mirror of
https://github.com/MariaDB/server.git
synced 2025-01-18 04:53:01 +01:00
6eefeb6fea
row_search_mvcc(): Duplicate the logic of btr_pcur_move_to_next() so that an infinite loop can be avoided when advancing to the next page fails due to a corrupted page.
6050 lines
163 KiB
C++
6050 lines
163 KiB
C++
/*****************************************************************************
|
|
|
|
Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved.
|
|
Copyright (c) 2008, Google Inc.
|
|
Copyright (c) 2015, 2019, MariaDB Corporation.
|
|
|
|
Portions of this file contain modifications contributed and copyrighted by
|
|
Google, Inc. Those modifications are gratefully acknowledged and are described
|
|
briefly in the InnoDB documentation. The contributions by Google are
|
|
incorporated with their permission, and subject to the conditions contained in
|
|
the file COPYING.Google.
|
|
|
|
This program is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free Software
|
|
Foundation; version 2 of the License.
|
|
|
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA
|
|
|
|
*****************************************************************************/
|
|
|
|
/***************************************************//**
|
|
@file row/row0sel.cc
|
|
Select
|
|
|
|
Created 12/19/1997 Heikki Tuuri
|
|
*******************************************************/
|
|
|
|
#include "row0sel.h"
|
|
#include "dict0dict.h"
|
|
#include "dict0boot.h"
|
|
#include "trx0undo.h"
|
|
#include "trx0trx.h"
|
|
#include "btr0btr.h"
|
|
#include "btr0cur.h"
|
|
#include "btr0sea.h"
|
|
#include "gis0rtree.h"
|
|
#include "mach0data.h"
|
|
#include "que0que.h"
|
|
#include "row0upd.h"
|
|
#include "row0row.h"
|
|
#include "row0vers.h"
|
|
#include "rem0cmp.h"
|
|
#include "lock0lock.h"
|
|
#include "eval0eval.h"
|
|
#include "pars0sym.h"
|
|
#include "pars0pars.h"
|
|
#include "row0mysql.h"
|
|
#include "read0read.h"
|
|
#include "buf0lru.h"
|
|
#include "srv0srv.h"
|
|
#include "srv0mon.h"
|
|
|
|
/* Maximum number of rows to prefetch; MySQL interface has another parameter */
|
|
#define SEL_MAX_N_PREFETCH 16
|
|
|
|
/* Number of rows fetched, after which to start prefetching; MySQL interface
|
|
has another parameter */
|
|
#define SEL_PREFETCH_LIMIT 1
|
|
|
|
/* When a select has accessed about this many pages, it returns control back
|
|
to que_run_threads: this is to allow canceling runaway queries */
|
|
|
|
#define SEL_COST_LIMIT 100
|
|
|
|
/* Flags for search shortcut */
|
|
#define SEL_FOUND 0
|
|
#define SEL_EXHAUSTED 1
|
|
#define SEL_RETRY 2
|
|
|
|
/********************************************************************//**
|
|
Returns TRUE if the user-defined column in a secondary index record
|
|
is alphabetically the same as the corresponding BLOB column in the clustered
|
|
index record.
|
|
NOTE: the comparison is NOT done as a binary comparison, but character
|
|
fields are compared with collation!
|
|
@return TRUE if the columns are equal */
|
|
static
|
|
ibool
|
|
row_sel_sec_rec_is_for_blob(
|
|
/*========================*/
|
|
ulint mtype, /*!< in: main type */
|
|
ulint prtype, /*!< in: precise type */
|
|
ulint mbminlen, /*!< in: minimum length of
|
|
a character, in bytes */
|
|
ulint mbmaxlen, /*!< in: maximum length of
|
|
a character, in bytes */
|
|
const byte* clust_field, /*!< in: the locally stored part of
|
|
the clustered index column, including
|
|
the BLOB pointer; the clustered
|
|
index record must be covered by
|
|
a lock or a page latch to protect it
|
|
against deletion (rollback or purge) */
|
|
ulint clust_len, /*!< in: length of clust_field */
|
|
const byte* sec_field, /*!< in: column in secondary index */
|
|
ulint sec_len, /*!< in: length of sec_field */
|
|
ulint prefix_len, /*!< in: index column prefix length
|
|
in bytes */
|
|
dict_table_t* table) /*!< in: table */
|
|
{
|
|
ulint len;
|
|
byte buf[REC_VERSION_56_MAX_INDEX_COL_LEN];
|
|
|
|
/* This function should never be invoked on an Antelope format
|
|
table, because they should always contain enough prefix in the
|
|
clustered index record. */
|
|
ut_ad(dict_table_get_format(table) >= UNIV_FORMAT_B);
|
|
ut_a(clust_len >= BTR_EXTERN_FIELD_REF_SIZE);
|
|
ut_ad(prefix_len >= sec_len);
|
|
ut_ad(prefix_len > 0);
|
|
ut_a(prefix_len <= sizeof buf);
|
|
|
|
if (!memcmp(clust_field + clust_len - BTR_EXTERN_FIELD_REF_SIZE,
|
|
field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)) {
|
|
/* The externally stored field was not written yet.
|
|
This record should only be seen by
|
|
recv_recovery_rollback_active() or any
|
|
TRX_ISO_READ_UNCOMMITTED transactions. */
|
|
return(FALSE);
|
|
}
|
|
|
|
len = btr_copy_externally_stored_field_prefix(
|
|
buf, prefix_len, dict_tf_get_page_size(table->flags),
|
|
clust_field, clust_len);
|
|
|
|
if (len == 0) {
|
|
/* The BLOB was being deleted as the server crashed.
|
|
There should not be any secondary index records
|
|
referring to this clustered index record, because
|
|
btr_free_externally_stored_field() is called after all
|
|
secondary index entries of the row have been purged. */
|
|
return(FALSE);
|
|
}
|
|
|
|
len = dtype_get_at_most_n_mbchars(prtype, mbminlen, mbmaxlen,
|
|
prefix_len, len, (const char*) buf);
|
|
|
|
return(!cmp_data_data(mtype, prtype, buf, len, sec_field, sec_len));
|
|
}
|
|
|
|
/** Returns TRUE if the user-defined column values in a secondary index record
|
|
are alphabetically the same as the corresponding columns in the clustered
|
|
index record.
|
|
NOTE: the comparison is NOT done as a binary comparison, but character
|
|
fields are compared with collation!
