mirror of
https://github.com/MariaDB/server.git
synced 2025-01-28 01:34:17 +01:00
74cc73d461
Changes that requires code changes in other code of other storage engines. (Note that all changes are very straightforward and one should find all issues by compiling a --debug build and fixing all compiler errors and all asserts in field.cc while running the test suite), - New optional handler function introduced: reset() This is called after every DML statement to make it easy for a handler to statement specific cleanups. (The only case it's not called is if force the file to be closed) - handler::extra(HA_EXTRA_RESET) is removed. Code that was there before should be moved to handler::reset() - table->read_set contains a bitmap over all columns that are needed in the query. read_row() and similar functions only needs to read these columns - table->write_set contains a bitmap over all columns that will be updated in the query. write_row() and update_row() only needs to update these columns. The above bitmaps should now be up to date in all context (including ALTER TABLE, filesort()). The handler is informed of any changes to the bitmap after fix_fields() by calling the virtual function handler::column_bitmaps_signal(). If the handler does caching of these bitmaps (instead of using table->read_set, table->write_set), it should redo the caching in this code. as the signal() may be sent several times, it's probably best to set a variable in the signal and redo the caching on read_row() / write_row() if the variable was set. - Removed the read_set and write_set bitmap objects from the handler class - Removed all column bit handling functions from the handler class. (Now one instead uses the normal bitmap functions in my_bitmap.c instead of handler dedicated bitmap functions) - field->query_id is removed. One should instead instead check table->read_set and table->write_set if a field is used in the query. - handler::extra(HA_EXTRA_RETRIVE_ALL_COLS) and handler::extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) are removed. One should now instead use table->read_set to check for which columns to retrieve. - If a handler needs to call Field->val() or Field->store() on columns that are not used in the query, one should install a temporary all-columns-used map while doing so. For this, we provide the following functions: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); field->val(); dbug_tmp_restore_column_map(table->read_set, old_map); and similar for the write map: my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->write_set); field->val(); dbug_tmp_restore_column_map(table->write_set, old_map); If this is not done, you will sooner or later hit a DBUG_ASSERT in the field store() / val() functions. (For not DBUG binaries, the dbug_tmp_restore_column_map() and dbug_tmp_restore_column_map() are inline dummy functions and should be optimized away be the compiler). - If one needs to temporary set the column map for all binaries (and not just to avoid the DBUG_ASSERT() in the Field::store() / Field::val() methods) one should use the functions tmp_use_all_columns() and tmp_restore_column_map() instead of the above dbug_ variants. - All 'status' fields in the handler base class (like records, data_file_length etc) are now stored in a 'stats' struct. This makes it easier to know what status variables are provided by the base handler. This requires some trivial variable names in the extra() function. - New virtual function handler::records(). This is called to optimize COUNT(*) if (handler::table_flags() & HA_HAS_RECORDS()) is true. (stats.records is not supposed to be an exact value. It's only has to be 'reasonable enough' for the optimizer to be able to choose a good optimization path). - Non virtual handler::init() function added for caching of virtual constants from engine. - Removed has_transactions() virtual method. Now one should instead return HA_NO_TRANSACTIONS in table_flags() if the table handler DOES NOT support transactions. - The 'xxxx_create_handler()' function now has a MEM_ROOT_root argument that is to be used with 'new handler_name()' to allocate the handler in the right area. The xxxx_create_handler() function is also responsible for any initialization of the object before returning. For example, one should change: static handler *myisam_create_handler(TABLE_SHARE *table) { return new ha_myisam(table); } -> static handler *myisam_create_handler(TABLE_SHARE *table, MEM_ROOT *mem_root) { return new (mem_root) ha_myisam(table); } - New optional virtual function: use_hidden_primary_key(). This is called in case of an update/delete when (table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined but we don't have a primary key. This allows the handler to take precisions in remembering any hidden primary key to able to update/delete any found row. The default handler marks all columns to be read. - handler::table_flags() now returns a ulonglong (to allow for more flags). - New/changed table_flags() - HA_HAS_RECORDS Set if ::records() is supported - HA_NO_TRANSACTIONS Set if engine doesn't support transactions - HA_PRIMARY_KEY_REQUIRED_FOR_DELETE Set if we should mark all primary key columns for read when reading rows as part of a DELETE statement. If there is no primary key, all columns are marked for read. - HA_PARTIAL_COLUMN_READ Set if engine will not read all columns in some cases (based on table->read_set) - HA_PRIMARY_KEY_ALLOW_RANDOM_ACCESS Renamed to HA_PRIMARY_KEY_REQUIRED_FOR_POSITION. - HA_DUPP_POS Renamed to HA_DUPLICATE_POS - HA_REQUIRES_KEY_COLUMNS_FOR_DELETE Set this if we should mark ALL key columns for read when when reading rows as part of a DELETE statement. In case of an update we will mark all keys for read for which key part changed value. - HA_STATS_RECORDS_IS_EXACT Set this if stats.records is exact. (This saves us some extra records() calls when optimizing COUNT(*)) - Removed table_flags() - HA_NOT_EXACT_COUNT Now one should instead use HA_HAS_RECORDS if handler::records() gives an exact count() and HA_STATS_RECORDS_IS_EXACT if stats.records is exact. - HA_READ_RND_SAME Removed (no one supported this one) - Removed not needed functions ha_retrieve_all_cols() and ha_retrieve_all_pk() - Renamed handler::dupp_pos to handler::dup_pos - Removed not used variable handler::sortkey Upper level handler changes: - ha_reset() now does some overall checks and calls ::reset() - ha_table_flags() added. This is a cached version of table_flags(). The cache is updated on engine creation time and updated on open. MySQL level changes (not obvious from the above): - DBUG_ASSERT() added to check that column usage matches what is set in the column usage bit maps. (This found a LOT of bugs in current column marking code). - In 5.1 before, all used columns was marked in read_set and only updated columns was marked in write_set. Now we only mark columns for which we need a value in read_set. - Column bitmaps are created in open_binary_frm() and open_table_from_share(). (Before this was in table.cc) - handler::table_flags() calls are replaced with handler::ha_table_flags() - For calling field->val() you must have the corresponding bit set in table->read_set. For calling field->store() you must have the corresponding bit set in table->write_set. (There are asserts in all store()/val() functions to catch wrong usage) - thd->set_query_id is renamed to thd->mark_used_columns and instead of setting this to an integer value, this has now the values: MARK_COLUMNS_NONE, MARK_COLUMNS_READ, MARK_COLUMNS_WRITE Changed also all variables named 'set_query_id' to mark_used_columns. - In filesort() we now inform the handler of exactly which columns are needed doing the sort and choosing the rows. - The TABLE_SHARE object has a 'all_set' column bitmap one can use when one needs a column bitmap with all columns set. (This is used for table->use_all_columns() and other places) - The TABLE object has 3 column bitmaps: - def_read_set Default bitmap for columns to be read - def_write_set Default bitmap for columns to be written - tmp_set Can be used as a temporary bitmap when needed. The table object has also two pointer to bitmaps read_set and write_set that the handler should use to find out which columns are used in which way. - count() optimization now calls handler::records() instead of using handler->stats.records (if (table_flags() & HA_HAS_RECORDS) is true). - Added extra argument to Item::walk() to indicate if we should also traverse sub queries. - Added TABLE parameter to cp_buffer_from_ref() - Don't close tables created with CREATE ... SELECT but keep them in the table cache. (Faster usage of newly created tables). New interfaces: - table->clear_column_bitmaps() to initialize the bitmaps for tables at start of new statements. - table->column_bitmaps_set() to set up new column bitmaps and signal the handler about this. - table->column_bitmaps_set_no_signal() for some few cases where we need to setup new column bitmaps but don't signal the handler (as the handler has already been signaled about these before). Used for the momement only in opt_range.cc when doing ROR scans. - table->use_all_columns() to install a bitmap where all columns are marked as use in the read and the write set. - table->default_column_bitmaps() to install the normal read and write column bitmaps, but not signaling the handler about this. This is mainly used when creating TABLE instances. - table->mark_columns_needed_for_delete(), table->mark_columns_needed_for_delete() and table->mark_columns_needed_for_insert() to allow us to put additional columns in column usage maps if handler so requires. (The handler indicates what it neads in handler->table_flags()) - table->prepare_for_position() to allow us to tell handler that it needs to read primary key parts to be able to store them in future table->position() calls. (This replaces the table->file->ha_retrieve_all_pk function) - table->mark_auto_increment_column() to tell handler are going to update columns part of any auto_increment key. - table->mark_columns_used_by_index() to mark all columns that is part of an index. It will also send extra(HA_EXTRA_KEYREAD) to handler to allow it to quickly know that it only needs to read colums that are part of the key. (The handler can also use the column map for detecting this, but simpler/faster handler can just monitor the extra() call). - table->mark_columns_used_by_index_no_reset() to in addition to other columns, also mark all columns that is used by the given key. - table->restore_column_maps_after_mark_index() to restore to default column maps after a call to