
}
/*
Free the share.
See ha_example.cc for a description.
*/
int ha_archive::free_share(ARCHIVE_SHARE *share)
{
int rc= 0;
DBUG_ENTER("ha_archive::free_share");
DBUG_PRINT("info", ("archive table %.*s has %d open handles on entrance",
share->table_name_length, share->table_name,
share->use_count));
pthread_mutex_lock(&archive_mutex);
if (!--share->use_count)
{
hash_delete(&archive_open_tables, (byte*) share);
thr_lock_delete(&share->lock);
VOID(pthread_mutex_destroy(&share->mutex));
if (share->crashed)
(void)write_meta_file(share->meta_file, share->rows_recorded, TRUE);
else
(void)write_meta_file(share->meta_file, share->rows_recorded, FALSE);
if (share->archive_write_open)
if (gzclose(share->archive_write) == Z_ERRNO)
rc= 1;
if (my_close(share->meta_file, MYF(0)))
rc= 1;
my_free((gptr) share, MYF(0));
}
pthread_mutex_unlock(&archive_mutex);
DBUG_RETURN(rc);
}
int ha_archive::init_archive_writer()
{
DBUG_ENTER("ha_archive::init_archive_writer");
(void)write_meta_file(share->meta_file, share->rows_recorded, TRUE);
/*
It is expensive to open and close the data files and since you can't have
a gzip file that can be both read and written we keep a writer open
that is shared amoung all open tables.
*/
if ((share->archive_write= gzopen(share->data_file_name, "ab")) == NULL)
{
share->crashed= TRUE;
DBUG_RETURN(1);
}
share->archive_write_open= TRUE;
info(HA_STATUS_TIME);
share->approx_file_size= (ulong) data_file_length;
DBUG_RETURN(0);
}
/*
We just implement one additional file extension.
*/
static const char *ha_archive_exts[] = {
ARZ,
ARM,
NullS
};
const char **ha_archive::bas_ext() const
{
return ha_archive_exts;
}
/*
When opening a file we:
Create/get our shared structure.
Init out lock.
We open the file we will read from.
*/
int ha_archive::open(const char *name, int mode, uint open_options)
{
int rc= 0;
DBUG_ENTER("ha_archive::open");
DBUG_PRINT("info", ("archive table was opened for crash %s",
(open_options & HA_OPEN_FOR_REPAIR) ? "yes" : "no"));
share= get_share(name, table, &rc);
if (rc == HA_ERR_CRASHED_ON_USAGE && !(open_options & HA_OPEN_FOR_REPAIR))
{
free_share(share);
DBUG_RETURN(rc);
}
else if (rc == HA_ERR_OUT_OF_MEM)
{
DBUG_RETURN(rc);
}
thr_lock_data_init(&share->lock,&lock,NULL);
if ((archive= gzopen(share->data_file_name, "rb")) == NULL)
{
if (errno == EROFS || errno == EACCES)
DBUG_RETURN(my_errno= errno);
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
}
DBUG_PRINT("info", ("archive table was crashed %s",
rc == HA_ERR_CRASHED_ON_USAGE ? "yes" : "no"));
if (rc == HA_ERR_CRASHED_ON_USAGE && open_options & HA_OPEN_FOR_REPAIR)
{
DBUG_RETURN(0);
}
else
DBUG_RETURN(rc);
}
/*
Closes the file.
SYNOPSIS
close();
IMPLEMENTATION:
We first close this storage engines file handle to the archive and
then remove our reference count to the table (and possibly free it
as well).
RETURN
0 ok
1 Error
*/
int ha_archive::close(void)
{
int rc= 0;
DBUG_ENTER("ha_archive::close");
/* First close stream */
if (gzclose(archive) == Z_ERRNO)
rc= 1;
/* then also close share */
rc|= free_share(share);
DBUG_RETURN(rc);
}
/*
We create our data file here. The format is pretty simple.
You can read about the format of the data file above.
Unlike other storage engines we do not "pack" our data. Since we
are about to do a general compression, packing would just be a waste of
CPU time. If the table has blobs they are written after the row in the order
of creation.