|
|
@param[in] sec_rec secondary index record
|
|
@param[in] sec_index secondary index
|
|
@param[in] clust_rec clustered index record;
|
|
must be protected by a page s-latch
|
|
@param[in] clust_index clustered index
|
|
@param[in] thr query thread
|
|
@return TRUE if the secondary record is equal to the corresponding
|
|
fields in the clustered record, when compared with collation;
|
|
FALSE if not equal or if the clustered record has been marked for deletion */
|
|
static
|
|
ibool
|
|
row_sel_sec_rec_is_for_clust_rec(
|
|
const rec_t* sec_rec,
|
|
dict_index_t* sec_index,
|
|
const rec_t* clust_rec,
|
|
dict_index_t* clust_index,
|
|
que_thr_t* thr)
|
|
{
|
|
const byte* sec_field;
|
|
ulint sec_len;
|
|
const byte* clust_field;
|
|
ulint n;
|
|
ulint i;
|
|
mem_heap_t* heap = NULL;
|
|
ulint clust_offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint sec_offsets_[REC_OFFS_SMALL_SIZE];
|
|
ulint* clust_offs = clust_offsets_;
|
|
ulint* sec_offs = sec_offsets_;
|
|
ibool is_equal = TRUE;
|
|
VCOL_STORAGE* vcol_storage= 0;
|
|
byte* record;
|
|
|
|
rec_offs_init(clust_offsets_);
|
|
rec_offs_init(sec_offsets_);
|
|
|
|
if (rec_get_deleted_flag(clust_rec,
|
|
dict_table_is_comp(clust_index->table))) {
|
|
/* In delete-marked records, DB_TRX_ID must
|
|
always refer to an existing undo log record. */
|
|
ut_ad(rec_get_trx_id(clust_rec, clust_index));
|
|
|
|
/* The clustered index record is delete-marked;
|
|
it is not visible in the read view. Besides,
|
|
if there are any externally stored columns,
|
|
some of them may have already been purged. */
|
|
return(FALSE);
|
|
}
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs,
|
|
true, ULINT_UNDEFINED, &heap);
|
|
sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs,
|
|
true, ULINT_UNDEFINED, &heap);
|
|
|
|
n = dict_index_get_n_ordering_defined_by_user(sec_index);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
const dict_field_t* ifield;
|
|
const dict_col_t* col;
|
|
ulint clust_pos = 0;
|
|
ulint clust_len = 0;
|
|
ulint len;
|
|
bool is_virtual;
|
|
|
|
ifield = dict_index_get_nth_field(sec_index, i);
|
|
col = dict_field_get_col(ifield);
|
|
|
|
is_virtual = dict_col_is_virtual(col);
|
|
|
|
/* For virtual column, its value will need to be
|
|
reconstructed from base column in cluster index */
|
|
if (is_virtual) {
|
|
const dict_v_col_t* v_col;
|
|
dfield_t* vfield;
|
|
row_ext_t* ext;
|
|
|
|
if (!vcol_storage)
|
|
{
|
|
TABLE *mysql_table= thr->prebuilt->m_mysql_table;
|
|
innobase_allocate_row_for_vcol(thr_get_trx(thr)->mysql_thd,
|
|
clust_index,
|
|
&heap,
|
|
&mysql_table,
|
|
&record,
|
|
&vcol_storage);
|
|
}
|
|
|
|
v_col = reinterpret_cast<const dict_v_col_t*>(col);
|
|
|
|
dtuple_t* row = row_build(
|
|
ROW_COPY_POINTERS,
|
|
clust_index, clust_rec,
|
|
clust_offs,
|
|
NULL, NULL, NULL, &ext, heap);
|
|
|
|
vfield = innobase_get_computed_value(
|
|
row, v_col, clust_index,
|
|
&heap, NULL, NULL,
|
|
thr_get_trx(thr)->mysql_thd,
|
|
thr->prebuilt->m_mysql_table,
|
|
record, NULL, NULL, NULL);
|
|
|
|
clust_len = vfield->len;
|
|
clust_field = static_cast<byte*>(vfield->data);
|
|
} else {
|
|
clust_pos = dict_col_get_clust_pos(col, clust_index);
|
|
|
|
clust_field = rec_get_nth_field(
|
|
clust_rec, clust_offs, clust_pos, &clust_len);
|
|
}
|
|
|
|
sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len);
|
|
|
|
len = clust_len;
|
|
|
|
if (ifield->prefix_len > 0 && len != UNIV_SQL_NULL
|
|
&& sec_len != UNIV_SQL_NULL && !is_virtual) {
|
|
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos)) {
|
|
len -= BTR_EXTERN_FIELD_REF_SIZE;
|
|
}
|
|
|
|
len = dtype_get_at_most_n_mbchars(
|
|
col->prtype, col->mbminlen, col->mbmaxlen,
|
|
ifield->prefix_len, len, (char*) clust_field);
|
|
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos)
|
|
&& len < sec_len) {
|
|
if (!row_sel_sec_rec_is_for_blob(
|
|
col->mtype, col->prtype,
|
|
col->mbminlen, col->mbmaxlen,
|
|
clust_field, clust_len,
|
|
sec_field, sec_len,
|
|
ifield->prefix_len,
|
|
clust_index->table)) {
|
|
goto inequal;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* For spatial index, the first field is MBR, we check
|
|
if the MBR is equal or not. */
|
|
if (dict_index_is_spatial(sec_index) && i == 0) {
|
|
rtr_mbr_t tmp_mbr;
|
|
rtr_mbr_t sec_mbr;
|
|
byte* dptr =
|
|
const_cast<byte*>(clust_field);
|
|
|
|
ut_ad(clust_len != UNIV_SQL_NULL);
|
|
|
|
/* For externally stored field, we need to get full
|
|
geo data to generate the MBR for comparing. */
|
|
if (rec_offs_nth_extern(clust_offs, clust_pos)) {
|
|
dptr = btr_copy_externally_stored_field(
|
|
&clust_len, dptr,
|
|
dict_tf_get_page_size(
|
|
sec_index->table->flags),
|
|
len, heap);
|
|
}
|
|
|
|
rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
|
|
static_cast<uint>(clust_len
|
|
- GEO_DATA_HEADER_SIZE),
|
|
SPDIMS,
|
|
reinterpret_cast<double*>(
|
|
&tmp_mbr));
|
|
rtr_read_mbr(sec_field, &sec_mbr);
|
|
|
|
if (!MBR_EQUAL_CMP(&sec_mbr, &tmp_mbr)) {
|
|
is_equal = FALSE;
|
|
goto func_exit;
|
|
}
|
|
} else {
|
|
|
|
if (0 != cmp_data_data(col->mtype, col->prtype,
|
|
clust_field, len,
|
|
sec_field, sec_len)) {
|
|
inequal:
|
|
is_equal = FALSE;
|
|
goto func_exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
if (UNIV_LIKELY_NULL(vcol_storage))
|
|
innobase_free_row_for_vcol(vcol_storage);
|
|
mem_heap_free(heap);
|
|
}
|
|
return(is_equal);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Creates a select node struct.
|
|
@return own: select node struct */
|
|
sel_node_t*
|
|
sel_node_create(
|
|
/*============*/
|
|
mem_heap_t* heap) /*!< in: memory heap where created */
|
|
{
|
|
sel_node_t* node;
|
|
|
|
node = static_cast<sel_node_t*>(
|
|
mem_heap_alloc(heap, sizeof(sel_node_t)));
|
|
|
|
node->common.type = QUE_NODE_SELECT;
|
|
node->state = SEL_NODE_OPEN;
|
|
|
|
node->plans = NULL;
|
|
|
|
return(node);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Frees the memory private to a select node when a query graph is freed,
|
|
does not free the heap where the node was originally created. */
|
|
void
|
|
sel_node_free_private(
|
|
/*==================*/
|
|
sel_node_t* node) /*!< in: select node struct */
|
|
{
|
|
ulint i;
|
|
plan_t* plan;
|
|
|
|
if (node->plans != NULL) {
|
|
for (i = 0; i < node->n_tables; i++) {
|
|
plan = sel_node_get_nth_plan(node, i);
|
|
|
|
btr_pcur_close(&(plan->pcur));
|
|
btr_pcur_close(&(plan->clust_pcur));
|
|
|
|
if (plan->old_vers_heap) {
|
|
mem_heap_free(plan->old_vers_heap);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Evaluates the values in a select list. If there are aggregate functions,
|
|
their argument value is added to the aggregate total. */
|
|
UNIV_INLINE
|
|
void
|
|
sel_eval_select_list(
|
|
/*=================*/
|
|
sel_node_t* node) /*!< in: select node */
|
|
{
|
|
que_node_t* exp;
|
|
|
|
exp = node->select_list;
|
|
|
|
while (exp) {
|
|
eval_exp(exp);
|
|
|
|
exp = que_node_get_next(exp);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Assigns the values in the select list to the possible into-variables in
|
|
SELECT ... INTO ... */
|
|
UNIV_INLINE
|
|
void
|
|
sel_assign_into_var_values(
|
|
/*=======================*/
|
|
sym_node_t* var, /*!< in: first variable in a list of
|
|
variables */
|
|
sel_node_t* node) /*!< in: select node */
|
|
{
|
|
que_node_t* exp;
|
|
|
|
if (var == NULL) {
|
|
|
|
return;
|
|
}
|
|
|
|
for (exp = node->select_list;
|
|
var != 0;
|
|
var = static_cast<sym_node_t*>(que_node_get_next(var))) {
|
|
|
|
ut_ad(exp);
|
|
|
|
eval_node_copy_val(var->alias, exp);
|
|
|
|
exp = que_node_get_next(exp);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Resets the aggregate value totals in the select list of an aggregate type
|
|
query. */
|
|
UNIV_INLINE
|
|
void
|
|
sel_reset_aggregate_vals(
|
|
/*=====================*/
|
|
sel_node_t* node) /*!< in: select node */
|
|
{
|
|
func_node_t* func_node;
|
|
|
|
ut_ad(node->is_aggregate);
|
|
|
|
for (func_node = static_cast<func_node_t*>(node->select_list);
|
|
func_node != 0;
|
|
func_node = static_cast<func_node_t*>(
|
|
que_node_get_next(func_node))) {
|
|
|
|
eval_node_set_int_val(func_node, 0);
|
|
}
|
|
|
|
node->aggregate_already_fetched = FALSE;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Copies the input variable values when an explicit cursor is opened. */
|
|
UNIV_INLINE
|
|
void
|
|
row_sel_copy_input_variable_vals(
|
|
/*=============================*/
|
|
sel_node_t* node) /*!< in: select node */
|
|
{
|
|
sym_node_t* var;
|
|
|
|
var = UT_LIST_GET_FIRST(node->copy_variables);
|
|
|
|
while (var) {
|
|
eval_node_copy_val(var, var->alias);
|
|
|
|
var->indirection = NULL;
|
|
|
|
var = UT_LIST_GET_NEXT(col_var_list, var);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Fetches the column values from a record. */
|
|
static
|
|
void
|
|
row_sel_fetch_columns(
|
|
/*==================*/
|
|
dict_index_t* index, /*!< in: record index */
|
|
const rec_t* rec, /*!< in: record in a clustered or non-clustered
|
|
index; must be protected by a page latch */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
|
|