table->mark_columns_used_by_index(). - New item function register_field_in_read_map(), for marking used columns in table->read_map. Used by filesort() to mark all used columns - Maintain in TABLE->merge_keys set of all keys that are used in query. (Simplices some optimization loops) - Maintain Field->part_of_key_not_clustered which is like Field->part_of_key but the field in the clustered key is not assumed to be part of all index. (used in opt_range.cc for faster loops) - dbug_tmp_use_all_columns(), dbug_tmp_restore_column_map() tmp_use_all_columns() and tmp_restore_column_map() functions to temporally mark all columns as usable. The 'dbug_' version is primarily intended inside a handler when it wants to just call Field:store() & Field::val() functions, but don't need the column maps set for any other usage. (ie:: bitmap_is_set() is never called) - We can't use compare_records() to skip updates for handlers that returns a partial column set and the read_set doesn't cover all columns in the write set. The reason for this is that if we have a column marked only for write we can't in the MySQL level know if the value changed or not. The reason this worked before was that MySQL marked all to be written columns as also to be read. The new 'optimal' bitmaps exposed this 'hidden bug'. - open_table_from_share() does not anymore setup temporary MEM_ROOT object as a thread specific variable for the handler. Instead we send the to-be-used MEMROOT to get_new_handler(). (Simpler, faster code) Bugs fixed: - Column marking was not done correctly in a lot of cases. (ALTER TABLE, when using triggers, auto_increment fields etc) (Could potentially result in wrong values inserted in table handlers relying on that the old column maps or field->set_query_id was correct) Especially when it comes to triggers, there may be cases where the old code would cause lost/wrong values for NDB and/or InnoDB tables. - Split thd->options flag OPTION_STATUS_NO_TRANS_UPDATE to two flags: OPTION_STATUS_NO_TRANS_UPDATE and OPTION_KEEP_LOG. This allowed me to remove some wrong warnings about: "Some non-transactional changed tables couldn't be rolled back" - Fixed handling of INSERT .. SELECT and CREATE ... SELECT that wrongly reset (thd->options & OPTION_STATUS_NO_TRANS_UPDATE) which caused us to loose some warnings about "Some non-transactional changed tables couldn't be rolled back") - Fixed use of uninitialized memory in ha_ndbcluster.cc::delete_table() which could cause delete_table to report random failures. - Fixed core dumps for some tests when running with --debug - Added missing FN_LIBCHAR in mysql_rm_tmp_tables() (This has probably caused us to not properly remove temporary files after crash) - slow_logs was not properly initialized, which could maybe cause extra/lost entries in slow log. - If we get an duplicate row on insert, change column map to read and write all columns while retrying the operation. This is required by the definition of REPLACE and also ensures that fields that are only part of UPDATE are properly handled. This fixed a bug in NDB and REPLACE where REPLACE wrongly copied some column values from the replaced row. - For table handler that doesn't support NULL in keys, we would give an error when creating a primary key with NULL fields, even after the fields has been automaticly converted to NOT NULL. - Creating a primary key on a SPATIAL key, would fail if field was not declared as NOT NULL. Cleanups: - Removed not used condition argument to setup_tables - Removed not needed item function reset_query_id_processor(). - Field->add_index is removed. Now this is instead maintained in (field->flags & FIELD_IN_ADD_INDEX) - Field->fieldnr is removed (use field->field_index instead) - New argument to filesort() to indicate that it should return a set of row pointers (not used columns). This allowed me to remove some references to sql_command in filesort and should also enable us to return column results in some cases where we couldn't before. - Changed column bitmap handling in opt_range.cc to be aligned with TABLE bitmap, which allowed me to use bitmap functions instead of looping over all fields to create some needed bitmaps. (Faster and smaller code) - Broke up found too long lines - Moved some variable declaration at start of function for better code readability. - Removed some not used arguments from functions. (setup_fields(), mysql_prepare_insert_check_table()) - setup_fields() now takes an enum instead of an int for marking columns usage. - For internal temporary tables, use handler::write_row(), handler::delete_row() and handler::update_row() instead of handler::ha_xxxx() for faster execution. - Changed some constants to enum's and define's. - Using separate column read and write sets allows for easier checking of timestamp field was set by statement. - Remove calls to free_io_cache() as this is now done automaticly in ha_reset() - Don't build table->normalized_path as this is now identical to table->path (after bar's fixes to convert filenames) - Fixed some missed DBUG_PRINT(.."%lx") to use "0x%lx" to make it easier to do comparision with the 'convert-dbug-for-diff' tool. Things left to do in 5.1: - We wrongly log failed CREATE TABLE ... SELECT in some cases when using row based logging (as shown by testcase binlog_row_mix_innodb_myisam.result) Mats has promised to look into this. - Test that my fix for CREATE TABLE ... SELECT is indeed correct. (I added several test cases for this, but in this case it's better that someone else also tests this throughly). Lars has promosed to do this.
1591 lines
46 KiB
C++
1591 lines
46 KiB
C++
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB & Sasha
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
#include "mysql_priv.h"
|
|
#ifdef HAVE_REPLICATION
|
|
|
|
#include "sql_repl.h"
|
|
#include "log_event.h"
|
|
#include "rpl_filter.h"
|
|
#include <my_dir.h>
|
|
|
|
int max_binlog_dump_events = 0; // unlimited
|
|
my_bool opt_sporadic_binlog_dump_fail = 0;
|
|
static int binlog_dump_count = 0;
|
|
|
|
/*
|
|
fake_rotate_event() builds a fake (=which does not exist physically in any
|
|
binlog) Rotate event, which contains the name of the binlog we are going to
|
|
send to the slave (because the slave may not know it if it just asked for
|
|
MASTER_LOG_FILE='', MASTER_LOG_POS=4).
|
|
< 4.0.14, fake_rotate_event() was called only if the requested pos was 4.
|
|
After this version we always call it, so that a 3.23.58 slave can rely on
|
|
it to detect if the master is 4.0 (and stop) (the _fake_ Rotate event has
|
|
zeros in the good positions which, by chance, make it possible for the 3.23
|
|
slave to detect that this event is unexpected) (this is luck which happens
|
|
because the master and slave disagree on the size of the header of
|
|
Log_event).
|
|
|
|
Relying on the event length of the Rotate event instead of these
|
|
well-placed zeros was not possible as Rotate events have a variable-length
|
|
part.
|
|
*/
|
|
|
|
static int fake_rotate_event(NET* net, String* packet, char* log_file_name,
|
|
ulonglong position, const char** errmsg)
|
|
{
|
|
DBUG_ENTER("fake_rotate_event");
|
|
char header[LOG_EVENT_HEADER_LEN], buf[ROTATE_HEADER_LEN+100];
|
|
/*
|
|
'when' (the timestamp) is set to 0 so that slave could distinguish between
|
|
real and fake Rotate events (if necessary)
|
|
*/
|
|
memset(header, 0, 4);
|
|
header[EVENT_TYPE_OFFSET] = ROTATE_EVENT;
|
|
|
|
char* p = log_file_name+dirname_length(log_file_name);
|
|
uint ident_len = (uint) strlen(p);
|
|
ulong event_len = ident_len + LOG_EVENT_HEADER_LEN + ROTATE_HEADER_LEN;
|
|
int4store(header + SERVER_ID_OFFSET, server_id);
|
|
int4store(header + EVENT_LEN_OFFSET, event_len);
|
|
int2store(header + FLAGS_OFFSET, 0);
|
|
|
|
// TODO: check what problems this may cause and fix them
|
|
int4store(header + LOG_POS_OFFSET, 0);
|
|
|
|
packet->append(header, sizeof(header));
|
|
int8store(buf+R_POS_OFFSET,position);
|
|
packet->append(buf, ROTATE_HEADER_LEN);
|
|
packet->append(p,ident_len);
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
*errmsg = "failed on my_net_write()";
|
|
DBUG_RETURN(-1);
|
|
}
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
static int send_file(THD *thd)
|
|
{
|
|
NET* net = &thd->net;
|
|
int fd = -1,bytes, error = 1;
|
|
char fname[FN_REFLEN+1];
|
|
const char *errmsg = 0;
|
|
int old_timeout;
|
|
unsigned long packet_len;
|
|
char buf[IO_SIZE]; // It's safe to alloc this
|
|
DBUG_ENTER("send_file");
|
|
|
|
/*
|
|
The client might be slow loading the data, give him wait_timeout to do
|
|
the job
|
|
*/
|
|
old_timeout = thd->net.read_timeout;
|
|
thd->net.read_timeout = thd->variables.net_wait_timeout;
|
|
|
|
/*
|
|
We need net_flush here because the client will not know it needs to send
|
|
us the file name until it has processed the load event entry
|
|
*/
|
|
if (net_flush(net) || (packet_len = my_net_read(net)) == packet_error)
|
|
{
|
|
errmsg = "while reading file name";
|
|
goto err;
|
|
}
|
|
|
|
// terminate with \0 for fn_format
|
|
*((char*)net->read_pos + packet_len) = 0;
|
|
fn_format(fname, (char*) net->read_pos + 1, "", "", 4);
|
|
// this is needed to make replicate-ignore-db
|
|
if (!strcmp(fname,"/dev/null"))
|
|
goto end;
|
|
|
|
if ((fd = my_open(fname, O_RDONLY, MYF(0))) < 0)
|
|
{
|
|
errmsg = "on open of file";
|
|
goto err;
|
|
}
|
|
|
|
while ((bytes = (int) my_read(fd, (byte*) buf, IO_SIZE, MYF(0))) > 0)
|
|
{
|
|
if (my_net_write(net, buf, bytes))
|
|
{
|
|
errmsg = "while writing data to client";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
end:
|
|
if (my_net_write(net, "", 0) || net_flush(net) ||
|
|
(my_net_read(net) == packet_error))
|
|
{
|
|
errmsg = "while negotiating file transfer close";
|
|
goto err;
|
|
}
|
|
error = 0;
|
|
|
|
err:
|
|
thd->net.read_timeout = old_timeout;
|
|
if (fd >= 0)
|
|
(void) my_close(fd, MYF(0));
|
|
if (errmsg)
|
|
{
|
|
sql_print_error("Failed in send_file() %s", errmsg);
|
|
DBUG_PRINT("error", (errmsg));
|
|
}
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
|
|
/*
|
|
Adjust the position pointer in the binary log file for all running slaves
|
|
|
|
SYNOPSIS
|
|
adjust_linfo_offsets()
|
|
purge_offset Number of bytes removed from start of log index file
|
|
|
|
NOTES
|
|
- This is called when doing a PURGE when we delete lines from the
|
|
index log file
|
|
|
|
REQUIREMENTS
|
|
- Before calling this function, we have to ensure that no threads are
|
|
using any binary log file before purge_offset.a
|
|
|
|
TODO
|
|
- Inform the slave threads that they should sync the position
|
|
in the binary log file with flush_relay_log_info.
