mirror of
https://github.com/MariaDB/server.git
synced 2025-01-16 03:52:35 +01:00
19c721631e
(Try 2) (Cherry-pick back into 10.3) The code that updates semi-join optimization state for a join order prefix had several bugs. The visible effect was bad optimization for FirstMatch or LooseScan strategies: they either weren't considered when they should have been, or considered when they shouldn't have been. In order to hit the bug, the optimizer needs to consider several different join prefixes in a certain order. Queries with "obvious" query plans which prune all join orders except one are not affected. Internally, the bugs in updates of semi-join state were: 1. restore_prev_sj_state() assumed that "we assume remaining_tables doesnt contain @tab" which wasn't true. 2. Another bug in this function: it did remove bits from join->cur_sj_inner_tables but never added them. 3. greedy_search() adds tables into the join prefix but neglects to update the semi-join optimization state. (It does update nested outer join state, see this call: check_interleaving_with_nj(best_table) but there's no matching call to update the semi-join state. (This wasn't visible because most of the state is in the POSITION structure which is updated. But there is also state in JOIN, too) The patch: - Fixes all of the above - Adds JOIN::dbug_verify_sj_inner_tables() which is used to verify the state is correct at every step. - Renames advance_sj_state() to optimize_semi_joins(). = Introduces update_sj_state() which ideally should have been called "advance_sj_state" but I didn't reuse the name to not create confusion.
413 lines
14 KiB
C++
413 lines
14 KiB
C++
/*
|
|
Copyright (c) 2010, 2019, MariaDB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
|
|
|
|
/*
|
|
Semi-join subquery optimization code definitions
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_INTERFACE
|
|
#pragma interface /* gcc class implementation */
|
|
#endif
|
|
|
|
int check_and_do_in_subquery_rewrites(JOIN *join);
|
|
bool convert_join_subqueries_to_semijoins(JOIN *join);
|
|
int pull_out_semijoin_tables(JOIN *join);
|
|
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map);
|
|
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
|
|
Item **join_where);
|
|
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list);
|
|
|
|
// used by Loose_scan_opt
|
|
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
|
|
table_map remaining_tables);
|
|
|
|
/*
|
|
This is a class for considering possible loose index scan optimizations.
|
|
It's usage pattern is as follows:
|
|
best_access_path()
|
|
{
|
|
Loose_scan_opt opt;
|
|
|
|
opt.init()
|
|
for each index we can do ref access with
|
|
{
|
|
opt.next_ref_key();
|
|
for each keyuse
|
|
opt.add_keyuse();
|
|
opt.check_ref_access();
|
|
}
|
|
|
|
if (some criteria for range scans)
|
|
opt.check_range_access();
|
|
|
|
opt.get_best_option();
|
|
}
|
|
*/
|
|
|
|
class Loose_scan_opt
|
|
{
|
|
/* All methods must check this before doing anything else */
|
|
bool try_loosescan;
|
|
|
|
/*
|
|
If we consider (oe1, .. oeN) IN (SELECT ie1, .. ieN) then ieK=oeK is
|
|
called sj-equality. If oeK depends only on preceding tables then such
|
|
equality is called 'bound'.
|
|
*/
|
|
ulonglong bound_sj_equalities;
|
|
|
|
/* Accumulated properties of ref access we're now considering: */
|
|
ulonglong handled_sj_equalities;
|
|
key_part_map loose_scan_keyparts;
|
|
uint max_loose_keypart;
|
|
bool part1_conds_met;
|
|
|
|
/*
|
|
Use of quick select is a special case. Some of its properties:
|
|
*/
|
|
uint quick_uses_applicable_index;
|
|
uint quick_max_loose_keypart;
|
|
|
|
/* Best loose scan method so far */
|
|
uint best_loose_scan_key;
|
|
double best_loose_scan_cost;
|
|
double best_loose_scan_records;
|
|
KEYUSE *best_loose_scan_start_key;
|
|
|
|
uint best_max_loose_keypart;
|
|
table_map best_ref_depend_map;
|
|
|
|
public:
|
|
Loose_scan_opt():
|
|
try_loosescan(false),
|
|
bound_sj_equalities(0),
|
|
quick_uses_applicable_index(0),
|
|
quick_max_loose_keypart(0),
|
|
best_loose_scan_key(0),
|
|
best_loose_scan_cost(0),
|
|
best_loose_scan_records(0),
|
|
best_loose_scan_start_key(NULL),
|
|
best_max_loose_keypart(0),
|
|
best_ref_depend_map(0)
|
|
{
|
|
}
|
|
|
|
void init(JOIN *join, JOIN_TAB *s, table_map remaining_tables)
|
|
{
|
|
/*
|
|
Discover the bound equalities. We need to do this if
|
|
1. The next table is an SJ-inner table, and
|
|
2. It is the first table from that semijoin, and
|
|
3. We're not within a semi-join range (i.e. all semi-joins either have
|
|
all or none of their tables in join_table_map), except
|
|
s->emb_sj_nest (which we've just entered, see #2).
