mariadb/storage/innobase/log/log0recv.cc
Marko Mäkelä 63574f1275 MDEV-11690 Remove UNIV_HOTBACKUP
The InnoDB source code contains quite a few references to a closed-source
hot backup tool which was originally called InnoDB Hot Backup (ibbackup)
and later incorporated in MySQL Enterprise Backup.

The open source backup tool XtraBackup uses the full database for recovery.
So, the references to UNIV_HOTBACKUP are only cluttering the source code.
2016-12-30 16:05:42 +02:00

4013 lines
104 KiB
C++

/*****************************************************************************
Copyright (c) 1997, 2016, Oracle and/or its affiliates. All Rights Reserved.
Copyright (c) 2012, Facebook Inc.
Copyright (c) 2013, 2016, MariaDB Corporation. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file log/log0recv.cc
Recovery
Created 9/20/1997 Heikki Tuuri
*******************************************************/
#include "ha_prototypes.h"
#include <vector>
#include <map>
#include <string>
#include <my_systemd.h>
#include "log0recv.h"
#ifdef HAVE_MY_AES_H
#include <my_aes.h>
#endif
#include "log0crypt.h"
#include "mem0mem.h"
#include "buf0buf.h"
#include "buf0flu.h"
#include "mtr0mtr.h"
#include "mtr0log.h"
#include "page0cur.h"
#include "page0zip.h"
#include "btr0btr.h"
#include "btr0cur.h"
#include "ibuf0ibuf.h"
#include "trx0undo.h"
#include "trx0rec.h"
#include "fil0fil.h"
#include "fsp0sysspace.h"
#include "ut0new.h"
#include "row0trunc.h"
#include "buf0rea.h"
#include "srv0srv.h"
#include "srv0start.h"
#include "trx0roll.h"
#include "row0merge.h"
/** Log records are stored in the hash table in chunks at most of this size;
this must be less than UNIV_PAGE_SIZE as it is stored in the buffer pool */
#define RECV_DATA_BLOCK_SIZE (MEM_MAX_ALLOC_IN_BUF - sizeof(recv_data_t))
/** Read-ahead area in applying log records to file pages */
#define RECV_READ_AHEAD_AREA 32
/** The recovery system */
recv_sys_t* recv_sys = NULL;
/** TRUE when applying redo log records during crash recovery; FALSE
otherwise. Note that this is FALSE while a background thread is
rolling back incomplete transactions. */
volatile bool recv_recovery_on;
/** TRUE when recv_init_crash_recovery() has been called. */
bool recv_needed_recovery;
#ifdef UNIV_DEBUG
/** TRUE if writing to the redo log (mtr_commit) is forbidden.
Protected by log_sys->mutex. */
bool recv_no_log_write = false;
#endif /* UNIV_DEBUG */
/** TRUE if buf_page_is_corrupted() should check if the log sequence
number (FIL_PAGE_LSN) is in the future. Initially FALSE, and set by
recv_recovery_from_checkpoint_start(). */
bool recv_lsn_checks_on;
/** If the following is TRUE, the buffer pool file pages must be invalidated
after recovery and no ibuf operations are allowed; this becomes TRUE if
the log record hash table becomes too full, and log records must be merged
to file pages already before the recovery is finished: in this case no
ibuf operations are allowed, as they could modify the pages read in the
buffer pool before the pages have been recovered to the up-to-date state.
TRUE means that recovery is running and no operations on the log files
are allowed yet: the variable name is misleading. */
bool recv_no_ibuf_operations;
/** The following counter is used to decide when to print info on
log scan */
static ulint recv_scan_print_counter;
/** The type of the previous parsed redo log record */
static mlog_id_t recv_previous_parsed_rec_type;
/** The offset of the previous parsed redo log record */
static ulint recv_previous_parsed_rec_offset;
/** The 'multi' flag of the previous parsed redo log record */
static ulint recv_previous_parsed_rec_is_multi;
/** This many frames must be left free in the buffer pool when we scan
the log and store the scanned log records in the buffer pool: we will
use these free frames to read in pages when we start applying the
log records to the database.
This is the default value. If the actual size of the buffer pool is
larger than 10 MB we'll set this value to 512. */
ulint recv_n_pool_free_frames;
/** The maximum lsn we see for a page during the recovery process. If this
is bigger than the lsn we are able to scan up to, that is an indication that
the recovery failed and the database may be corrupt. */
lsn_t recv_max_page_lsn;
#ifdef UNIV_PFS_THREAD
mysql_pfs_key_t trx_rollback_clean_thread_key;
mysql_pfs_key_t recv_writer_thread_key;
#endif /* UNIV_PFS_THREAD */
/** Flag indicating if recv_writer thread is active. */
volatile bool recv_writer_thread_active = false;
#ifndef DBUG_OFF
/** Return string name of the redo log record type.
@param[in] type record log record enum
@return string name of record log record */
const char*
get_mlog_string(mlog_id_t type);
#endif /* !DBUG_OFF */
/* prototypes */
/*******************************************************//**
Initialize crash recovery environment. Can be called iff
recv_needed_recovery == false. */
static
void
recv_init_crash_recovery(void);
/*===========================*/
/** Tablespace item during recovery */
struct file_name_t {
/** Tablespace file name (MLOG_FILE_NAME) */
std::string name;
/** Tablespace object (NULL if not valid or not found) */
fil_space_t* space;
/** Whether the tablespace has been deleted */
bool deleted;
/** Constructor */
file_name_t(std::string name_, bool deleted_) :
name(name_), space(NULL), deleted (deleted_) {}
};
/** Map of dirty tablespaces during recovery */
typedef std::map<
ulint,
file_name_t,
std::less<ulint>,
ut_allocator<std::pair<const ulint, file_name_t> > > recv_spaces_t;
static recv_spaces_t recv_spaces;
/** Process a file name from a MLOG_FILE_* record.
@param[in,out] name file name
@param[in] len length of the file name
@param[in] space_id the tablespace ID
@param[in] deleted whether this is a MLOG_FILE_DELETE record
@retval true if able to process file successfully.
@retval false if unable to process the file */
static
bool
fil_name_process(
char* name,
ulint len,
ulint space_id,
bool deleted)
{
bool processed = true;
/* We will also insert space=NULL into the map, so that
further checks can ensure that a MLOG_FILE_NAME record was
scanned before applying any page records for the space_id. */
os_normalize_path(name);
file_name_t fname(std::string(name, len - 1), deleted);
std::pair<recv_spaces_t::iterator,bool> p = recv_spaces.insert(
std::make_pair(space_id, fname));
ut_ad(p.first->first == space_id);
file_name_t& f = p.first->second;
if (deleted) {
/* Got MLOG_FILE_DELETE */
if (!p.second && !f.deleted) {
f.deleted = true;
if (f.space != NULL) {
fil_space_free(space_id, false);
f.space = NULL;
}
}
ut_ad(f.space == NULL);
} else if (p.second // the first MLOG_FILE_NAME or MLOG_FILE_RENAME2
|| f.name != fname.name) {
fil_space_t* space;
/* Check if the tablespace file exists and contains
the space_id. If not, ignore the file after displaying
a note. Abort if there are multiple files with the
same space_id. */
switch (fil_ibd_load(space_id, name, space)) {
case FIL_LOAD_OK:
ut_ad(space != NULL);
#ifdef MYSQL_ENCRYPTION
/* For encrypted tablespace, set key and iv. */
if (FSP_FLAGS_GET_ENCRYPTION(space->flags)
&& recv_sys->encryption_list != NULL) {
dberr_t err;
encryption_list_t::iterator it;
for (it = recv_sys->encryption_list->begin();
it != recv_sys->encryption_list->end();
it++) {
if (it->space_id == space->id) {
err = fil_set_encryption(
space->id,
Encryption::AES,
it->key,
it->iv);
if (err != DB_SUCCESS) {
ib::error()
<< "Can't set"
" encryption"
" information"
" for"
" tablespace"
<< space->name
<< "!";
}
ut_free(it->key);
ut_free(it->iv);
it->key = NULL;
it->iv = NULL;
it->space_id = 0;
}
}
}
#endif /* MYSQL_ENCRYPTION */
if (f.space == NULL || f.space == space) {
f.name = fname.name;
f.space = space;
f.deleted = false;
} else {
ib::error() << "Tablespace " << space_id
<< " has been found in two places: '"
<< f.name << "' and '" << name << "'."
" You must delete one of them.";
recv_sys->found_corrupt_fs = true;
processed = false;
}
break;
case FIL_LOAD_ID_CHANGED:
ut_ad(space == NULL);
break;
case FIL_LOAD_NOT_FOUND:
/* No matching tablespace was found; maybe it
was renamed, and we will find a subsequent
MLOG_FILE_* record. */
ut_ad(space == NULL);
if (srv_force_recovery) {
/* Without innodb_force_recovery,
missing tablespaces will only be
reported in
recv_init_crash_recovery_spaces().
Enable some more diagnostics when
forcing recovery. */
ib::info()
<< "At LSN: " << recv_sys->recovered_lsn
<< ": unable to open file " << name
<< " for tablespace " << space_id;
}
break;
case FIL_LOAD_INVALID:
ut_ad(space == NULL);
if (srv_force_recovery == 0) {
ib::warn() << "We do not continue the crash"
" recovery, because the table may"
" become corrupt if we cannot apply"
" the log records in the InnoDB log to"
" it. To fix the problem and start"
" mysqld:";
ib::info() << "1) If there is a permission"
" problem in the file and mysqld"
" cannot open the file, you should"
" modify the permissions.";
ib::info() << "2) If the tablespace is not"
" needed, or you can restore an older"
" version from a backup, then you can"
" remove the .ibd file, and use"
" --innodb_force_recovery=1 to force"
" startup without this file.";
ib::info() << "3) If the file system or the"
" disk is broken, and you cannot"
" remove the .ibd file, you can set"
" --innodb_force_recovery.";
recv_sys->found_corrupt_fs = true;
processed = false;
break;
}
ib::info() << "innodb_force_recovery was set to "
<< srv_force_recovery << ". Continuing crash"
" recovery even though we cannot access the"
" files for tablespace " << space_id << ".";
break;
}
}
return(processed);
}
/** Parse or process a MLOG_FILE_* record.
@param[in] ptr redo log record
@param[in] end end of the redo log buffer
@param[in] space_id the tablespace ID
@param[in] first_page_no first page number in the file
@param[in] type MLOG_FILE_NAME or MLOG_FILE_DELETE
or MLOG_FILE_CREATE2 or MLOG_FILE_RENAME2
@param[in] apply whether to apply the record
@return pointer to next redo log record
@retval NULL if this log record was truncated */
static
byte*
fil_name_parse(
byte* ptr,
const byte* end,
ulint space_id,
ulint first_page_no,
mlog_id_t type,
bool apply)
{
if (type == MLOG_FILE_CREATE2) {
if (end < ptr + 4) {
return(NULL);
}
ptr += 4;
}
if (end < ptr + 2) {
return(NULL);
}
ulint len = mach_read_from_2(ptr);
ptr += 2;
if (end < ptr + len) {
return(NULL);
}
/* MLOG_FILE_* records should only be written for
user-created tablespaces. The name must be long enough
and end in .ibd. */
bool corrupt = is_predefined_tablespace(space_id)
|| first_page_no != 0 // TODO: multi-file user tablespaces
|| len < sizeof "/a.ibd\0"
|| memcmp(ptr + len - 5, DOT_IBD, 5) != 0
|| memchr(ptr, OS_PATH_SEPARATOR, len) == NULL;
byte* end_ptr = ptr + len;
switch (type) {
default:
ut_ad(0); // the caller checked this
case MLOG_FILE_NAME:
if (corrupt) {
ib::error() << "MLOG_FILE_NAME incorrect:" << ptr;
recv_sys->found_corrupt_log = true;
break;
}
fil_name_process(
reinterpret_cast<char*>(ptr), len, space_id, false);
break;
case MLOG_FILE_DELETE:
if (corrupt) {
ib::error() << "MLOG_FILE_DELETE incorrect:" << ptr;
recv_sys->found_corrupt_log = true;
break;
}
fil_name_process(
reinterpret_cast<char*>(ptr), len, space_id, true);
break;
case MLOG_FILE_CREATE2:
break;
case MLOG_FILE_RENAME2:
if (corrupt) {
ib::error() << "MLOG_FILE_RENAME2 incorrect:" << ptr;
recv_sys->found_corrupt_log = true;
}
/* The new name follows the old name. */
byte* new_name = end_ptr + 2;
if (end < new_name) {
return(NULL);
}
ulint new_len = mach_read_from_2(end_ptr);
if (end < end_ptr + 2 + new_len) {
return(NULL);
}
end_ptr += 2 + new_len;
corrupt = corrupt
|| new_len < sizeof "/a.ibd\0"
|| memcmp(new_name + new_len - 5, DOT_IBD, 5) != 0
|| !memchr(new_name, OS_PATH_SEPARATOR, new_len);
if (corrupt) {
ib::error() << "MLOG_FILE_RENAME2 new_name incorrect:" << ptr
<< " new_name: " << new_name;
recv_sys->found_corrupt_log = true;
break;
}
fil_name_process(
reinterpret_cast<char*>(ptr), len,
space_id, false);
fil_name_process(
reinterpret_cast<char*>(new_name), new_len,
space_id, false);
if (!apply) {
break;
}
if (!fil_op_replay_rename(
space_id, first_page_no,
reinterpret_cast<const char*>(ptr),
reinterpret_cast<const char*>(new_name))) {
recv_sys->found_corrupt_fs = true;
}
}
return(end_ptr);
}
/********************************************************//**
Creates the recovery system. */
void
recv_sys_create(void)
/*=================*/
{
if (recv_sys != NULL) {
return;
}
recv_sys = static_cast<recv_sys_t*>(ut_zalloc_nokey(sizeof(*recv_sys)));
mutex_create(LATCH_ID_RECV_SYS, &recv_sys->mutex);
mutex_create(LATCH_ID_RECV_WRITER, &recv_sys->writer_mutex);
recv_sys->heap = NULL;
recv_sys->addr_hash = NULL;
}
/********************************************************//**
Release recovery system mutexes. */
void
recv_sys_close(void)
/*================*/
{
if (recv_sys != NULL) {
if (recv_sys->addr_hash != NULL) {
hash_table_free(recv_sys->addr_hash);
}
if (recv_sys->heap != NULL) {
mem_heap_free(recv_sys->heap);
}
if (recv_sys->flush_start != NULL) {
os_event_destroy(recv_sys->flush_start);
}
if (recv_sys->flush_end != NULL) {
os_event_destroy(recv_sys->flush_end);
}
ut_free(recv_sys->buf);
ut_free(recv_sys->last_block_buf_start);
ut_ad(!recv_writer_thread_active);
mutex_free(&recv_sys->writer_mutex);
mutex_free(&recv_sys->mutex);
ut_free(recv_sys);
recv_sys = NULL;
}
recv_spaces.clear();
}
/********************************************************//**
Frees the recovery system memory. */
void
recv_sys_mem_free(void)
/*===================*/
{
if (recv_sys != NULL) {
if (recv_sys->addr_hash != NULL) {
hash_table_free(recv_sys->addr_hash);
}
if (recv_sys->heap != NULL) {
mem_heap_free(recv_sys->heap);
}
if (recv_sys->flush_start != NULL) {
os_event_destroy(recv_sys->flush_start);
}
if (recv_sys->flush_end != NULL) {
os_event_destroy(recv_sys->flush_end);
}
ut_free(recv_sys->buf);
ut_free(recv_sys->last_block_buf_start);
ut_free(recv_sys);
recv_sys = NULL;
}
}
/************************************************************
Reset the state of the recovery system variables. */
void
recv_sys_var_init(void)
/*===================*/
{
recv_recovery_on = false;
recv_needed_recovery = false;
recv_lsn_checks_on = false;
recv_no_ibuf_operations = false;
recv_scan_print_counter = 0;
recv_previous_parsed_rec_type = MLOG_SINGLE_REC_FLAG;
recv_previous_parsed_rec_offset = 0;
recv_previous_parsed_rec_is_multi = 0;
recv_n_pool_free_frames = 256;
recv_max_page_lsn = 0;
}
/******************************************************************//**
recv_writer thread tasked with flushing dirty pages from the buffer
pools.