|
|
Now they sync is done for next read.
|
|
*/
|
|
|
|
void adjust_linfo_offsets(my_off_t purge_offset)
|
|
{
|
|
THD *tmp;
|
|
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
LOG_INFO* linfo;
|
|
if ((linfo = tmp->current_linfo))
|
|
{
|
|
pthread_mutex_lock(&linfo->lock);
|
|
/*
|
|
Index file offset can be less that purge offset only if
|
|
we just started reading the index file. In that case
|
|
we have nothing to adjust
|
|
*/
|
|
if (linfo->index_file_offset < purge_offset)
|
|
linfo->fatal = (linfo->index_file_offset != 0);
|
|
else
|
|
linfo->index_file_offset -= purge_offset;
|
|
pthread_mutex_unlock(&linfo->lock);
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
}
|
|
|
|
|
|
bool log_in_use(const char* log_name)
|
|
{
|
|
int log_name_len = strlen(log_name) + 1;
|
|
THD *tmp;
|
|
bool result = 0;
|
|
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
LOG_INFO* linfo;
|
|
if ((linfo = tmp->current_linfo))
|
|
{
|
|
pthread_mutex_lock(&linfo->lock);
|
|
result = !bcmp(log_name, linfo->log_file_name, log_name_len);
|
|
pthread_mutex_unlock(&linfo->lock);
|
|
if (result)
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
return result;
|
|
}
|
|
|
|
bool purge_error_message(THD* thd, int res)
|
|
{
|
|
uint errmsg= 0;
|
|
|
|
switch (res) {
|
|
case 0: break;
|
|
case LOG_INFO_EOF: errmsg= ER_UNKNOWN_TARGET_BINLOG; break;
|
|
case LOG_INFO_IO: errmsg= ER_IO_ERR_LOG_INDEX_READ; break;
|
|
case LOG_INFO_INVALID:errmsg= ER_BINLOG_PURGE_PROHIBITED; break;
|
|
case LOG_INFO_SEEK: errmsg= ER_FSEEK_FAIL; break;
|
|
case LOG_INFO_MEM: errmsg= ER_OUT_OF_RESOURCES; break;
|
|
case LOG_INFO_FATAL: errmsg= ER_BINLOG_PURGE_FATAL_ERR; break;
|
|
case LOG_INFO_IN_USE: errmsg= ER_LOG_IN_USE; break;
|
|
default: errmsg= ER_LOG_PURGE_UNKNOWN_ERR; break;
|
|
}
|
|
|
|
if (errmsg)
|
|
{
|
|
my_message(errmsg, ER(errmsg), MYF(0));
|
|
return TRUE;
|
|
}
|
|
send_ok(thd);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
bool purge_master_logs(THD* thd, const char* to_log)
|
|
{
|
|
char search_file_name[FN_REFLEN];
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
send_ok(thd);
|
|
return FALSE;
|
|
}
|
|
|
|
mysql_bin_log.make_log_name(search_file_name, to_log);
|
|
return purge_error_message(thd,
|
|
mysql_bin_log.purge_logs(search_file_name, 0, 1,
|
|
1, NULL));
|
|
}
|
|
|
|
|
|
bool purge_master_logs_before_date(THD* thd, time_t purge_time)
|
|
{
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
send_ok(thd);
|
|
return 0;
|
|
}
|
|
return purge_error_message(thd,
|
|
mysql_bin_log.purge_logs_before_date(purge_time));
|
|
}
|
|
|
|
int test_for_non_eof_log_read_errors(int error, const char **errmsg)
|
|
{
|
|
if (error == LOG_READ_EOF)
|
|
return 0;
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
switch (error) {
|
|
case LOG_READ_BOGUS:
|
|
*errmsg = "bogus data in log event";
|
|
break;
|
|
case LOG_READ_TOO_LARGE:
|
|
*errmsg = "log event entry exceeded max_allowed_packet; \
|
|
Increase max_allowed_packet on master";
|
|
break;
|
|
case LOG_READ_IO:
|
|
*errmsg = "I/O error reading log event";
|
|
break;
|
|
case LOG_READ_MEM:
|
|
*errmsg = "memory allocation failed reading log event";
|
|
break;
|
|
case LOG_READ_TRUNC:
|
|
*errmsg = "binlog truncated in the middle of event";
|
|
break;
|
|
default:
|
|
*errmsg = "unknown error reading log event on the master";
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
TODO: Clean up loop to only have one call to send_file()
|
|
*/
|
|
|
|
void mysql_binlog_send(THD* thd, char* log_ident, my_off_t pos,
|
|
ushort flags)
|
|
{
|
|
LOG_INFO linfo;
|
|
char *log_file_name = linfo.log_file_name;
|
|
char search_file_name[FN_REFLEN], *name;
|
|
IO_CACHE log;
|
|
File file = -1;
|
|
String* packet = &thd->packet;
|
|
int error;
|
|
const char *errmsg = "Unknown error";
|
|
NET* net = &thd->net;
|
|
pthread_mutex_t *log_lock;
|
|
bool binlog_can_be_corrupted= FALSE;
|
|
#ifndef DBUG_OFF
|
|
int left_events = max_binlog_dump_events;
|
|
#endif
|
|
DBUG_ENTER("mysql_binlog_send");
|
|
DBUG_PRINT("enter",("log_ident: '%s' pos: %ld", log_ident, (long) pos));
|
|
|
|
bzero((char*) &log,sizeof(log));
|
|
|
|
#ifndef DBUG_OFF
|
|
if (opt_sporadic_binlog_dump_fail && (binlog_dump_count++ % 2))
|
|
{
|
|
errmsg = "Master failed COM_BINLOG_DUMP to test if slave can recover";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
errmsg = "Binary log is not open";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
if (!server_id_supplied)
|
|
{
|
|
errmsg = "Misconfigured master - server id was not set";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
name=search_file_name;
|
|
if (log_ident[0])
|
|
mysql_bin_log.make_log_name(search_file_name, log_ident);
|
|
else
|
|
name=0; // Find first log
|
|
|
|
linfo.index_file_offset = 0;
|
|
thd->current_linfo = &linfo;
|
|
|
|
if (mysql_bin_log.find_log_pos(&linfo, name, 1))
|
|
{
|
|
errmsg = "Could not find first log file name in binary log index file";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
if ((file=open_binlog(&log, log_file_name, &errmsg)) < 0)
|
|
{
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
if (pos < BIN_LOG_HEADER_SIZE || pos > my_b_filelength(&log))
|
|
{
|
|
errmsg= "Client requested master to start replication from \
|
|
impossible position";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
We need to start a packet with something other than 255
|
|
to distinguish it from error
|
|
*/
|
|
packet->set("\0", 1, &my_charset_bin); /* This is the start of a new packet */
|
|
|
|
/*
|
|
Tell the client about the log name with a fake Rotate event;
|
|
this is needed even if we also send a Format_description_log_event
|
|
just after, because that event does not contain the binlog's name.
|
|
Note that as this Rotate event is sent before
|
|
Format_description_log_event, the slave cannot have any info to
|
|
understand this event's format, so the header len of
|
|
Rotate_log_event is FROZEN (so in 5.0 it will have a header shorter
|
|
than other events except FORMAT_DESCRIPTION_EVENT).
