mariadb/sql/sql_derived.cc
Sergei Golubchik 531acda484 MDEV-14820 System versioning is applied incorrectly to CTEs
Make sure that SELECT_LEX_UNIT::derived, behaves as documented
(points to the "TABLE_LIST representing this union in the
embedding select"). For recursive CTE this was not necessarily
the case, it could've pointed to the TABLE_LIST inside the CTE,
not in the embedding select.

To fix:
* don't update unit->derived in mysql_derived_prepare(), pass derived
  as an argument to st_select_lex_unit::prepare()
* prefer to set unit->derived in TABLE_LIST::init_derived()
  to the TABLE_LIST in the embedding select, not to the recursive
  reference. Fail if there are many TABLE_LISTs in the embedding
  select with conflicting FOR SYSTEM_TIME clauses.

cleanup:
* remove redundant THD* argument from st_select_lex_unit::prepare()
2018-05-12 10:16:45 +02:00

1438 lines
46 KiB
C++

/*
Copyright (c) 2002, 2011, Oracle and/or its affiliates.
Copyright (c) 2010, 2015, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
Derived tables
These were introduced by Sinisa <sinisa@mysql.com>
*/
#include "mariadb.h" /* NO_EMBEDDED_ACCESS_CHECKS */
#include "sql_priv.h"
#include "unireg.h"
#include "sql_derived.h"
#include "sql_select.h"
#include "sql_base.h"
#include "sql_view.h" // check_duplicate_names
#include "sql_acl.h" // SELECT_ACL
#include "sql_class.h"
#include "sql_cte.h"
typedef bool (*dt_processor)(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_init(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_prepare(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_optimize(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_merge(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_create(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_fill(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_reinit(THD *thd, LEX *lex, TABLE_LIST *derived);
bool mysql_derived_merge_for_insert(THD *thd, LEX *lex, TABLE_LIST *derived);
dt_processor processors[]=
{
&mysql_derived_init,
&mysql_derived_prepare,
&mysql_derived_optimize,
&mysql_derived_merge,
&mysql_derived_merge_for_insert,
&mysql_derived_create,
&mysql_derived_fill,
&mysql_derived_reinit,
};
/*
Run specified phases on all derived tables/views in given LEX.
@param lex LEX for this thread
@param phases phases to run derived tables/views through
@return FALSE OK
@return TRUE Error
*/
bool
mysql_handle_derived(LEX *lex, uint phases)
{
bool res= FALSE;
THD *thd= lex->thd;
DBUG_ENTER("mysql_handle_derived");
DBUG_PRINT("enter", ("phases: 0x%x", phases));
if (!lex->derived_tables)
DBUG_RETURN(FALSE);
lex->thd->derived_tables_processing= TRUE;
for (uint phase= 0; phase < DT_PHASES && !res; phase++)
{
uint phase_flag= DT_INIT << phase;
if (phase_flag > phases)
break;
if (!(phases & phase_flag))
continue;
if (phase_flag >= DT_CREATE && !thd->fill_derived_tables())
break;
for (SELECT_LEX *sl= lex->all_selects_list;
sl && !res;
sl= sl->next_select_in_list())
{
TABLE_LIST *cursor= sl->get_table_list();
/*
DT_MERGE_FOR_INSERT is not needed for views/derived tables inside
subqueries. Views and derived tables of subqueries should be
processed normally.
*/
if (phases == DT_MERGE_FOR_INSERT &&
cursor && cursor->top_table()->select_lex != &lex->select_lex)
continue;
for (;
cursor && !res;
cursor= cursor->next_local)
{
if (!cursor->is_view_or_derived() && phases == DT_MERGE_FOR_INSERT)
continue;
uint8 allowed_phases= (cursor->is_merged_derived() ? DT_PHASES_MERGE :
DT_PHASES_MATERIALIZE | DT_MERGE_FOR_INSERT);
/*
Skip derived tables to which the phase isn't applicable.
TODO: mark derived at the parse time, later set it's type
(merged or materialized)
*/
if ((phase_flag != DT_PREPARE && !(allowed_phases & phase_flag)) ||
(cursor->merged_for_insert && phase_flag != DT_REINIT &&
phase_flag != DT_PREPARE))
continue;
res= (*processors[phase])(lex->thd, lex, cursor);
}
if (lex->describe)
{
/*
Force join->join_tmp creation, because we will use this JOIN
twice for EXPLAIN and we have to have unchanged join for EXPLAINing
*/
sl->uncacheable|= UNCACHEABLE_EXPLAIN;
sl->master_unit()->uncacheable|= UNCACHEABLE_EXPLAIN;
}
}
}
lex->thd->derived_tables_processing= FALSE;
DBUG_RETURN(res);
}
/*
Run through phases for the given derived table/view.
@param lex LEX for this thread
@param derived the derived table to handle
@param phase_map phases to process tables/views through
@details
This function process the derived table (view) 'derived' to performs all
actions that are to be done on the table at the phases specified by
phase_map. The processing is carried out starting from the actions
performed at the earlier phases (those having smaller ordinal numbers).
@note
This function runs specified phases of the derived tables handling on the
given derived table/view. This function is used in the chain of calls:
SELECT_LEX::handle_derived ->
TABLE_LIST::handle_derived ->
mysql_handle_single_derived
This chain of calls implements the bottom-up handling of the derived tables:
i.e. most inner derived tables/views are handled first. This order is
required for the all phases except the merge and the create steps.