|
|
4. All non-IN-equality correlation references from this sj-nest are
|
|
bound
|
|
5. But some of the IN-equalities aren't (so this can't be handled by
|
|
FirstMatch strategy)
|
|
*/
|
|
best_loose_scan_cost= DBL_MAX;
|
|
if (!join->emb_sjm_nest && s->emb_sj_nest && // (1)
|
|
s->emb_sj_nest->sj_in_exprs < 64 &&
|
|
((remaining_tables & s->emb_sj_nest->sj_inner_tables) == // (2)
|
|
s->emb_sj_nest->sj_inner_tables) && // (2)
|
|
join->cur_sj_inner_tables == 0 && // (3)
|
|
!(remaining_tables &
|
|
s->emb_sj_nest->nested_join->sj_corr_tables) && // (4)
|
|
remaining_tables & s->emb_sj_nest->nested_join->sj_depends_on &&// (5)
|
|
optimizer_flag(join->thd, OPTIMIZER_SWITCH_LOOSE_SCAN))
|
|
{
|
|
/* This table is an LooseScan scan candidate */
|
|
bound_sj_equalities= get_bound_sj_equalities(s->emb_sj_nest,
|
|
remaining_tables);
|
|
try_loosescan= TRUE;
|
|
DBUG_PRINT("info", ("Will try LooseScan scan, bound_map=%llx",
|
|
(longlong)bound_sj_equalities));
|
|
}
|
|
}
|
|
|
|
void next_ref_key()
|
|
{
|
|
handled_sj_equalities=0;
|
|
loose_scan_keyparts= 0;
|
|
max_loose_keypart= 0;
|
|
part1_conds_met= FALSE;
|
|
}
|
|
|
|
void add_keyuse(table_map remaining_tables, KEYUSE *keyuse)
|
|
{
|
|
if (try_loosescan && keyuse->sj_pred_no != UINT_MAX &&
|
|
(keyuse->table->file->index_flags(keyuse->key, 0, 1 ) & HA_READ_ORDER))
|
|
|
|
{
|
|
if (!(remaining_tables & keyuse->used_tables))
|
|
{
|
|
/*
|
|
This allows to use equality propagation to infer that some
|
|
sj-equalities are bound.
|
|
*/
|
|
bound_sj_equalities |= 1ULL << keyuse->sj_pred_no;
|
|
}
|
|
else
|
|
{
|
|
handled_sj_equalities |= 1ULL << keyuse->sj_pred_no;
|
|
loose_scan_keyparts |= ((key_part_map)1) << keyuse->keypart;
|
|
set_if_bigger(max_loose_keypart, keyuse->keypart);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool have_a_case() { return MY_TEST(handled_sj_equalities); }
|
|
|
|
void check_ref_access_part1(JOIN_TAB *s, uint key, KEYUSE *start_key,
|
|
table_map found_part)
|
|
{
|
|
/*
|
|
Check if we can use LooseScan semi-join strategy. We can if
|
|
1. This is the right table at right location
|
|
2. All IN-equalities are either
|
|
- "bound", ie. the outer_expr part refers to the preceding tables
|
|
- "handled", ie. covered by the index we're considering
|
|
3. Index order allows to enumerate subquery's duplicate groups in
|
|
order. This happens when the index definition matches this
|
|
pattern:
|
|
|
|
(handled_col|bound_col)* (other_col|bound_col)
|
|
|
|
*/
|
|
if (try_loosescan && // (1)
|
|
(handled_sj_equalities | bound_sj_equalities) == // (2)
|
|
PREV_BITS(ulonglong, s->emb_sj_nest->sj_in_exprs) && // (2)
|
|
(PREV_BITS(key_part_map, max_loose_keypart+1) & // (3)
|
|
(found_part | loose_scan_keyparts)) == // (3)
|
|
PREV_BITS(key_part_map, max_loose_keypart+1) && // (3)
|
|
!key_uses_partial_cols(s->table->s, key))
|
|
{
|
|
if (s->quick && s->quick->index == key &&
|
|
s->quick->get_type() == QUICK_SELECT_I::QS_TYPE_RANGE)
|
|
{
|
|
quick_uses_applicable_index= TRUE;
|
|
quick_max_loose_keypart= max_loose_keypart;
|
|
}
|
|
DBUG_PRINT("info", ("Can use LooseScan scan"));
|
|
|
|
if (found_part & 1)
|
|
{
|
|
/* Can use LooseScan on ref access if the first key part is bound */
|
|
part1_conds_met= TRUE;
|
|
}
|
|
|
|
/*
|
|
Check if this is a special case where there are no usable bound
|
|
IN-equalities, i.e. we have
|
|
|
|
outer_expr IN (SELECT innertbl.key FROM ...)