sym_node_t* column) /*!< in: first column in a column list, or
|
|
NULL */
|
|
{
|
|
dfield_t* val;
|
|
ulint index_type;
|
|
ulint field_no;
|
|
const byte* data;
|
|
ulint len;
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
if (dict_index_is_clust(index)) {
|
|
index_type = SYM_CLUST_FIELD_NO;
|
|
} else {
|
|
index_type = SYM_SEC_FIELD_NO;
|
|
}
|
|
|
|
while (column) {
|
|
mem_heap_t* heap = NULL;
|
|
ibool needs_copy;
|
|
|
|
field_no = column->field_nos[index_type];
|
|
|
|
if (field_no != ULINT_UNDEFINED) {
|
|
|
|
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets,
|
|
field_no))) {
|
|
|
|
/* Copy an externally stored field to the
|
|
temporary heap, if possible. */
|
|
|
|
heap = mem_heap_create(1);
|
|
|
|
data = btr_rec_copy_externally_stored_field(
|
|
rec, offsets,
|
|
dict_table_page_size(index->table),
|
|
field_no, &len, heap);
|
|
|
|
/* data == NULL means that the
|
|
externally stored field was not
|
|
written yet. This record
|
|
should only be seen by
|
|
recv_recovery_rollback_active() or any
|
|
TRX_ISO_READ_UNCOMMITTED
|
|
transactions. The InnoDB SQL parser
|
|
(the sole caller of this function)
|
|
does not implement READ UNCOMMITTED,
|
|
and it is not involved during rollback. */
|
|
ut_a(data);
|
|
ut_a(len != UNIV_SQL_NULL);
|
|
|
|
needs_copy = TRUE;
|
|
} else {
|
|
data = rec_get_nth_field(rec, offsets,
|
|
field_no, &len);
|
|
|
|
needs_copy = column->copy_val;
|
|
}
|
|
|
|
if (needs_copy) {
|
|
eval_node_copy_and_alloc_val(column, data,
|
|
len);
|
|
} else {
|
|
val = que_node_get_val(column);
|
|
dfield_set_data(val, data, len);
|
|
}
|
|
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
}
|
|
|
|
column = UT_LIST_GET_NEXT(col_var_list, column);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Allocates a prefetch buffer for a column when prefetch is first time done. */
|
|
static
|
|
void
|
|
sel_col_prefetch_buf_alloc(
|
|
/*=======================*/
|
|
sym_node_t* column) /*!< in: symbol table node for a column */
|
|
{
|
|
sel_buf_t* sel_buf;
|
|
ulint i;
|
|
|
|
ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL);
|
|
|
|
column->prefetch_buf = static_cast<sel_buf_t*>(
|
|
ut_malloc_nokey(SEL_MAX_N_PREFETCH * sizeof(sel_buf_t)));
|
|
|
|
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
|
|
sel_buf = column->prefetch_buf + i;
|
|
|
|
sel_buf->data = NULL;
|
|
sel_buf->len = 0;
|
|
sel_buf->val_buf_size = 0;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Frees a prefetch buffer for a column, including the dynamically allocated
|
|
memory for data stored there. */
|
|
void
|
|
sel_col_prefetch_buf_free(
|
|
/*======================*/
|
|
sel_buf_t* prefetch_buf) /*!< in, own: prefetch buffer */
|
|
{
|
|
sel_buf_t* sel_buf;
|
|
ulint i;
|
|
|
|
for (i = 0; i < SEL_MAX_N_PREFETCH; i++) {
|
|
sel_buf = prefetch_buf + i;
|
|
|
|
if (sel_buf->val_buf_size > 0) {
|
|
|
|
ut_free(sel_buf->data);
|
|
}
|
|
}
|
|
|
|
ut_free(prefetch_buf);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Pops the column values for a prefetched, cached row from the column prefetch
|
|
buffers and places them to the val fields in the column nodes. */
|
|
static
|
|
void
|
|
sel_dequeue_prefetched_row(
|
|
/*=======================*/
|
|
plan_t* plan) /*!< in: plan node for a table */
|
|
{
|
|
sym_node_t* column;
|
|
sel_buf_t* sel_buf;
|
|
dfield_t* val;
|
|
byte* data;
|
|
ulint len;
|
|
ulint val_buf_size;
|
|
|
|
ut_ad(plan->n_rows_prefetched > 0);
|
|
|
|
column = UT_LIST_GET_FIRST(plan->columns);
|
|
|
|
while (column) {
|
|
val = que_node_get_val(column);
|
|
|
|
if (!column->copy_val) {
|
|
/* We did not really push any value for the
|
|
column */
|
|
|
|
ut_ad(!column->prefetch_buf);
|
|
ut_ad(que_node_get_val_buf_size(column) == 0);
|
|
ut_d(dfield_set_null(val));
|
|
|
|
goto next_col;
|
|
}
|
|
|
|
ut_ad(column->prefetch_buf);
|
|
ut_ad(!dfield_is_ext(val));
|
|
|
|
sel_buf = column->prefetch_buf + plan->first_prefetched;
|
|
|
|
data = sel_buf->data;
|
|
len = sel_buf->len;
|
|
val_buf_size = sel_buf->val_buf_size;
|
|
|
|
/* We must keep track of the allocated memory for
|
|
column values to be able to free it later: therefore
|
|
we swap the values for sel_buf and val */
|
|
|
|
sel_buf->data = static_cast<byte*>(dfield_get_data(val));
|
|
sel_buf->len = dfield_get_len(val);
|
|
sel_buf->val_buf_size = que_node_get_val_buf_size(column);
|
|
|
|
dfield_set_data(val, data, len);
|
|
que_node_set_val_buf_size(column, val_buf_size);
|
|
next_col:
|
|
column = UT_LIST_GET_NEXT(col_var_list, column);
|
|
}
|
|
|
|
plan->n_rows_prefetched--;
|
|
|
|
plan->first_prefetched++;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Pushes the column values for a prefetched, cached row to the column prefetch
|
|
buffers from the val fields in the column nodes. */
|
|
UNIV_INLINE
|
|
void
|
|
sel_enqueue_prefetched_row(
|
|
/*=======================*/
|
|
plan_t* plan) /*!< in: plan node for a table */
|
|
{
|
|
sym_node_t* column;
|
|
sel_buf_t* sel_buf;
|
|
dfield_t* val;
|
|
byte* data;
|
|
ulint len;
|
|
ulint pos;
|
|
ulint val_buf_size;
|
|
|
|
if (plan->n_rows_prefetched == 0) {
|
|
pos = 0;
|
|
plan->first_prefetched = 0;
|
|
} else {
|
|
pos = plan->n_rows_prefetched;
|
|
|
|
/* We have the convention that pushing new rows starts only
|
|
after the prefetch stack has been emptied: */
|
|
|
|
ut_ad(plan->first_prefetched == 0);
|
|
}
|
|
|
|
plan->n_rows_prefetched++;
|
|
|
|
ut_ad(pos < SEL_MAX_N_PREFETCH);
|
|
|
|
for (column = UT_LIST_GET_FIRST(plan->columns);
|
|
column != 0;
|
|
column = UT_LIST_GET_NEXT(col_var_list, column)) {
|
|
|
|
if (!column->copy_val) {
|
|
/* There is no sense to push pointers to database
|
|
page fields when we do not keep latch on the page! */
|
|
continue;
|
|
}
|
|
|
|
if (!column->prefetch_buf) {
|
|
/* Allocate a new prefetch buffer */
|
|
|
|
sel_col_prefetch_buf_alloc(column);
|
|
}
|
|
|
|
sel_buf = column->prefetch_buf + pos;
|
|
|
|
val = que_node_get_val(column);
|
|
|
|
data = static_cast<byte*>(dfield_get_data(val));
|
|
len = dfield_get_len(val);
|
|
val_buf_size = que_node_get_val_buf_size(column);
|
|
|
|
/* We must keep track of the allocated memory for
|
|
column values to be able to free it later: therefore
|
|
we swap the values for sel_buf and val */
|
|
|
|
dfield_set_data(val, sel_buf->data, sel_buf->len);
|
|
que_node_set_val_buf_size(column, sel_buf->val_buf_size);
|
|
|
|
sel_buf->data = data;
|
|
sel_buf->len = len;
|
|
sel_buf->val_buf_size = val_buf_size;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Builds a previous version of a clustered index record for a consistent read
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((nonnull, warn_unused_result))
|
|
dberr_t
|
|
row_sel_build_prev_vers(
|
|
/*====================*/
|
|
ReadView* read_view, /*!< in: read view */
|
|
dict_index_t* index, /*!< in: plan node for table */
|
|
rec_t* rec, /*!< in: record in a clustered index */
|
|
ulint** offsets, /*!< in/out: offsets returned by
|
|
rec_get_offsets(rec, plan->index) */
|
|
mem_heap_t** offset_heap, /*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
mem_heap_t** old_vers_heap, /*!< out: old version heap to use */
|
|
rec_t** old_vers, /*!< out: old version, or NULL if the
|
|
record does not exist in the view:
|
|
i.e., it was freshly inserted
|
|
afterwards */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
dberr_t err;
|
|
|
|
if (*old_vers_heap) {
|
|
mem_heap_empty(*old_vers_heap);
|
|
} else {
|
|
*old_vers_heap = mem_heap_create(512);
|
|
}
|
|
|
|
err = row_vers_build_for_consistent_read(
|
|
rec, mtr, index, offsets, read_view, offset_heap,
|
|
*old_vers_heap, old_vers, NULL);
|
|
return(err);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Builds the last committed version of a clustered index record for a
|
|
semi-consistent read. */
|
|
static
|
|
void
|
|
row_sel_build_committed_vers_for_mysql(
|
|
/*===================================*/
|
|
dict_index_t* clust_index, /*!< in: clustered index */
|
|
row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */
|
|
const rec_t* rec, /*!< in: record in a clustered index */
|
|
ulint** offsets, /*!< in/out: offsets returned by
|
|
rec_get_offsets(rec, clust_index) */
|
|
mem_heap_t** offset_heap, /*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
const rec_t** old_vers, /*!< out: old version, or NULL if the
|
|
record does not exist in the view:
|
|
i.e., it was freshly inserted
|
|
afterwards */
|
|
dtuple_t** vrow, /*!< out: to be filled with old virtual
|
|
column version if any */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
if (prebuilt->old_vers_heap) {
|
|
mem_heap_empty(prebuilt->old_vers_heap);
|
|
} else {
|
|
prebuilt->old_vers_heap = mem_heap_create(
|
|
rec_offs_size(*offsets));
|
|
}
|
|
|
|
row_vers_build_for_semi_consistent_read(
|
|
rec, mtr, clust_index, offsets, offset_heap,
|
|
prebuilt->old_vers_heap, old_vers, vrow);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Tests the conditions which determine when the index segment we are searching
|
|
through has been exhausted.