For the sake of code simplicity this order is kept for all phases.
@return FALSE ok
@return TRUE error
*/
bool
mysql_handle_single_derived(LEX *lex, TABLE_LIST *derived, uint phases)
{
bool res= FALSE;
THD *thd= lex->thd;
uint8 allowed_phases= (derived->is_merged_derived() ? DT_PHASES_MERGE :
DT_PHASES_MATERIALIZE);
DBUG_ENTER("mysql_handle_single_derived");
DBUG_PRINT("enter", ("phases: 0x%x allowed: 0x%x alias: '%s'",
phases, allowed_phases,
(derived->alias.str ? derived->alias.str : "<NULL>")));
if (!lex->derived_tables)
DBUG_RETURN(FALSE);
lex->thd->derived_tables_processing= TRUE;
for (uint phase= 0; phase < DT_PHASES; phase++)
{
uint phase_flag= DT_INIT << phase;
if (phase_flag > phases)
break;
if (!(phases & phase_flag))
continue;
/* Skip derived tables to which the phase isn't applicable. */
if (phase_flag != DT_PREPARE &&
!(allowed_phases & phase_flag))
continue;
if (phase_flag >= DT_CREATE && !thd->fill_derived_tables())
break;
if ((res= (*processors[phase])(lex->thd, lex, derived)))
break;
}
lex->thd->derived_tables_processing= FALSE;
DBUG_RETURN(res);
}
/**
Run specified phases for derived tables/views in the given list
@param lex LEX for this thread
@param table_list list of derived tables/view to handle
@param phase_map phases to process tables/views through
@details
This function runs phases specified by the 'phases_map' on derived
tables/views found in the 'dt_list' with help of the
TABLE_LIST::handle_derived function.
'lex' is passed as an argument to the TABLE_LIST::handle_derived.
@return FALSE ok
@return TRUE error
*/
bool
mysql_handle_list_of_derived(LEX *lex, TABLE_LIST *table_list, uint phases)
{
for (TABLE_LIST *tl= table_list; tl; tl= tl->next_local)
{
if (tl->is_view_or_derived() &&
tl->handle_derived(lex, phases))
return TRUE;
}
return FALSE;
}
/**
Merge a derived table/view into the embedding select
@param thd thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@details
This function merges the given derived table / view into the parent select
construction. Any derived table/reference to view occurred in the FROM
clause of the embedding select is represented by a TABLE_LIST structure a
pointer to which is passed to the function as in the parameter 'derived'.
This structure contains the number/map, alias, a link to SELECT_LEX of the
derived table and other info. If the 'derived' table is used in a nested join
then additionally the structure contains a reference to the ON expression
for this join.
The merge process results in elimination of the derived table (or the
reference to a view) such that:
- the FROM list of the derived table/view is wrapped into a nested join
after which the nest is added to the FROM list of the embedding select
- the WHERE condition of the derived table (view) is ANDed with the ON
condition attached to the table.
@note
Tables are merged into the leaf_tables list, original derived table is removed
from this list also. SELECT_LEX::table_list list is left untouched.
Where expression is merged with derived table's on_expr and can be found after
the merge through the SELECT_LEX::table_list.
Examples of the derived table/view merge:
Schema:
Tables: t1(f1), t2(f2), t3(f3)
View v1: SELECT f1 FROM t1 WHERE f1 < 1
Example with a view:
Before merge:
The query (Q1): SELECT f1,f2 FROM t2 LEFT JOIN v1 ON f1 = f2
(LEX of the main query)
|
(select_lex)
|
(FROM table list)
|
(join list)= t2, v1
/ \
/ (on_expr)= (f1 = f2)
|
(LEX of the v1 view)
|
(select_lex)= SELECT f1 FROM t1 WHERE f1 < 1
After merge:
The rewritten query Q1 (Q1'):
SELECT f1,f2 FROM t2 LEFT JOIN (t1) ON ((f1 = f2) and (f1 < 1))
(LEX of the main query)
|
(select_lex)
|
(FROM table list)
|
(join list)= t2, (t1)
\
(on_expr)= (f1 = f2) and (f1 < 1)
In this example table numbers are assigned as follows:
(outer select): t2 - 1, v1 - 2
(inner select): t1 - 1
After the merge table numbers will be:
(outer select): t2 - 1, t1 - 2
Example with a derived table:
The query Q2:
SELECT f1,f2
FROM (SELECT f1 FROM t1, t3 WHERE f1=f3 and f1 < 1) tt, t2
WHERE f1 = f2
Before merge:
(LEX of the main query)
|
(select_lex)
/ \
(FROM table list) (WHERE clause)= (f1 = f2)
|
(join list)= tt, t2
/ \
/ (on_expr)= (empty)
/
(select_lex)= SELECT f1 FROM t1, t3 WHERE f1 = f3 and f1 < 1
After merge:
The rewritten query Q2 (Q2'):
SELECT f1,f2
FROM (t1, t3) JOIN t2 ON (f1 = f3 and f1 < 1)
WHERE f1 = f2
(LEX of the main query)
|
(select_lex)
/ \
(FROM table list) (WHERE clause)= (f1 = f2)
|
(join list)= t2, (t1, t3)
\
(on_expr)= (f1 = f3 and f1 < 1)
In this example table numbers are assigned as follows:
(outer select): tt - 1, t2 - 2
(inner select): t1 - 1, t3 - 2
After the merge table numbers will be:
(outer select): t1 - 1, t2 - 2, t3 - 3
@return FALSE if derived table/view were successfully merged.