|
|
|
|
and outer_expr cannot be evaluated yet, so it's actually full
|
|
index scan and not a ref access.
|
|
We can do full index scan if it uses index-only.
|
|
*/
|
|
if (!(found_part & 1 ) && /* no usable ref access for 1st key part */
|
|
s->table->covering_keys.is_set(key))
|
|
{
|
|
part1_conds_met= TRUE;
|
|
DBUG_PRINT("info", ("Can use full index scan for LooseScan"));
|
|
|
|
/* Calculate the cost of complete loose index scan. */
|
|
double records= rows2double(s->table->file->stats.records);
|
|
|
|
/* The cost is entire index scan cost (divided by 2) */
|
|
double read_time= s->table->file->keyread_time(key, 1,
|
|
(ha_rows) records);
|
|
|
|
/*
|
|
Now find out how many different keys we will get (for now we
|
|
ignore the fact that we have "keypart_i=const" restriction for
|
|
some key components, that may make us think think that loose
|
|
scan will produce more distinct records than it actually will)
|
|
*/
|
|
ulong rpc;
|
|
if ((rpc= s->table->key_info[key].rec_per_key[max_loose_keypart]))
|
|
records= records / rpc;
|
|
|
|
// TODO: previous version also did /2
|
|
if (read_time < best_loose_scan_cost)
|
|
{
|
|
best_loose_scan_key= key;
|
|
best_loose_scan_cost= read_time;
|
|
best_loose_scan_records= records;
|
|
best_max_loose_keypart= max_loose_keypart;
|
|
best_loose_scan_start_key= start_key;
|
|
best_ref_depend_map= 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void check_ref_access_part2(uint key, KEYUSE *start_key, double records,
|
|
double read_time, table_map ref_depend_map_arg)
|
|
{
|
|
if (part1_conds_met && read_time < best_loose_scan_cost)
|
|
{
|
|
/* TODO use rec-per-key-based fanout calculations */
|
|
best_loose_scan_key= key;
|
|
best_loose_scan_cost= read_time;
|
|
best_loose_scan_records= records;
|
|
best_max_loose_keypart= max_loose_keypart;
|
|
best_loose_scan_start_key= start_key;
|
|
best_ref_depend_map= ref_depend_map_arg;
|
|
}
|
|
}
|
|
|
|
void check_range_access(JOIN *join, uint idx, QUICK_SELECT_I *quick)
|
|
{
|
|
/* TODO: this the right part restriction: */
|
|
if (quick_uses_applicable_index && idx == join->const_tables &&
|
|
quick->read_time < best_loose_scan_cost)
|
|
{
|
|
best_loose_scan_key= quick->index;
|
|
best_loose_scan_cost= quick->read_time;
|
|
/* this is ok because idx == join->const_tables */
|
|
best_loose_scan_records= rows2double(quick->records);
|
|
best_max_loose_keypart= quick_max_loose_keypart;
|
|
best_loose_scan_start_key= NULL;
|
|
best_ref_depend_map= 0;
|
|
}
|
|
}
|
|
|
|
void save_to_position(JOIN_TAB *tab, POSITION *pos)
|
|
{
|
|
pos->read_time= best_loose_scan_cost;
|
|
if (best_loose_scan_cost != DBL_MAX)
|
|
{
|
|
pos->records_read= best_loose_scan_records;
|
|
pos->key= best_loose_scan_start_key;
|
|
pos->cond_selectivity= 1.0;
|
|
pos->loosescan_picker.loosescan_key= best_loose_scan_key;
|
|
pos->loosescan_picker.loosescan_parts= best_max_loose_keypart + 1;
|
|
pos->use_join_buffer= FALSE;
|
|
pos->table= tab;
|
|
pos->ref_depend_map= best_ref_depend_map;
|
|
DBUG_PRINT("info", ("Produced a LooseScan plan, key %s, %s",
|
|
tab->table->key_info[best_loose_scan_key].name.str,
|
|
best_loose_scan_start_key? "(ref access)":
|
|
"(range/index access)"));