|
|
@return TRUE if row passed the tests */
|
|
UNIV_INLINE
|
|
ibool
|
|
row_sel_test_end_conds(
|
|
/*===================*/
|
|
plan_t* plan) /*!< in: plan for the table; the column values must
|
|
already have been retrieved and the right sides of
|
|
comparisons evaluated */
|
|
{
|
|
func_node_t* cond;
|
|
|
|
/* All conditions in end_conds are comparisons of a column to an
|
|
expression */
|
|
|
|
for (cond = UT_LIST_GET_FIRST(plan->end_conds);
|
|
cond != 0;
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond)) {
|
|
|
|
/* Evaluate the left side of the comparison, i.e., get the
|
|
column value if there is an indirection */
|
|
|
|
eval_sym(static_cast<sym_node_t*>(cond->args));
|
|
|
|
/* Do the comparison */
|
|
|
|
if (!eval_cmp(cond)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Tests the other conditions.
|
|
@return TRUE if row passed the tests */
|
|
UNIV_INLINE
|
|
ibool
|
|
row_sel_test_other_conds(
|
|
/*=====================*/
|
|
plan_t* plan) /*!< in: plan for the table; the column values must
|
|
already have been retrieved */
|
|
{
|
|
func_node_t* cond;
|
|
|
|
cond = UT_LIST_GET_FIRST(plan->other_conds);
|
|
|
|
while (cond) {
|
|
eval_exp(cond);
|
|
|
|
if (!eval_node_get_ibool_val(cond)) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Retrieves the clustered index record corresponding to a record in a
|
|
non-clustered index. Does the necessary locking.
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((nonnull, warn_unused_result))
|
|
dberr_t
|
|
row_sel_get_clust_rec(
|
|
/*==================*/
|
|
sel_node_t* node, /*!< in: select_node */
|
|
plan_t* plan, /*!< in: plan node for table */
|
|
rec_t* rec, /*!< in: record in a non-clustered index */
|
|
que_thr_t* thr, /*!< in: query thread */
|
|
rec_t** out_rec,/*!< out: clustered record or an old version of
|
|
it, NULL if the old version did not exist
|
|
in the read view, i.e., it was a fresh
|
|
inserted version */
|
|
mtr_t* mtr) /*!< in: mtr used to get access to the
|
|
non-clustered record; the same mtr is used to
|
|
access the clustered index */
|
|
{
|
|
dict_index_t* index;
|
|
rec_t* clust_rec;
|
|
rec_t* old_vers;
|
|
dberr_t err;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
*out_rec = NULL;
|
|
|
|
offsets = rec_get_offsets(rec,
|
|
btr_pcur_get_btr_cur(&plan->pcur)->index,
|
|
offsets, true, ULINT_UNDEFINED, &heap);
|
|
|
|
row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets);
|
|
|
|
index = dict_table_get_first_index(plan->table);
|
|
|
|
btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE,
|
|
BTR_SEARCH_LEAF, &plan->clust_pcur,
|
|
0, mtr);
|
|
|
|
clust_rec = btr_pcur_get_rec(&(plan->clust_pcur));
|
|
|
|
/* Note: only if the search ends up on a non-infimum record is the
|
|
low_match value the real match to the search tuple */
|
|
|
|
if (!page_rec_is_user_rec(clust_rec)
|
|
|| btr_pcur_get_low_match(&(plan->clust_pcur))
|
|
< dict_index_get_n_unique(index)) {
|
|
|
|
ut_a(rec_get_deleted_flag(rec,
|
|
dict_table_is_comp(plan->table)));
|
|
ut_a(node->read_view);
|
|
|
|
/* In a rare case it is possible that no clust rec is found
|
|
for a delete-marked secondary index record: if in row0umod.cc
|
|
in row_undo_mod_remove_clust_low() we have already removed
|
|
the clust rec, while purge is still cleaning and removing
|
|
secondary index records associated with earlier versions of
|
|
the clustered index record. In that case we know that the
|
|
clustered index record did not exist in the read view of
|
|
trx. */
|
|
|
|
goto func_exit;
|
|
}
|
|
|
|
offsets = rec_get_offsets(clust_rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
if (!node->read_view) {
|
|
/* Try to place a lock on the index record */
|
|
ulint lock_type;
|
|
trx_t* trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
/* If innodb_locks_unsafe_for_binlog option is used
|
|
or this session is using READ COMMITTED or lower isolation level
|
|
we lock only the record, i.e., next-key locking is
|
|
not used. */
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED) {
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
0, btr_pcur_get_block(&plan->clust_pcur),
|
|
clust_rec, index, offsets,
|
|
static_cast<lock_mode>(node->row_lock_mode),
|
|
lock_type,
|
|
thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
/* Declare the variable uninitialized in Valgrind.
|
|
It should be set to DB_SUCCESS at func_exit. */
|
|
UNIV_MEM_INVALID(&err, sizeof err);
|
|
break;
|
|
default:
|
|
goto err_exit;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
old_vers = NULL;
|
|
|
|
if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets,
|
|
node->read_view)) {
|
|
|
|
err = row_sel_build_prev_vers(
|
|
node->read_view, index, clust_rec,
|
|
&offsets, &heap, &plan->old_vers_heap,
|
|
&old_vers, mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
goto err_exit;
|
|
}
|
|
|
|
clust_rec = old_vers;
|
|
|
|
if (clust_rec == NULL) {
|
|
goto func_exit;
|
|
}
|
|
}
|
|
|
|
/* If we had to go to an earlier version of row or the
|
|
secondary index record is delete marked, then it may be that
|
|
the secondary index record corresponding to clust_rec
|
|
(or old_vers) is not rec; in that case we must ignore
|
|
such row because in our snapshot rec would not have existed.