@return a dummy parameter */
extern "C"
os_thread_ret_t
DECLARE_THREAD(recv_writer_thread)(
/*===============================*/
void* arg MY_ATTRIBUTE((unused)))
/*!< in: a dummy parameter required by
os_thread_create */
{
ut_ad(!srv_read_only_mode);
#ifdef UNIV_PFS_THREAD
pfs_register_thread(recv_writer_thread_key);
#endif /* UNIV_PFS_THREAD */
#ifdef UNIV_DEBUG_THREAD_CREATION
ib::info() << "recv_writer thread running, id "
<< os_thread_pf(os_thread_get_curr_id());
#endif /* UNIV_DEBUG_THREAD_CREATION */
recv_writer_thread_active = true;
while (srv_shutdown_state == SRV_SHUTDOWN_NONE) {
/* Wait till we get a signal to clean the LRU list.
Bounded by max wait time of 100ms. */
ib_uint64_t sig_count = os_event_reset(buf_flush_event);
os_event_wait_time_low(buf_flush_event, 100000, sig_count);
mutex_enter(&recv_sys->writer_mutex);
if (!recv_recovery_on) {
mutex_exit(&recv_sys->writer_mutex);
break;
}
/* Flush pages from end of LRU if required */
os_event_reset(recv_sys->flush_end);
recv_sys->flush_type = BUF_FLUSH_LRU;
os_event_set(recv_sys->flush_start);
os_event_wait(recv_sys->flush_end);
mutex_exit(&recv_sys->writer_mutex);
}
recv_writer_thread_active = false;
/* We count the number of threads in os_thread_exit().
A created thread should always use that to exit and not
use return() to exit. */
os_thread_exit();
OS_THREAD_DUMMY_RETURN;
}
/************************************************************
Inits the recovery system for a recovery operation. */
void
recv_sys_init(
/*==========*/
ulint available_memory) /*!< in: available memory in bytes */
{
if (recv_sys->heap != NULL) {
return;
}
mutex_enter(&(recv_sys->mutex));
recv_sys->heap = mem_heap_create_typed(256,
MEM_HEAP_FOR_RECV_SYS);
if (!srv_read_only_mode) {
recv_sys->flush_start = os_event_create(0);
recv_sys->flush_end = os_event_create(0);
}
/* Set appropriate value of recv_n_pool_free_frames. */
if (buf_pool_get_curr_size() >= (10 * 1024 * 1024)) {
/* Buffer pool of size greater than 10 MB. */
recv_n_pool_free_frames = 512;
}
recv_sys->buf = static_cast<byte*>(
ut_malloc_nokey(RECV_PARSING_BUF_SIZE));
recv_sys->len = 0;
recv_sys->recovered_offset = 0;
recv_sys->addr_hash = hash_create(available_memory / 512);
recv_sys->n_addrs = 0;
recv_sys->apply_log_recs = FALSE;
recv_sys->apply_batch_on = FALSE;
recv_sys->last_block_buf_start = static_cast<byte*>(
ut_malloc_nokey(2 * OS_FILE_LOG_BLOCK_SIZE));
recv_sys->last_block = static_cast<byte*>(ut_align(
recv_sys->last_block_buf_start, OS_FILE_LOG_BLOCK_SIZE));
recv_sys->found_corrupt_log = false;
recv_sys->found_corrupt_fs = false;
recv_sys->mlog_checkpoint_lsn = 0;
recv_max_page_lsn = 0;
/* Call the constructor for recv_sys_t::dblwr member */
new (&recv_sys->dblwr) recv_dblwr_t();
recv_sys->encryption_list = NULL;
mutex_exit(&(recv_sys->mutex));
}
/********************************************************//**
Empties the hash table when it has been fully processed.*/
static
void
recv_sys_empty_hash(void)
/*=====================*/
{
ut_ad(mutex_own(&(recv_sys->mutex)));
if (recv_sys->n_addrs != 0) {
ib::fatal() << recv_sys->n_addrs << " pages with log records"
" were left unprocessed!";
}
hash_table_free(recv_sys->addr_hash);
mem_heap_empty(recv_sys->heap);
recv_sys->addr_hash = hash_create(buf_pool_get_curr_size() / 512);
}
/********************************************************//**
Frees the recovery system. */
void
recv_sys_debug_free(void)
/*=====================*/
{
mutex_enter(&(recv_sys->mutex));
hash_table_free(recv_sys->addr_hash);
mem_heap_free(recv_sys->heap);
ut_free(recv_sys->buf);
ut_free(recv_sys->last_block_buf_start);
recv_sys->buf = NULL;
recv_sys->heap = NULL;
recv_sys->addr_hash = NULL;
recv_sys->last_block_buf_start = NULL;
/* wake page cleaner up to progress */
if (!srv_read_only_mode) {
ut_ad(!recv_recovery_on);
ut_ad(!recv_writer_thread_active);
os_event_reset(buf_flush_event);
os_event_set(recv_sys->flush_start);
}
if (recv_sys->encryption_list != NULL) {
encryption_list_t::iterator it;
for (it = recv_sys->encryption_list->begin();
it != recv_sys->encryption_list->end();
it++) {
if (it->key != NULL) {
ut_free(it->key);
it->key = NULL;
}
if (it->iv != NULL) {
ut_free(it->iv);
it->iv = NULL;
}
}
recv_sys->encryption_list->swap(*recv_sys->encryption_list);
UT_DELETE(recv_sys->encryption_list);
recv_sys->encryption_list = NULL;
}
mutex_exit(&(recv_sys->mutex));
}
/********************************************************//**
Copies a log segment from the most up-to-date log group to the other log
groups, so that they all contain the latest log data. Also writes the info
about the latest checkpoint to the groups, and inits the fields in the group
memory structs to up-to-date values. */
static
void
recv_synchronize_groups(void)
/*=========================*/
{
lsn_t start_lsn;
lsn_t end_lsn;
lsn_t recovered_lsn;
recovered_lsn = recv_sys->recovered_lsn;
/* Read the last recovered log block to the recovery system buffer:
the block is always incomplete */
start_lsn = ut_uint64_align_down(recovered_lsn,
OS_FILE_LOG_BLOCK_SIZE);
end_lsn = ut_uint64_align_up(recovered_lsn, OS_FILE_LOG_BLOCK_SIZE);
ut_a(start_lsn != end_lsn);
log_group_read_log_seg(recv_sys->last_block,
UT_LIST_GET_FIRST(log_sys->log_groups),
start_lsn, end_lsn);
for (log_group_t* group = UT_LIST_GET_FIRST(log_sys->log_groups);
group;
group = UT_LIST_GET_NEXT(log_groups, group)) {
/* Update the fields in the group struct to correspond to
recovered_lsn */
log_group_set_fields(group, recovered_lsn);
}
/* Copy the checkpoint info to the log; remember that we have
incremented checkpoint_no by one, and the info will not be written
over the max checkpoint info, thus making the preservation of max
checkpoint info on disk certain */
log_write_checkpoint_info(true);
log_mutex_enter();
}
/** Check the consistency of a log header block.
@param[in] log header block
@return true if ok */
static
bool
recv_check_log_header_checksum(
const byte* buf)
{
return(log_block_get_checksum(buf)
== log_block_calc_checksum_crc32(buf));
}
/** Find the latest checkpoint in the format-0 log header.
@param[out] max_group log group, or NULL
@param[out] max_field LOG_CHECKPOINT_1 or LOG_CHECKPOINT_2
@return error code or DB_SUCCESS */
static MY_ATTRIBUTE((warn_unused_result))
dberr_t
recv_find_max_checkpoint_0(
log_group_t** max_group,
ulint* max_field)
{
log_group_t* group = UT_LIST_GET_FIRST(log_sys->log_groups);
ib_uint64_t max_no = 0;
ib_uint64_t checkpoint_no;
byte* buf = log_sys->checkpoint_buf;
ut_ad(group->format == 0);
ut_ad(UT_LIST_GET_NEXT(log_groups, group) == NULL);
/** Offset of the first checkpoint checksum */
static const uint CHECKSUM_1 = 288;
/** Offset of the second checkpoint checksum */
static const uint CHECKSUM_2 = CHECKSUM_1 + 4;
/** Most significant bits of the checkpoint offset */
static const uint OFFSET_HIGH32 = CHECKSUM_2 + 12;
/** Least significant bits of the checkpoint offset */
static const uint OFFSET_LOW32 = 16;
for (ulint field = LOG_CHECKPOINT_1; field <= LOG_CHECKPOINT_2;
field += LOG_CHECKPOINT_2 - LOG_CHECKPOINT_1) {
log_group_header_read(group, field);
if (static_cast<uint32_t>(ut_fold_binary(buf, CHECKSUM_1))
!= mach_read_from_4(buf + CHECKSUM_1)
|| static_cast<uint32_t>(
ut_fold_binary(buf + LOG_CHECKPOINT_LSN,
CHECKSUM_2 - LOG_CHECKPOINT_LSN))
!= mach_read_from_4(buf + CHECKSUM_2)) {
DBUG_PRINT("ib_log",
("invalid pre-5.7.9 checkpoint " ULINTPF,
field));
continue;
}
group->state = LOG_GROUP_OK;
group->lsn = mach_read_from_8(
buf + LOG_CHECKPOINT_LSN);
group->lsn_offset = static_cast<ib_uint64_t>(
mach_read_from_4(buf + OFFSET_HIGH32)) << 32
| mach_read_from_4(buf + OFFSET_LOW32);
checkpoint_no = mach_read_from_8(
buf + LOG_CHECKPOINT_NO);
if (!log_crypt_read_checkpoint_buf(buf)) {
ib::error() << "Reading checkpoint encryption info failed.";
return DB_ERROR;
}
DBUG_PRINT("ib_log",
("checkpoint " UINT64PF " at " LSN_PF
" found in group " ULINTPF,
checkpoint_no, group->lsn, group->id));
if (checkpoint_no >= max_no) {
*max_group = group;
*max_field = field;
max_no = checkpoint_no;
}
}
if (*max_group != NULL) {
return(DB_SUCCESS);
}
ib::error() << "Upgrade after a crash is not supported."
" This redo log was created before MySQL 5.7.9,"
" and we did not find a valid checkpoint."
" Please follow the instructions at"
" " REFMAN "upgrading.html";
return(DB_ERROR);
}
/** Determine if a pre-5.7.9 redo log is clean.
@param[in] lsn checkpoint LSN
@return error code
@retval DB_SUCCESS if the redo log is clean
@retval DB_ERROR if the redo log is corrupted or dirty */
static
dberr_t
recv_log_format_0_recover(lsn_t lsn)
{
log_mutex_enter();
log_group_t* group = UT_LIST_GET_FIRST(log_sys->log_groups);
const lsn_t source_offset
= log_group_calc_lsn_offset(lsn, group);
log_mutex_exit();
const ulint page_no
= (ulint) (source_offset / univ_page_size.physical());
byte* buf = log_sys->buf;
static const char* NO_UPGRADE_RECOVERY_MSG =
"Upgrade after a crash is not supported."
" This redo log was created before MySQL 5.7.9";
static const char* NO_UPGRADE_RTFM_MSG =
". Please follow the instructions at "
REFMAN "upgrading.html";
fil_io(IORequestLogRead, true,
page_id_t(group->space_id, page_no),
univ_page_size,
(ulint) ((source_offset & ~(OS_FILE_LOG_BLOCK_SIZE - 1))
% univ_page_size.physical()),
OS_FILE_LOG_BLOCK_SIZE, buf, NULL, NULL);
if (log_block_calc_checksum_format_0(buf)
!= log_block_get_checksum(buf)) {
ib::error() << NO_UPGRADE_RECOVERY_MSG
<< ", and it appears corrupted"
<< NO_UPGRADE_RTFM_MSG;
return(DB_CORRUPTION);
}
if (log_block_get_data_len(buf)
!= (source_offset & (OS_FILE_LOG_BLOCK_SIZE - 1))) {
ib::error() << NO_UPGRADE_RECOVERY_MSG
<< NO_UPGRADE_RTFM_MSG;
return(DB_ERROR);
}
/* Mark the redo log for upgrading. */
srv_log_file_size = 0;
recv_sys->parse_start_lsn = recv_sys->recovered_lsn
= recv_sys->scanned_lsn
= recv_sys->mlog_checkpoint_lsn = lsn;
log_sys->last_checkpoint_lsn = log_sys->next_checkpoint_lsn
= log_sys->lsn = log_sys->write_lsn
= log_sys->current_flush_lsn = log_sys->flushed_to_disk_lsn
= lsn;
log_sys->next_checkpoint_no = 0;
return(DB_SUCCESS);
}
/** Find the latest checkpoint in the log header.
@param[out] max_group log group, or NULL
@param[out] max_field LOG_CHECKPOINT_1 or LOG_CHECKPOINT_2
@return error code or DB_SUCCESS */
static MY_ATTRIBUTE((warn_unused_result))
dberr_t
recv_find_max_checkpoint(
log_group_t** max_group,
ulint* max_field)
{
log_group_t* group;
ib_uint64_t max_no;
ib_uint64_t checkpoint_no;
ulint field;
byte* buf;
group = UT_LIST_GET_FIRST(log_sys->log_groups);
max_no = 0;
*max_group = NULL;
*max_field = 0;
buf = log_sys->checkpoint_buf;
while (group) {
group->state = LOG_GROUP_CORRUPTED;
log_group_header_read(group, 0);
/* Check the header page checksum. There was no
checksum in the first redo log format (version 0). */
group->format = mach_read_from_4(buf + LOG_HEADER_FORMAT);
if (group->format != 0
&& !recv_check_log_header_checksum(buf)) {
ib::error() << "Invalid redo log header checksum.";
return(DB_CORRUPTION);
}
switch (group->format) {
case 0:
return(recv_find_max_checkpoint_0(
max_group, max_field));
case LOG_HEADER_FORMAT_CURRENT:
break;
default:
/* Ensure that the string is NUL-terminated. */
buf[LOG_HEADER_CREATOR_END] = 0;
ib::error() << "Unsupported redo log format."