@return TRUE if an error occur.
*/
bool mysql_derived_merge(THD *thd, LEX *lex, TABLE_LIST *derived)
{
bool res= FALSE;
SELECT_LEX *dt_select= derived->get_single_select();
table_map map;
uint tablenr;
SELECT_LEX *parent_lex= derived->select_lex;
Query_arena *arena, backup;
DBUG_ENTER("mysql_derived_merge");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
if (derived->merged)
{
DBUG_PRINT("info", ("Irreversibly merged: exit"));
DBUG_RETURN(FALSE);
}
if (dt_select->uncacheable & UNCACHEABLE_RAND)
{
/* There is random function => fall back to materialization. */
derived->change_refs_to_fields();
derived->set_materialized_derived();
DBUG_RETURN(FALSE);
}
if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI)
thd->save_prep_leaf_list= TRUE;
arena= thd->activate_stmt_arena_if_needed(&backup); // For easier test
if (!derived->merged_for_insert ||
(derived->is_multitable() &&
(thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI)))
{
/*
Check whether there is enough free bits in table map to merge subquery.
If not - materialize it. This check isn't cached so when there is a big
and small subqueries, and the bigger one can't be merged it wouldn't
block the smaller one.
*/
if (parent_lex->get_free_table_map(&map, &tablenr))
{
/* There is no enough table bits, fall back to materialization. */
goto unconditional_materialization;
}
if (dt_select->leaf_tables.elements + tablenr > MAX_TABLES)
{
/* There is no enough table bits, fall back to materialization. */
goto unconditional_materialization;
}
if (dt_select->options & OPTION_SCHEMA_TABLE)
parent_lex->options |= OPTION_SCHEMA_TABLE;
if (!derived->get_unit()->prepared)
{
dt_select->leaf_tables.empty();
make_leaves_list(thd, dt_select->leaf_tables, derived, TRUE, 0);
}
derived->nested_join= (NESTED_JOIN*) thd->calloc(sizeof(NESTED_JOIN));
if (!derived->nested_join)
{
res= TRUE;
goto exit_merge;
}
/* Merge derived table's subquery in the parent select. */
if (parent_lex->merge_subquery(thd, derived, dt_select, tablenr, map))
{
res= TRUE;
goto exit_merge;
}
/*
exclude select lex so it doesn't show up in explain.
do this only for derived table as for views this is already done.
From sql_view.cc
Add subqueries units to SELECT into which we merging current view.
unit(->next)* chain starts with subqueries that are used by this
view and continues with subqueries that are used by other views.
We must not add any subquery twice (otherwise we'll form a loop),
to do this we remember in end_unit the first subquery that has
been already added.
*/
derived->get_unit()->exclude_level();
if (parent_lex->join)
parent_lex->join->table_count+= dt_select->join->table_count - 1;
}
derived->merged= TRUE;
if (derived->get_unit()->prepared)
{
Item *expr= derived->on_expr;
expr= and_conds(thd, expr, dt_select->join ? dt_select->join->conds : 0);
if (expr)
expr->top_level_item();
if (expr && (derived->prep_on_expr || expr != derived->on_expr))
{
derived->on_expr= expr;
derived->prep_on_expr= expr->copy_andor_structure(thd);
}
if (derived->on_expr &&
((!derived->on_expr->fixed &&
derived->on_expr->fix_fields(thd, &derived->on_expr)) ||
derived->on_expr->check_cols(1)))
{
res= TRUE; /* purecov: inspected */
goto exit_merge;
}
// Update used tables cache according to new table map
if (derived->on_expr)
{
derived->on_expr->fix_after_pullout(parent_lex, &derived->on_expr,
TRUE);
fix_list_after_tbl_changes(parent_lex, &derived->nested_join->join_list);
}
}
exit_merge:
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(res);
unconditional_materialization:
derived->change_refs_to_fields();
derived->set_materialized_derived();
if (!derived->table || !derived->table->is_created())
res= mysql_derived_create(thd, lex, derived);
goto exit_merge;
}
/**
Merge a view for the embedding INSERT/UPDATE/DELETE
@param thd thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@details
This function substitutes the derived table for the first table from
the query of the derived table thus making it a correct target table for the
INSERT/UPDATE/DELETE statements. As this operation is correct only for
single table views only, for multi table views this function does nothing.
The derived parameter isn't checked to be a view as derived tables aren't
allowed for INSERT/UPDATE/DELETE statements.
@return FALSE if derived table/view were successfully merged.
@return TRUE if an error occur.