*/
int ha_archive::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
File create_file; // We use to create the datafile and the metafile
char name_buff[FN_REFLEN];
int error;
DBUG_ENTER("ha_archive::create");
if ((create_file= my_create(fn_format(name_buff,name,"",ARM,
MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
{
error= my_errno;
goto error;
}
write_meta_file(create_file, 0, FALSE);
my_close(create_file,MYF(0));
/*
We reuse name_buff since it is available.
*/
if ((create_file= my_create(fn_format(name_buff,name,"",ARZ,
MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
{
error= my_errno;
goto error;
}
if ((archive= gzdopen(dup(create_file), "wb")) == NULL)
{
error= errno;
goto error2;
}
if (write_data_header(archive))
{
error= errno;
goto error3;
}
if (gzclose(archive))
{
error= errno;
goto error2;
}
my_close(create_file, MYF(0));
DBUG_RETURN(0);
error3:
/* We already have an error, so ignore results of gzclose. */
(void)gzclose(archive);
error2:
my_close(create_file, MYF(0));
delete_table(name);
error:
/* Return error number, if we got one */
DBUG_RETURN(error ? error : -1);
}
/*
This is where the actual row is written out.
*/
int ha_archive::real_write_row(byte *buf, gzFile writer)
{
z_off_t written, total_row_length;
uint *ptr, *end;
DBUG_ENTER("ha_archive::real_write_row");
total_row_length= table->s->reclength;
for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields;
ptr != end; ptr++)
total_row_length+= ((Field_blob*) table->field[*ptr])->get_length();
if (share->approx_file_size > max_zfile_size - total_row_length)
{
info(HA_STATUS_TIME);
share->approx_file_size= (ulong) data_file_length;
if (share->approx_file_size > max_zfile_size - total_row_length)
DBUG_RETURN(HA_ERR_RECORD_FILE_FULL);
}
share->approx_file_size+= total_row_length;
written= gzwrite(writer, buf, table->s->reclength);
DBUG_PRINT("ha_archive::real_write_row", ("Wrote %d bytes expected %lu", (int) written,
table->s->reclength));
if (!delayed_insert || !bulk_insert)
share->dirty= TRUE;
if (written != (z_off_t)table->s->reclength)
DBUG_RETURN(errno ? errno : -1);
/*
We should probably mark the table as damagaged if the record is written
but the blob fails.
*/
for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields ;
ptr != end ;
ptr++)
{
char *data_ptr;
uint32 size= ((Field_blob*) table->field[*ptr])->get_length();
if (size)
{
((Field_blob*) table->field[*ptr])->get_ptr(&data_ptr);
written= gzwrite(writer, data_ptr, (unsigned)size);
if (written != (z_off_t)size)
DBUG_RETURN(errno ? errno : -1);
}
}
DBUG_RETURN(0);
}
/*
Look at ha_archive::open() for an explanation of the row format.
Here we just write out the row.
Wondering about start_bulk_insert()? We don't implement it for
archive since it optimizes for lots of writes. The only save
for implementing start_bulk_insert() is that we could skip
setting dirty to true each time.
*/
int ha_archive::write_row(byte *buf)
{
int rc;
DBUG_ENTER("ha_archive::write_row");
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
statistic_increment(table->in_use->status_var.ha_write_count, &LOCK_status);
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
pthread_mutex_lock(&share->mutex);
if (!share->archive_write_open)
if (init_archive_writer())
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/*
Varchar structures are constant in size but are not cleaned up request
to request. The following sets all unused space to null to improve
compression.
*/
for (Field **field=table->field ; *field ; field++)
{
DBUG_PRINT("archive",("Pack is %d\n", (*field)->pack_length()));
DBUG_PRINT("archive",("MyPack is %d\n", (*field)->data_length((char*) buf + (*field)->offset())));
if ((*field)->real_type() == MYSQL_TYPE_VARCHAR)
{
uint actual_length= (*field)->data_length((char*) buf + (*field)->offset());
uint offset= (*field)->offset() + actual_length +
(actual_length > 255 ? 2 : 1);
DBUG_PRINT("archive",("Offset is %d -> %d\n", actual_length, offset));
/*
if ((*field)->pack_length() + (*field)->offset() != offset)
bzero(buf + offset, (size_t)((*field)->pack_length() + (actual_length > 255 ? 2 : 1) - (*field)->data_length));
*/
}
}
share->rows_recorded++;
rc= real_write_row(buf, share->archive_write);
pthread_mutex_unlock(&share->mutex);
DBUG_RETURN(rc);
}
/*
All calls that need to scan the table start with this method. If we are told
that it is a table scan we rewind the file to the beginning, otherwise
we assume the position will be set.