" The redo log was created"
" with " << buf + LOG_HEADER_CREATOR <<
". Please follow the instructions at "
REFMAN "upgrading-downgrading.html";
/* Do not issue a message about a possibility
to cleanly shut down the newer server version
and to remove the redo logs, because the
format of the system data structures may
radically change after MySQL 5.7. */
return(DB_ERROR);
}
for (field = LOG_CHECKPOINT_1; field <= LOG_CHECKPOINT_2;
field += LOG_CHECKPOINT_2 - LOG_CHECKPOINT_1) {
log_group_header_read(group, field);
if (!recv_check_log_header_checksum(buf)) {
DBUG_PRINT("ib_log",
("invalid checkpoint,"
" group " ULINTPF " at " ULINTPF
", checksum %x",
group->id, field,
(unsigned) log_block_get_checksum(
buf)));
continue;
}
group->state = LOG_GROUP_OK;
group->lsn = mach_read_from_8(
buf + LOG_CHECKPOINT_LSN);
group->lsn_offset = mach_read_from_8(
buf + LOG_CHECKPOINT_OFFSET);
checkpoint_no = mach_read_from_8(
buf + LOG_CHECKPOINT_NO);
if (!log_crypt_read_checkpoint_buf(buf)) {
ib::error() << "Reading checkpoint encryption info failed.";
return DB_ERROR;
}
DBUG_PRINT("ib_log",
("checkpoint " UINT64PF " at " LSN_PF
" found in group " ULINTPF,
checkpoint_no, group->lsn, group->id));
if (checkpoint_no >= max_no) {
*max_group = group;
*max_field = field;
max_no = checkpoint_no;
}
}
group = UT_LIST_GET_NEXT(log_groups, group);
}
if (*max_group == NULL) {
/* Before 5.7.9, we could get here during database
initialization if we created an ib_logfile0 file that
was filled with zeroes, and were killed. After
5.7.9, we would reject such a file already earlier,
when checking the file header. */
ib::error() << "No valid checkpoint found"
" (corrupted redo log)."
" You can try --innodb-force-recovery=6"
" as a last resort.";
return(DB_ERROR);
}
return(DB_SUCCESS);
}
/** Check the 4-byte checksum to the trailer checksum field of a log
block.
@param[in] log block
@return whether the checksum matches */
bool
log_block_checksum_is_ok(
const byte* block, /*!< in: pointer to a log block */
bool print_err) /*!< in print error ? */
{
if (log_block_get_checksum(block) != log_block_calc_checksum(block) &&
print_err) {
ib::error() << " Log block checkpoint not correct."
<< " block: " << log_block_get_hdr_no(block)
<< " checkpoint no: " << log_block_get_checkpoint_no(block)
<< " calc checkpoint: " << log_block_calc_checksum(block)
<< " stored checkpoint: " << log_block_get_checksum(block);
}
return(!innodb_log_checksums
|| log_block_get_checksum(block)
== log_block_calc_checksum(block));
}
#ifdef MYSQL_ENCRYPTION
/** Parse or process a write encryption info record.
@param[in] ptr redo log record
@param[in] end end of the redo log buffer
@param[in] space_id the tablespace ID
@return log record end, NULL if not a complete record */
static
byte*
fil_write_encryption_parse(
byte* ptr,
const byte* end,
ulint space_id)
{
fil_space_t* space;
ulint offset;
ulint len;
byte* key = NULL;
byte* iv = NULL;
bool is_new = false;
space = fil_space_get(space_id);
if (space == NULL) {
encryption_list_t::iterator it;
if (recv_sys->encryption_list == NULL) {
recv_sys->encryption_list =
UT_NEW_NOKEY(encryption_list_t());
}
for (it = recv_sys->encryption_list->begin();
it != recv_sys->encryption_list->end();
it++) {
if (it->space_id == space_id) {
key = it->key;
iv = it->iv;
}
}
if (key == NULL) {
key = static_cast<byte*>(ut_malloc_nokey(
ENCRYPTION_KEY_LEN));
iv = static_cast<byte*>(ut_malloc_nokey(
ENCRYPTION_KEY_LEN));
is_new = true;
}
} else {
key = space->encryption_key;
iv = space->encryption_iv;
}
offset = mach_read_from_2(ptr);
ptr += 2;
len = mach_read_from_2(ptr);
ptr += 2;
if (end < ptr + len) {
return(NULL);
}
if (offset >= UNIV_PAGE_SIZE
|| len + offset > UNIV_PAGE_SIZE
|| (len != ENCRYPTION_INFO_SIZE_V1
&& len != ENCRYPTION_INFO_SIZE_V2)) {
recv_sys->found_corrupt_log = TRUE;
return(NULL);
}
#ifdef UNIV_ENCRYPT_DEBUG
if (space) {
fprintf(stderr, "Got %lu from redo log:", space->id);
}
#endif
if (!fsp_header_decode_encryption_info(key,
iv,
ptr)) {
recv_sys->found_corrupt_log = TRUE;
ib::warn() << "Encryption information"
<< " in the redo log of space "
<< space_id << " is invalid";
}
ut_ad(len == ENCRYPTION_INFO_SIZE_V1
|| len == ENCRYPTION_INFO_SIZE_V2);
ptr += len;
if (space == NULL) {
if (is_new) {
recv_encryption_t info;
/* Add key and iv to list */
info.space_id = space_id;
info.key = key;
info.iv = iv;
recv_sys->encryption_list->push_back(info);
}
} else {
ut_ad(FSP_FLAGS_GET_ENCRYPTION(space->flags));
space->encryption_type = Encryption::AES;
space->encryption_klen = ENCRYPTION_KEY_LEN;
}
return(ptr);
}
#endif /* MYSQL_ENCRYPTION */
/** Try to parse a single log record body and also applies it if
specified.
@param[in] type redo log entry type
@param[in] ptr redo log record body
@param[in] end_ptr end of buffer
@param[in] space_id tablespace identifier
@param[in] page_no page number
@param[in] apply whether to apply the record
@param[in,out] block buffer block, or NULL if
a page log record should not be applied
or if it is a MLOG_FILE_ operation
@param[in,out] mtr mini-transaction, or NULL if
a page log record should not be applied
@return log record end, NULL if not a complete record */
static
byte*
recv_parse_or_apply_log_rec_body(
mlog_id_t type,
byte* ptr,
byte* end_ptr,
ulint space_id,
ulint page_no,
bool apply,
buf_block_t* block,
mtr_t* mtr)
{
ut_ad(!block == !mtr);
ut_ad(!apply || recv_sys->mlog_checkpoint_lsn != 0);
switch (type) {
case MLOG_FILE_NAME:
case MLOG_FILE_DELETE:
case MLOG_FILE_CREATE2:
case MLOG_FILE_RENAME2:
ut_ad(block == NULL);
/* Collect the file names when parsing the log,
before applying any log records. */
return(fil_name_parse(ptr, end_ptr, space_id, page_no, type,
apply));
case MLOG_INDEX_LOAD:
if (end_ptr < ptr + 8) {
return(NULL);
}
return(ptr + 8);
case MLOG_TRUNCATE:
return(truncate_t::parse_redo_entry(ptr, end_ptr, space_id));
case MLOG_WRITE_STRING:
/* For encrypted tablespace, we need to get the
encryption key information before the page 0 is recovered.
Otherwise, redo will not find the key to decrypt
the data pages. */
#ifdef MYSQL_ENCRYPTION
if (page_no == 0 && !is_system_tablespace(space_id)
&& !apply) {
return(fil_write_encryption_parse(ptr,
end_ptr,
space_id));
}
#endif
break;
default:
break;
}
dict_index_t* index = NULL;
page_t* page;
page_zip_des_t* page_zip;
#ifdef UNIV_DEBUG
ulint page_type;
#endif /* UNIV_DEBUG */
if (block) {
/* Applying a page log record. */
ut_ad(apply);
page = block->frame;
page_zip = buf_block_get_page_zip(block);
ut_d(page_type = fil_page_get_type(page));
} else if (apply
&& !is_predefined_tablespace(space_id)
&& recv_spaces.find(space_id) == recv_spaces.end()) {
ib::fatal() << "Missing MLOG_FILE_NAME or MLOG_FILE_DELETE"
" for redo log record " << type << " (page "
<< space_id << ":" << page_no << ") at "
<< recv_sys->recovered_lsn << ".";
return(NULL);
} else {
/* Parsing a page log record. */
page = NULL;
page_zip = NULL;
ut_d(page_type = FIL_PAGE_TYPE_ALLOCATED);
}
const byte* old_ptr = ptr;
switch (type) {
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN:
/* The LSN is checked in recv_parse_log_rec(). */
break;
#endif /* UNIV_LOG_LSN_DEBUG */
case MLOG_1BYTE: case MLOG_2BYTES: case MLOG_4BYTES: case MLOG_8BYTES:
#ifdef UNIV_DEBUG
if (page && page_type == FIL_PAGE_TYPE_ALLOCATED
&& end_ptr >= ptr + 2) {
/* It is OK to set FIL_PAGE_TYPE and certain
list node fields on an empty page. Any other
write is not OK. */
/* NOTE: There may be bogus assertion failures for
dict_hdr_create(), trx_rseg_header_create(),
trx_sys_create_doublewrite_buf(), and
trx_sysf_create().
These are only called during database creation. */
ulint offs = mach_read_from_2(ptr);
switch (type) {
default:
ut_error;
case MLOG_2BYTES:
/* Note that this can fail when the
redo log been written with something
older than InnoDB Plugin 1.0.4. */
ut_ad(offs == FIL_PAGE_TYPE
|| offs == IBUF_TREE_SEG_HEADER
+ IBUF_HEADER + FSEG_HDR_OFFSET
|| offs == PAGE_BTR_IBUF_FREE_LIST
+ PAGE_HEADER + FIL_ADDR_BYTE
|| offs == PAGE_BTR_IBUF_FREE_LIST
+ PAGE_HEADER + FIL_ADDR_BYTE
+ FIL_ADDR_SIZE
|| offs == PAGE_BTR_SEG_LEAF
+ PAGE_HEADER + FSEG_HDR_OFFSET
|| offs == PAGE_BTR_SEG_TOP
+ PAGE_HEADER + FSEG_HDR_OFFSET
|| offs == PAGE_BTR_IBUF_FREE_LIST_NODE
+ PAGE_HEADER + FIL_ADDR_BYTE
+ 0 /*FLST_PREV*/
|| offs == PAGE_BTR_IBUF_FREE_LIST_NODE
+ PAGE_HEADER + FIL_ADDR_BYTE
+ FIL_ADDR_SIZE /*FLST_NEXT*/);
break;
case MLOG_4BYTES:
/* Note that this can fail when the
redo log been written with something
older than InnoDB Plugin 1.0.4. */
ut_ad(0
|| offs == IBUF_TREE_SEG_HEADER
+ IBUF_HEADER + FSEG_HDR_SPACE
|| offs == IBUF_TREE_SEG_HEADER
+ IBUF_HEADER + FSEG_HDR_PAGE_NO
|| offs == PAGE_BTR_IBUF_FREE_LIST
+ PAGE_HEADER/* flst_init */
|| offs == PAGE_BTR_IBUF_FREE_LIST
+ PAGE_HEADER + FIL_ADDR_PAGE
|| offs == PAGE_BTR_IBUF_FREE_LIST
+ PAGE_HEADER + FIL_ADDR_PAGE
+ FIL_ADDR_SIZE
|| offs == PAGE_BTR_SEG_LEAF
+ PAGE_HEADER + FSEG_HDR_PAGE_NO
|| offs == PAGE_BTR_SEG_LEAF
+ PAGE_HEADER + FSEG_HDR_SPACE
|| offs == PAGE_BTR_SEG_TOP
+ PAGE_HEADER + FSEG_HDR_PAGE_NO
|| offs == PAGE_BTR_SEG_TOP
+ PAGE_HEADER + FSEG_HDR_SPACE
|| offs == PAGE_BTR_IBUF_FREE_LIST_NODE
+ PAGE_HEADER + FIL_ADDR_PAGE
+ 0 /*FLST_PREV*/
|| offs == PAGE_BTR_IBUF_FREE_LIST_NODE
+ PAGE_HEADER + FIL_ADDR_PAGE
+ FIL_ADDR_SIZE /*FLST_NEXT*/);
break;
}
}
#endif /* UNIV_DEBUG */
ptr = mlog_parse_nbytes(type, ptr, end_ptr, page, page_zip);
if (ptr != NULL && page != NULL
&& page_no == 0 && type == MLOG_4BYTES) {
ulint offs = mach_read_from_2(old_ptr);
switch (offs) {
fil_space_t* space;
ulint val;
default:
break;
case FSP_HEADER_OFFSET + FSP_SPACE_FLAGS:
case FSP_HEADER_OFFSET + FSP_SIZE:
case FSP_HEADER_OFFSET + FSP_FREE_LIMIT:
case FSP_HEADER_OFFSET + FSP_FREE + FLST_LEN:
space = fil_space_get(space_id);
ut_a(space != NULL);
val = mach_read_from_4(page + offs);
switch (offs) {
case FSP_HEADER_OFFSET + FSP_SPACE_FLAGS:
space->flags = val;
break;
case FSP_HEADER_OFFSET + FSP_SIZE:
space->size_in_header = val;
break;
case FSP_HEADER_OFFSET + FSP_FREE_LIMIT:
space->free_limit = val;
break;
case FSP_HEADER_OFFSET + FSP_FREE + FLST_LEN:
space->free_len = val;
ut_ad(val == flst_get_len(
page + offs));
break;
}
}
}
break;
case MLOG_REC_INSERT: case MLOG_COMP_REC_INSERT:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_REC_INSERT,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = page_cur_parse_insert_rec(FALSE, ptr, end_ptr,
block, index, mtr);
}
break;
case MLOG_REC_CLUST_DELETE_MARK: case MLOG_COMP_REC_CLUST_DELETE_MARK:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_REC_CLUST_DELETE_MARK,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = btr_cur_parse_del_mark_set_clust_rec(
ptr, end_ptr, page, page_zip, index);
}
break;
case MLOG_COMP_REC_SEC_DELETE_MARK:
ut_ad(!page || fil_page_type_is_index(page_type));
/* This log record type is obsolete, but we process it for
backward compatibility with MySQL 5.0.3 and 5.0.4. */
ut_a(!page || page_is_comp(page));
ut_a(!page_zip);
ptr = mlog_parse_index(ptr, end_ptr, TRUE, &index);
if (!ptr) {
break;
}
/* Fall through */
case MLOG_REC_SEC_DELETE_MARK:
ut_ad(!page || fil_page_type_is_index(page_type));
ptr = btr_cur_parse_del_mark_set_sec_rec(ptr, end_ptr,
page, page_zip);
break;
case MLOG_REC_UPDATE_IN_PLACE: case MLOG_COMP_REC_UPDATE_IN_PLACE:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_REC_UPDATE_IN_PLACE,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = btr_cur_parse_update_in_place(ptr, end_ptr, page,
page_zip, index);
}
break;
case MLOG_LIST_END_DELETE: case MLOG_COMP_LIST_END_DELETE:
case MLOG_LIST_START_DELETE: case MLOG_COMP_LIST_START_DELETE:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_LIST_END_DELETE
|| type == MLOG_COMP_LIST_START_DELETE,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = page_parse_delete_rec_list(type, ptr, end_ptr,
block, index, mtr);
}
break;