|
|
Before 4.0.14 we called fake_rotate_event below only if (pos ==
|
|
BIN_LOG_HEADER_SIZE), because if this is false then the slave
|
|
already knows the binlog's name.
|
|
Since, we always call fake_rotate_event; if the slave already knew
|
|
the log's name (ex: CHANGE MASTER TO MASTER_LOG_FILE=...) this is
|
|
useless but does not harm much. It is nice for 3.23 (>=.58) slaves
|
|
which test Rotate events to see if the master is 4.0 (then they
|
|
choose to stop because they can't replicate 4.0); by always calling
|
|
fake_rotate_event we are sure that 3.23.58 and newer will detect the
|
|
problem as soon as replication starts (BUG#198).
|
|
Always calling fake_rotate_event makes sending of normal
|
|
(=from-binlog) Rotate events a priori unneeded, but it is not so
|
|
simple: the 2 Rotate events are not equivalent, the normal one is
|
|
before the Stop event, the fake one is after. If we don't send the
|
|
normal one, then the Stop event will be interpreted (by existing 4.0
|
|
slaves) as "the master stopped", which is wrong. So for safety,
|
|
given that we want minimum modification of 4.0, we send the normal
|
|
and fake Rotates.
|
|
*/
|
|
if (fake_rotate_event(net, packet, log_file_name, pos, &errmsg))
|
|
{
|
|
/*
|
|
This error code is not perfect, as fake_rotate_event() does not
|
|
read anything from the binlog; if it fails it's because of an
|
|
error in my_net_write(), fortunately it will say so in errmsg.
|
|
*/
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
|
|
/*
|
|
We can set log_lock now, it does not move (it's a member of
|
|
mysql_bin_log, and it's already inited, and it will be destroyed
|
|
only at shutdown).
|
|
*/
|
|
log_lock = mysql_bin_log.get_log_lock();
|
|
if (pos > BIN_LOG_HEADER_SIZE)
|
|
{
|
|
/*
|
|
Try to find a Format_description_log_event at the beginning of
|
|
the binlog
|
|
*/
|
|
if (!(error = Log_event::read_log_event(&log, packet, log_lock)))
|
|
{
|
|
/*
|
|
The packet has offsets equal to the normal offsets in a binlog
|
|
event +1 (the first character is \0).
|
|
*/
|
|
DBUG_PRINT("info",
|
|
("Looked for a Format_description_log_event, found event type %d",
|
|
(*packet)[EVENT_TYPE_OFFSET+1]));
|
|
if ((*packet)[EVENT_TYPE_OFFSET+1] == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
binlog_can_be_corrupted= test((*packet)[FLAGS_OFFSET+1] &
|
|
LOG_EVENT_BINLOG_IN_USE_F);
|
|
(*packet)[FLAGS_OFFSET+1] &= ~LOG_EVENT_BINLOG_IN_USE_F;
|
|
/*
|
|
mark that this event with "log_pos=0", so the slave
|
|
should not increment master's binlog position
|
|
(rli->group_master_log_pos)
|
|
*/
|
|
int4store((char*) packet->ptr()+LOG_POS_OFFSET+1, 0);
|
|
/*
|
|
if reconnect master sends FD event with `created' as 0
|
|
to avoid destroying temp tables.
|
|
*/
|
|
int4store((char*) packet->ptr()+LOG_EVENT_MINIMAL_HEADER_LEN+
|
|
ST_CREATED_OFFSET+1, (ulong) 0);
|
|
/* send it */
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
No need to save this event. We are only doing simple reads
|
|
(no real parsing of the events) so we don't need it. And so
|
|
we don't need the artificial Format_description_log_event of
|
|
3.23&4.x.
|
|
*/
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (test_for_non_eof_log_read_errors(error, &errmsg))
|
|
goto err;
|
|
/*
|
|
It's EOF, nothing to do, go on reading next events, the
|
|
Format_description_log_event will be found naturally if it is written.
|
|
*/
|
|
}
|
|
/* reset the packet as we wrote to it in any case */
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
} /* end of if (pos > BIN_LOG_HEADER_SIZE); */
|
|
else
|
|
{
|
|
/* The Format_description_log_event event will be found naturally. */
|
|
}
|
|
|
|
/* seek to the requested position, to start the requested dump */
|
|
my_b_seek(&log, pos); // Seek will done on next read
|
|
|
|
while (!net->error && net->vio != 0 && !thd->killed)
|
|
{
|
|
while (!(error = Log_event::read_log_event(&log, packet, log_lock)))
|
|
{
|
|
#ifndef DBUG_OFF
|
|
if (max_binlog_dump_events && !left_events--)
|
|
{
|
|
net_flush(net);
|
|
errmsg = "Debugging binlog dump abort";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
if ((*packet)[EVENT_TYPE_OFFSET+1] == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
binlog_can_be_corrupted= test((*packet)[FLAGS_OFFSET+1] &
|
|
LOG_EVENT_BINLOG_IN_USE_F);
|
|
(*packet)[FLAGS_OFFSET+1] &= ~LOG_EVENT_BINLOG_IN_USE_F;
|
|
}
|
|
else if ((*packet)[EVENT_TYPE_OFFSET+1] == STOP_EVENT)
|
|
binlog_can_be_corrupted= FALSE;
|
|
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()))
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
DBUG_PRINT("info", ("log event code %d",
|
|
(*packet)[LOG_EVENT_OFFSET+1] ));
|
|
if ((*packet)[LOG_EVENT_OFFSET+1] == LOAD_EVENT)
|
|
{
|
|
if (send_file(thd))
|
|
{
|
|
errmsg = "failed in send_file()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
}
|
|
|
|
/*
|
|
here we were reading binlog that was not closed properly (as a result
|
|
of a crash ?). treat any corruption as EOF
|
|
*/
|
|
if (binlog_can_be_corrupted && error != LOG_READ_MEM)
|
|
error=LOG_READ_EOF;
|
|
/*
|
|
TODO: now that we are logging the offset, check to make sure
|
|
the recorded offset and the actual match.
|
|
Guilhem 2003-06: this is not true if this master is a slave
|
|
<4.0.15 running with --log-slave-updates, because then log_pos may
|
|
be the offset in the-master-of-this-master's binlog.
|
|
*/
|
|
if (test_for_non_eof_log_read_errors(error, &errmsg))
|
|
goto err;
|
|
|
|
if (!(flags & BINLOG_DUMP_NON_BLOCK) &&
|
|
mysql_bin_log.is_active(log_file_name))
|
|
{
|
|
/*
|
|
Block until there is more data in the log
|
|
*/
|
|
if (net_flush(net))
|
|
{
|
|
errmsg = "failed on net_flush()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
We may have missed the update broadcast from the log
|
|
that has just happened, let's try to catch it if it did.
|
|
If we did not miss anything, we just wait for other threads
|
|
to signal us.
|
|
*/
|
|
{
|
|
log.error=0;
|
|
bool read_packet = 0, fatal_error = 0;
|
|
|
|
#ifndef DBUG_OFF
|
|
if (max_binlog_dump_events && !left_events--)
|
|
{
|
|
errmsg = "Debugging binlog dump abort";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
No one will update the log while we are reading
|
|
now, but we'll be quick and just read one record
|
|
|
|
TODO:
|
|
Add an counter that is incremented for each time we update the
|
|
binary log. We can avoid the following read if the counter
|
|
has not been updated since last read.
|
|
*/
|
|
|
|
pthread_mutex_lock(log_lock);
|
|
switch (Log_event::read_log_event(&log, packet, (pthread_mutex_t*)0)) {
|
|
case 0:
|
|
/* we read successfully, so we'll need to send it to the slave */
|
|
pthread_mutex_unlock(log_lock);
|
|
read_packet = 1;
|
|
break;
|
|
|
|
case LOG_READ_EOF:
|
|
DBUG_PRINT("wait",("waiting for data in binary log"));
|
|
if (thd->server_id==0) // for mysqlbinlog (mysqlbinlog.server_id==0)
|
|
{
|
|
pthread_mutex_unlock(log_lock);
|
|
goto end;
|
|
}
|
|
if (!thd->killed)
|
|
{
|
|
/* Note that the following call unlocks lock_log */
|
|
mysql_bin_log.wait_for_update(thd, 0);
|
|
}
|
|
else
|
|
pthread_mutex_unlock(log_lock);
|
|
DBUG_PRINT("wait",("binary log received update"));
|
|
break;
|
|
|
|
default:
|
|
pthread_mutex_unlock(log_lock);
|
|
fatal_error = 1;
|
|
break;
|
|
}
|
|
|
|
if (read_packet)
|
|
{
|
|
thd->proc_info = "Sending binlog event to slave";
|
|
if (my_net_write(net, (char*)packet->ptr(), packet->length()) )
|
|
{
|
|
errmsg = "Failed on my_net_write()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
|
|
if ((*packet)[LOG_EVENT_OFFSET+1] == LOAD_EVENT)
|
|
{
|
|
if (send_file(thd))
|
|
{
|
|
errmsg = "failed in send_file()";
|
|
my_errno= ER_UNKNOWN_ERROR;
|
|
goto err;
|
|
}
|
|
}
|
|
packet->set("\0", 1, &my_charset_bin);
|
|
/*
|
|
No need to net_flush because we will get to flush later when
|
|
we hit EOF pretty quick
|
|
*/
|
|
}
|
|
|
|
if (fatal_error)
|
|
{
|
|
errmsg = "error reading log entry";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
log.error=0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool loop_breaker = 0;
|
|
/* need this to break out of the for loop from switch */
|
|
|
|
thd->proc_info = "Finished reading one binlog; switching to next binlog";
|
|
switch (mysql_bin_log.find_next_log(&linfo, 1)) {
|
|
case LOG_INFO_EOF:
|
|
loop_breaker = (flags & BINLOG_DUMP_NON_BLOCK);
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
errmsg = "could not find next log";
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
if (loop_breaker)
|
|
break;
|
|
|
|
end_io_cache(&log);
|
|
(void) my_close(file, MYF(MY_WME));
|
|
|
|
/*
|
|
Call fake_rotate_event() in case the previous log (the one which
|
|
we have just finished reading) did not contain a Rotate event
|
|
(for example (I don't know any other example) the previous log
|
|
was the last one before the master was shutdown & restarted).