|
|
Remember that from rec we cannot see directly which transaction
|
|
id corresponds to it: we have to go to the clustered index
|
|
record. A query where we want to fetch all rows where
|
|
the secondary index value is in some interval would return
|
|
a wrong result if we would not drop rows which we come to
|
|
visit through secondary index records that would not really
|
|
exist in our snapshot. */
|
|
|
|
if ((old_vers
|
|
|| rec_get_deleted_flag(rec, dict_table_is_comp(
|
|
plan->table)))
|
|
&& !row_sel_sec_rec_is_for_clust_rec(rec, plan->index,
|
|
clust_rec, index,
|
|
thr)) {
|
|
goto func_exit;
|
|
}
|
|
}
|
|
|
|
/* Fetch the columns needed in test conditions. The clustered
|
|
index record is protected by a page latch that was acquired
|
|
when plan->clust_pcur was positioned. The latch will not be
|
|
released until mtr->commit(). */
|
|
|
|
ut_ad(!rec_get_deleted_flag(clust_rec, rec_offs_comp(offsets)));
|
|
row_sel_fetch_columns(index, clust_rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
*out_rec = clust_rec;
|
|
func_exit:
|
|
err = DB_SUCCESS;
|
|
err_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return(err);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets a lock on a page of R-Tree record. This is all or none action,
|
|
mostly due to we cannot reposition a record in R-Tree (with the
|
|
nature of splitting)
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
UNIV_INLINE
|
|
dberr_t
|
|
sel_set_rtr_rec_lock(
|
|
/*=================*/
|
|
btr_pcur_t* pcur, /*!< in: cursor */
|
|
const rec_t* first_rec,/*!< in: record */
|
|
dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
|
|
ulint mode, /*!< in: lock mode */
|
|
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
|
|
LOC_REC_NOT_GAP */
|
|
que_thr_t* thr, /*!< in: query thread */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
matched_rec_t* match = pcur->btr_cur.rtr_info->matches;
|
|
mem_heap_t* heap = NULL;
|
|
dberr_t err = DB_SUCCESS;
|
|
trx_t* trx = thr_get_trx(thr);
|
|
buf_block_t* cur_block = btr_pcur_get_block(pcur);
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* my_offsets = const_cast<ulint*>(offsets);
|
|
rec_t* rec = const_cast<rec_t*>(first_rec);
|
|
rtr_rec_vector* match_rec;
|
|
rtr_rec_vector::iterator end;
|
|
|
|
rec_offs_init(offsets_);
|
|
|
|
if (match->locked || page_rec_is_supremum(first_rec)) {
|
|
return(DB_SUCCESS_LOCKED_REC);
|
|
}
|
|
|
|
ut_ad(page_align(first_rec) == cur_block->frame);
|
|
ut_ad(match->valid);
|
|
|
|
rw_lock_x_lock(&(match->block.lock));
|
|
retry:
|
|
cur_block = btr_pcur_get_block(pcur);
|
|
ut_ad(rw_lock_own_flagged(&match->block.lock,
|
|
RW_LOCK_FLAG_X | RW_LOCK_FLAG_S));
|
|
ut_ad(page_is_leaf(buf_block_get_frame(cur_block)));
|
|
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
0, cur_block, rec, index, my_offsets,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
|
|
if (err == DB_LOCK_WAIT) {
|
|
re_scan:
|
|
mtr->commit();
|
|
trx->error_state = err;
|
|
que_thr_stop_for_mysql(thr);
|
|
thr->lock_state = QUE_THR_LOCK_ROW;
|
|
if (row_mysql_handle_errors(
|
|
&err, trx, thr, NULL)) {
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
mtr->start();
|
|
|
|
mutex_enter(&match->rtr_match_mutex);
|
|
if (!match->valid && match->matched_recs->empty()) {
|
|
mutex_exit(&match->rtr_match_mutex);
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
mutex_exit(&match->rtr_match_mutex);
|
|
|
|
ulint page_no = page_get_page_no(
|
|
btr_pcur_get_page(pcur));
|
|
page_id_t page_id(dict_index_get_space(index),
|
|
page_no);
|
|
|
|
cur_block = buf_page_get_gen(
|
|
page_id, dict_table_page_size(index->table),
|
|
RW_X_LATCH, NULL, BUF_GET,
|
|
__FILE__, __LINE__, mtr, &err);
|
|
} else {
|
|
mtr->start();
|
|
goto func_end;
|
|
}
|
|
|
|
DEBUG_SYNC_C("rtr_set_lock_wait");
|
|
|
|
if (!match->valid) {
|
|
/* Page got deleted */
|
|
mtr->commit();
|
|
mtr->start();
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
match->matched_recs->clear();
|
|
|
|
rtr_cur_search_with_match(
|
|
cur_block, index,
|
|
pcur->btr_cur.rtr_info->search_tuple,
|
|
pcur->btr_cur.rtr_info->search_mode,
|
|
&pcur->btr_cur.page_cur,
|
|
pcur->btr_cur.rtr_info);
|
|
|
|
if (!page_is_leaf(buf_block_get_frame(cur_block))) {
|
|
/* Page got splitted and promoted (only for
|
|
root page it is possible). Release the
|
|
page and ask for a re-search */
|
|
mtr->commit();
|
|
mtr->start();
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
my_offsets = offsets_;
|
|
my_offsets = rec_get_offsets(rec, index, my_offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
/* No match record */
|
|
if (page_rec_is_supremum(rec) || !match->valid) {
|
|
mtr->commit();
|
|
mtr->start();
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_end;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
|
|
my_offsets = offsets_;
|
|
match_rec = match->matched_recs;
|
|
end = match_rec->end();
|
|
|
|
for (rtr_rec_vector::iterator it = match_rec->begin();
|
|
it != end; ++it) {
|
|
rtr_rec_t* rtr_rec = &(*it);
|
|
|
|
my_offsets = rec_get_offsets(
|
|
rtr_rec->r_rec, index, my_offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
0, &match->block, rtr_rec->r_rec, index,
|
|
my_offsets, static_cast<lock_mode>(mode),
|
|
type, thr);
|
|
|
|
if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) {
|
|
rtr_rec->locked = true;
|
|
} else if (err == DB_LOCK_WAIT) {
|
|
goto re_scan;
|
|
} else {
|
|
goto func_end;
|
|
}
|
|
}
|
|
|
|
match->locked = true;
|
|
|
|
func_end:
|
|
rw_lock_x_unlock(&(match->block.lock));
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
ut_ad(err != DB_LOCK_WAIT);
|
|
|
|
return(err);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Sets a lock on a record.
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
UNIV_INLINE
|
|
dberr_t
|
|
sel_set_rec_lock(
|
|
/*=============*/
|
|
btr_pcur_t* pcur, /*!< in: cursor */
|
|
const rec_t* rec, /*!< in: record */
|
|
dict_index_t* index, /*!< in: index */
|
|
const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */
|
|
ulint mode, /*!< in: lock mode */
|
|
ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or
|
|
LOC_REC_NOT_GAP */
|
|
que_thr_t* thr, /*!< in: query thread */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
trx_t* trx;
|
|
dberr_t err = DB_SUCCESS;
|
|
const buf_block_t* block;
|
|
|
|
block = btr_pcur_get_block(pcur);
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
if (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000) {
|
|
if (buf_LRU_buf_pool_running_out()) {
|
|
|
|
return(DB_LOCK_TABLE_FULL);
|
|
}
|
|
}
|
|
|
|
if (dict_index_is_clust(index)) {
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
0, block, rec, index, offsets,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
} else {
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
if (type == LOCK_GAP || type == LOCK_ORDINARY) {
|
|
ut_ad(0);
|
|
ib::error() << "Incorrectly request GAP lock "
|
|
"on RTree";
|
|
return(DB_SUCCESS);
|
|
}
|
|
err = sel_set_rtr_rec_lock(pcur, rec, index, offsets,
|
|
mode, type, thr, mtr);
|
|
} else {
|
|
err = lock_sec_rec_read_check_and_lock(
|
|
0, block, rec, index, offsets,
|
|
static_cast<lock_mode>(mode), type, thr);
|
|
}
|
|
}
|
|
|
|
return(err);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Opens a pcur to a table index. */
|
|
static
|
|
void
|
|
row_sel_open_pcur(
|
|
/*==============*/
|
|
plan_t* plan, /*!< in: table plan */
|
|
ibool search_latch_locked,
|
|
/*!< in: TRUE if the thread currently
|
|
has the search latch locked in
|
|
s-mode */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
dict_index_t* index;
|
|
func_node_t* cond;
|
|
que_node_t* exp;
|
|
ulint n_fields;
|
|
ulint has_search_latch = 0; /* RW_S_LATCH or 0 */
|
|
ulint i;
|
|
|
|
if (search_latch_locked) {
|
|
has_search_latch = RW_S_LATCH;
|
|
}
|
|
|
|
index = plan->index;
|
|
|
|
/* Calculate the value of the search tuple: the exact match columns
|
|
get their expressions evaluated when we evaluate the right sides of
|
|
end_conds */
|
|
|
|
cond = UT_LIST_GET_FIRST(plan->end_conds);
|
|
|
|
while (cond) {
|
|
eval_exp(que_node_get_next(cond->args));
|
|
|
|
cond = UT_LIST_GET_NEXT(cond_list, cond);
|
|
}
|
|
|
|
if (plan->tuple) {
|
|
n_fields = dtuple_get_n_fields(plan->tuple);
|
|
|
|
if (plan->n_exact_match < n_fields) {
|
|
/* There is a non-exact match field which must be
|
|
evaluated separately */
|
|
|
|
eval_exp(plan->tuple_exps[n_fields - 1]);
|
|
}
|
|
|
|
for (i = 0; i < n_fields; i++) {
|
|
exp = plan->tuple_exps[i];
|
|
|
|
dfield_copy_data(dtuple_get_nth_field(plan->tuple, i),
|
|
que_node_get_val(exp));
|
|
}
|
|
|
|
/* Open pcur to the index */
|
|
|
|
btr_pcur_open_with_no_init(index, plan->tuple, plan->mode,
|
|
BTR_SEARCH_LEAF, &plan->pcur,
|
|
has_search_latch, mtr);
|
|
} else {
|
|
/* Open the cursor to the start or the end of the index
|
|
(FALSE: no init) */
|
|
|
|
btr_pcur_open_at_index_side(plan->asc, index, BTR_SEARCH_LEAF,
|
|
&(plan->pcur), false, 0, mtr);
|
|
}
|
|
|
|
ut_ad(plan->n_rows_prefetched == 0);
|
|
ut_ad(plan->n_rows_fetched == 0);
|
|
ut_ad(plan->cursor_at_end == FALSE);
|
|
|
|
plan->pcur_is_open = TRUE;
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Restores a stored pcur position to a table index.