case MLOG_LIST_END_COPY_CREATED: case MLOG_COMP_LIST_END_COPY_CREATED:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_LIST_END_COPY_CREATED,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = page_parse_copy_rec_list_to_created_page(
ptr, end_ptr, block, index, mtr);
}
break;
case MLOG_PAGE_REORGANIZE:
case MLOG_COMP_PAGE_REORGANIZE:
case MLOG_ZIP_PAGE_REORGANIZE:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type != MLOG_PAGE_REORGANIZE,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = btr_parse_page_reorganize(
ptr, end_ptr, index,
type == MLOG_ZIP_PAGE_REORGANIZE,
block, mtr);
}
break;
case MLOG_PAGE_CREATE: case MLOG_COMP_PAGE_CREATE:
/* Allow anything in page_type when creating a page. */
ut_a(!page_zip);
page_parse_create(block, type == MLOG_COMP_PAGE_CREATE, false);
break;
case MLOG_PAGE_CREATE_RTREE: case MLOG_COMP_PAGE_CREATE_RTREE:
page_parse_create(block, type == MLOG_COMP_PAGE_CREATE_RTREE,
true);
break;
case MLOG_UNDO_INSERT:
ut_ad(!page || page_type == FIL_PAGE_UNDO_LOG);
ptr = trx_undo_parse_add_undo_rec(ptr, end_ptr, page);
break;
case MLOG_UNDO_ERASE_END:
ut_ad(!page || page_type == FIL_PAGE_UNDO_LOG);
ptr = trx_undo_parse_erase_page_end(ptr, end_ptr, page, mtr);
break;
case MLOG_UNDO_INIT:
/* Allow anything in page_type when creating a page. */
ptr = trx_undo_parse_page_init(ptr, end_ptr, page, mtr);
break;
case MLOG_UNDO_HDR_DISCARD:
ut_ad(!page || page_type == FIL_PAGE_UNDO_LOG);
ptr = trx_undo_parse_discard_latest(ptr, end_ptr, page, mtr);
break;
case MLOG_UNDO_HDR_CREATE:
case MLOG_UNDO_HDR_REUSE:
ut_ad(!page || page_type == FIL_PAGE_UNDO_LOG);
ptr = trx_undo_parse_page_header(type, ptr, end_ptr,
page, mtr);
break;
case MLOG_REC_MIN_MARK: case MLOG_COMP_REC_MIN_MARK:
ut_ad(!page || fil_page_type_is_index(page_type));
/* On a compressed page, MLOG_COMP_REC_MIN_MARK
will be followed by MLOG_COMP_REC_DELETE
or MLOG_ZIP_WRITE_HEADER(FIL_PAGE_PREV, FIL_NULL)
in the same mini-transaction. */
ut_a(type == MLOG_COMP_REC_MIN_MARK || !page_zip);
ptr = btr_parse_set_min_rec_mark(
ptr, end_ptr, type == MLOG_COMP_REC_MIN_MARK,
page, mtr);
break;
case MLOG_REC_DELETE: case MLOG_COMP_REC_DELETE:
ut_ad(!page || fil_page_type_is_index(page_type));
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr,
type == MLOG_COMP_REC_DELETE,
&index))) {
ut_a(!page
|| (ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table));
ptr = page_cur_parse_delete_rec(ptr, end_ptr,
block, index, mtr);
}
break;
case MLOG_IBUF_BITMAP_INIT:
/* Allow anything in page_type when creating a page. */
ptr = ibuf_parse_bitmap_init(ptr, end_ptr, block, mtr);
break;
case MLOG_INIT_FILE_PAGE:
case MLOG_INIT_FILE_PAGE2:
/* Allow anything in page_type when creating a page. */
ptr = fsp_parse_init_file_page(ptr, end_ptr, block);
break;
case MLOG_WRITE_STRING:
ptr = mlog_parse_string(ptr, end_ptr, page, page_zip);
break;
case MLOG_ZIP_WRITE_NODE_PTR:
ut_ad(!page || fil_page_type_is_index(page_type));
ptr = page_zip_parse_write_node_ptr(ptr, end_ptr,
page, page_zip);
break;
case MLOG_ZIP_WRITE_BLOB_PTR:
ut_ad(!page || fil_page_type_is_index(page_type));
ptr = page_zip_parse_write_blob_ptr(ptr, end_ptr,
page, page_zip);
break;
case MLOG_ZIP_WRITE_HEADER:
ut_ad(!page || fil_page_type_is_index(page_type));
ptr = page_zip_parse_write_header(ptr, end_ptr,
page, page_zip);
break;
case MLOG_ZIP_PAGE_COMPRESS:
/* Allow anything in page_type when creating a page. */
ptr = page_zip_parse_compress(ptr, end_ptr,
page, page_zip);
break;
case MLOG_ZIP_PAGE_COMPRESS_NO_DATA:
if (NULL != (ptr = mlog_parse_index(
ptr, end_ptr, TRUE, &index))) {
ut_a(!page || ((ibool)!!page_is_comp(page)
== dict_table_is_comp(index->table)));
ptr = page_zip_parse_compress_no_data(
ptr, end_ptr, page, page_zip, index);
}
break;
case MLOG_FILE_WRITE_CRYPT_DATA:
ptr = fil_parse_write_crypt_data(ptr, end_ptr, block);
break;
default:
ptr = NULL;
ib::error() << "Incorrect log record type:" << type;
recv_sys->found_corrupt_log = true;
}
if (index) {
dict_table_t* table = index->table;
dict_mem_index_free(index);
dict_mem_table_free(table);
}
return(ptr);
}
/*********************************************************************//**
Calculates the fold value of a page file address: used in inserting or
searching for a log record in the hash table.
@return folded value */
UNIV_INLINE
ulint
recv_fold(
/*======*/
ulint space, /*!< in: space */
ulint page_no)/*!< in: page number */
{
return(ut_fold_ulint_pair(space, page_no));
}
/*********************************************************************//**
Calculates the hash value of a page file address: used in inserting or
searching for a log record in the hash table.
@return folded value */
UNIV_INLINE
ulint
recv_hash(
/*======*/
ulint space, /*!< in: space */
ulint page_no)/*!< in: page number */
{
return(hash_calc_hash(recv_fold(space, page_no), recv_sys->addr_hash));
}
/*********************************************************************//**
Gets the hashed file address struct for a page.
@return file address struct, NULL if not found from the hash table */
static
recv_addr_t*
recv_get_fil_addr_struct(
/*=====================*/
ulint space, /*!< in: space id */
ulint page_no)/*!< in: page number */
{
recv_addr_t* recv_addr;
for (recv_addr = static_cast<recv_addr_t*>(
HASH_GET_FIRST(recv_sys->addr_hash,
recv_hash(space, page_no)));
recv_addr != 0;
recv_addr = static_cast<recv_addr_t*>(
HASH_GET_NEXT(addr_hash, recv_addr))) {
if (recv_addr->space == space
&& recv_addr->page_no == page_no) {
return(recv_addr);
}
}
return(NULL);
}
/*******************************************************************//**
Adds a new log record to the hash table of log records. */
static
void
recv_add_to_hash_table(
/*===================*/
mlog_id_t type, /*!< in: log record type */
ulint space, /*!< in: space id */
ulint page_no, /*!< in: page number */
byte* body, /*!< in: log record body */
byte* rec_end, /*!< in: log record end */
lsn_t start_lsn, /*!< in: start lsn of the mtr */
lsn_t end_lsn) /*!< in: end lsn of the mtr */
{
recv_t* recv;
ulint len;
recv_data_t* recv_data;
recv_data_t** prev_field;
recv_addr_t* recv_addr;
ut_ad(type != MLOG_FILE_DELETE);
ut_ad(type != MLOG_FILE_CREATE2);
ut_ad(type != MLOG_FILE_RENAME2);
ut_ad(type != MLOG_FILE_NAME);
ut_ad(type != MLOG_DUMMY_RECORD);
ut_ad(type != MLOG_CHECKPOINT);
ut_ad(type != MLOG_INDEX_LOAD);
ut_ad(type != MLOG_TRUNCATE);
len = rec_end - body;
recv = static_cast<recv_t*>(
mem_heap_alloc(recv_sys->heap, sizeof(recv_t)));
recv->type = type;
recv->len = rec_end - body;
recv->start_lsn = start_lsn;
recv->end_lsn = end_lsn;
recv_addr = recv_get_fil_addr_struct(space, page_no);
if (recv_addr == NULL) {
recv_addr = static_cast<recv_addr_t*>(
mem_heap_alloc(recv_sys->heap, sizeof(recv_addr_t)));
recv_addr->space = space;
recv_addr->page_no = page_no;
recv_addr->state = RECV_NOT_PROCESSED;
UT_LIST_INIT(recv_addr->rec_list, &recv_t::rec_list);
HASH_INSERT(recv_addr_t, addr_hash, recv_sys->addr_hash,
recv_fold(space, page_no), recv_addr);
recv_sys->n_addrs++;
#if 0
fprintf(stderr, "Inserting log rec for space %lu, page %lu\n",
space, page_no);
#endif
}
UT_LIST_ADD_LAST(recv_addr->rec_list, recv);
prev_field = &(recv->data);
/* Store the log record body in chunks of less than UNIV_PAGE_SIZE:
recv_sys->heap grows into the buffer pool, and bigger chunks could not
be allocated */
while (rec_end > body) {
len = rec_end - body;
if (len > RECV_DATA_BLOCK_SIZE) {
len = RECV_DATA_BLOCK_SIZE;
}
recv_data = static_cast<recv_data_t*>(
mem_heap_alloc(recv_sys->heap,
sizeof(recv_data_t) + len));
*prev_field = recv_data;
memcpy(recv_data + 1, body, len);
prev_field = &(recv_data->next);
body += len;
}
*prev_field = NULL;
}
/*********************************************************************//**
Copies the log record body from recv to buf. */
static
void
recv_data_copy_to_buf(
/*==================*/
byte* buf, /*!< in: buffer of length at least recv->len */
recv_t* recv) /*!< in: log record */
{
recv_data_t* recv_data;
ulint part_len;
ulint len;
len = recv->len;
recv_data = recv->data;
while (len > 0) {
if (len > RECV_DATA_BLOCK_SIZE) {
part_len = RECV_DATA_BLOCK_SIZE;
} else {
part_len = len;
}
ut_memcpy(buf, ((byte*) recv_data) + sizeof(recv_data_t),
part_len);
buf += part_len;
len -= part_len;
recv_data = recv_data->next;
}
}
/** Apply the hashed log records to the page, if the page lsn is less than the
lsn of a log record.
@param just_read_in whether the page recently arrived to the I/O handler
@param block the page in the buffer pool */
void
recv_recover_page(bool just_read_in, buf_block_t* block)
{
page_t* page;
page_zip_des_t* page_zip;
recv_addr_t* recv_addr;
recv_t* recv;
byte* buf;
lsn_t start_lsn;
lsn_t end_lsn;
lsn_t page_lsn;
lsn_t page_newest_lsn;
ibool modification_to_page;
mtr_t mtr;
mutex_enter(&(recv_sys->mutex));
if (recv_sys->apply_log_recs == FALSE) {
/* Log records should not be applied now */
mutex_exit(&(recv_sys->mutex));
return;
}
recv_addr = recv_get_fil_addr_struct(block->page.id.space(),
block->page.id.page_no());
if ((recv_addr == NULL)
|| (recv_addr->state == RECV_BEING_PROCESSED)
|| (recv_addr->state == RECV_PROCESSED)) {
ut_ad(recv_addr == NULL || recv_needed_recovery);
mutex_exit(&(recv_sys->mutex));
return;
}
ut_ad(recv_needed_recovery);
DBUG_PRINT("ib_log",
("Applying log to page %u:%u",
recv_addr->space, recv_addr->page_no));
recv_addr->state = RECV_BEING_PROCESSED;
mutex_exit(&(recv_sys->mutex));
mtr_start(&mtr);
mtr_set_log_mode(&mtr, MTR_LOG_NONE);
page = block->frame;
page_zip = buf_block_get_page_zip(block);
if (just_read_in) {
/* Move the ownership of the x-latch on the page to
this OS thread, so that we can acquire a second
x-latch on it. This is needed for the operations to
the page to pass the debug checks. */
rw_lock_x_lock_move_ownership(&block->lock);
}
ibool success = buf_page_get_known_nowait(
RW_X_LATCH, block, BUF_KEEP_OLD,
__FILE__, __LINE__, &mtr);
ut_a(success);
buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK);
/* Read the newest modification lsn from the page */
page_lsn = mach_read_from_8(page + FIL_PAGE_LSN);
/* It may be that the page has been modified in the buffer
pool: read the newest modification lsn there */
page_newest_lsn = buf_page_get_newest_modification(&block->page);
if (page_newest_lsn) {
page_lsn = page_newest_lsn;
}
modification_to_page = FALSE;
start_lsn = end_lsn = 0;
recv = UT_LIST_GET_FIRST(recv_addr->rec_list);
while (recv) {
end_lsn = recv->end_lsn;
ut_ad(end_lsn
<= UT_LIST_GET_FIRST(log_sys->log_groups)->scanned_lsn);
if (recv->len > RECV_DATA_BLOCK_SIZE) {
/* We have to copy the record body to a separate
buffer */
buf = static_cast<byte*>(ut_malloc_nokey(recv->len));
recv_data_copy_to_buf(buf, recv);
} else {
buf = ((byte*)(recv->data)) + sizeof(recv_data_t);
}
if (recv->type == MLOG_INIT_FILE_PAGE) {
page_lsn = page_newest_lsn;
memset(FIL_PAGE_LSN + page, 0, 8);
memset(UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM
+ page, 0, 8);
if (page_zip) {
memset(FIL_PAGE_LSN + page_zip->data, 0, 8);
}
}
/* If per-table tablespace was truncated and there exist REDO
records before truncate that are to be applied as part of
recovery (checkpoint didn't happen since truncate was done)
skip such records using lsn check as they may not stand valid
post truncate.
LSN at start of truncate is recorded and any redo record
with LSN less than recorded LSN is skipped.
Note: We can't skip complete recv_addr as same page may have
valid REDO records post truncate those needs to be applied. */
bool skip_recv = false;
if (srv_was_tablespace_truncated(fil_space_get(recv_addr->space))) {
lsn_t init_lsn =
truncate_t::get_truncated_tablespace_init_lsn(
recv_addr->space);
skip_recv = (recv->start_lsn < init_lsn);
}
/* Ignore applying the redo logs for tablespace that is
truncated. Post recovery there is fixup action that will
restore the tablespace back to normal state.