*/
bool mysql_derived_merge_for_insert(THD *thd, LEX *lex, TABLE_LIST *derived)
{
DBUG_ENTER("mysql_derived_merge_for_insert");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
DBUG_PRINT("info", ("merged_for_insert: %d is_materialized_derived: %d "
"is_multitable: %d single_table_updatable: %d "
"merge_underlying_list: %d",
derived->merged_for_insert,
derived->is_materialized_derived(),
derived->is_multitable(),
derived->single_table_updatable(),
derived->merge_underlying_list != 0));
if (derived->merged_for_insert)
DBUG_RETURN(FALSE);
if (derived->init_derived(thd, FALSE))
DBUG_RETURN(TRUE);
if (derived->is_materialized_derived())
DBUG_RETURN(mysql_derived_prepare(thd, lex, derived));
if ((thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI))
DBUG_RETURN(FALSE);
if (!derived->is_multitable())
{
if (!derived->single_table_updatable())
DBUG_RETURN(derived->create_field_translation(thd));
if (derived->merge_underlying_list)
{
derived->table= derived->merge_underlying_list->table;
derived->schema_table= derived->merge_underlying_list->schema_table;
derived->merged_for_insert= TRUE;
DBUG_ASSERT(derived->table);
}
}
DBUG_RETURN(FALSE);
}
/*
Initialize a derived table/view
@param thd Thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@detail
Fill info about derived table/view without preparing an
underlying select. Such as: create a field translation for views, mark it as
a multitable if it is and so on.
@return
false OK
true Error
*/
bool mysql_derived_init(THD *thd, LEX *lex, TABLE_LIST *derived)
{
SELECT_LEX_UNIT *unit= derived->get_unit();
DBUG_ENTER("mysql_derived_init");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
// Skip already prepared views/DT
if (!unit || unit->prepared)
DBUG_RETURN(FALSE);
bool res= derived->init_derived(thd, TRUE);
derived->updatable= derived->updatable && derived->is_view();
DBUG_RETURN(res);
}
/*
Create temporary table structure (but do not fill it)
@param thd Thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@detail
Prepare underlying select for a derived table/view. To properly resolve
names in the embedding query the TABLE structure is created. Actual table
is created later by the mysql_derived_create function.
This function is called before any command containing derived table
is executed. All types of derived tables are handled by this function:
- Anonymous derived tables, or
- Named derived tables (aka views).
The table reference, contained in @c derived, is updated with the
fields of a new temporary table.
Derived tables are stored in @c thd->derived_tables and closed by
close_thread_tables().
This function is part of the procedure that starts in
open_and_lock_tables(), a procedure that - among other things - introduces
new table and table reference objects (to represent derived tables) that
don't exist in the privilege database. This means that normal privilege
checking cannot handle them. Hence this function does some extra tricks in
order to bypass normal privilege checking, by exploiting the fact that the
current state of privilege verification is attached as GRANT_INFO structures
on the relevant TABLE and TABLE_REF objects.
For table references, the current state of accrued access is stored inside
TABLE_LIST::grant. Hence this function must update the state of fulfilled
privileges for the new TABLE_LIST, an operation which is normally performed
exclusively by the table and database access checking functions,
check_access() and check_grant(), respectively. This modification is done
for both views and anonymous derived tables: The @c SELECT privilege is set
as fulfilled by the user. However, if a view is referenced and the table
reference is queried against directly (see TABLE_LIST::referencing_view),
the state of privilege checking (GRANT_INFO struct) is copied as-is to the
temporary table.
Only the TABLE structure is created here, actual table is created by the
mysql_derived_create function.
@note This function sets @c SELECT_ACL for @c TEMPTABLE views as well as
anonymous derived tables, but this is ok since later access checking will
distinguish between them.
@see mysql_handle_derived(), mysql_derived_fill(), GRANT_INFO
@return
false OK
true Error
*/
bool mysql_derived_prepare(THD *thd, LEX *lex, TABLE_LIST *derived)
{
SELECT_LEX_UNIT *unit= derived->get_unit();
bool res= FALSE;
DBUG_ENTER("mysql_derived_prepare");
DBUG_PRINT("enter", ("unit: %p table_list: %p alias: '%s'",
unit, derived, derived->alias.str));
if (!unit)
DBUG_RETURN(FALSE);
SELECT_LEX *first_select= unit->first_select();
if (derived->is_recursive_with_table() &&
!derived->is_with_table_recursive_reference() &&
!derived->with->rec_result && derived->with->get_sq_rec_ref())
{
/*
This is a non-recursive reference to a recursive CTE whose
specification unit has not been prepared at the regular processing of
derived table references. This can happen only in the case when
the specification unit has no recursive references at the top level.
Force the preparation of the specification unit. Use a recursive
table reference from a subquery for this.
*/
DBUG_ASSERT(derived->with->get_sq_rec_ref());
if (unlikely(mysql_derived_prepare(lex->thd, lex,
derived->with->get_sq_rec_ref())))
DBUG_RETURN(TRUE);
}
if (unit->prepared && derived->is_recursive_with_table() &&
!derived->table)
{
/*
Here 'derived' is either a non-recursive table reference to a recursive
with table or a recursive table reference to a recursvive table whose
specification has been already prepared (a secondary recursive table
reference.