|
|
@return TRUE if the cursor should be moved to the next record after we
|
|
return from this function (moved to the previous, in the case of a
|
|
descending cursor) without processing again the current cursor
|
|
record */
|
|
static
|
|
ibool
|
|
row_sel_restore_pcur_pos(
|
|
/*=====================*/
|
|
plan_t* plan, /*!< in: table plan */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
ibool equal_position;
|
|
ulint relative_position;
|
|
|
|
ut_ad(!plan->cursor_at_end);
|
|
|
|
relative_position = btr_pcur_get_rel_pos(&(plan->pcur));
|
|
|
|
equal_position = btr_pcur_restore_position(BTR_SEARCH_LEAF,
|
|
&(plan->pcur), mtr);
|
|
|
|
/* If the cursor is traveling upwards, and relative_position is
|
|
|
|
(1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock
|
|
yet on the successor of the page infimum;
|
|
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
first record GREATER than the predecessor of a page supremum; we have
|
|
not yet processed the cursor record: no need to move the cursor to the
|
|
next record;
|
|
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
last record LESS or EQUAL to the old stored user record; (a) if
|
|
equal_position is FALSE, this means that the cursor is now on a record
|
|
less than the old user record, and we must move to the next record;
|
|
(b) if equal_position is TRUE, then if
|
|
plan->stored_cursor_rec_processed is TRUE, we must move to the next
|
|
record, else there is no need to move the cursor. */
|
|
|
|
if (plan->asc) {
|
|
if (relative_position == BTR_PCUR_ON) {
|
|
|
|
if (equal_position) {
|
|
|
|
return(plan->stored_cursor_rec_processed);
|
|
}
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
ut_ad(relative_position == BTR_PCUR_AFTER
|
|
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/* If the cursor is traveling downwards, and relative_position is
|
|
|
|
(1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on
|
|
the last record LESS than the successor of a page infimum; we have not
|
|
processed the cursor record: no need to move the cursor;
|
|
(2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the
|
|
first record GREATER than the predecessor of a page supremum; we have
|
|
processed the cursor record: we should move the cursor to the previous
|
|
record;
|
|
(3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the
|
|
last record LESS or EQUAL to the old stored user record; (a) if
|
|
equal_position is FALSE, this means that the cursor is now on a record
|
|
less than the old user record, and we need not move to the previous
|
|
record; (b) if equal_position is TRUE, then if
|
|
plan->stored_cursor_rec_processed is TRUE, we must move to the previous
|
|
record, else there is no need to move the cursor. */
|
|
|
|
if (relative_position == BTR_PCUR_BEFORE
|
|
|| relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) {
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
if (relative_position == BTR_PCUR_ON) {
|
|
|
|
if (equal_position) {
|
|
|
|
return(plan->stored_cursor_rec_processed);
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
ut_ad(relative_position == BTR_PCUR_AFTER
|
|
|| relative_position == BTR_PCUR_AFTER_LAST_IN_TREE);
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Resets a plan cursor to a closed state. */
|
|
UNIV_INLINE
|
|
void
|
|
plan_reset_cursor(
|
|
/*==============*/
|
|
plan_t* plan) /*!< in: plan */
|
|
{
|
|
plan->pcur_is_open = FALSE;
|
|
plan->cursor_at_end = FALSE;
|
|
plan->n_rows_fetched = 0;
|
|
plan->n_rows_prefetched = 0;
|
|
}
|
|
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
/*********************************************************************//**
|
|
Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
using the hash index if possible (not always).
|
|
@return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
static
|
|
ulint
|
|
row_sel_try_search_shortcut(
|
|
/*========================*/
|
|
sel_node_t* node, /*!< in: select node for a consistent read */
|
|
plan_t* plan, /*!< in: plan for a unique search in clustered
|
|
index */
|
|
ibool search_latch_locked,
|
|
/*!< in: whether the search holds latch on
|
|
search system. */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
dict_index_t* index;
|
|
rec_t* rec;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
ulint ret;
|
|
rec_offs_init(offsets_);
|
|
|
|
index = plan->index;
|
|
|
|
ut_ad(node->read_view);
|
|
ut_ad(plan->unique_search);
|
|
ut_ad(!plan->must_get_clust);
|
|
ut_ad(!search_latch_locked
|
|
|| rw_lock_own(btr_get_search_latch(index), RW_LOCK_S));
|
|
|
|
row_sel_open_pcur(plan, search_latch_locked, mtr);
|
|
|
|
rec = btr_pcur_get_rec(&(plan->pcur));
|
|
|
|
if (!page_rec_is_user_rec(rec)) {
|
|
|
|
return(SEL_RETRY);
|
|
}
|
|
|
|
ut_ad(plan->mode == PAGE_CUR_GE);
|
|
|
|
/* As the cursor is now placed on a user record after a search with
|
|
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
fields in the user record matched to the search tuple */
|
|
|
|
if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) {
|
|
|
|
return(SEL_EXHAUSTED);
|
|
}
|
|
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
if (dict_index_is_clust(index)) {
|
|
if (!lock_clust_rec_cons_read_sees(rec, index, offsets,
|
|
node->read_view)) {
|
|
ret = SEL_RETRY;
|
|
goto func_exit;
|
|
}
|
|
} else if (!srv_read_only_mode
|
|
&& !lock_sec_rec_cons_read_sees(
|
|
rec, index, node->read_view)) {
|
|
|
|
ret = SEL_RETRY;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* Test the deleted flag. */
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) {
|
|
|
|
ret = SEL_EXHAUSTED;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* Fetch the columns needed in test conditions. The index
|
|
record is protected by a page latch that was acquired when
|
|
plan->pcur was positioned. The latch will not be released
|
|
until mtr->commit(). */
|
|
|
|
row_sel_fetch_columns(index, rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
|
|
/* Test the rest of search conditions */
|
|
|
|
if (!row_sel_test_other_conds(plan)) {
|
|
|
|
ret = SEL_EXHAUSTED;
|
|
goto func_exit;
|
|
}
|
|
|
|
ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF);
|
|
|
|
plan->n_rows_fetched++;
|
|
ret = SEL_FOUND;
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return(ret);
|
|
}
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
|
|
/*********************************************************************//**
|
|
Performs a select step.