|
|
This way we tell the slave about the new log's name and
|
|
position. If the binlog is 5.0, the next event we are going to
|
|
read and send is Format_description_log_event.
|
|
*/
|
|
if ((file=open_binlog(&log, log_file_name, &errmsg)) < 0 ||
|
|
fake_rotate_event(net, packet, log_file_name, BIN_LOG_HEADER_SIZE,
|
|
&errmsg))
|
|
{
|
|
my_errno= ER_MASTER_FATAL_ERROR_READING_BINLOG;
|
|
goto err;
|
|
}
|
|
|
|
packet->length(0);
|
|
packet->append('\0');
|
|
}
|
|
}
|
|
|
|
end:
|
|
end_io_cache(&log);
|
|
(void)my_close(file, MYF(MY_WME));
|
|
|
|
send_eof(thd);
|
|
thd->proc_info = "Waiting to finalize termination";
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
DBUG_VOID_RETURN;
|
|
|
|
err:
|
|
thd->proc_info = "Waiting to finalize termination";
|
|
end_io_cache(&log);
|
|
/*
|
|
Exclude iteration through thread list
|
|
this is needed for purge_logs() - it will iterate through
|
|
thread list and update thd->current_linfo->index_file_offset
|
|
this mutex will make sure that it never tried to update our linfo
|
|
after we return from this stack frame
|
|
*/
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
if (file >= 0)
|
|
(void) my_close(file, MYF(MY_WME));
|
|
|
|
my_message(my_errno, errmsg, MYF(0));
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
int start_slave(THD* thd , MASTER_INFO* mi, bool net_report)
|
|
{
|
|
int slave_errno= 0;
|
|
int thread_mask;
|
|
DBUG_ENTER("start_slave");
|
|
|
|
if (check_access(thd, SUPER_ACL, any_db,0,0,0,0))
|
|
DBUG_RETURN(1);
|
|
lock_slave_threads(mi); // this allows us to cleanly read slave_running
|
|
// Get a mask of _stopped_ threads
|
|
init_thread_mask(&thread_mask,mi,1 /* inverse */);
|
|
/*
|
|
Below we will start all stopped threads. But if the user wants to
|
|
start only one thread, do as if the other thread was running (as we
|
|
don't wan't to touch the other thread), so set the bit to 0 for the
|
|
other thread
|
|
*/
|
|
if (thd->lex->slave_thd_opt)
|
|
thread_mask&= thd->lex->slave_thd_opt;
|
|
if (thread_mask) //some threads are stopped, start them
|
|
{
|
|
if (init_master_info(mi,master_info_file,relay_log_info_file, 0,
|
|
thread_mask))
|
|
slave_errno=ER_MASTER_INFO;
|
|
else if (server_id_supplied && *mi->host)
|
|
{
|
|
/*
|
|
If we will start SQL thread we will care about UNTIL options If
|
|
not and they are specified we will ignore them and warn user
|
|
about this fact.
|
|
*/
|
|
if (thread_mask & SLAVE_SQL)
|
|
{
|
|
pthread_mutex_lock(&mi->rli.data_lock);
|
|
|
|
if (thd->lex->mi.pos)
|
|
{
|
|
mi->rli.until_condition= RELAY_LOG_INFO::UNTIL_MASTER_POS;
|
|
mi->rli.until_log_pos= thd->lex->mi.pos;
|
|
/*
|
|
We don't check thd->lex->mi.log_file_name for NULL here
|
|
since it is checked in sql_yacc.yy
|
|
*/
|
|
strmake(mi->rli.until_log_name, thd->lex->mi.log_file_name,
|
|
sizeof(mi->rli.until_log_name)-1);
|
|
}
|
|
else if (thd->lex->mi.relay_log_pos)
|
|
{
|
|
mi->rli.until_condition= RELAY_LOG_INFO::UNTIL_RELAY_POS;
|
|
mi->rli.until_log_pos= thd->lex->mi.relay_log_pos;
|
|
strmake(mi->rli.until_log_name, thd->lex->mi.relay_log_name,
|
|
sizeof(mi->rli.until_log_name)-1);
|
|
}
|
|
else
|
|
clear_until_condition(&mi->rli);
|
|
|
|
if (mi->rli.until_condition != RELAY_LOG_INFO::UNTIL_NONE)
|
|
{
|
|
/* Preparing members for effective until condition checking */
|
|
const char *p= fn_ext(mi->rli.until_log_name);
|
|
char *p_end;
|
|
if (*p)
|
|
{
|
|
//p points to '.'
|
|
mi->rli.until_log_name_extension= strtoul(++p,&p_end, 10);
|
|
/*
|
|
p_end points to the first invalid character. If it equals
|
|
to p, no digits were found, error. If it contains '\0' it
|
|
means conversion went ok.
|
|
*/
|
|
if (p_end==p || *p_end)
|
|
slave_errno=ER_BAD_SLAVE_UNTIL_COND;
|
|
}
|
|
else
|
|
slave_errno=ER_BAD_SLAVE_UNTIL_COND;
|
|
|
|
/* mark the cached result of the UNTIL comparison as "undefined" */
|
|
mi->rli.until_log_names_cmp_result=
|
|
RELAY_LOG_INFO::UNTIL_LOG_NAMES_CMP_UNKNOWN;
|
|
|
|
/* Issuing warning then started without --skip-slave-start */
|
|
if (!opt_skip_slave_start)
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE,
|
|
ER_MISSING_SKIP_SLAVE,
|
|
ER(ER_MISSING_SKIP_SLAVE));
|
|
}
|
|
|
|
pthread_mutex_unlock(&mi->rli.data_lock);
|
|
}
|
|
else if (thd->lex->mi.pos || thd->lex->mi.relay_log_pos)
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_UNTIL_COND_IGNORED,
|
|
ER(ER_UNTIL_COND_IGNORED));
|
|
|
|
if (!slave_errno)
|
|
slave_errno = start_slave_threads(0 /*no mutex */,
|
|
1 /* wait for start */,
|
|
mi,
|
|
master_info_file,relay_log_info_file,
|
|
thread_mask);
|
|
}
|
|
else
|
|
slave_errno = ER_BAD_SLAVE;
|
|
}
|
|
else
|
|
{
|
|
/* no error if all threads are already started, only a warning */
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_SLAVE_WAS_RUNNING,
|
|
ER(ER_SLAVE_WAS_RUNNING));
|
|
}
|
|
|
|
unlock_slave_threads(mi);
|
|
|
|
if (slave_errno)
|
|
{
|
|
if (net_report)
|
|
my_message(slave_errno, ER(slave_errno), MYF(0));
|
|
DBUG_RETURN(1);
|
|
}
|
|
else if (net_report)
|
|
send_ok(thd);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
int stop_slave(THD* thd, MASTER_INFO* mi, bool net_report )
|
|
{
|
|
int slave_errno;
|
|
if (!thd)
|
|
thd = current_thd;
|
|
|
|
if (check_access(thd, SUPER_ACL, any_db,0,0,0,0))
|
|
return 1;
|
|
thd->proc_info = "Killing slave";
|
|
int thread_mask;
|
|
lock_slave_threads(mi);
|
|
// Get a mask of _running_ threads
|
|
init_thread_mask(&thread_mask,mi,0 /* not inverse*/);
|
|
/*
|
|
Below we will stop all running threads.