*/
if (!(derived->derived_result= new (thd->mem_root) select_unit(thd)))
DBUG_RETURN(TRUE); // out of memory
thd->create_tmp_table_for_derived= TRUE;
res= derived->derived_result->create_result_table(
thd, &unit->types, FALSE,
(first_select->options |
thd->variables.option_bits |
TMP_TABLE_ALL_COLUMNS),
&derived->alias, FALSE, FALSE, FALSE, 0);
thd->create_tmp_table_for_derived= FALSE;
if (likely(!res) && !derived->table)
{
derived->derived_result->set_unit(unit);
derived->table= derived->derived_result->table;
if (derived->is_with_table_recursive_reference())
{
/* Here 'derived" is a secondary recursive table reference */
unit->with_element->rec_result->rec_tables.push_back(derived->table);
}
}
DBUG_ASSERT(derived->table || res);
goto exit;
}
// Skip already prepared views/DT
if (unit->prepared ||
(derived->merged_for_insert &&
!(derived->is_multitable() &&
(thd->lex->sql_command == SQLCOM_UPDATE_MULTI ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI))))
DBUG_RETURN(FALSE);
/* prevent name resolving out of derived table */
for (SELECT_LEX *sl= first_select; sl; sl= sl->next_select())
{
sl->context.outer_context= 0;
if (!derived->is_with_table_recursive_reference() ||
(!derived->with->with_anchor &&
!derived->with->is_with_prepared_anchor()))
{
/*
Prepare underlying views/DT first unless 'derived' is a recursive
table reference and either the anchors from the specification of
'derived' has been already prepared or there no anchor in this
specification
*/
if ((res= sl->handle_derived(lex, DT_PREPARE)))
goto exit;
}
if (derived->outer_join && sl->first_cond_optimization)
{
/* Mark that table is part of OUTER JOIN and fields may be NULL */
for (TABLE_LIST *cursor= (TABLE_LIST*) sl->table_list.first;
cursor;
cursor= cursor->next_local)
cursor->outer_join|= JOIN_TYPE_OUTER;
}
}
/*
Above cascade call of prepare is important for PS protocol, but after it
is called we can check if we really need prepare for this derived
*/
if (derived->merged)
{
DBUG_PRINT("info", ("Irreversibly merged: exit"));
DBUG_RETURN(FALSE);
}
derived->fill_me= FALSE;
if (!(derived->derived_result= new (thd->mem_root) select_unit(thd)))
DBUG_RETURN(TRUE); // out of memory
lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_DERIVED;
// st_select_lex_unit::prepare correctly work for single select
if ((res= unit->prepare(derived, derived->derived_result, 0)))
goto exit;
if (derived->with &&
(res= derived->with->rename_columns_of_derived_unit(thd, unit)))
goto exit;
lex->context_analysis_only&= ~CONTEXT_ANALYSIS_ONLY_DERIVED;
if ((res= check_duplicate_names(thd, unit->types, 0)))
goto exit;
/*
Check whether we can merge this derived table into main select.
Depending on the result field translation will or will not
be created.
*/
if (derived->init_derived(thd, FALSE))
goto exit;
/*
Temp table is created so that it hounours if UNION without ALL is to be
processed
As 'distinct' parameter we always pass FALSE (0), because underlying
query will control distinct condition by itself. Correct test of
distinct underlying query will be is_unit_op &&
!unit->union_distinct->next_select() (i.e. it is union and last distinct
SELECT is last SELECT of UNION).
*/
thd->create_tmp_table_for_derived= TRUE;
if (!(derived->table) &&
derived->derived_result->create_result_table(thd, &unit->types, FALSE,
(first_select->options |
thd->variables.option_bits |
TMP_TABLE_ALL_COLUMNS),
&derived->alias,
FALSE, FALSE, FALSE,
0))
{
thd->create_tmp_table_for_derived= FALSE;
goto exit;
}
thd->create_tmp_table_for_derived= FALSE;
if (!derived->table)
derived->table= derived->derived_result->table;
DBUG_ASSERT(derived->table);
if (derived->is_derived() && derived->is_merged_derived())
first_select->mark_as_belong_to_derived(derived);
exit:
/* Hide "Unknown column" or "Unknown function" error */
if (derived->view)
{
if (thd->is_error() &&
(thd->get_stmt_da()->sql_errno() == ER_BAD_FIELD_ERROR ||
thd->get_stmt_da()->sql_errno() == ER_FUNC_INEXISTENT_NAME_COLLISION ||
thd->get_stmt_da()->sql_errno() == ER_SP_DOES_NOT_EXIST))
{
thd->clear_error();
my_error(ER_VIEW_INVALID, MYF(0), derived->db.str,
derived->table_name.str);
}
}
/*
if it is preparation PS only or commands that need only VIEW structure
then we do not need real data and we can skip execution (and parameters
is not defined, too)
*/
if (res)
{
if (!derived->is_with_table_recursive_reference())
{
if (derived->table)
free_tmp_table(thd, derived->table);
delete derived->derived_result;
}
}
else
{
TABLE *table= derived->table;
table->derived_select_number= first_select->select_number;
table->s->tmp_table= INTERNAL_TMP_TABLE;
#ifndef NO_EMBEDDED_ACCESS_CHECKS
if (derived->is_view())
table->grant= derived->grant;
else
{
DBUG_ASSERT(derived->is_derived());
DBUG_ASSERT(derived->is_anonymous_derived_table());
table->grant.privilege= SELECT_ACL;
derived->grant.privilege= SELECT_ACL;
}
#endif
/* Add new temporary table to list of open derived tables */
if (!derived->is_with_table_recursive_reference())
{
table->next= thd->derived_tables;
thd->derived_tables= table;
}
/* If table is used by a left join, mark that any column may be null */
if (derived->outer_join)
table->maybe_null= 1;
}
DBUG_RETURN(res);
}
/**
Runs optimize phase for a derived table/view.