*/
int ha_archive::rnd_init(bool scan)
{
DBUG_ENTER("ha_archive::rnd_init");
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/* We rewind the file so that we can read from the beginning if scan */
if (scan)
{
scan_rows= share->rows_recorded;
DBUG_PRINT("info", ("archive will retrieve %lu rows", (ulong) scan_rows));
records= 0;
/*
If dirty, we lock, and then reset/flush the data.
I found that just calling gzflush() doesn't always work.
*/
if (share->dirty == TRUE)
{
pthread_mutex_lock(&share->mutex);
if (share->dirty == TRUE)
{
DBUG_PRINT("info", ("archive flushing out rows for scan"));
gzflush(share->archive_write, Z_SYNC_FLUSH);
share->dirty= FALSE;
}
pthread_mutex_unlock(&share->mutex);
}
if (read_data_header(archive))
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
}
DBUG_RETURN(0);
}
/*
This is the method that is used to read a row. It assumes that the row is
positioned where you want it.
*/
int ha_archive::get_row(gzFile file_to_read, byte *buf)
{
int read; // Bytes read, gzread() returns int
uint *ptr, *end;
char *last;
size_t total_blob_length= 0;
DBUG_ENTER("ha_archive::get_row");
read= gzread(file_to_read, buf, table->s->reclength);
DBUG_PRINT("ha_archive::get_row", ("Read %d bytes expected %lu", (int) read,
table->s->reclength));
if (read == Z_STREAM_ERROR)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/* If we read nothing we are at the end of the file */
if (read == 0)
DBUG_RETURN(HA_ERR_END_OF_FILE);
/*
If the record is the wrong size, the file is probably damaged, unless
we are dealing with a delayed insert or a bulk insert.
*/
if ((ulong) read != table->s->reclength)
DBUG_RETURN(HA_ERR_END_OF_FILE);
/* Calculate blob length, we use this for our buffer */
for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
ptr != end ;
ptr++)
total_blob_length += ((Field_blob*) table->field[*ptr])->get_length();
/* Adjust our row buffer if we need be */
buffer.alloc(total_blob_length);
last= (char *)buffer.ptr();
/* Loop through our blobs and read them */
for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
ptr != end ;
ptr++)
{
size_t size= ((Field_blob*) table->field[*ptr])->get_length();
if (size)
{
read= gzread(file_to_read, last, size);
if ((size_t) read != size)
DBUG_RETURN(HA_ERR_END_OF_FILE);
((Field_blob*) table->field[*ptr])->set_ptr(size, last);
last += size;
}
}
DBUG_RETURN(0);
}
/*
Called during ORDER BY. Its position is either from being called sequentially
or by having had ha_archive::rnd_pos() called before it is called.
*/
int ha_archive::rnd_next(byte *buf)
{
int rc;
DBUG_ENTER("ha_archive::rnd_next");
if (share->crashed)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
if (!scan_rows)
DBUG_RETURN(HA_ERR_END_OF_FILE);
scan_rows--;
statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
&LOCK_status);
current_position= gztell(archive);
rc= get_row(archive, buf);
if (rc != HA_ERR_END_OF_FILE)
records++;
DBUG_RETURN(rc);
}
/*
Thanks to the table flag HA_REC_NOT_IN_SEQ this will be called after
each call to ha_archive::rnd_next() if an ordering of the rows is
needed.
*/
void ha_archive::position(const byte *record)
{
DBUG_ENTER("ha_archive::position");
my_store_ptr(ref, ref_length, current_position);
DBUG_VOID_RETURN;
}
/*
This is called after a table scan for each row if the results of the
scan need to be ordered. It will take *pos and use it to move the
cursor in the file so that the next row that is called is the
correctly ordered row.