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result))
|
|
dberr_t
|
|
row_sel(
|
|
/*====*/
|
|
sel_node_t* node, /*!< in: select node */
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
{
|
|
dict_index_t* index;
|
|
plan_t* plan;
|
|
mtr_t mtr;
|
|
ibool moved;
|
|
rec_t* rec;
|
|
rec_t* old_vers;
|
|
rec_t* clust_rec;
|
|
ibool consistent_read;
|
|
|
|
/* The following flag becomes TRUE when we are doing a
|
|
consistent read from a non-clustered index and we must look
|
|
at the clustered index to find out the previous delete mark
|
|
state of the non-clustered record: */
|
|
|
|
ibool cons_read_requires_clust_rec = FALSE;
|
|
ulint cost_counter = 0;
|
|
ibool cursor_just_opened;
|
|
ibool must_go_to_next;
|
|
ibool mtr_has_extra_clust_latch = FALSE;
|
|
/* TRUE if the search was made using
|
|
a non-clustered index, and we had to
|
|
access the clustered record: now &mtr
|
|
contains a clustered index latch, and
|
|
&mtr must be committed before we move
|
|
to the next non-clustered record */
|
|
dberr_t err;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(thr->run_node == node);
|
|
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
ibool search_latch_locked = FALSE;
|
|
#else /* BTR_CUR_HASH_ADAPT */
|
|
# define search_latch_locked false
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
|
|
if (node->read_view) {
|
|
/* In consistent reads, we try to do with the hash index and
|
|
not to use the buffer page get. This is to reduce memory bus
|
|
load resulting from semaphore operations. The search latch
|
|
will be s-locked when we access an index with a unique search
|
|
condition, but not locked when we access an index with a
|
|
less selective search condition. */
|
|
|
|
consistent_read = TRUE;
|
|
} else {
|
|
consistent_read = FALSE;
|
|
}
|
|
|
|
table_loop:
|
|
/* TABLE LOOP
|
|
----------
|
|
This is the outer major loop in calculating a join. We come here when
|
|
node->fetch_table changes, and after adding a row to aggregate totals
|
|
and, of course, when this function is called. */
|
|
|
|
ut_ad(mtr_has_extra_clust_latch == FALSE);
|
|
|
|
plan = sel_node_get_nth_plan(node, node->fetch_table);
|
|
index = plan->index;
|
|
|
|
if (plan->n_rows_prefetched > 0) {
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table_no_mtr;
|
|
}
|
|
|
|
if (plan->cursor_at_end) {
|
|
/* The cursor has already reached the result set end: no more
|
|
rows to process for this table cursor, as also the prefetch
|
|
stack was empty */
|
|
|
|
ut_ad(plan->pcur_is_open);
|
|
|
|
goto table_exhausted_no_mtr;
|
|
}
|
|
|
|
/* Open a cursor to index, or restore an open cursor position */
|
|
|
|
mtr.start();
|
|
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
if (consistent_read && plan->unique_search && !plan->pcur_is_open
|
|
&& !plan->must_get_clust) {
|
|
if (!search_latch_locked) {
|
|
btr_search_s_lock(index);
|
|
|
|
search_latch_locked = TRUE;
|
|
} else if (rw_lock_get_writer(btr_get_search_latch(index))
|
|
== RW_LOCK_X_WAIT) {
|
|
|
|
/* There is an x-latch request waiting: release the
|
|
s-latch for a moment; as an s-latch here is often
|
|
kept for some 10 searches before being released,
|
|
a waiting x-latch request would block other threads
|
|
from acquiring an s-latch for a long time, lowering
|
|
performance significantly in multiprocessors. */
|
|
|
|
btr_search_s_unlock(index);
|
|
btr_search_s_lock(index);
|
|
}
|
|
|
|
switch (row_sel_try_search_shortcut(node, plan,
|
|
search_latch_locked,
|
|
&mtr)) {
|
|
case SEL_FOUND:
|
|
goto next_table;
|
|
case SEL_EXHAUSTED:
|
|
goto table_exhausted;
|
|
default:
|
|
ut_ad(0);
|
|
case SEL_RETRY:
|
|
break;
|
|
}
|
|
|
|
plan_reset_cursor(plan);
|
|
|
|
mtr.commit();
|
|
mtr.start();
|
|
}
|
|
|
|
if (search_latch_locked) {
|
|
btr_search_s_unlock(index);
|
|
|
|
search_latch_locked = FALSE;
|
|
}
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
|
|
if (!plan->pcur_is_open) {
|
|
/* Evaluate the expressions to build the search tuple and
|
|
open the cursor */
|
|
|
|
row_sel_open_pcur(plan, search_latch_locked, &mtr);
|
|
|
|
cursor_just_opened = TRUE;
|
|
|
|
/* A new search was made: increment the cost counter */
|
|
cost_counter++;
|
|
} else {
|
|
/* Restore pcur position to the index */
|
|
|
|
must_go_to_next = row_sel_restore_pcur_pos(plan, &mtr);
|
|
|
|
cursor_just_opened = FALSE;
|
|
|
|
if (must_go_to_next) {
|
|
/* We have already processed the cursor record: move
|
|
to the next */
|
|
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
rec_loop:
|
|
/* RECORD LOOP
|
|
-----------
|
|
In this loop we use pcur and try to fetch a qualifying row, and
|
|
also fill the prefetch buffer for this table if n_rows_fetched has
|
|
exceeded a threshold. While we are inside this loop, the following
|
|
holds:
|
|
(1) &mtr is started,
|
|
(2) pcur is positioned and open.
|
|
|
|
NOTE that if cursor_just_opened is TRUE here, it means that we came
|
|
to this point right after row_sel_open_pcur. */
|
|
|
|
ut_ad(mtr_has_extra_clust_latch == FALSE);
|
|
|
|
rec = btr_pcur_get_rec(&(plan->pcur));
|
|
|
|
/* PHASE 1: Set a lock if specified */
|
|
|
|
if (!node->asc && cursor_just_opened
|
|
&& !page_rec_is_supremum(rec)) {
|
|
|
|
/* Do not support "descending search" for Spatial index */
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
|
|
/* When we open a cursor for a descending search, we must set
|
|
a next-key lock on the successor record: otherwise it would
|
|
be possible to insert new records next to the cursor position,
|
|
and it might be that these new records should appear in the
|
|
search result set, resulting in the phantom problem. */
|
|
|
|
if (!consistent_read) {
|
|
rec_t* next_rec = page_rec_get_next(rec);
|
|
ulint lock_type;
|
|
trx_t* trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
offsets = rec_get_offsets(next_rec, index, offsets,
|
|
true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
/* If innodb_locks_unsafe_for_binlog option is used
|
|
or this session is using READ COMMITTED or lower isolation
|
|
level, we lock only the record, i.e., next-key
|
|
locking is not used. */
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED) {
|
|
|
|
if (page_rec_is_supremum(next_rec)) {
|
|
|
|
goto skip_lock;
|
|
}
|
|
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
err = sel_set_rec_lock(&plan->pcur,
|
|
next_rec, index, offsets,
|
|
node->row_lock_mode,
|
|
lock_type, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
/* fall through */
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
/* Note that in this case we will store in pcur
|
|
the PREDECESSOR of the record we are waiting
|
|
the lock for */
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
skip_lock:
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
/* The infimum record on a page cannot be in the result set,
|
|
and neither can a record lock be placed on it: we skip such
|
|
a record. We also increment the cost counter as we may have
|
|
processed yet another page of index. */
|
|
|
|
cost_counter++;
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (!consistent_read) {
|
|
/* Try to place a lock on the index record */
|
|
ulint lock_type;
|
|
trx_t* trx;
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
trx = thr_get_trx(thr);
|
|
|
|
/* If innodb_locks_unsafe_for_binlog option is used
|
|
or this session is using READ COMMITTED or lower isolation level,
|
|
we lock only the record, i.e., next-key locking is
|
|
not used. */
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED
|
|
|| dict_index_is_spatial(index)) {
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
err = sel_set_rec_lock(&plan->pcur,
|
|
rec, index, offsets,
|
|
node->row_lock_mode, lock_type,
|
|
thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
/* fall through */
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
|
|
/* A page supremum record cannot be in the result set: skip
|
|
it now when we have placed a possible lock on it */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
ut_ad(page_rec_is_user_rec(rec));
|
|
|
|
if (cost_counter > SEL_COST_LIMIT) {
|
|
|
|
/* Now that we have placed the necessary locks, we can stop
|
|
for a while and store the cursor position; NOTE that if we
|
|
would store the cursor position BEFORE placing a record lock,
|
|
it might happen that the cursor would jump over some records
|
|
that another transaction could meanwhile insert adjacent to
|
|
the cursor: this would result in the phantom problem. */
|
|
|
|
goto stop_for_a_while;
|
|
}
|
|
|
|
/* PHASE 2: Check a mixed index mix id if needed */
|
|
|
|
if (plan->unique_search && cursor_just_opened) {
|
|
|
|
ut_ad(plan->mode == PAGE_CUR_GE);
|
|
|
|
/* As the cursor is now placed on a user record after a search
|
|
with the mode PAGE_CUR_GE, the up_match field in the cursor
|
|
tells how many fields in the user record matched to the search
|
|
tuple */
|
|
|
|
if (btr_pcur_get_up_match(&(plan->pcur))
|
|
< plan->n_exact_match) {
|
|
goto table_exhausted;
|
|
}
|
|
|
|
/* Ok, no need to test end_conds or mix id */
|
|
|
|
}
|
|
|
|
/* We are ready to look at a possible new index entry in the result
|
|
set: the cursor is now placed on a user record */
|
|
|
|
/* PHASE 3: Get previous version in a consistent read */
|
|
|
|
cons_read_requires_clust_rec = FALSE;
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
if (consistent_read) {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
if (dict_index_is_clust(index)) {
|
|
|
|
if (!lock_clust_rec_cons_read_sees(
|
|
rec, index, offsets, node->read_view)) {
|
|
|
|
err = row_sel_build_prev_vers(
|
|
node->read_view, index, rec,
|
|
&offsets, &heap, &plan->old_vers_heap,
|
|
&old_vers, &mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The record does not exist
|
|
in our read view. Skip it, but
|
|
first attempt to determine
|
|
whether the index segment we
|
|
are searching through has been
|
|
exhausted. */
|
|
|
|
offsets = rec_get_offsets(
|
|
rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
/* Fetch the columns needed in
|
|
test conditions. The clustered
|
|
index record is protected by a
|
|
page latch that was acquired
|
|
by row_sel_open_pcur() or
|
|
row_sel_restore_pcur_pos().