@param thd thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@details
Runs optimize phase for given 'derived' derived table/view.
If optimizer finds out that it's of the type "SELECT a_constant" then this
functions also materializes it.
@return FALSE ok.
@return TRUE if an error occur.
*/
bool mysql_derived_optimize(THD *thd, LEX *lex, TABLE_LIST *derived)
{
SELECT_LEX_UNIT *unit= derived->get_unit();
SELECT_LEX *first_select= unit->first_select();
SELECT_LEX *save_current_select= lex->current_select;
bool res= FALSE;
DBUG_ENTER("mysql_derived_optimize");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
if (derived->merged)
{
DBUG_PRINT("info", ("Irreversibly merged: exit"));
DBUG_RETURN(FALSE);
}
lex->current_select= first_select;
if (unit->is_unit_op())
{
if (unit->optimized)
DBUG_RETURN(FALSE);
// optimize union without execution
res= unit->optimize();
}
else if (unit->derived)
{
if (!derived->is_merged_derived())
{
JOIN *join= first_select->join;
unit->set_limit(unit->global_parameters());
if (join &&
join->optimization_state == JOIN::OPTIMIZATION_PHASE_1_DONE &&
join->with_two_phase_optimization)
{
if (unit->optimized_2)
DBUG_RETURN(FALSE);
unit->optimized_2= TRUE;
}
else
{
if (unit->optimized)
DBUG_RETURN(FALSE);
unit->optimized= TRUE;
}
if ((res= join->optimize()))
goto err;
if (join->table_count == join->const_tables)
derived->fill_me= TRUE;
}
}
/*
Materialize derived tables/views of the "SELECT a_constant" type.
Such tables should be materialized at the optimization phase for
correct constant evaluation.
*/
if (!res && derived->fill_me && !derived->merged_for_insert)
{
if (derived->is_merged_derived())
{
derived->change_refs_to_fields();
derived->set_materialized_derived();
}
if ((res= mysql_derived_create(thd, lex, derived)))
goto err;
if ((res= mysql_derived_fill(thd, lex, derived)))
goto err;
}
err:
lex->current_select= save_current_select;
DBUG_RETURN(res);
}
/**
Actually create result table for a materialized derived table/view.
@param thd thread handle
@param lex LEX of the embedding query.
@param derived reference to the derived table.
@details
This function actually creates the result table for given 'derived'
table/view, but it doesn't fill it.
'thd' and 'lex' parameters are not used by this function.
@return FALSE ok.
@return TRUE if an error occur.
*/
bool mysql_derived_create(THD *thd, LEX *lex, TABLE_LIST *derived)
{
DBUG_ENTER("mysql_derived_create");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
TABLE *table= derived->table;
SELECT_LEX_UNIT *unit= derived->get_unit();
if (table->is_created())
DBUG_RETURN(FALSE);
select_unit *result= derived->derived_result;
if (table->s->db_type() == TMP_ENGINE_HTON)
{
result->tmp_table_param.keyinfo= table->s->key_info;
if (create_internal_tmp_table(table, result->tmp_table_param.keyinfo,
result->tmp_table_param.start_recinfo,
&result->tmp_table_param.recinfo,
(unit->first_select()->options |
thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS)))
DBUG_RETURN(TRUE);
}
if (open_tmp_table(table))
DBUG_RETURN(TRUE);
table->file->extra(HA_EXTRA_WRITE_CACHE);
table->file->extra(HA_EXTRA_IGNORE_DUP_KEY);
DBUG_RETURN(FALSE);
}
void TABLE_LIST::register_as_derived_with_rec_ref(With_element *rec_elem)
{
rec_elem->derived_with_rec_ref.link_in_list(this, &this->next_with_rec_ref);
is_derived_with_recursive_reference= true;
get_unit()->uncacheable|= UNCACHEABLE_DEPENDENT;
}
bool TABLE_LIST::is_nonrecursive_derived_with_rec_ref()
{
return is_derived_with_recursive_reference;
}
/**
@brief
Fill the recursive with table
@param thd The thread handle
@details
The method is called only for recursive with tables.
The method executes the recursive part of the specification
of this with table until no more rows are added to the table
or the number of the performed iteration reaches the allowed
maximum.
@retval
false on success
true on failure
*/
bool TABLE_LIST::fill_recursive(THD *thd)
{
bool rc= false;
st_select_lex_unit *unit= get_unit();
rc= with->instantiate_tmp_tables();
while (!rc && !with->all_are_stabilized())
{
if (with->level > thd->variables.max_recursive_iterations)
break;
with->prepare_for_next_iteration();
rc= unit->exec_recursive();
}
if (!rc)
{
TABLE *src= with->rec_result->table;
rc =src->insert_all_rows_into_tmp_table(thd,
table,
&with->rec_result->tmp_table_param,
true);
}
return rc;
}
/*
Execute subquery of a materialized derived table/view and fill the result
table.
@param thd Thread handle
@param lex LEX for this thread
@param derived reference to the derived table.
@details
Execute subquery of given 'derived' table/view and fill the result
table. After result table is filled, if this is not the EXPLAIN statement
and the table is not specified with a recursion the entire unit / node
is deleted. unit is deleted if UNION is used for derived table and node
is deleted is it is a simple SELECT.