Applying redo at this stage can result in error given that
redo will have action recorded on page before tablespace
was re-inited and that would lead to an error while applying
such action. */
if (recv->start_lsn >= page_lsn
&& !srv_is_tablespace_truncated(recv_addr->space)
&& !skip_recv) {
lsn_t end_lsn;
if (!modification_to_page) {
modification_to_page = TRUE;
start_lsn = recv->start_lsn;
}
DBUG_PRINT("ib_log",
("apply " LSN_PF ":"
" %s len " ULINTPF " page %u:%u",
recv->start_lsn,
get_mlog_string(recv->type), recv->len,
recv_addr->space,
recv_addr->page_no));
recv_parse_or_apply_log_rec_body(
recv->type, buf, buf + recv->len,
recv_addr->space, recv_addr->page_no,
true, block, &mtr);
end_lsn = recv->start_lsn + recv->len;
mach_write_to_8(FIL_PAGE_LSN + page, end_lsn);
mach_write_to_8(UNIV_PAGE_SIZE
- FIL_PAGE_END_LSN_OLD_CHKSUM
+ page, end_lsn);
if (page_zip) {
mach_write_to_8(FIL_PAGE_LSN
+ page_zip->data, end_lsn);
}
}
if (recv->len > RECV_DATA_BLOCK_SIZE) {
ut_free(buf);
}
recv = UT_LIST_GET_NEXT(rec_list, recv);
}
#ifdef UNIV_ZIP_DEBUG
if (fil_page_index_page_check(page)) {
page_zip_des_t* page_zip = buf_block_get_page_zip(block);
ut_a(!page_zip
|| page_zip_validate_low(page_zip, page, NULL, FALSE));
}
#endif /* UNIV_ZIP_DEBUG */
if (modification_to_page) {
ut_a(block);
log_flush_order_mutex_enter();
buf_flush_recv_note_modification(block, start_lsn, end_lsn);
log_flush_order_mutex_exit();
}
/* Make sure that committing mtr does not change the modification
lsn values of page */
mtr.discard_modifications();
mtr_commit(&mtr);
mutex_enter(&(recv_sys->mutex));
if (recv_max_page_lsn < page_lsn) {
recv_max_page_lsn = page_lsn;
}
recv_addr->state = RECV_PROCESSED;
ut_a(recv_sys->n_addrs);
recv_sys->n_addrs--;
mutex_exit(&(recv_sys->mutex));
}
/** Reads in pages which have hashed log records, from an area around a given
page number.
@param[in] page_id page id
@return number of pages found */
static
ulint
recv_read_in_area(
const page_id_t& page_id)
{
recv_addr_t* recv_addr;
ulint page_nos[RECV_READ_AHEAD_AREA];
ulint low_limit;
ulint n;
low_limit = page_id.page_no()
- (page_id.page_no() % RECV_READ_AHEAD_AREA);
n = 0;
for (ulint page_no = low_limit;
page_no < low_limit + RECV_READ_AHEAD_AREA;
page_no++) {
recv_addr = recv_get_fil_addr_struct(page_id.space(), page_no);
const page_id_t cur_page_id(page_id.space(), page_no);
if (recv_addr && !buf_page_peek(cur_page_id)) {
mutex_enter(&(recv_sys->mutex));
if (recv_addr->state == RECV_NOT_PROCESSED) {
recv_addr->state = RECV_BEING_READ;
page_nos[n] = page_no;
n++;
}
mutex_exit(&(recv_sys->mutex));
}
}
buf_read_recv_pages(FALSE, page_id.space(), page_nos, n);
/*
fprintf(stderr, "Recv pages at %lu n %lu\n", page_nos[0], n);
*/
return(n);
}
/*******************************************************************//**
Empties the hash table of stored log records, applying them to appropriate
pages.
@return DB_SUCCESS when successfull or DB_ERROR when fails. */
dberr_t
recv_apply_hashed_log_recs(
/*=======================*/
ibool allow_ibuf) /*!< in: if TRUE, also ibuf operations are
allowed during the application; if FALSE,
no ibuf operations are allowed, and after
the application all file pages are flushed to
disk and invalidated in buffer pool: this
alternative means that no new log records
can be generated during the application;
the caller must in this case own the log
mutex */
{
recv_addr_t* recv_addr;
ulint i;
ibool has_printed = FALSE;
mtr_t mtr;
ulint progress = 0;
dberr_t err = DB_SUCCESS;
loop:
mutex_enter(&(recv_sys->mutex));
if (recv_sys->apply_batch_on) {
mutex_exit(&(recv_sys->mutex));
os_thread_sleep(500000);
goto loop;
}
ut_ad(!allow_ibuf == log_mutex_own());
if (!allow_ibuf) {
recv_no_ibuf_operations = true;
}
recv_sys->apply_log_recs = TRUE;
recv_sys->apply_batch_on = TRUE;
for (i = 0; i < hash_get_n_cells(recv_sys->addr_hash); i++) {
for (recv_addr = static_cast<recv_addr_t*>(
HASH_GET_FIRST(recv_sys->addr_hash, i));
recv_addr != 0;
recv_addr = static_cast<recv_addr_t*>(
HASH_GET_NEXT(addr_hash, recv_addr))) {
if (srv_is_tablespace_truncated(recv_addr->space)) {
/* Avoid applying REDO log for the tablespace
that is schedule for TRUNCATE. */
ut_a(recv_sys->n_addrs);
recv_addr->state = RECV_DISCARDED;
recv_sys->n_addrs--;
continue;
}
if (recv_addr->state == RECV_DISCARDED) {
ut_a(recv_sys->n_addrs);
recv_sys->n_addrs--;
continue;
}
const page_id_t page_id(recv_addr->space,
recv_addr->page_no);
bool found;
const page_size_t& page_size
= fil_space_get_page_size(recv_addr->space,
&found);
ut_ad(found);
if (recv_addr->state == RECV_NOT_PROCESSED) {
if (!has_printed) {
ib::info() << "Starting an apply batch"
" of log records"
" to the database...";
fputs("InnoDB: Progress in percent: ",
stderr);
has_printed = TRUE;
}
mutex_exit(&(recv_sys->mutex));
if (buf_page_peek(page_id)) {
buf_block_t* block;
mtr_start(&mtr);
block = buf_page_get(
page_id, page_size,
RW_X_LATCH, &mtr);
buf_block_dbg_add_level(
block, SYNC_NO_ORDER_CHECK);
recv_recover_page(FALSE, block);
mtr_commit(&mtr);
} else {
recv_read_in_area(page_id);
}
mutex_enter(&(recv_sys->mutex));
}
}
progress = (ulint) ((i * 100) / hash_get_n_cells(recv_sys->addr_hash));
if (has_printed
&& progress
&& (i * 100) / hash_get_n_cells(recv_sys->addr_hash)
!= ((i + 1) * 100)
/ hash_get_n_cells(recv_sys->addr_hash)) {
fprintf(stderr, "%lu ", progress);
sd_notifyf(0, "STATUS=Applying batch of log records for"
" InnoDB: Progress %lu", progress);
}
}
/* Wait until all the pages have been processed */
while (recv_sys->n_addrs != 0) {
mutex_exit(&(recv_sys->mutex));
os_thread_sleep(500000);
mutex_enter(&(recv_sys->mutex));
}
if (has_printed) {
fprintf(stderr, "\n");
}
if (!allow_ibuf) {
/* Flush all the file pages to disk and invalidate them in
the buffer pool */
ut_d(recv_no_log_write = true);
mutex_exit(&(recv_sys->mutex));
log_mutex_exit();
/* Stop the recv_writer thread from issuing any LRU
flush batches. */
mutex_enter(&recv_sys->writer_mutex);
/* Wait for any currently run batch to end. */
buf_flush_wait_LRU_batch_end();
os_event_reset(recv_sys->flush_end);
recv_sys->flush_type = BUF_FLUSH_LIST;
os_event_set(recv_sys->flush_start);
os_event_wait(recv_sys->flush_end);
buf_pool_invalidate();
/* Allow batches from recv_writer thread. */
mutex_exit(&recv_sys->writer_mutex);
log_mutex_enter();
mutex_enter(&(recv_sys->mutex));
ut_d(recv_no_log_write = false);
recv_no_ibuf_operations = false;
}
recv_sys->apply_log_recs = FALSE;
recv_sys->apply_batch_on = FALSE;
recv_sys_empty_hash();
if (has_printed) {
ib::info() << "Apply batch completed";
sd_notify(0, "STATUS=InnoDB: Apply batch completed");
}
mutex_exit(&(recv_sys->mutex));
return err;
}
/** Tries to parse a single log record.
@param[out] type log record type
@param[in] ptr pointer to a buffer
@param[in] end_ptr end of the buffer
@param[out] space_id tablespace identifier
@param[out] page_no page number
@param[in] apply whether to apply MLOG_FILE_* records
@param[out] body start of log record body
@return length of the record, or 0 if the record was not complete */
static
ulint
recv_parse_log_rec(
mlog_id_t* type,
byte* ptr,
byte* end_ptr,
ulint* space,
ulint* page_no,
bool apply,
byte** body)
{
byte* new_ptr;
*body = NULL;
UNIV_MEM_INVALID(type, sizeof *type);
UNIV_MEM_INVALID(space, sizeof *space);
UNIV_MEM_INVALID(page_no, sizeof *page_no);
UNIV_MEM_INVALID(body, sizeof *body);
if (ptr == end_ptr) {
return(0);
}
switch (*ptr) {
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN | MLOG_SINGLE_REC_FLAG:
case MLOG_LSN:
new_ptr = mlog_parse_initial_log_record(
ptr, end_ptr, type, space, page_no);
if (new_ptr != NULL) {
const lsn_t lsn = static_cast<lsn_t>(
*space) << 32 | *page_no;
ut_a(lsn == recv_sys->recovered_lsn);
}
*type = MLOG_LSN;
return(new_ptr - ptr);
#endif /* UNIV_LOG_LSN_DEBUG */
case MLOG_MULTI_REC_END:
case MLOG_DUMMY_RECORD:
*type = static_cast<mlog_id_t>(*ptr);
return(1);
case MLOG_CHECKPOINT:
if (end_ptr < ptr + SIZE_OF_MLOG_CHECKPOINT) {
return(0);
}
*type = static_cast<mlog_id_t>(*ptr);
return(SIZE_OF_MLOG_CHECKPOINT);
case MLOG_MULTI_REC_END | MLOG_SINGLE_REC_FLAG:
case MLOG_DUMMY_RECORD | MLOG_SINGLE_REC_FLAG:
case MLOG_CHECKPOINT | MLOG_SINGLE_REC_FLAG:
ib::error() << "Incorrect log record type:" << *ptr;
recv_sys->found_corrupt_log = true;
return(0);
}
new_ptr = mlog_parse_initial_log_record(ptr, end_ptr, type, space,
page_no);
*body = new_ptr;
if (UNIV_UNLIKELY(!new_ptr)) {
return(0);
}
const byte* old_ptr = new_ptr;
new_ptr = recv_parse_or_apply_log_rec_body(
*type, new_ptr, end_ptr, *space, *page_no, apply, NULL, NULL);
if (UNIV_UNLIKELY(new_ptr == NULL)) {
return(0);
}
if (*page_no == 0 && *type == MLOG_4BYTES
&& mach_read_from_2(old_ptr) == FSP_HEADER_OFFSET + FSP_SIZE) {
old_ptr += 2;
fil_space_set_recv_size(*space,
mach_parse_compressed(&old_ptr,
end_ptr));
}
return(new_ptr - ptr);
}
/*******************************************************//**
Calculates the new value for lsn when more data is added to the log. */
static
lsn_t
recv_calc_lsn_on_data_add(
/*======================*/
lsn_t lsn, /*!< in: old lsn */
ib_uint64_t len) /*!< in: this many bytes of data is
added, log block headers not included */
{
ulint frag_len;
ib_uint64_t lsn_len;
frag_len = (lsn % OS_FILE_LOG_BLOCK_SIZE) - LOG_BLOCK_HDR_SIZE;
ut_ad(frag_len < OS_FILE_LOG_BLOCK_SIZE - LOG_BLOCK_HDR_SIZE
- LOG_BLOCK_TRL_SIZE);
lsn_len = len;
lsn_len += (lsn_len + frag_len)
/ (OS_FILE_LOG_BLOCK_SIZE - LOG_BLOCK_HDR_SIZE
- LOG_BLOCK_TRL_SIZE)
* (LOG_BLOCK_HDR_SIZE + LOG_BLOCK_TRL_SIZE);
return(lsn + lsn_len);
}
/** Prints diagnostic info of corrupt log.
@param[in] ptr pointer to corrupt log record
@param[in] type type of the log record (could be garbage)
@param[in] space tablespace ID (could be garbage)
@param[in] page_no page number (could be garbage)
@return whether processing should continue */
static
bool
recv_report_corrupt_log(
const byte* ptr,
int type,
ulint space,
ulint page_no)
{
ib::error() <<
"############### CORRUPT LOG RECORD FOUND ##################";
ib::info() << "Log record type " << type << ", page " << space << ":"
<< page_no << ". Log parsing proceeded successfully up to "
<< recv_sys->recovered_lsn << ". Previous log record type "
<< recv_previous_parsed_rec_type << ", is multi "
<< recv_previous_parsed_rec_is_multi << " Recv offset "
<< (ptr - recv_sys->buf) << ", prev "
<< recv_previous_parsed_rec_offset;
ut_ad(ptr <= recv_sys->buf + recv_sys->len);
const ulint limit = 100;
const ulint before
= std::min(recv_previous_parsed_rec_offset, limit);
const ulint after
= std::min(recv_sys->len - (ptr - recv_sys->buf), limit);
ib::info() << "Hex dump starting " << before << " bytes before and"
" ending " << after << " bytes after the corrupted record:";
ut_print_buf(stderr,
recv_sys->buf
+ recv_previous_parsed_rec_offset - before,
ptr - recv_sys->buf + before + after
- recv_previous_parsed_rec_offset);
putc('\n', stderr);
if (!srv_force_recovery) {
ib::info() << "Set innodb_force_recovery to ignore this error.";
return(false);
}
ib::warn() << "The log file may have been corrupt and it is possible"
" that the log scan did not proceed far enough in recovery!"
" Please run CHECK TABLE on your InnoDB tables to check"
" that they are ok! If mysqld crashes after this recovery; "
<< FORCE_RECOVERY_MSG;
return(true);
}
/** Whether to store redo log records to the hash table */
enum store_t {
/** Do not store redo log records. */
STORE_NO,
/** Store redo log records. */
STORE_YES,
/** Store redo log records if the tablespace exists. */
STORE_IF_EXISTS
};
/** Parse log records from a buffer and optionally store them to a
hash table to wait merging to file pages.