|
|
But if the user wants to stop only one thread, do as if the other thread
|
|
was stopped (as we don't wan't to touch the other thread), so set the
|
|
bit to 0 for the other thread
|
|
*/
|
|
if (thd->lex->slave_thd_opt)
|
|
thread_mask &= thd->lex->slave_thd_opt;
|
|
|
|
if (thread_mask)
|
|
{
|
|
slave_errno= terminate_slave_threads(mi,thread_mask,
|
|
1 /*skip lock */);
|
|
}
|
|
else
|
|
{
|
|
//no error if both threads are already stopped, only a warning
|
|
slave_errno= 0;
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE, ER_SLAVE_WAS_NOT_RUNNING,
|
|
ER(ER_SLAVE_WAS_NOT_RUNNING));
|
|
}
|
|
unlock_slave_threads(mi);
|
|
thd->proc_info = 0;
|
|
|
|
if (slave_errno)
|
|
{
|
|
if (net_report)
|
|
my_message(slave_errno, ER(slave_errno), MYF(0));
|
|
return 1;
|
|
}
|
|
else if (net_report)
|
|
send_ok(thd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Remove all relay logs and start replication from the start
|
|
|
|
SYNOPSIS
|
|
reset_slave()
|
|
thd Thread handler
|
|
mi Master info for the slave
|
|
|
|
RETURN
|
|
0 ok
|
|
1 error
|
|
*/
|
|
|
|
|
|
int reset_slave(THD *thd, MASTER_INFO* mi)
|
|
{
|
|
MY_STAT stat_area;
|
|
char fname[FN_REFLEN];
|
|
int thread_mask= 0, error= 0;
|
|
uint sql_errno=0;
|
|
const char* errmsg=0;
|
|
DBUG_ENTER("reset_slave");
|
|
|
|
lock_slave_threads(mi);
|
|
init_thread_mask(&thread_mask,mi,0 /* not inverse */);
|
|
if (thread_mask) // We refuse if any slave thread is running
|
|
{
|
|
sql_errno= ER_SLAVE_MUST_STOP;
|
|
error=1;
|
|
goto err;
|
|
}
|
|
|
|
ha_reset_slave(thd);
|
|
|
|
// delete relay logs, clear relay log coordinates
|
|
if ((error= purge_relay_logs(&mi->rli, thd,
|
|
1 /* just reset */,
|
|
&errmsg)))
|
|
goto err;
|
|
|
|
/*
|
|
Clear master's log coordinates and reset host/user/etc to the values
|
|
specified in mysqld's options (only for good display of SHOW SLAVE STATUS;
|
|
next init_master_info() (in start_slave() for example) would have set them
|
|
the same way; but here this is for the case where the user does SHOW SLAVE
|
|
STATUS; before doing START SLAVE;
|
|
*/
|
|
init_master_info_with_options(mi);
|
|
/*
|
|
Reset errors (the idea is that we forget about the
|
|
old master).
|
|
*/
|
|
clear_slave_error(&mi->rli);
|
|
clear_until_condition(&mi->rli);
|
|
|
|
// close master_info_file, relay_log_info_file, set mi->inited=rli->inited=0
|
|
end_master_info(mi);
|
|
// and delete these two files
|
|
fn_format(fname, master_info_file, mysql_data_home, "", 4+32);
|
|
if (my_stat(fname, &stat_area, MYF(0)) && my_delete(fname, MYF(MY_WME)))
|
|
{
|
|
error=1;
|
|
goto err;
|
|
}
|
|
// delete relay_log_info_file
|
|
fn_format(fname, relay_log_info_file, mysql_data_home, "", 4+32);
|
|
if (my_stat(fname, &stat_area, MYF(0)) && my_delete(fname, MYF(MY_WME)))
|
|
{
|
|
error=1;
|
|
goto err;
|
|
}
|
|
|
|
err:
|
|
unlock_slave_threads(mi);
|
|
if (error)
|
|
my_error(sql_errno, MYF(0), errmsg);
|
|
DBUG_RETURN(error);
|
|
}
|
|
|
|
/*
|
|
|
|
Kill all Binlog_dump threads which previously talked to the same slave
|
|
("same" means with the same server id). Indeed, if the slave stops, if the
|
|
Binlog_dump thread is waiting (pthread_cond_wait) for binlog update, then it
|
|
will keep existing until a query is written to the binlog. If the master is
|
|
idle, then this could last long, and if the slave reconnects, we could have 2
|
|
Binlog_dump threads in SHOW PROCESSLIST, until a query is written to the
|
|
binlog. To avoid this, when the slave reconnects and sends COM_BINLOG_DUMP,
|
|
the master kills any existing thread with the slave's server id (if this id is
|
|
not zero; it will be true for real slaves, but false for mysqlbinlog when it
|
|
sends COM_BINLOG_DUMP to get a remote binlog dump).
|
|
|
|
SYNOPSIS
|
|
kill_zombie_dump_threads()
|
|
slave_server_id the slave's server id
|
|
|
|
*/
|
|
|
|
|
|
void kill_zombie_dump_threads(uint32 slave_server_id)
|
|
{
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
I_List_iterator<THD> it(threads);
|
|
THD *tmp;
|
|
|
|
while ((tmp=it++))
|
|
{
|
|
if (tmp->command == COM_BINLOG_DUMP &&
|
|
tmp->server_id == slave_server_id)
|
|
{
|
|
pthread_mutex_lock(&tmp->LOCK_delete); // Lock from delete
|
|
break;
|
|
}
|
|
}
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
if (tmp)
|
|
{
|
|
/*
|
|
Here we do not call kill_one_thread() as
|
|
it will be slow because it will iterate through the list
|
|
again. We just to do kill the thread ourselves.
|
|
*/
|
|
tmp->awake(THD::KILL_QUERY);
|
|
pthread_mutex_unlock(&tmp->LOCK_delete);
|
|
}
|
|
}
|
|
|
|
|
|
bool change_master(THD* thd, MASTER_INFO* mi)
|
|
{
|
|
int thread_mask;
|
|
const char* errmsg= 0;
|
|
bool need_relay_log_purge= 1;
|
|
DBUG_ENTER("change_master");
|
|
|
|
lock_slave_threads(mi);
|
|
init_thread_mask(&thread_mask,mi,0 /*not inverse*/);
|
|
if (thread_mask) // We refuse if any slave thread is running
|
|
{
|
|
my_message(ER_SLAVE_MUST_STOP, ER(ER_SLAVE_MUST_STOP), MYF(0));
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
thd->proc_info = "Changing master";
|
|
LEX_MASTER_INFO* lex_mi= &thd->lex->mi;
|
|
// TODO: see if needs re-write
|
|
if (init_master_info(mi, master_info_file, relay_log_info_file, 0,
|
|
thread_mask))
|
|
{
|
|
my_message(ER_MASTER_INFO, ER(ER_MASTER_INFO), MYF(0));
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/*
|
|
Data lock not needed since we have already stopped the running threads,
|
|
and we have the hold on the run locks which will keep all threads that
|
|
could possibly modify the data structures from running
|
|
*/
|
|
|
|
/*
|
|
If the user specified host or port without binlog or position,
|
|
reset binlog's name to FIRST and position to 4.
|
|
*/
|
|
|
|
if ((lex_mi->host || lex_mi->port) && !lex_mi->log_file_name && !lex_mi->pos)
|
|
{
|
|
mi->master_log_name[0] = 0;
|
|
mi->master_log_pos= BIN_LOG_HEADER_SIZE;
|
|
}
|
|
|
|
if (lex_mi->log_file_name)
|
|
strmake(mi->master_log_name, lex_mi->log_file_name,
|
|
sizeof(mi->master_log_name)-1);
|
|
if (lex_mi->pos)
|
|
{
|
|
mi->master_log_pos= lex_mi->pos;
|
|
}
|
|
DBUG_PRINT("info", ("master_log_pos: %d", (ulong) mi->master_log_pos));
|
|
|
|
if (lex_mi->host)
|
|
strmake(mi->host, lex_mi->host, sizeof(mi->host)-1);
|
|
if (lex_mi->user)
|
|
strmake(mi->user, lex_mi->user, sizeof(mi->user)-1);
|
|
if (lex_mi->password)
|
|
strmake(mi->password, lex_mi->password, sizeof(mi->password)-1);
|
|
if (lex_mi->port)
|
|
mi->port = lex_mi->port;
|
|
if (lex_mi->connect_retry)
|
|
mi->connect_retry = lex_mi->connect_retry;
|
|
|
|
if (lex_mi->ssl != LEX_MASTER_INFO::SSL_UNCHANGED)
|
|
mi->ssl= (lex_mi->ssl == LEX_MASTER_INFO::SSL_ENABLE);
|
|
if (lex_mi->ssl_ca)
|
|
strmake(mi->ssl_ca, lex_mi->ssl_ca, sizeof(mi->ssl_ca)-1);
|
|
if (lex_mi->ssl_capath)
|
|
strmake(mi->ssl_capath, lex_mi->ssl_capath, sizeof(mi->ssl_capath)-1);
|
|
if (lex_mi->ssl_cert)
|
|
strmake(mi->ssl_cert, lex_mi->ssl_cert, sizeof(mi->ssl_cert)-1);
|
|
if (lex_mi->ssl_cipher)
|
|
strmake(mi->ssl_cipher, lex_mi->ssl_cipher, sizeof(mi->ssl_cipher)-1);
|
|
if (lex_mi->ssl_key)
|
|
strmake(mi->ssl_key, lex_mi->ssl_key, sizeof(mi->ssl_key)-1);
|
|
#ifndef HAVE_OPENSSL
|
|
if (lex_mi->ssl || lex_mi->ssl_ca || lex_mi->ssl_capath ||
|
|
lex_mi->ssl_cert || lex_mi->ssl_cipher || lex_mi->ssl_key )
|
|
push_warning(thd, MYSQL_ERROR::WARN_LEVEL_NOTE,
|
|
ER_SLAVE_IGNORED_SSL_PARAMS, ER(ER_SLAVE_IGNORED_SSL_PARAMS));
|
|
#endif
|
|
|
|
if (lex_mi->relay_log_name)
|
|
{
|
|
need_relay_log_purge= 0;
|
|
strmake(mi->rli.group_relay_log_name,lex_mi->relay_log_name,
|
|
sizeof(mi->rli.group_relay_log_name)-1);
|
|
strmake(mi->rli.event_relay_log_name,lex_mi->relay_log_name,
|
|
sizeof(mi->rli.event_relay_log_name)-1);
|
|
}
|
|
|
|
if (lex_mi->relay_log_pos)
|
|
{
|
|
need_relay_log_purge= 0;
|
|
mi->rli.group_relay_log_pos= mi->rli.event_relay_log_pos= lex_mi->relay_log_pos;
|
|
}
|
|
|
|
/*
|
|
If user did specify neither host nor port nor any log name nor any log
|
|
pos, i.e. he specified only user/password/master_connect_retry, he probably
|
|
wants replication to resume from where it had left, i.e. from the
|
|
coordinates of the **SQL** thread (imagine the case where the I/O is ahead
|
|
of the SQL; restarting from the coordinates of the I/O would lose some
|
|
events which is probably unwanted when you are just doing minor changes
|
|
like changing master_connect_retry).