'lex' is unused and 'thd' is passed as an argument to an underlying function.
@note
If you use this function, make sure it's not called at prepare.
Due to evaluation of LIMIT clause it can not be used at prepared stage.
@return FALSE OK
@return TRUE Error
*/
bool mysql_derived_fill(THD *thd, LEX *lex, TABLE_LIST *derived)
{
Field_iterator_table field_iterator;
SELECT_LEX_UNIT *unit= derived->get_unit();
bool derived_is_recursive= derived->is_recursive_with_table();
bool res= FALSE;
DBUG_ENTER("mysql_derived_fill");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
if (unit->executed && !unit->uncacheable && !unit->describe &&
!derived_is_recursive)
DBUG_RETURN(FALSE);
/*check that table creation passed without problems. */
DBUG_ASSERT(derived->table && derived->table->is_created());
select_unit *derived_result= derived->derived_result;
SELECT_LEX *save_current_select= lex->current_select;
if (unit->executed && !derived_is_recursive &&
(unit->uncacheable & UNCACHEABLE_DEPENDENT))
{
if ((res= derived->table->file->ha_delete_all_rows()))
goto err;
JOIN *join= unit->first_select()->join;
join->first_record= false;
for (uint i= join->top_join_tab_count;
i < join->top_join_tab_count + join->aggr_tables;
i++)
{
if ((res= join->join_tab[i].table->file->ha_delete_all_rows()))
goto err;
}
}
if (derived_is_recursive)
{
if (derived->is_with_table_recursive_reference())
{
/* Here only one iteration step is performed */
res= unit->exec_recursive();
}
else
{
/* In this case all iteration are performed */
res= derived->fill_recursive(thd);
}
}
else if (unit->is_unit_op())
{
// execute union without clean up
res= unit->exec();
}
else
{
SELECT_LEX *first_select= unit->first_select();
unit->set_limit(unit->global_parameters());
if (unit->select_limit_cnt == HA_POS_ERROR)
first_select->options&= ~OPTION_FOUND_ROWS;
lex->current_select= first_select;
res= mysql_select(thd,
first_select->table_list.first,
first_select->with_wild,
first_select->item_list, first_select->where,
(first_select->order_list.elements+
first_select->group_list.elements),
first_select->order_list.first,
first_select->group_list.first,
first_select->having, (ORDER*) NULL,
(first_select->options |thd->variables.option_bits |
SELECT_NO_UNLOCK),
derived_result, unit, first_select);
}
if (!res && !derived_is_recursive)
{
if (derived_result->flush())
res= TRUE;
unit->executed= TRUE;
if (derived->field_translation)
{
/* reset translation table to materialized table */
field_iterator.set_table(derived->table);
for (uint i= 0;
!field_iterator.end_of_fields();
field_iterator.next(), i= i + 1)
{
Item *item;
if (!(item= field_iterator.create_item(thd)))
{
res= TRUE;
break;
}
thd->change_item_tree(&derived->field_translation[i].item, item);
}
}
}
err:
if (res || (!lex->describe && !derived_is_recursive && !unit->uncacheable))
unit->cleanup();
lex->current_select= save_current_select;
DBUG_RETURN(res);
}
/**
Re-initialize given derived table/view for the next execution.
@param thd thread handle
@param lex LEX for this thread
@param derived reference to the derived table.
@details
Re-initialize given 'derived' table/view for the next execution.
All underlying views/derived tables are recursively reinitialized prior
to re-initialization of given derived table.
'thd' and 'lex' are passed as arguments to called functions.
@return FALSE OK
@return TRUE Error
*/
bool mysql_derived_reinit(THD *thd, LEX *lex, TABLE_LIST *derived)
{
DBUG_ENTER("mysql_derived_reinit");
DBUG_PRINT("enter", ("Alias: '%s' Unit: %p",
(derived->alias.str ? derived->alias.str : "<NULL>"),
derived->get_unit()));
st_select_lex_unit *unit= derived->get_unit();
derived->merged_for_insert= FALSE;
unit->unclean();
unit->types.empty();
/* for derived tables & PS (which can't be reset by Item_subselect) */
unit->reinit_exec_mechanism();
for (st_select_lex *sl= unit->first_select(); sl; sl= sl->next_select())
{
sl->cond_pushed_into_where= NULL;
sl->cond_pushed_into_having= NULL;
}
unit->set_thd(thd);
DBUG_RETURN(FALSE);
}
/**
@brief
Extract the condition depended on derived table/view and pushed it there
@param thd The thread handle
@param cond The condition from which to extract the pushed condition
@param derived The reference to the derived table/view
@details
This functiom builds the most restrictive condition depending only on
the derived table/view that can be extracted from the condition cond.
The built condition is pushed into the having clauses of the
selects contained in the query specifying the derived table/view.
The function also checks for each select whether any condition depending
only on grouping fields can be extracted from the pushed condition.
If so, it pushes the condition over grouping fields into the where
clause of the select.