@param[in] checkpoint_lsn the LSN of the latest checkpoint
@param[in] store whether to store page operations
@param[in] apply whether to apply the records
@param[out] err DB_SUCCESS or error code
@return whether MLOG_CHECKPOINT record was seen the first time,
or corruption was noticed */
static MY_ATTRIBUTE((warn_unused_result))
bool
recv_parse_log_recs(
lsn_t checkpoint_lsn,
store_t store,
bool apply,
dberr_t* err)
{
byte* ptr;
byte* end_ptr;
bool single_rec;
ulint len;
lsn_t new_recovered_lsn;
lsn_t old_lsn;
mlog_id_t type;
ulint space;
ulint page_no;
byte* body;
ut_ad(log_mutex_own());
ut_ad(recv_sys->parse_start_lsn != 0);
loop:
ptr = recv_sys->buf + recv_sys->recovered_offset;
end_ptr = recv_sys->buf + recv_sys->len;
if (ptr == end_ptr) {
return(false);
}
switch (*ptr) {
case MLOG_CHECKPOINT:
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN:
#endif /* UNIV_LOG_LSN_DEBUG */
case MLOG_DUMMY_RECORD:
single_rec = true;
break;
default:
single_rec = !!(*ptr & MLOG_SINGLE_REC_FLAG);
}
if (single_rec) {
/* The mtr did not modify multiple pages */
old_lsn = recv_sys->recovered_lsn;
/* Try to parse a log record, fetching its type, space id,
page no, and a pointer to the body of the log record */
len = recv_parse_log_rec(&type, ptr, end_ptr, &space,
&page_no, apply, &body);
if (len == 0) {
return(false);
}
if (recv_sys->found_corrupt_log) {
recv_report_corrupt_log(
ptr, type, space, page_no);
return(true);
}
if (recv_sys->found_corrupt_fs) {
return(true);
}
new_recovered_lsn = recv_calc_lsn_on_data_add(old_lsn, len);
if (new_recovered_lsn > recv_sys->scanned_lsn) {
/* The log record filled a log block, and we require
that also the next log block should have been scanned
in */
return(false);
}
recv_previous_parsed_rec_type = type;
recv_previous_parsed_rec_offset = recv_sys->recovered_offset;
recv_previous_parsed_rec_is_multi = 0;
recv_sys->recovered_offset += len;
recv_sys->recovered_lsn = new_recovered_lsn;
switch (type) {
lsn_t lsn;
case MLOG_DUMMY_RECORD:
/* Do nothing */
break;
case MLOG_CHECKPOINT:
#if SIZE_OF_MLOG_CHECKPOINT != 1 + 8
# error SIZE_OF_MLOG_CHECKPOINT != 1 + 8
#endif
lsn = mach_read_from_8(ptr + 1);
DBUG_PRINT("ib_log",
("MLOG_CHECKPOINT(" LSN_PF ") %s at "
LSN_PF,
lsn,
lsn != checkpoint_lsn ? "ignored"
: recv_sys->mlog_checkpoint_lsn
? "reread" : "read",
recv_sys->recovered_lsn));
if (lsn == checkpoint_lsn) {
if (recv_sys->mlog_checkpoint_lsn) {
/* At recv_reset_logs() we may
write a duplicate MLOG_CHECKPOINT
for the same checkpoint LSN. Thus
recv_sys->mlog_checkpoint_lsn
can differ from the current LSN. */
ut_ad(recv_sys->mlog_checkpoint_lsn
<= recv_sys->recovered_lsn);
break;
}
recv_sys->mlog_checkpoint_lsn
= recv_sys->recovered_lsn;
return(true);
}
break;
case MLOG_FILE_NAME:
case MLOG_FILE_DELETE:
case MLOG_FILE_CREATE2:
case MLOG_FILE_RENAME2:
case MLOG_TRUNCATE:
/* These were already handled by
recv_parse_log_rec() and
recv_parse_or_apply_log_rec_body(). */
break;
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN:
/* Do not add these records to the hash table.
The page number and space id fields are misused
for something else. */
break;
#endif /* UNIV_LOG_LSN_DEBUG */
default:
switch (store) {
case STORE_NO:
break;
case STORE_IF_EXISTS:
if (fil_space_get_flags(space)
== ULINT_UNDEFINED) {
break;
}
/* fall through */
case STORE_YES:
recv_add_to_hash_table(
type, space, page_no, body,
ptr + len, old_lsn,
recv_sys->recovered_lsn);
}
/* fall through */
case MLOG_INDEX_LOAD:
DBUG_PRINT("ib_log",
("scan " LSN_PF ": log rec %s"
" len " ULINTPF
" page " ULINTPF ":" ULINTPF,
old_lsn, get_mlog_string(type),
len, space, page_no));
}
} else {
/* Check that all the records associated with the single mtr
are included within the buffer */
ulint total_len = 0;
ulint n_recs = 0;
for (;;) {
len = recv_parse_log_rec(
&type, ptr, end_ptr, &space, &page_no,
false, &body);
if (len == 0) {
return(false);
}
if (recv_sys->found_corrupt_log
|| type == MLOG_CHECKPOINT
|| (*ptr & MLOG_SINGLE_REC_FLAG)) {
recv_sys->found_corrupt_log = true;
recv_report_corrupt_log(
ptr, type, space, page_no);
return(true);
}
if (recv_sys->found_corrupt_fs) {
return(true);
}
recv_previous_parsed_rec_type = type;
recv_previous_parsed_rec_offset
= recv_sys->recovered_offset + total_len;
recv_previous_parsed_rec_is_multi = 1;
total_len += len;
n_recs++;
ptr += len;
if (type == MLOG_MULTI_REC_END) {
DBUG_PRINT("ib_log",
("scan " LSN_PF
": multi-log end"
" total_len " ULINTPF
" n=" ULINTPF,
recv_sys->recovered_lsn,
total_len, n_recs));
break;
}
DBUG_PRINT("ib_log",
("scan " LSN_PF ": multi-log rec %s"
" len " ULINTPF
" page " ULINTPF ":" ULINTPF,
recv_sys->recovered_lsn,
get_mlog_string(type), len, space, page_no));
}
new_recovered_lsn = recv_calc_lsn_on_data_add(
recv_sys->recovered_lsn, total_len);
if (new_recovered_lsn > recv_sys->scanned_lsn) {
/* The log record filled a log block, and we require
that also the next log block should have been scanned
in */
return(false);
}
/* Add all the records to the hash table */
ptr = recv_sys->buf + recv_sys->recovered_offset;
for (;;) {
old_lsn = recv_sys->recovered_lsn;
/* This will apply MLOG_FILE_ records. We
had to skip them in the first scan, because we
did not know if the mini-transaction was
completely recovered (until MLOG_MULTI_REC_END). */
len = recv_parse_log_rec(
&type, ptr, end_ptr, &space, &page_no,
apply, &body);
if (recv_sys->found_corrupt_log
&& !recv_report_corrupt_log(
ptr, type, space, page_no)) {
return(true);
}
if (recv_sys->found_corrupt_fs) {
return(true);
}
ut_a(len != 0);
ut_a(!(*ptr & MLOG_SINGLE_REC_FLAG));
recv_sys->recovered_offset += len;
recv_sys->recovered_lsn
= recv_calc_lsn_on_data_add(old_lsn, len);
switch (type) {
case MLOG_MULTI_REC_END:
/* Found the end mark for the records */
goto loop;
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN:
/* Do not add these records to the hash table.
The page number and space id fields are misused
for something else. */
break;
#endif /* UNIV_LOG_LSN_DEBUG */
case MLOG_FILE_NAME:
case MLOG_FILE_DELETE:
case MLOG_FILE_CREATE2:
case MLOG_FILE_RENAME2:
case MLOG_INDEX_LOAD:
case MLOG_TRUNCATE:
/* These were already handled by
recv_parse_log_rec() and
recv_parse_or_apply_log_rec_body(). */
break;
default:
switch (store) {
case STORE_NO:
break;
case STORE_IF_EXISTS:
if (fil_space_get_flags(space)
== ULINT_UNDEFINED) {
break;
}
/* fall through */
case STORE_YES:
recv_add_to_hash_table(
type, space, page_no,
body, ptr + len,
old_lsn,
new_recovered_lsn);
}
}
ptr += len;
}
}
goto loop;
}
/*******************************************************//**
Adds data from a new log block to the parsing buffer of recv_sys if
recv_sys->parse_start_lsn is non-zero.
@return true if more data added */
static
bool
recv_sys_add_to_parsing_buf(
/*========================*/
const byte* log_block, /*!< in: log block */
lsn_t scanned_lsn) /*!< in: lsn of how far we were able
to find data in this log block */
{
ulint more_len;
ulint data_len;
ulint start_offset;
ulint end_offset;
ut_ad(scanned_lsn >= recv_sys->scanned_lsn);
if (!recv_sys->parse_start_lsn) {
/* Cannot start parsing yet because no start point for
it found */
return(false);
}
data_len = log_block_get_data_len(log_block);
if (recv_sys->parse_start_lsn >= scanned_lsn) {
return(false);
} else if (recv_sys->scanned_lsn >= scanned_lsn) {
return(false);
} else if (recv_sys->parse_start_lsn > recv_sys->scanned_lsn) {
more_len = (ulint) (scanned_lsn - recv_sys->parse_start_lsn);
} else {
more_len = (ulint) (scanned_lsn - recv_sys->scanned_lsn);
}
if (more_len == 0) {
return(false);
}
ut_ad(data_len >= more_len);
start_offset = data_len - more_len;
if (start_offset < LOG_BLOCK_HDR_SIZE) {
start_offset = LOG_BLOCK_HDR_SIZE;
}
end_offset = data_len;
if (end_offset > OS_FILE_LOG_BLOCK_SIZE - LOG_BLOCK_TRL_SIZE) {
end_offset = OS_FILE_LOG_BLOCK_SIZE - LOG_BLOCK_TRL_SIZE;
}
ut_ad(start_offset <= end_offset);
if (start_offset < end_offset) {
ut_memcpy(recv_sys->buf + recv_sys->len,
log_block + start_offset, end_offset - start_offset);
recv_sys->len += end_offset - start_offset;
ut_a(recv_sys->len <= RECV_PARSING_BUF_SIZE);
}
return(true);
}
/*******************************************************//**
Moves the parsing buffer data left to the buffer start. */
static
void
recv_sys_justify_left_parsing_buf(void)
/*===================================*/
{
ut_memmove(recv_sys->buf, recv_sys->buf + recv_sys->recovered_offset,
recv_sys->len - recv_sys->recovered_offset);
recv_sys->len -= recv_sys->recovered_offset;
recv_sys->recovered_offset = 0;
}
/** Scan redo log from a buffer and stores new log data to the parsing buffer.
Parse and hash the log records if new data found.
Apply log records automatically when the hash table becomes full.
@return true if not able to scan any more in this log group */
static
bool
recv_scan_log_recs(
/*===============*/
ulint available_memory,/*!< in: we let the hash table of recs
to grow to this size, at the maximum */
store_t* store_to_hash, /*!< in,out: whether the records should be
stored to the hash table; this is reset
if just debug checking is needed, or
when the available_memory runs out */
const byte* buf, /*!< in: buffer containing a log
segment or garbage */
ulint len, /*!< in: buffer length */
lsn_t checkpoint_lsn, /*!< in: latest checkpoint LSN */
lsn_t start_lsn, /*!< in: buffer start lsn */
lsn_t* contiguous_lsn, /*!< in/out: it is known that all log
groups contain contiguous log data up
to this lsn */
lsn_t* group_scanned_lsn,/*!< out: scanning succeeded up to
this lsn */
dberr_t* err) /*!< out: error code or DB_SUCCESS */
{
const byte* log_block = buf;
ulint no;
lsn_t scanned_lsn = start_lsn;
bool finished = false;
ulint data_len;
bool more_data = false;
bool apply = recv_sys->mlog_checkpoint_lsn != 0;
bool maybe_encrypted = false;
ut_ad(start_lsn % OS_FILE_LOG_BLOCK_SIZE == 0);
ut_ad(len % OS_FILE_LOG_BLOCK_SIZE == 0);
ut_ad(len >= OS_FILE_LOG_BLOCK_SIZE);
*err = DB_SUCCESS;
do {
ut_ad(!finished);
no = log_block_get_hdr_no(log_block);
ulint expected_no = log_block_convert_lsn_to_no(scanned_lsn);
if (no != expected_no) {
/* Garbage or an incompletely written log block.
We will not report any error, because this can
happen when InnoDB was killed while it was
writing redo log. We simply treat this as an
abrupt end of the redo log. */
finished = true;
break;
}
if (!log_block_checksum_is_ok(log_block, true)) {
log_crypt_err_t log_crypt_err;
maybe_encrypted = log_crypt_block_maybe_encrypted(log_block,
&log_crypt_err);
/* Print checkpoint encryption keys if present */
log_crypt_print_checkpoint_keys(log_block);
if (maybe_encrypted) {
/* Log block maybe encrypted finish processing*/
log_crypt_print_error(log_crypt_err);
*err = DB_ERROR;
return (TRUE);
}
ib::error() << "Log block " << no <<
" at lsn " << scanned_lsn << " has valid"
" header, but checksum field contains "
<< log_block_get_checksum(log_block)
<< ", should be "
<< log_block_calc_checksum(log_block);
/* Garbage or an incompletely written log block.
This could be the result of killing the server
while it was writing this log block. We treat
this as an abrupt end of the redo log. */
finished = true;
break;
}
if (log_block_get_flush_bit(log_block)) {
/* This block was a start of a log flush operation:
we know that the previous flush operation must have
been completed for all log groups before this block
can have been flushed to any of the groups. Therefore,
we know that log data is contiguous up to scanned_lsn
in all non-corrupt log groups. */
if (scanned_lsn > *contiguous_lsn) {
*contiguous_lsn = scanned_lsn;
}
}
data_len = log_block_get_data_len(log_block);
if (scanned_lsn + data_len > recv_sys->scanned_lsn
&& log_block_get_checkpoint_no(log_block)
< recv_sys->scanned_checkpoint_no
&& (recv_sys->scanned_checkpoint_no
- log_block_get_checkpoint_no(log_block)
> 0x80000000UL)) {
/* Garbage from a log buffer flush which was made
before the most recent database recovery */
finished = true;
break;
}
if (!recv_sys->parse_start_lsn
&& (log_block_get_first_rec_group(log_block) > 0)) {
/* We found a point from which to start the parsing
of log records */
recv_sys->parse_start_lsn = scanned_lsn
+ log_block_get_first_rec_group(log_block);
recv_sys->scanned_lsn = recv_sys->parse_start_lsn;
recv_sys->recovered_lsn = recv_sys->parse_start_lsn;
}
scanned_lsn += data_len;
if (scanned_lsn > recv_sys->scanned_lsn) {
/* We have found more entries. If this scan is
of startup type, we must initiate crash recovery
environment before parsing these log records. */
if (!recv_needed_recovery) {
if (!srv_read_only_mode) {
ib::info() << "Log scan progressed"
" past the checkpoint lsn "
<< recv_sys->scanned_lsn;
recv_init_crash_recovery();
} else {
ib::warn() << "Recovery skipped,"
" --innodb-read-only set!";
return(true);
}
}
/* We were able to find more log data: add it to the
parsing buffer if parse_start_lsn is already
non-zero */
if (recv_sys->len + 4 * OS_FILE_LOG_BLOCK_SIZE
>= RECV_PARSING_BUF_SIZE) {
ib::error() << "Log parsing buffer overflow."