*/
int ha_archive::rnd_pos(byte * buf, byte *pos)
{
DBUG_ENTER("ha_archive::rnd_pos");
statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
&LOCK_status);
current_position= (z_off_t)my_get_ptr(pos, ref_length);
(void)gzseek(archive, current_position, SEEK_SET);
DBUG_RETURN(get_row(archive, buf));
}
/*
This method repairs the meta file. It does this by walking the datafile and
rewriting the meta file. Currently it does this by calling optimize with
the extended flag.
*/
int ha_archive::repair(THD* thd, HA_CHECK_OPT* check_opt)
{
DBUG_ENTER("ha_archive::repair");
check_opt->flags= T_EXTEND;
int rc= optimize(thd, check_opt);
if (rc)
DBUG_RETURN(HA_ERR_CRASHED_ON_REPAIR);
share->crashed= FALSE;
DBUG_RETURN(0);
}
/*
The table can become fragmented if data was inserted, read, and then
inserted again. What we do is open up the file and recompress it completely.
*/
int ha_archive::optimize(THD* thd, HA_CHECK_OPT* check_opt)
{
DBUG_ENTER("ha_archive::optimize");
int rc;
gzFile writer;
char writer_filename[FN_REFLEN];
/* Open up the writer if we haven't yet */
if (!share->archive_write_open)
init_archive_writer();
/* Flush any waiting data */
gzflush(share->archive_write, Z_SYNC_FLUSH);
/* Lets create a file to contain the new data */
fn_format(writer_filename, share->table_name, "", ARN,
MY_REPLACE_EXT|MY_UNPACK_FILENAME);
if ((writer= gzopen(writer_filename, "wb")) == NULL)
DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
/*
An extended rebuild is a lot more effort. We open up each row and re-record it.
Any dead rows are removed (aka rows that may have been partially recorded).
*/
if (check_opt->flags == T_EXTEND)
{
byte *buf;
/*
First we create a buffer that we can use for reading rows, and can pass
to get_row().
*/
if (!(buf= (byte*) my_malloc(table->s->reclength, MYF(MY_WME))))
{
rc= HA_ERR_OUT_OF_MEM;
goto error;
}
/*
Now we will rewind the archive file so that we are positioned at the
start of the file.
*/
rc= read_data_header(archive);
/*
Assuming now error from rewinding the archive file, we now write out the
new header for out data file.
*/
if (!rc)
rc= write_data_header(writer);
/*
On success of writing out the new header, we now fetch each row and
insert it into the new archive file.
*/
if (!rc)
{
share->rows_recorded= 0;
while (!(rc= get_row(archive, buf)))
{
real_write_row(buf, writer);
share->rows_recorded++;
}
}
DBUG_PRINT("info", ("recovered %lu archive rows",
(ulong) share->rows_recorded));
my_free((char*)buf, MYF(0));
if (rc && rc != HA_ERR_END_OF_FILE)
goto error;
}
else
{
/*
The quick method is to just read the data raw, and then compress it directly.
*/
int read; // Bytes read, gzread() returns int
char block[IO_SIZE];
if (gzrewind(archive) == -1)
{
rc= HA_ERR_CRASHED_ON_USAGE;
goto error;
}
while ((read= gzread(archive, block, IO_SIZE)))
gzwrite(writer, block, read);
}
gzflush(writer, Z_SYNC_FLUSH);
share->dirty= FALSE;
gzclose(share->archive_write);
share->archive_write= writer;
my_rename(writer_filename,share->data_file_name,MYF(0));
/*
Now we need to reopen our read descriptor since it has changed.
*/
gzclose(archive);
if ((archive= gzopen(share->data_file_name, "rb")) == NULL)
{
rc= HA_ERR_CRASHED_ON_USAGE;
goto error;
}
DBUG_RETURN(0);
error:
gzclose(writer);
DBUG_RETURN(rc);
}
/*
Below is an example of how to setup row level locking.
*/
THR_LOCK_DATA **ha_archive::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type == TL_WRITE_DELAYED)
delayed_insert= TRUE;
else
delayed_insert= FALSE;
if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
{
/*
Here is where we get into the guts of a row level lock.
If TL_UNLOCK is set
If we are not doing a LOCK TABLE or DISCARD/IMPORT
TABLESPACE, then allow multiple writers
*/
if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
lock_type <= TL_WRITE) && !thd->in_lock_tables
&& !thd->tablespace_op)
lock_type = TL_WRITE_ALLOW_WRITE;
/*
In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
MySQL would use the lock TL_READ_NO_INSERT on t2, and that
would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
to t2. Convert the lock to a normal read lock to allow
concurrent inserts to t2.