|
|
A side-effect is that if only the I/O thread was started, this thread may
|
|
restart from ''/4 after the CHANGE MASTER. That's a minor problem (it is a
|
|
much more unlikely situation than the one we are fixing here).
|
|
Note: coordinates of the SQL thread must be read here, before the
|
|
'if (need_relay_log_purge)' block which resets them.
|
|
*/
|
|
if (!lex_mi->host && !lex_mi->port &&
|
|
!lex_mi->log_file_name && !lex_mi->pos &&
|
|
need_relay_log_purge)
|
|
{
|
|
/*
|
|
Sometimes mi->rli.master_log_pos == 0 (it happens when the SQL thread is
|
|
not initialized), so we use a max().
|
|
What happens to mi->rli.master_log_pos during the initialization stages
|
|
of replication is not 100% clear, so we guard against problems using
|
|
max().
|
|
*/
|
|
mi->master_log_pos = max(BIN_LOG_HEADER_SIZE,
|
|
mi->rli.group_master_log_pos);
|
|
strmake(mi->master_log_name, mi->rli.group_master_log_name,
|
|
sizeof(mi->master_log_name)-1);
|
|
}
|
|
/*
|
|
Relay log's IO_CACHE may not be inited, if rli->inited==0 (server was never
|
|
a slave before).
|
|
*/
|
|
if (flush_master_info(mi, 0))
|
|
{
|
|
my_error(ER_RELAY_LOG_INIT, MYF(0), "Failed to flush master info file");
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
if (need_relay_log_purge)
|
|
{
|
|
relay_log_purge= 1;
|
|
thd->proc_info="Purging old relay logs";
|
|
if (purge_relay_logs(&mi->rli, thd,
|
|
0 /* not only reset, but also reinit */,
|
|
&errmsg))
|
|
{
|
|
my_error(ER_RELAY_LOG_FAIL, MYF(0), errmsg);
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char* msg;
|
|
relay_log_purge= 0;
|
|
/* Relay log is already initialized */
|
|
if (init_relay_log_pos(&mi->rli,
|
|
mi->rli.group_relay_log_name,
|
|
mi->rli.group_relay_log_pos,
|
|
0 /*no data lock*/,
|
|
&msg, 0))
|
|
{
|
|
my_error(ER_RELAY_LOG_INIT, MYF(0), msg);
|
|
unlock_slave_threads(mi);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
}
|
|
mi->rli.group_master_log_pos = mi->master_log_pos;
|
|
DBUG_PRINT("info", ("master_log_pos: %d", (ulong) mi->master_log_pos));
|
|
|
|
/*
|
|
Coordinates in rli were spoilt by the 'if (need_relay_log_purge)' block,
|
|
so restore them to good values. If we left them to ''/0, that would work;
|
|
but that would fail in the case of 2 successive CHANGE MASTER (without a
|
|
START SLAVE in between): because first one would set the coords in mi to
|
|
the good values of those in rli, the set those in rli to ''/0, then
|
|
second CHANGE MASTER would set the coords in mi to those of rli, i.e. to
|
|
''/0: we have lost all copies of the original good coordinates.
|
|
That's why we always save good coords in rli.
|
|
*/
|
|
mi->rli.group_master_log_pos= mi->master_log_pos;
|
|
strmake(mi->rli.group_master_log_name,mi->master_log_name,
|
|
sizeof(mi->rli.group_master_log_name)-1);
|
|
|
|
if (!mi->rli.group_master_log_name[0]) // uninitialized case
|
|
mi->rli.group_master_log_pos=0;
|
|
|
|
pthread_mutex_lock(&mi->rli.data_lock);
|
|
mi->rli.abort_pos_wait++; /* for MASTER_POS_WAIT() to abort */
|
|
/* Clear the errors, for a clean start */
|
|
clear_slave_error(&mi->rli);
|
|
clear_until_condition(&mi->rli);
|
|
/*
|
|
If we don't write new coordinates to disk now, then old will remain in
|
|
relay-log.info until START SLAVE is issued; but if mysqld is shutdown
|
|
before START SLAVE, then old will remain in relay-log.info, and will be the
|
|
in-memory value at restart (thus causing errors, as the old relay log does
|
|
not exist anymore).
|
|
*/
|
|
flush_relay_log_info(&mi->rli);
|
|
pthread_cond_broadcast(&mi->data_cond);
|
|
pthread_mutex_unlock(&mi->rli.data_lock);
|
|
|
|
unlock_slave_threads(mi);
|
|
thd->proc_info = 0;
|
|
send_ok(thd);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
int reset_master(THD* thd)
|
|
{
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
my_message(ER_FLUSH_MASTER_BINLOG_CLOSED,
|
|
ER(ER_FLUSH_MASTER_BINLOG_CLOSED), MYF(ME_BELL+ME_WAITTANG));
|
|
return 1;
|
|
}
|
|
return mysql_bin_log.reset_logs(thd);
|
|
}
|
|
|
|
int cmp_master_pos(const char* log_file_name1, ulonglong log_pos1,
|
|
const char* log_file_name2, ulonglong log_pos2)
|
|
{
|
|
int res;
|
|
uint log_file_name1_len= strlen(log_file_name1);
|
|
uint log_file_name2_len= strlen(log_file_name2);
|
|
|
|
// We assume that both log names match up to '.'
|
|
if (log_file_name1_len == log_file_name2_len)
|
|
{
|
|
if ((res= strcmp(log_file_name1, log_file_name2)))
|
|
return res;
|
|
return (log_pos1 < log_pos2) ? -1 : (log_pos1 == log_pos2) ? 0 : 1;
|
|
}
|
|
return ((log_file_name1_len < log_file_name2_len) ? -1 : 1);
|
|
}
|
|
|
|
|
|
bool mysql_show_binlog_events(THD* thd)
|
|
{
|
|
Protocol *protocol= thd->protocol;
|
|
List<Item> field_list;
|
|
const char *errmsg = 0;
|
|
bool ret = TRUE;
|
|
IO_CACHE log;
|
|
File file = -1;
|
|
DBUG_ENTER("mysql_show_binlog_events");
|
|
|
|
Log_event::init_show_field_list(&field_list);
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
|
|
Format_description_log_event *description_event= new
|
|
Format_description_log_event(3); /* MySQL 4.0 by default */
|
|
|
|
/*
|
|
Wait for handlers to insert any pending information
|
|
into the binlog. For e.g. ndb which updates the binlog asynchronously
|
|
this is needed so that the uses sees all its own commands in the binlog
|
|
*/
|
|
ha_binlog_wait(thd);
|
|
|
|
if (mysql_bin_log.is_open())
|
|
{
|
|
LEX_MASTER_INFO *lex_mi= &thd->lex->mi;
|
|
SELECT_LEX_UNIT *unit= &thd->lex->unit;
|
|
ha_rows event_count, limit_start, limit_end;
|
|
my_off_t pos = max(BIN_LOG_HEADER_SIZE, lex_mi->pos); // user-friendly
|
|
char search_file_name[FN_REFLEN], *name;
|
|
const char *log_file_name = lex_mi->log_file_name;
|
|
pthread_mutex_t *log_lock = mysql_bin_log.get_log_lock();
|
|
LOG_INFO linfo;
|
|
Log_event* ev;
|
|
|
|
unit->set_limit(thd->lex->current_select);
|
|
limit_start= unit->offset_limit_cnt;
|
|
limit_end= unit->select_limit_cnt;
|
|
|
|
name= search_file_name;
|
|
if (log_file_name)
|
|
mysql_bin_log.make_log_name(search_file_name, log_file_name);
|
|
else
|
|
name=0; // Find first log
|
|
|
|
linfo.index_file_offset = 0;
|
|
thd->current_linfo = &linfo;
|
|
|
|
if (mysql_bin_log.find_log_pos(&linfo, name, 1))
|
|
{
|
|
errmsg = "Could not find target log";
|
|
goto err;
|
|
}
|
|
|
|
if ((file=open_binlog(&log, linfo.log_file_name, &errmsg)) < 0)
|
|
goto err;
|
|
|
|
pthread_mutex_lock(log_lock);
|
|
|
|
/*
|
|
open_binlog() sought to position 4.