" Recovery may have failed!";
recv_sys->found_corrupt_log = true;
if (!srv_force_recovery) {
ib::error()
<< "Set innodb_force_recovery"
" to ignore this error.";
*err = DB_ERROR;
return(true);
}
} else if (!recv_sys->found_corrupt_log) {
more_data = recv_sys_add_to_parsing_buf(
log_block, scanned_lsn);
}
recv_sys->scanned_lsn = scanned_lsn;
recv_sys->scanned_checkpoint_no
= log_block_get_checkpoint_no(log_block);
}
if (data_len < OS_FILE_LOG_BLOCK_SIZE) {
/* Log data for this group ends here */
finished = true;
break;
} else {
log_block += OS_FILE_LOG_BLOCK_SIZE;
}
} while (log_block < buf + len);
*group_scanned_lsn = scanned_lsn;
if (recv_needed_recovery) {
recv_scan_print_counter++;
if (finished || (recv_scan_print_counter % 80 == 0)) {
ib::info() << "Doing recovery: scanned up to"
" log sequence number " << scanned_lsn;
}
}
if (more_data && !recv_sys->found_corrupt_log) {
/* Try to parse more log records */
bool parse_finished = false;
dberr_t parse_err = DB_SUCCESS;
parse_finished = recv_parse_log_recs(checkpoint_lsn,
*store_to_hash, apply,
&parse_err);
if (parse_err != DB_SUCCESS) {
ib::info() << "Parsing more log records failed checkpoint_lsn "
<< checkpoint_lsn << " error " << parse_err;
parse_finished = true;
}
if (parse_finished) {
ut_ad(recv_sys->found_corrupt_log
|| recv_sys->found_corrupt_fs
|| recv_sys->mlog_checkpoint_lsn
== recv_sys->recovered_lsn);
*err = parse_err;
return(true);
}
if (*store_to_hash != STORE_NO
&& mem_heap_get_size(recv_sys->heap) > available_memory) {
*store_to_hash = STORE_NO;
}
if (recv_sys->recovered_offset > RECV_PARSING_BUF_SIZE / 4) {
/* Move parsing buffer data to the buffer start */
recv_sys_justify_left_parsing_buf();
}
}
return(finished);
}
/** Scans log from a buffer and stores new log data to the parsing buffer.
Parses and hashes the log records if new data found.
@param[in,out] group log group
@param[in,out] contiguous_lsn log sequence number
until which all redo log has been scanned
@param[in] last_phase whether changes
can be applied to the tablespaces
@param[out] err DB_SUCCESS or error code
@return whether rescan is needed (not everything was stored) */
static
bool
recv_group_scan_log_recs(
log_group_t* group,
lsn_t* contiguous_lsn,
bool last_phase,
dberr_t* err)
{
DBUG_ENTER("recv_group_scan_log_recs");
DBUG_ASSERT(!last_phase || recv_sys->mlog_checkpoint_lsn > 0);
mutex_enter(&recv_sys->mutex);
recv_sys->len = 0;
recv_sys->recovered_offset = 0;
recv_sys->n_addrs = 0;
recv_sys_empty_hash();
srv_start_lsn = *contiguous_lsn;
recv_sys->parse_start_lsn = *contiguous_lsn;
recv_sys->scanned_lsn = *contiguous_lsn;
recv_sys->recovered_lsn = *contiguous_lsn;
recv_sys->scanned_checkpoint_no = 0;
recv_previous_parsed_rec_type = MLOG_SINGLE_REC_FLAG;
recv_previous_parsed_rec_offset = 0;
recv_previous_parsed_rec_is_multi = 0;
ut_ad(recv_max_page_lsn == 0);
ut_ad(last_phase || !recv_writer_thread_active);
mutex_exit(&recv_sys->mutex);
lsn_t checkpoint_lsn = *contiguous_lsn;
lsn_t start_lsn;
lsn_t end_lsn;
store_t store_to_hash = recv_sys->mlog_checkpoint_lsn == 0
? STORE_NO : (last_phase ? STORE_IF_EXISTS : STORE_YES);
ulint available_mem = UNIV_PAGE_SIZE
* (buf_pool_get_n_pages()
- (recv_n_pool_free_frames * srv_buf_pool_instances));
*err = DB_SUCCESS;
end_lsn = *contiguous_lsn = ut_uint64_align_down(
*contiguous_lsn, OS_FILE_LOG_BLOCK_SIZE);
do {
if (*err != DB_SUCCESS) {
DBUG_RETURN(false);
}
if (last_phase && store_to_hash == STORE_NO) {
store_to_hash = STORE_IF_EXISTS;
/* We must not allow change buffer
merge here, because it would generate
redo log records before we have
finished the redo log scan. */
*err = recv_apply_hashed_log_recs(FALSE);
}
start_lsn = end_lsn;
end_lsn += RECV_SCAN_SIZE;
log_group_read_log_seg(
log_sys->buf, group, start_lsn, end_lsn);
} while (!recv_scan_log_recs(
available_mem, &store_to_hash, log_sys->buf,
RECV_SCAN_SIZE,
checkpoint_lsn,
start_lsn, contiguous_lsn, &group->scanned_lsn, err));
if (recv_sys->found_corrupt_log || recv_sys->found_corrupt_fs) {
ib::error() << "Found corrupted log when looking checkpoint lsn: "
<< contiguous_lsn << " error = " << *err;
DBUG_RETURN(false);
}
DBUG_PRINT("ib_log", ("%s " LSN_PF
" completed for log group " ULINTPF,
last_phase ? "rescan" : "scan",
group->scanned_lsn, group->id));
DBUG_RETURN(store_to_hash == STORE_NO);
}
/*******************************************************//**
Initialize crash recovery environment. Can be called iff
recv_needed_recovery == false. */
static
void
recv_init_crash_recovery(void)
{
ut_ad(!srv_read_only_mode);
ut_a(!recv_needed_recovery);
recv_needed_recovery = true;
}
/** Report a missing tablespace for which page-redo log exists.
@param[in] err previous error code
@param[in] i tablespace descriptor
@return new error code */
static
dberr_t
recv_init_missing_space(dberr_t err, const recv_spaces_t::const_iterator& i)
{
if (srv_force_recovery == 0) {
ib::error() << "Tablespace " << i->first << " was not"
" found at " << i->second.name << ".";
if (err == DB_SUCCESS) {
ib::error() << "Set innodb_force_recovery=1 to"
" ignore this and to permanently lose"
" all changes to the tablespace.";
err = DB_TABLESPACE_NOT_FOUND;
}
} else {
ib::warn() << "Tablespace " << i->first << " was not"
" found at " << i->second.name << ", and"
" innodb_force_recovery was set. All redo log"
" for this tablespace will be ignored!";
}
return(err);
}
/** Check if all tablespaces were found for crash recovery.
@return error code or DB_SUCCESS */
static MY_ATTRIBUTE((warn_unused_result))
dberr_t
recv_init_crash_recovery_spaces(void)
{
typedef std::set<ulint> space_set_t;
bool flag_deleted = false;
space_set_t missing_spaces;
ut_ad(!srv_read_only_mode);
ut_ad(recv_needed_recovery);
ib::info() << "Database was not shutdown normally!";
ib::info() << "Starting crash recovery.";
for (recv_spaces_t::iterator i = recv_spaces.begin();
i != recv_spaces.end(); i++) {
ut_ad(!is_predefined_tablespace(i->first));
if (i->second.deleted) {
/* The tablespace was deleted,
so we can ignore any redo log for it. */
flag_deleted = true;
} else if (i->second.space != NULL) {
/* The tablespace was found, and there
are some redo log records for it. */
fil_names_dirty(i->second.space);
} else {
missing_spaces.insert(i->first);
flag_deleted = true;
}
}
if (flag_deleted) {
dberr_t err = DB_SUCCESS;
for (ulint h = 0;
h < hash_get_n_cells(recv_sys->addr_hash);
h++) {
for (recv_addr_t* recv_addr
= static_cast<recv_addr_t*>(
HASH_GET_FIRST(
recv_sys->addr_hash, h));
recv_addr != 0;
recv_addr = static_cast<recv_addr_t*>(
HASH_GET_NEXT(addr_hash, recv_addr))) {
const ulint space = recv_addr->space;
if (is_predefined_tablespace(space)) {
continue;
}
recv_spaces_t::iterator i
= recv_spaces.find(space);
ut_ad(i != recv_spaces.end());
if (i->second.deleted) {
ut_ad(missing_spaces.find(space)
== missing_spaces.end());
recv_addr->state = RECV_DISCARDED;
continue;
}
space_set_t::iterator m = missing_spaces.find(
space);
if (m != missing_spaces.end()) {
missing_spaces.erase(m);
err = recv_init_missing_space(err, i);
recv_addr->state = RECV_DISCARDED;
/* All further redo log for this
tablespace should be removed. */
i->second.deleted = true;
}
}
}
if (err != DB_SUCCESS) {
return(err);
}
}
for (space_set_t::const_iterator m = missing_spaces.begin();
m != missing_spaces.end(); m++) {
recv_spaces_t::iterator i = recv_spaces.find(*m);
ut_ad(i != recv_spaces.end());
ib::info() << "Tablespace " << i->first
<< " was not found at '" << i->second.name
<< "', but there were no modifications either.";
}
buf_dblwr_process();
if (srv_force_recovery < SRV_FORCE_NO_LOG_REDO) {
/* Spawn the background thread to flush dirty pages
from the buffer pools. */
os_thread_create(recv_writer_thread, 0, 0);
}
return(DB_SUCCESS);
}
/** Start recovering from a redo log checkpoint.
@see recv_recovery_from_checkpoint_finish
@param[in] flush_lsn FIL_PAGE_FILE_FLUSH_LSN
of first system tablespace page
@return error code or DB_SUCCESS */
dberr_t
recv_recovery_from_checkpoint_start(
lsn_t flush_lsn)
{
log_group_t* group;
log_group_t* max_cp_group;
ulint max_cp_field;
lsn_t checkpoint_lsn;
bool rescan;
ib_uint64_t checkpoint_no;
lsn_t contiguous_lsn;
byte* buf;
dberr_t err = DB_SUCCESS;
/* Initialize red-black tree for fast insertions into the
flush_list during recovery process. */
buf_flush_init_flush_rbt();
if (srv_force_recovery >= SRV_FORCE_NO_LOG_REDO) {
ib::info() << "The user has set SRV_FORCE_NO_LOG_REDO on,"
" skipping log redo";
return(DB_SUCCESS);
}
recv_recovery_on = true;
log_mutex_enter();
/* Look for the latest checkpoint from any of the log groups */
err = recv_find_max_checkpoint(&max_cp_group, &max_cp_field);
if (err != DB_SUCCESS) {
log_mutex_exit();
return(err);
}
log_group_header_read(max_cp_group, max_cp_field);
buf = log_sys->checkpoint_buf;
checkpoint_lsn = mach_read_from_8(buf + LOG_CHECKPOINT_LSN);
checkpoint_no = mach_read_from_8(buf + LOG_CHECKPOINT_NO);
/* Start reading the log groups from the checkpoint lsn up. The
variable contiguous_lsn contains an lsn up to which the log is
known to be contiguously written to all log groups. */
recv_sys->mlog_checkpoint_lsn = 0;
ut_ad(RECV_SCAN_SIZE <= log_sys->buf_size);
ut_ad(UT_LIST_GET_LEN(log_sys->log_groups) == 1);
group = UT_LIST_GET_FIRST(log_sys->log_groups);
ut_ad(recv_sys->n_addrs == 0);
contiguous_lsn = checkpoint_lsn;
switch (group->format) {
case 0:
log_mutex_exit();
return(recv_log_format_0_recover(checkpoint_lsn));
case LOG_HEADER_FORMAT_CURRENT:
break;
default:
ut_ad(0);
recv_sys->found_corrupt_log = true;
log_mutex_exit();
return(DB_ERROR);
}
/* Look for MLOG_CHECKPOINT. */
recv_group_scan_log_recs(group, &contiguous_lsn, false, &err);
/* The first scan should not have stored or applied any records. */
ut_ad(recv_sys->n_addrs == 0);
ut_ad(!recv_sys->found_corrupt_fs);
if (recv_sys->found_corrupt_log && !srv_force_recovery) {
log_mutex_exit();
ib::error() << "Found corrupted log when looking checkpoint lsn: "
<< contiguous_lsn << " error = " << err;
return(DB_ERROR);
}
if (recv_sys->mlog_checkpoint_lsn == 0) {
if (!srv_read_only_mode
&& group->scanned_lsn != checkpoint_lsn) {
ib::error() << "Ignoring the redo log due to missing"
" MLOG_CHECKPOINT between the checkpoint "
<< checkpoint_lsn << " and the end "
<< group->scanned_lsn << ".";
if (srv_force_recovery < SRV_FORCE_NO_LOG_REDO) {
log_mutex_exit();
return(DB_ERROR);
}
}
group->scanned_lsn = checkpoint_lsn;
rescan = false;
} else {
contiguous_lsn = checkpoint_lsn;
rescan = recv_group_scan_log_recs(
group, &contiguous_lsn, false, &err);
if ((recv_sys->found_corrupt_log && !srv_force_recovery)
|| recv_sys->found_corrupt_fs) {
log_mutex_exit();
ib::error() << "Found corrupted log in lsn:"
<< contiguous_lsn << " err = " << err;
return(DB_ERROR);
}
}
/* NOTE: we always do a 'recovery' at startup, but only if
there is something wrong we will print a message to the
user about recovery: */
if (checkpoint_lsn != flush_lsn) {
if (checkpoint_lsn + SIZE_OF_MLOG_CHECKPOINT < flush_lsn) {
ib::warn() << " Are you sure you are using the"
" right ib_logfiles to start up the database?"