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
void optimize_semi_joins(JOIN *join, table_map remaining_tables, uint idx,
|
|
double *current_record_count,
|
|
double *current_read_time, POSITION *loose_scan_pos);
|
|
void update_sj_state(JOIN *join, const JOIN_TAB *new_tab,
|
|
uint idx, table_map remaining_tables);
|
|
void restore_prev_sj_state(const table_map remaining_tables,
|
|
const JOIN_TAB *tab, uint idx);
|
|
|
|
void fix_semijoin_strategies_for_picked_join_order(JOIN *join);
|
|
|
|
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab);
|
|
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab);
|
|
|
|
|
|
/*
|
|
Temporary table used by semi-join DuplicateElimination strategy
|
|
|
|
This consists of the temptable itself and data needed to put records
|
|
into it. The table's DDL is as follows:
|
|
|
|
CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col));
|
|
|
|
where the primary key can be replaced with unique constraint if n exceeds
|
|
the limit (as it is always done for query execution-time temptables).
|
|
|
|
The record value is a concatenation of rowids of tables from the join we're
|
|
executing. If a join table is on the inner side of the outer join, we
|
|
assume that its rowid can be NULL and provide means to store this rowid in
|
|
the tuple.
|
|
*/
|
|
|
|
class SJ_TMP_TABLE : public Sql_alloc
|
|
{
|
|
public:
|
|
/*
|
|
Array of pointers to tables whose rowids compose the temporary table
|
|
record.
|
|
*/
|
|
class TAB
|
|
{
|
|
public:
|
|
JOIN_TAB *join_tab;
|
|
uint rowid_offset;
|
|
ushort null_byte;
|
|
uchar null_bit;
|
|
};
|
|
TAB *tabs;
|
|
TAB *tabs_end;
|
|
|
|
/*
|
|
is_degenerate==TRUE means this is a special case where the temptable record
|
|
has zero length (and presence of a unique key means that the temptable can
|
|
have either 0 or 1 records).
|
|
In this case we don't create the physical temptable but instead record
|
|
its state in SJ_TMP_TABLE::have_degenerate_row.
|
|
*/
|
|
bool is_degenerate;
|
|
|
|
/*
|
|
When is_degenerate==TRUE: the contents of the table (whether it has the
|
|
record or not).
|
|
*/
|
|
bool have_degenerate_row;
|
|
|
|
/* table record parameters */
|
|
uint null_bits;
|
|
uint null_bytes;
|
|
uint rowid_len;
|
|
|
|
/* The temporary table itself (NULL means not created yet) */
|
|
TABLE *tmp_table;
|
|
|
|
/*
|
|
These are the members we got from temptable creation code. We'll need
|
|
them if we'll need to convert table from HEAP to MyISAM/Maria.
|
|
*/
|
|
TMP_ENGINE_COLUMNDEF *start_recinfo;
|
|
TMP_ENGINE_COLUMNDEF *recinfo;
|
|
|
|
SJ_TMP_TABLE *next_flush_table;
|
|
|
|
int sj_weedout_delete_rows();
|
|
int sj_weedout_check_row(THD *thd);
|
|
bool create_sj_weedout_tmp_table(THD *thd);
|
|
};
|
|
|
|
int setup_semijoin_loosescan(JOIN *join);
|
|
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
|
|
uint no_jbuf_after);
|
|
void destroy_sj_tmp_tables(JOIN *join);
|
|
int clear_sj_tmp_tables(JOIN *join);
|
|
int rewrite_to_index_subquery_engine(JOIN *join);
|
|
|
|
|
|
void get_delayed_table_estimates(TABLE *table,
|
|
ha_rows *out_rows,
|
|
double *scan_time,
|
|
double *startup_cost);
|
|
|
|
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab);
|
|
|