mariadb/include/my_bit.h
unknown c2872bafde push for trnman review
(lockmanager still fails unit tests)


BitKeeper/deleted/.del-Makefile.am~4375ae3d4de2bdf0:
  Delete: unittest/maria/Makefile.am
configure.in:
  silence up configure warnings, don't generate unittest/maria/Makefile
include/atomic/nolock.h:
  s/LOCK/LOCK_prefix/
include/atomic/x86-gcc.h:
  s/LOCK/LOCK_prefix/
include/atomic/x86-msvc.h:
  s/LOCK/LOCK_prefix/
include/lf.h:
  pin asserts, renames
include/my_atomic.h:
  move cleanup
include/my_bit.h:
  s/uint/uint32/
mysys/lf_dynarray.c:
  style fixes, split for() in two, remove if()s
mysys/lf_hash.c:
  renames, minor fixes
mysys/my_atomic.c:
  run-time assert -> compile-time assert
storage/maria/Makefile.am:
  lockman here
storage/maria/unittest/Makefile.am:
  new unit tests
storage/maria/unittest/trnman-t.c:
  lots of changes
storage/maria/lockman.c:
  many changes:
  second meaning of "blocker"
  portability: s/gettimeofday/my_getsystime/
  move mutex/cond out of LOCK_OWNER - it creates a race condition
  that will be fixed in a separate changeset
  increment lm->count for every element, not only for distinct ones -
  because we cannot decrease it for distinct elements only :(
storage/maria/lockman.h:
  move mutex/cond out of LOCK_OWNER
storage/maria/trnman.c:
  move mutex/cond out of LOCK_OWNER
  atomic-ops to access short_trid_to_trn[]
storage/maria/trnman.h:
  move mutex/cond out of LOCK_OWNER
storage/maria/unittest/lockman-t.c:
  unit stress test
2006-10-13 11:37:27 +02:00

107 lines
2.8 KiB
C

/*
Some useful bit functions
*/
#ifdef HAVE_INLINE
extern const char _my_bits_nbits[256];
extern const uchar _my_bits_reverse_table[256];
/*
Find smallest X in 2^X >= value
This can be used to divide a number with value by doing a shift instead
*/
STATIC_INLINE uint my_bit_log2(ulong value)
{
uint bit;
for (bit=0 ; value > 1 ; value>>=1, bit++) ;
return bit;
}
STATIC_INLINE uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
/* The following code is a bit faster on 16 bit machines than if we would
only shift v */
ulong v2=(ulong) (v >> 32);
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)] +
_my_bits_nbits[(uchar) (v2)] +
_my_bits_nbits[(uchar) (v2 >> 8)] +
_my_bits_nbits[(uchar) (v2 >> 16)] +
_my_bits_nbits[(uchar) (v2 >> 24)]);
#else
return (uint) (uchar) (_my_bits_nbits[(uchar) v] +
_my_bits_nbits[(uchar) (v >> 8)] +
_my_bits_nbits[(uchar) (v >> 16)] +
_my_bits_nbits[(uchar) (v >> 24)]);
#endif
}
STATIC_INLINE uint my_count_bits_ushort(ushort v)
{
return _my_bits_nbits[v];
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Orignal code public domain)
Comments shows how this works with 01100000000000000000000000001011
*/
STATIC_INLINE uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}
STATIC_INLINE uint32 my_clear_highest_bit(uint32 v)
{
uint32 w=v >> 1;
w|= w >> 1;
w|= w >> 2;
w|= w >> 4;
w|= w >> 8;
w|= w >> 16;
return v & w;
}
STATIC_INLINE uint32 my_reverse_bits(uint32 key)
{
return
(_my_bits_reverse_table[ key & 255] << 24) |
(_my_bits_reverse_table[(key>> 8) & 255] << 16) |
(_my_bits_reverse_table[(key>>16) & 255] << 8) |
_my_bits_reverse_table[(key>>24) ];
}
#else
extern uint my_bit_log2(ulong value);
extern uint32 my_round_up_to_next_power(uint32 v);
uint32 my_clear_highest_bit(uint32 v);
uint32 my_reverse_bits(uint32 key);
extern uint my_count_bits(ulonglong v);
extern uint my_count_bits_ushort(ushort v);
#endif