|
|
Read the first event in case it's a Format_description_log_event, to
|
|
know the format. If there's no such event, we are 3.23 or 4.x. This
|
|
code, like before, can't read 3.23 binlogs.
|
|
This code will fail on a mixed relay log (one which has Format_desc then
|
|
Rotate then Format_desc).
|
|
*/
|
|
|
|
ev = Log_event::read_log_event(&log,(pthread_mutex_t*)0,description_event);
|
|
if (ev)
|
|
{
|
|
if (ev->get_type_code() == FORMAT_DESCRIPTION_EVENT)
|
|
{
|
|
delete description_event;
|
|
description_event= (Format_description_log_event*) ev;
|
|
}
|
|
else
|
|
delete ev;
|
|
}
|
|
|
|
my_b_seek(&log, pos);
|
|
|
|
if (!description_event->is_valid())
|
|
{
|
|
errmsg="Invalid Format_description event; could be out of memory";
|
|
goto err;
|
|
}
|
|
|
|
for (event_count = 0;
|
|
(ev = Log_event::read_log_event(&log,(pthread_mutex_t*) 0,
|
|
description_event)); )
|
|
{
|
|
if (event_count >= limit_start &&
|
|
ev->net_send(protocol, linfo.log_file_name, pos))
|
|
{
|
|
errmsg = "Net error";
|
|
delete ev;
|
|
pthread_mutex_unlock(log_lock);
|
|
goto err;
|
|
}
|
|
|
|
pos = my_b_tell(&log);
|
|
delete ev;
|
|
|
|
if (++event_count >= limit_end)
|
|
break;
|
|
}
|
|
|
|
if (event_count < limit_end && log.error)
|
|
{
|
|
errmsg = "Wrong offset or I/O error";
|
|
pthread_mutex_unlock(log_lock);
|
|
goto err;
|
|
}
|
|
|
|
pthread_mutex_unlock(log_lock);
|
|
}
|
|
|
|
ret= FALSE;
|
|
|
|
err:
|
|
delete description_event;
|
|
if (file >= 0)
|
|
{
|
|
end_io_cache(&log);
|
|
(void) my_close(file, MYF(MY_WME));
|
|
}
|
|
|
|
if (errmsg)
|
|
{
|
|
my_error(ER_ERROR_WHEN_EXECUTING_COMMAND, MYF(0),
|
|
"SHOW BINLOG EVENTS", errmsg);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
send_eof(thd);
|
|
pthread_mutex_lock(&LOCK_thread_count);
|
|
thd->current_linfo = 0;
|
|
pthread_mutex_unlock(&LOCK_thread_count);
|
|
DBUG_RETURN(ret);
|
|
}
|
|
|
|
|
|
bool show_binlog_info(THD* thd)
|
|
{
|
|
Protocol *protocol= thd->protocol;
|
|
DBUG_ENTER("show_binlog_info");
|
|
List<Item> field_list;
|
|
field_list.push_back(new Item_empty_string("File", FN_REFLEN));
|
|
field_list.push_back(new Item_return_int("Position",20,
|
|
MYSQL_TYPE_LONGLONG));
|
|
field_list.push_back(new Item_empty_string("Binlog_Do_DB",255));
|
|
field_list.push_back(new Item_empty_string("Binlog_Ignore_DB",255));
|
|
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
protocol->prepare_for_resend();
|
|
|
|
if (mysql_bin_log.is_open())
|
|
{
|
|
LOG_INFO li;
|
|
mysql_bin_log.get_current_log(&li);
|
|
int dir_len = dirname_length(li.log_file_name);
|
|
protocol->store(li.log_file_name + dir_len, &my_charset_bin);
|
|
protocol->store((ulonglong) li.pos);
|
|
protocol->store(binlog_filter->get_do_db());
|
|
protocol->store(binlog_filter->get_ignore_db());
|
|
if (protocol->write())
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
send_eof(thd);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
|
|
/*
|
|
Send a list of all binary logs to client
|
|
|
|
SYNOPSIS
|
|
show_binlogs()
|
|
thd Thread specific variable
|
|
|
|
RETURN VALUES
|
|
FALSE OK
|
|
TRUE error
|
|
*/
|
|
|
|
bool show_binlogs(THD* thd)
|
|
{
|
|
IO_CACHE *index_file;
|
|
LOG_INFO cur;
|
|
File file;
|
|
char fname[FN_REFLEN];
|
|
List<Item> field_list;
|
|
uint length;
|
|
int cur_dir_len;
|
|
Protocol *protocol= thd->protocol;
|
|
DBUG_ENTER("show_binlogs");
|
|
|
|
if (!mysql_bin_log.is_open())
|
|
{
|
|
my_message(ER_NO_BINARY_LOGGING, ER(ER_NO_BINARY_LOGGING), MYF(0));
|
|
return 1;
|
|
}
|
|
|
|
field_list.push_back(new Item_empty_string("Log_name", 255));
|
|
field_list.push_back(new Item_return_int("File_size", 20,
|
|
MYSQL_TYPE_LONGLONG));
|
|
if (protocol->send_fields(&field_list,
|
|
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
|
|
DBUG_RETURN(TRUE);
|
|
mysql_bin_log.lock_index();
|
|
index_file=mysql_bin_log.get_index_file();
|
|
|
|
mysql_bin_log.get_current_log(&cur);
|
|
cur_dir_len= dirname_length(cur.log_file_name);
|
|
|
|
reinit_io_cache(index_file, READ_CACHE, (my_off_t) 0, 0, 0);
|
|
|
|
/* The file ends with EOF or empty line */
|
|
while ((length=my_b_gets(index_file, fname, sizeof(fname))) > 1)
|
|
{
|
|
int dir_len;
|
|
ulonglong file_length= 0; // Length if open fails
|
|
fname[--length] = '\0'; // remove the newline
|
|
|
|
protocol->prepare_for_resend();
|
|
dir_len= dirname_length(fname);
|
|
length-= dir_len;
|
|
protocol->store(fname + dir_len, length, &my_charset_bin);
|
|
|
|
if (!(strncmp(fname+dir_len, cur.log_file_name+cur_dir_len, length)))
|
|
file_length= cur.pos; /* The active log, use the active position */
|
|
else
|
|
{
|
|
/* this is an old log, open it and find the size */
|
|
if ((file= my_open(fname, O_RDONLY | O_SHARE | O_BINARY,
|
|
MYF(0))) >= 0)
|
|
{
|
|
file_length= (ulonglong) my_seek(file, 0L, MY_SEEK_END, MYF(0));
|
|
my_close(file, MYF(0));
|
|
}
|
|
}
|
|
protocol->store(file_length);
|
|
if (protocol->write())
|
|
goto err;
|
|
}
|
|
mysql_bin_log.unlock_index();
|
|
send_eof(thd);
|
|
DBUG_RETURN(FALSE);
|
|
|
|
err:
|
|
mysql_bin_log.unlock_index();
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
|
|
int log_loaded_block(IO_CACHE* file)
|
|
{
|
|
LOAD_FILE_INFO *lf_info;
|
|
uint block_len ;
|
|
|
|
/* file->request_pos contains position where we started last read */
|
|
char* buffer = (char*) file->request_pos;
|
|
if (!(block_len = (char*) file->read_end - (char*) buffer))
|
|
return 0;
|
|
lf_info = (LOAD_FILE_INFO*) file->arg;
|
|
if (lf_info->thd->current_stmt_binlog_row_based)
|
|
return 0;
|
|
if (lf_info->last_pos_in_file != HA_POS_ERROR &&
|
|
lf_info->last_pos_in_file >= file->pos_in_file)
|
|
return 0;
|
|
lf_info->last_pos_in_file = file->pos_in_file;
|
|
if (lf_info->wrote_create_file)
|
|
{
|
|
Append_block_log_event a(lf_info->thd, lf_info->thd->db, buffer,
|
|
block_len, lf_info->log_delayed);
|
|
mysql_bin_log.write(&a);
|
|
}
|
|
else
|
|
{
|
|
Begin_load_query_log_event b(lf_info->thd, lf_info->thd->db,
|
|
buffer, block_len,
|
|
lf_info->log_delayed);
|
|
mysql_bin_log.write(&b);
|
|
lf_info->wrote_create_file = 1;
|
|
DBUG_SYNC_POINT("debug_lock.created_file_event",10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_REPLICATION */
|
|
|
|
|