" Log sequence number in the ib_logfiles is "
<< checkpoint_lsn << ", less than the"
" log sequence number in the first system"
" tablespace file header, " << flush_lsn << ".";
}
if (!recv_needed_recovery) {
ib::info() << "The log sequence number " << flush_lsn
<< " in the system tablespace does not match"
" the log sequence number " << checkpoint_lsn
<< " in the ib_logfiles!";
if (srv_read_only_mode) {
ib::error() << "Can't initiate database"
" recovery, running in read-only-mode.";
log_mutex_exit();
return(DB_READ_ONLY);
}
recv_init_crash_recovery();
}
}
log_sys->lsn = recv_sys->recovered_lsn;
if (recv_needed_recovery) {
err = recv_init_crash_recovery_spaces();
if (err != DB_SUCCESS) {
log_mutex_exit();
return(err);
}
if (rescan) {
contiguous_lsn = checkpoint_lsn;
recv_group_scan_log_recs(group, &contiguous_lsn, true, &err);
if ((recv_sys->found_corrupt_log
&& !srv_force_recovery)
|| recv_sys->found_corrupt_fs) {
log_mutex_exit();
ib::error() << "Found corrupted log in lsn:"
<< contiguous_lsn << " err = " << err;
return(DB_ERROR);
}
}
} else {
ut_ad(!rescan || recv_sys->n_addrs == 0);
}
/* We currently have only one log group */
if (group->scanned_lsn < checkpoint_lsn
|| group->scanned_lsn < recv_max_page_lsn) {
ib::error() << "We scanned the log up to " << group->scanned_lsn
<< ". A checkpoint was at " << checkpoint_lsn << " and"
" the maximum LSN on a database page was "
<< recv_max_page_lsn << ". It is possible that the"
" database is now corrupt!";
}
if (recv_sys->recovered_lsn < checkpoint_lsn) {
log_mutex_exit();
ib::error() << "Recovered only to lsn:"
<< recv_sys->recovered_lsn << " checkpoint_lsn: " << checkpoint_lsn;
/* No harm in trying to do RO access. */
if (!srv_read_only_mode) {
ut_error;
}
return(DB_ERROR);
}
/* Synchronize the uncorrupted log groups to the most up-to-date log
group; we also copy checkpoint info to groups */
log_sys->next_checkpoint_lsn = checkpoint_lsn;
log_sys->next_checkpoint_no = checkpoint_no + 1;
/* here the checkpoint info is written without any redo logging ongoing
* and next_checkpoint_no is updated directly hence no +1 */
log_crypt_set_ver_and_key(log_sys->next_checkpoint_no);
recv_synchronize_groups();
if (!recv_needed_recovery) {
ut_a(checkpoint_lsn == recv_sys->recovered_lsn);
} else {
srv_start_lsn = recv_sys->recovered_lsn;
}
ut_memcpy(log_sys->buf, recv_sys->last_block, OS_FILE_LOG_BLOCK_SIZE);
log_sys->buf_free = (ulint) log_sys->lsn % OS_FILE_LOG_BLOCK_SIZE;
log_sys->buf_next_to_write = log_sys->buf_free;
log_sys->write_lsn = log_sys->lsn;
log_sys->last_checkpoint_lsn = checkpoint_lsn;
if (!srv_read_only_mode) {
/* Write a MLOG_CHECKPOINT marker as the first thing,
before generating any other redo log. */
fil_names_clear(log_sys->last_checkpoint_lsn, true);
}
MONITOR_SET(MONITOR_LSN_CHECKPOINT_AGE,
log_sys->lsn - log_sys->last_checkpoint_lsn);
log_sys->next_checkpoint_no = checkpoint_no + 1;
log_crypt_set_ver_and_key(log_sys->next_checkpoint_no);
mutex_enter(&recv_sys->mutex);
recv_sys->apply_log_recs = TRUE;
mutex_exit(&recv_sys->mutex);
log_mutex_exit();
recv_lsn_checks_on = true;
/* The database is now ready to start almost normal processing of user
transactions: transaction rollbacks and the application of the log
records in the hash table can be run in background. */
return(DB_SUCCESS);
}
/** Complete recovery from a checkpoint. */
void
recv_recovery_from_checkpoint_finish(void)
{
/* Make sure that the recv_writer thread is done. This is
required because it grabs various mutexes and we want to
ensure that when we enable sync_order_checks there is no
mutex currently held by any thread. */
mutex_enter(&recv_sys->writer_mutex);
/* Free the resources of the recovery system */
recv_recovery_on = false;
/* By acquring the mutex we ensure that the recv_writer thread
won't trigger any more LRU batches. Now wait for currently
in progress batches to finish. */
buf_flush_wait_LRU_batch_end();
mutex_exit(&recv_sys->writer_mutex);
ulint count = 0;
while (recv_writer_thread_active) {
++count;
os_thread_sleep(100000);
if (srv_print_verbose_log && count > 600) {
ib::info() << "Waiting for recv_writer to"
" finish flushing of buffer pool";
count = 0;
}
}
recv_sys_debug_free();
/* Free up the flush_rbt. */
buf_flush_free_flush_rbt();
/* Validate a few system page types that were left uninitialized
by older versions of MySQL. */
mtr_t mtr;
buf_block_t* block;
mtr.start();
mtr.set_sys_modified();
/* Bitmap page types will be reset in buf_dblwr_check_block()
without redo logging. */
block = buf_page_get(
page_id_t(IBUF_SPACE_ID, FSP_IBUF_HEADER_PAGE_NO),
univ_page_size, RW_X_LATCH, &mtr);
fil_block_check_type(block, FIL_PAGE_TYPE_SYS, &mtr);
/* Already MySQL 3.23.53 initialized FSP_IBUF_TREE_ROOT_PAGE_NO
to FIL_PAGE_INDEX. No need to reset that one. */
block = buf_page_get(
page_id_t(TRX_SYS_SPACE, TRX_SYS_PAGE_NO),
univ_page_size, RW_X_LATCH, &mtr);
fil_block_check_type(block, FIL_PAGE_TYPE_TRX_SYS, &mtr);
block = buf_page_get(
page_id_t(TRX_SYS_SPACE, FSP_FIRST_RSEG_PAGE_NO),
univ_page_size, RW_X_LATCH, &mtr);
fil_block_check_type(block, FIL_PAGE_TYPE_SYS, &mtr);
block = buf_page_get(
page_id_t(TRX_SYS_SPACE, FSP_DICT_HDR_PAGE_NO),
univ_page_size, RW_X_LATCH, &mtr);
fil_block_check_type(block, FIL_PAGE_TYPE_SYS, &mtr);
mtr.commit();
/* Roll back any recovered data dictionary transactions, so
that the data dictionary tables will be free of any locks.
The data dictionary latch should guarantee that there is at
most one data dictionary transaction active at a time. */
if (srv_force_recovery < SRV_FORCE_NO_TRX_UNDO) {
trx_rollback_or_clean_recovered(FALSE);
}
}
/********************************************************//**
Initiates the rollback of active transactions. */
void
recv_recovery_rollback_active(void)
/*===============================*/
{
ut_ad(!recv_writer_thread_active);
/* Switch latching order checks on in sync0debug.cc, if
--innodb-sync-debug=true (default) */
ut_d(sync_check_enable());
/* We can't start any (DDL) transactions if UNDO logging
has been disabled, additionally disable ROLLBACK of recovered
user transactions. */
if (srv_force_recovery < SRV_FORCE_NO_TRX_UNDO
&& !srv_read_only_mode) {
/* Drop partially created indexes. */
row_merge_drop_temp_indexes();
/* Drop temporary tables. */
row_mysql_drop_temp_tables();
/* Drop any auxiliary tables that were not dropped when the
parent table was dropped. This can happen if the parent table
was dropped but the server crashed before the auxiliary tables
were dropped. */
fts_drop_orphaned_tables();
/* Rollback the uncommitted transactions which have no user
session */
trx_rollback_or_clean_is_active = true;
os_thread_create(trx_rollback_or_clean_all_recovered, 0, 0);
}
}
/******************************************************//**
Resets the logs. The contents of log files will be lost! */
void
recv_reset_logs(
/*============*/
lsn_t lsn) /*!< in: reset to this lsn
rounded up to be divisible by
OS_FILE_LOG_BLOCK_SIZE, after
which we add
LOG_BLOCK_HDR_SIZE */
{
log_group_t* group;
ut_ad(log_mutex_own());
log_sys->lsn = ut_uint64_align_up(lsn, OS_FILE_LOG_BLOCK_SIZE);
group = UT_LIST_GET_FIRST(log_sys->log_groups);
while (group) {
group->lsn = log_sys->lsn;
group->lsn_offset = LOG_FILE_HDR_SIZE;
group = UT_LIST_GET_NEXT(log_groups, group);
}
log_sys->buf_next_to_write = 0;
log_sys->write_lsn = log_sys->lsn;
log_sys->next_checkpoint_no = 0;
log_sys->last_checkpoint_lsn = 0;
log_block_init(log_sys->buf, log_sys->lsn);
log_block_set_first_rec_group(log_sys->buf, LOG_BLOCK_HDR_SIZE);
log_sys->buf_free = LOG_BLOCK_HDR_SIZE;
log_sys->lsn += LOG_BLOCK_HDR_SIZE;
MONITOR_SET(MONITOR_LSN_CHECKPOINT_AGE,
(log_sys->lsn - log_sys->last_checkpoint_lsn));
log_mutex_exit();
/* Reset the checkpoint fields in logs */
log_make_checkpoint_at(LSN_MAX, TRUE);
log_mutex_enter();
}
/** Find a doublewrite copy of a page.
@param[in] space_id tablespace identifier
@param[in] page_no page number
@return page frame
@retval NULL if no page was found */
const byte*
recv_dblwr_t::find_page(ulint space_id, ulint page_no)
{
typedef std::vector<const byte*, ut_allocator<const byte*> >
matches_t;
matches_t matches;
const byte* result = 0;
for (list::iterator i = pages.begin(); i != pages.end(); ++i) {
if (page_get_space_id(*i) == space_id
&& page_get_page_no(*i) == page_no) {
matches.push_back(*i);
}
}
if (matches.size() == 1) {
result = matches[0];
} else if (matches.size() > 1) {
lsn_t max_lsn = 0;
lsn_t page_lsn = 0;
for (matches_t::iterator i = matches.begin();
i != matches.end();
++i) {
page_lsn = mach_read_from_8(*i + FIL_PAGE_LSN);
if (page_lsn > max_lsn) {
max_lsn = page_lsn;
result = *i;
}
}
}
return(result);
}
#ifndef DBUG_OFF
/** Return string name of the redo log record type.
@param[in] type record log record enum
@return string name of record log record */
const char*
get_mlog_string(mlog_id_t type)
{
switch (type) {
case MLOG_SINGLE_REC_FLAG:
return("MLOG_SINGLE_REC_FLAG");
case MLOG_1BYTE:
return("MLOG_1BYTE");
case MLOG_2BYTES:
return("MLOG_2BYTES");
case MLOG_4BYTES:
return("MLOG_4BYTES");
case MLOG_8BYTES:
return("MLOG_8BYTES");
case MLOG_REC_INSERT:
return("MLOG_REC_INSERT");
case MLOG_REC_CLUST_DELETE_MARK:
return("MLOG_REC_CLUST_DELETE_MARK");
case MLOG_REC_SEC_DELETE_MARK:
return("MLOG_REC_SEC_DELETE_MARK");
case MLOG_REC_UPDATE_IN_PLACE:
return("MLOG_REC_UPDATE_IN_PLACE");
case MLOG_REC_DELETE:
return("MLOG_REC_DELETE");
case MLOG_LIST_END_DELETE:
return("MLOG_LIST_END_DELETE");
case MLOG_LIST_START_DELETE:
return("MLOG_LIST_START_DELETE");
case MLOG_LIST_END_COPY_CREATED:
return("MLOG_LIST_END_COPY_CREATED");
case MLOG_PAGE_REORGANIZE:
return("MLOG_PAGE_REORGANIZE");
case MLOG_PAGE_CREATE:
return("MLOG_PAGE_CREATE");
case MLOG_UNDO_INSERT:
return("MLOG_UNDO_INSERT");
case MLOG_UNDO_ERASE_END:
return("MLOG_UNDO_ERASE_END");
case MLOG_UNDO_INIT:
return("MLOG_UNDO_INIT");
case MLOG_UNDO_HDR_DISCARD:
return("MLOG_UNDO_HDR_DISCARD");
case MLOG_UNDO_HDR_REUSE:
return("MLOG_UNDO_HDR_REUSE");
case MLOG_UNDO_HDR_CREATE:
return("MLOG_UNDO_HDR_CREATE");
case MLOG_REC_MIN_MARK:
return("MLOG_REC_MIN_MARK");
case MLOG_IBUF_BITMAP_INIT:
return("MLOG_IBUF_BITMAP_INIT");
#ifdef UNIV_LOG_LSN_DEBUG
case MLOG_LSN:
return("MLOG_LSN");
#endif /* UNIV_LOG_LSN_DEBUG */
case MLOG_INIT_FILE_PAGE:
return("MLOG_INIT_FILE_PAGE");
case MLOG_WRITE_STRING:
return("MLOG_WRITE_STRING");
case MLOG_MULTI_REC_END:
return("MLOG_MULTI_REC_END");
case MLOG_DUMMY_RECORD:
return("MLOG_DUMMY_RECORD");
case MLOG_FILE_DELETE:
return("MLOG_FILE_DELETE");
case MLOG_COMP_REC_MIN_MARK:
return("MLOG_COMP_REC_MIN_MARK");
case MLOG_COMP_PAGE_CREATE:
return("MLOG_COMP_PAGE_CREATE");
case MLOG_COMP_REC_INSERT:
return("MLOG_COMP_REC_INSERT");
case MLOG_COMP_REC_CLUST_DELETE_MARK:
return("MLOG_COMP_REC_CLUST_DELETE_MARK");
case MLOG_COMP_REC_SEC_DELETE_MARK:
return("MLOG_COMP_REC_SEC_DELETE_MARK");
case MLOG_COMP_REC_UPDATE_IN_PLACE:
return("MLOG_COMP_REC_UPDATE_IN_PLACE");
case MLOG_COMP_REC_DELETE:
return("MLOG_COMP_REC_DELETE");
case MLOG_COMP_LIST_END_DELETE:
return("MLOG_COMP_LIST_END_DELETE");
case MLOG_COMP_LIST_START_DELETE:
return("MLOG_COMP_LIST_START_DELETE");
case MLOG_COMP_LIST_END_COPY_CREATED:
return("MLOG_COMP_LIST_END_COPY_CREATED");
case MLOG_COMP_PAGE_REORGANIZE:
return("MLOG_COMP_PAGE_REORGANIZE");
case MLOG_FILE_CREATE2:
return("MLOG_FILE_CREATE2");
case MLOG_ZIP_WRITE_NODE_PTR:
return("MLOG_ZIP_WRITE_NODE_PTR");
case MLOG_ZIP_WRITE_BLOB_PTR:
return("MLOG_ZIP_WRITE_BLOB_PTR");
case MLOG_ZIP_WRITE_HEADER:
return("MLOG_ZIP_WRITE_HEADER");
case MLOG_ZIP_PAGE_COMPRESS:
return("MLOG_ZIP_PAGE_COMPRESS");
case MLOG_ZIP_PAGE_COMPRESS_NO_DATA:
return("MLOG_ZIP_PAGE_COMPRESS_NO_DATA");
case MLOG_ZIP_PAGE_REORGANIZE:
return("MLOG_ZIP_PAGE_REORGANIZE");
case MLOG_FILE_RENAME2:
return("MLOG_FILE_RENAME2");
case MLOG_FILE_NAME:
return("MLOG_FILE_NAME");
case MLOG_CHECKPOINT:
return("MLOG_CHECKPOINT");
case MLOG_PAGE_CREATE_RTREE:
return("MLOG_PAGE_CREATE_RTREE");
case MLOG_COMP_PAGE_CREATE_RTREE:
return("MLOG_COMP_PAGE_CREATE_RTREE");
case MLOG_INIT_FILE_PAGE2:
return("MLOG_INIT_FILE_PAGE2");
case MLOG_INDEX_LOAD:
return("MLOG_INDEX_LOAD");
case MLOG_TRUNCATE:
return("MLOG_TRUNCATE");
case MLOG_FILE_WRITE_CRYPT_DATA:
return("MLOG_FILE_WRITE_CRYPT_DATA");
}
DBUG_ASSERT(0);
return(NULL);
}
#endif /* !DBUG_OFF */