@retval
true if an error is reported
false otherwise
*/
bool pushdown_cond_for_derived(THD *thd, Item *cond, TABLE_LIST *derived)
{
DBUG_ENTER("pushdown_cond_for_derived");
if (!cond)
DBUG_RETURN(false);
st_select_lex_unit *unit= derived->get_unit();
st_select_lex *sl= unit->first_select();
if (derived->prohibit_cond_pushdown)
DBUG_RETURN(false);
/* Do not push conditions into constant derived */
if (unit->executed)
DBUG_RETURN(false);
/* Do not push conditions into recursive with tables */
if (derived->is_recursive_with_table())
DBUG_RETURN(false);
/* Do not push conditions into unit with global ORDER BY ... LIMIT */
if (unit->fake_select_lex && unit->fake_select_lex->explicit_limit)
DBUG_RETURN(false);
/* Check whether any select of 'unit' allows condition pushdown */
bool some_select_allows_cond_pushdown= false;
for (; sl; sl= sl->next_select())
{
if (sl->cond_pushdown_is_allowed())
{
some_select_allows_cond_pushdown= true;
break;
}
}
if (!some_select_allows_cond_pushdown)
DBUG_RETURN(false);
/*
Build the most restrictive condition extractable from 'cond'
that can be pushed into the derived table 'derived'.
All subexpressions of this condition are cloned from the
subexpressions of 'cond'.
This condition has to be fixed yet.
*/
Item *extracted_cond;
derived->check_pushable_cond_for_table(cond);
extracted_cond= derived->build_pushable_cond_for_table(thd, cond);
if (!extracted_cond)
{
/* Nothing can be pushed into the derived table */
DBUG_RETURN(false);
}
/* Push extracted_cond into every select of the unit specifying 'derived' */
st_select_lex *save_curr_select= thd->lex->current_select;
for (; sl; sl= sl->next_select())
{
Item *extracted_cond_copy;
if (!sl->cond_pushdown_is_allowed())
continue;
thd->lex->current_select= sl;
if (sl->have_window_funcs())
{
if (sl->join->group_list || sl->join->implicit_grouping)
continue;
ORDER *common_partition_fields=
sl->find_common_window_func_partition_fields(thd);
if (!common_partition_fields)
continue;
extracted_cond_copy= !sl->next_select() ?
extracted_cond :
extracted_cond->build_clone(thd);
if (!extracted_cond_copy)
continue;
Item *cond_over_partition_fields;;
sl->collect_grouping_fields(thd, common_partition_fields);
sl->check_cond_extraction_for_grouping_fields(extracted_cond_copy,
derived);
cond_over_partition_fields=
sl->build_cond_for_grouping_fields(thd, extracted_cond_copy, true);
if (cond_over_partition_fields)
cond_over_partition_fields= cond_over_partition_fields->transform(thd,
&Item::derived_grouping_field_transformer_for_where,
(uchar*) sl);
if (cond_over_partition_fields)
{
cond_over_partition_fields->walk(
&Item::cleanup_excluding_const_fields_processor, 0, 0);
sl->cond_pushed_into_where= cond_over_partition_fields;
}
continue;
}
/*
For each select of the unit except the last one
create a clone of extracted_cond
*/
extracted_cond_copy= !sl->next_select() ?
extracted_cond :
extracted_cond->build_clone(thd);
if (!extracted_cond_copy)
continue;
if (!sl->join->group_list && !sl->with_sum_func)
{
/* extracted_cond_copy is pushed into where of sl */
extracted_cond_copy= extracted_cond_copy->transform(thd,
&Item::derived_field_transformer_for_where,
(uchar*) sl);
if (extracted_cond_copy)
{
extracted_cond_copy->walk(
&Item::cleanup_excluding_const_fields_processor, 0, 0);
sl->cond_pushed_into_where= extracted_cond_copy;
}
continue;
}
/*
Figure out what can be extracted from the pushed condition
that could be pushed into the where clause of sl
*/
Item *cond_over_grouping_fields;
sl->collect_grouping_fields(thd, sl->join->group_list);
sl->check_cond_extraction_for_grouping_fields(extracted_cond_copy,
derived);
cond_over_grouping_fields=
sl->build_cond_for_grouping_fields(thd, extracted_cond_copy, true);
/*
Transform the references to the 'derived' columns from the condition
pushed into the where clause of sl to make them usable in the new context
*/
if (cond_over_grouping_fields)
cond_over_grouping_fields= cond_over_grouping_fields->transform(thd,
&Item::derived_grouping_field_transformer_for_where,
(uchar*) sl);
if (cond_over_grouping_fields)
{
/*
In extracted_cond_copy remove top conjuncts that
has been pushed into the where clause of sl
*/
extracted_cond_copy= remove_pushed_top_conjuncts(thd, extracted_cond_copy);
cond_over_grouping_fields->walk(
&Item::cleanup_excluding_const_fields_processor, 0, 0);
sl->cond_pushed_into_where= cond_over_grouping_fields;
if (!extracted_cond_copy)
continue;
}
/*
Transform the references to the 'derived' columns from the condition
pushed into the having clause of sl to make them usable in the new context
*/
extracted_cond_copy= extracted_cond_copy->transform(thd,
&Item::derived_field_transformer_for_having,
(uchar*) sl);
if (!extracted_cond_copy)
continue;
extracted_cond_copy->walk(&Item::cleanup_excluding_const_fields_processor,
0, 0);
sl->cond_pushed_into_having= extracted_cond_copy;
}
thd->lex->current_select= save_curr_select;
DBUG_RETURN(false);
}