*/
if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables)
lock_type = TL_READ;
lock.type=lock_type;
}
*to++= &lock;
return to;
}
/*
Hints for optimizer, see ha_tina for more information
*/
int ha_archive::info(uint flag)
{
DBUG_ENTER("ha_archive::info");
/*
This should be an accurate number now, though bulk and delayed inserts can
cause the number to be inaccurate.
*/
records= share->rows_recorded;
deleted= 0;
/* Costs quite a bit more to get all information */
if (flag & HA_STATUS_TIME)
{
MY_STAT file_stat; // Stat information for the data file
VOID(my_stat(share->data_file_name, &file_stat, MYF(MY_WME)));
mean_rec_length= table->s->reclength + buffer.alloced_length();
data_file_length= file_stat.st_size;
create_time= file_stat.st_ctime;
update_time= file_stat.st_mtime;
max_data_file_length= share->rows_recorded * mean_rec_length;
}
delete_length= 0;
index_file_length=0;
DBUG_RETURN(0);
}
/*
This method tells us that a bulk insert operation is about to occur. We set
a flag which will keep write_row from saying that its data is dirty. This in
turn will keep selects from causing a sync to occur.
Basically, yet another optimizations to keep compression working well.
*/
void ha_archive::start_bulk_insert(ha_rows rows)
{
DBUG_ENTER("ha_archive::start_bulk_insert");
if (!rows || rows >= ARCHIVE_MIN_ROWS_TO_USE_BULK_INSERT)
bulk_insert= TRUE;
DBUG_VOID_RETURN;
}
/*
Other side of start_bulk_insert, is end_bulk_insert. Here we turn off the bulk insert
flag, and set the share dirty so that the next select will call sync for us.
*/
int ha_archive::end_bulk_insert()
{
DBUG_ENTER("ha_archive::end_bulk_insert");
bulk_insert= FALSE;
share->dirty= TRUE;
DBUG_RETURN(0);
}
/*
We cancel a truncate command. The only way to delete an archive table is to drop it.
This is done for security reasons. In a later version we will enable this by
allowing the user to select a different row format.
*/
int ha_archive::delete_all_rows()
{
DBUG_ENTER("ha_archive::delete_all_rows");
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
}
/*
We just return state if asked.
*/
bool ha_archive::is_crashed() const
{
DBUG_ENTER("ha_archive::is_crashed");
DBUG_RETURN(share->crashed);
}
/*
Simple scan of the tables to make sure everything is ok.
*/
int ha_archive::check(THD* thd, HA_CHECK_OPT* check_opt)
{
int rc= 0;
byte *buf;
const char *old_proc_info=thd->proc_info;
ha_rows count= share->rows_recorded;
DBUG_ENTER("ha_archive::check");
thd_proc_info(thd, "Checking table");
/* Flush any waiting data */
gzflush(share->archive_write, Z_SYNC_FLUSH);
/*
First we create a buffer that we can use for reading rows, and can pass
to get_row().
*/
if (!(buf= (byte*) my_malloc(table->s->reclength, MYF(MY_WME))))
rc= HA_ERR_OUT_OF_MEM;
/*
Now we will rewind the archive file so that we are positioned at the
start of the file.
*/
if (!rc)
read_data_header(archive);
if (!rc)
while (!(rc= get_row(archive, buf)))
count--;
my_free((char*)buf, MYF(0));
thd_proc_info(thd, old_proc_info);
if ((rc && rc != HA_ERR_END_OF_FILE) || count)
{
share->crashed= FALSE;
DBUG_RETURN(HA_ADMIN_CORRUPT);
}
else
{
DBUG_RETURN(HA_ADMIN_OK);
}
}
/*
Check and repair the table if needed.
*/
bool ha_archive::check_and_repair(THD *thd)
{
HA_CHECK_OPT check_opt;
DBUG_ENTER("ha_archive::check_and_repair");
check_opt.init();
DBUG_RETURN(repair(thd, &check_opt));
}
#endif /* HAVE_ARCHIVE_DB */