|
|
The latch will not be released
|
|
until mtr.commit(). */
|
|
|
|
row_sel_fetch_columns(
|
|
index, rec, offsets,
|
|
UT_LIST_GET_FIRST(
|
|
plan->columns));
|
|
|
|
if (!row_sel_test_end_conds(plan)) {
|
|
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
rec = old_vers;
|
|
}
|
|
} else if (!srv_read_only_mode
|
|
&& !lock_sec_rec_cons_read_sees(
|
|
rec, index, node->read_view)) {
|
|
|
|
cons_read_requires_clust_rec = TRUE;
|
|
}
|
|
}
|
|
|
|
/* PHASE 4: Test search end conditions and deleted flag */
|
|
|
|
/* Fetch the columns needed in test conditions. The record is
|
|
protected by a page latch that was acquired by
|
|
row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch
|
|
will not be released until mtr.commit(). */
|
|
|
|
row_sel_fetch_columns(index, rec, offsets,
|
|
UT_LIST_GET_FIRST(plan->columns));
|
|
|
|
/* Test the selection end conditions: these can only contain columns
|
|
which already are found in the index, even though the index might be
|
|
non-clustered */
|
|
|
|
if (plan->unique_search && cursor_just_opened) {
|
|
|
|
/* No test necessary: the test was already made above */
|
|
|
|
} else if (!row_sel_test_end_conds(plan)) {
|
|
|
|
goto table_exhausted;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))
|
|
&& !cons_read_requires_clust_rec) {
|
|
|
|
/* The record is delete marked: we can skip it if this is
|
|
not a consistent read which might see an earlier version
|
|
of a non-clustered index record */
|
|
|
|
if (plan->unique_search) {
|
|
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* PHASE 5: Get the clustered index record, if needed and if we did
|
|
not do the search using the clustered index */
|
|
|
|
if (plan->must_get_clust || cons_read_requires_clust_rec) {
|
|
|
|
/* It was a non-clustered index and we must fetch also the
|
|
clustered index record */
|
|
|
|
err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec,
|
|
&mtr);
|
|
mtr_has_extra_clust_latch = TRUE;
|
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
/* Retrieving the clustered record required a search:
|
|
increment the cost counter */
|
|
|
|
cost_counter++;
|
|
|
|
if (clust_rec == NULL) {
|
|
/* The record did not exist in the read view */
|
|
ut_ad(consistent_read);
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(clust_rec,
|
|
dict_table_is_comp(plan->table))) {
|
|
/* In delete-marked records, DB_TRX_ID must
|
|
always refer to an existing update_undo log record. */
|
|
ut_ad(rec_get_trx_id(clust_rec,
|
|
dict_table_get_first_index(
|
|
plan->table)));
|
|
|
|
/* The record is delete marked: we can skip it */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (node->can_get_updated) {
|
|
|
|
btr_pcur_store_position(&(plan->clust_pcur), &mtr);
|
|
}
|
|
}
|
|
|
|
/* PHASE 6: Test the rest of search conditions */
|
|
|
|
if (!row_sel_test_other_conds(plan)) {
|
|
|
|
if (plan->unique_search) {
|
|
|
|
goto table_exhausted;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* PHASE 7: We found a new qualifying row for the current table; push
|
|
the row if prefetch is on, or move to the next table in the join */
|
|
|
|
plan->n_rows_fetched++;
|
|
|
|
ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF);
|
|
|
|
if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT)
|
|
|| plan->unique_search || plan->no_prefetch) {
|
|
|
|
/* No prefetch in operation: go to the next table */
|
|
|
|
goto next_table;
|
|
}
|
|
|
|
sel_enqueue_prefetched_row(plan);
|
|
|
|
if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) {
|
|
|
|
/* The prefetch buffer is now full */
|
|
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table;
|
|
}
|
|
|
|
next_rec:
|
|
ut_ad(!search_latch_locked);
|
|
|
|
if (mtr_has_extra_clust_latch) {
|
|
|
|
/* We must commit &mtr if we are moving to the next
|
|
non-clustered index record, because we could break the
|
|
latching order if we would access a different clustered
|
|
index page right away without releasing the previous. */
|
|
|
|
goto commit_mtr_for_a_while;
|
|
}
|
|
|
|
if (node->asc) {
|
|
moved = btr_pcur_move_to_next(&(plan->pcur), &mtr);
|
|
} else {
|
|
moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr);
|
|
}
|
|
|
|
if (!moved) {
|
|
|
|
goto table_exhausted;
|
|
}
|
|
|
|
cursor_just_opened = FALSE;
|
|
|
|
/* END OF RECORD LOOP
|
|
------------------ */
|
|
goto rec_loop;
|
|
|
|
next_table:
|
|
/* We found a record which satisfies the conditions: we can move to
|
|
the next table or return a row in the result set */
|
|
|
|
ut_ad(btr_pcur_is_on_user_rec(&plan->pcur));
|
|
|
|
if (plan->unique_search && !node->can_get_updated) {
|
|
|
|
plan->cursor_at_end = TRUE;
|
|
} else {
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = TRUE;
|
|
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
}
|
|
|
|
mtr.commit();
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
next_table_no_mtr:
|
|
/* If we use 'goto' to this label, it means that the row was popped
|
|
from the prefetched rows stack, and &mtr is already committed */
|
|
|
|
if (node->fetch_table + 1 == node->n_tables) {
|
|
|
|
sel_eval_select_list(node);
|
|
|
|
if (node->is_aggregate) {
|
|
|
|
goto table_loop;
|
|
}
|
|
|
|
sel_assign_into_var_values(node->into_list, node);
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
node->fetch_table++;
|
|
|
|
/* When we move to the next table, we first reset the plan cursor:
|
|
we do not care about resetting it when we backtrack from a table */
|
|
|
|
plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table));
|
|
|
|
goto table_loop;
|
|
|
|
table_exhausted:
|
|
/* The table cursor pcur reached the result set end: backtrack to the
|
|
previous table in the join if we do not have cached prefetched rows */
|
|
|
|
plan->cursor_at_end = TRUE;
|
|
|
|
mtr.commit();
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
if (plan->n_rows_prefetched > 0) {
|
|
/* The table became exhausted during a prefetch */
|
|
|
|
sel_dequeue_prefetched_row(plan);
|
|
|
|
goto next_table_no_mtr;
|
|
}
|
|
|
|
table_exhausted_no_mtr:
|
|
if (node->fetch_table == 0) {
|
|
err = DB_SUCCESS;
|
|
|
|
if (node->is_aggregate && !node->aggregate_already_fetched) {
|
|
|
|
node->aggregate_already_fetched = TRUE;
|
|
|
|
sel_assign_into_var_values(node->into_list, node);
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
} else {
|
|
node->state = SEL_NODE_NO_MORE_ROWS;
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
}
|
|
|
|
goto func_exit;
|
|
}
|
|
|
|
node->fetch_table--;
|
|
|
|
goto table_loop;
|
|
|
|
stop_for_a_while:
|
|
/* Return control for a while to que_run_threads, so that runaway
|
|
queries can be canceled. NOTE that when we come here, we must, in a
|
|
locking read, have placed the necessary (possibly waiting request)
|
|
record lock on the cursor record or its successor: when we reposition
|
|
the cursor, this record lock guarantees that nobody can meanwhile have
|
|
inserted new records which should have appeared in the result set,
|
|
which would result in the phantom problem. */
|
|
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = FALSE;
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr.commit();
|
|
ut_ad(!sync_check_iterate(sync_check()));
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
|
|
commit_mtr_for_a_while:
|
|
/* Stores the cursor position and commits &mtr; this is used if
|
|
&mtr may contain latches which would break the latching order if
|
|
&mtr would not be committed and the latches released. */
|
|
|
|
plan->stored_cursor_rec_processed = TRUE;
|
|
|
|
ut_ad(!search_latch_locked);
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr.commit();
|
|
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
ut_ad(!sync_check_iterate(dict_sync_check()));
|
|
|
|
goto table_loop;
|
|
|
|
lock_wait_or_error:
|
|
/* See the note at stop_for_a_while: the same holds for this case */
|
|
|
|
ut_ad(!btr_pcur_is_before_first_on_page(&plan->pcur) || !node->asc);
|
|
ut_ad(!search_latch_locked);
|
|
|
|
plan->stored_cursor_rec_processed = FALSE;
|
|
btr_pcur_store_position(&(plan->pcur), &mtr);
|
|
|
|
mtr.commit();
|
|
|
|
func_exit:
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
if (search_latch_locked) {
|
|
btr_search_s_unlock(index);
|
|
}
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
ut_ad(!sync_check_iterate(dict_sync_check()));
|
|
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
return(err);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Performs a select step. This is a high-level function used in SQL execution
|
|
graphs.
|
|
@return query thread to run next or NULL */
|
|
que_thr_t*
|
|
row_sel_step(
|
|
/*=========*/
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
{
|
|
sel_node_t* node;
|
|
|
|
ut_ad(thr);
|
|
|
|
node = static_cast<sel_node_t*>(thr->run_node);
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_SELECT);
|
|
|
|
/* If this is a new time this node is executed (or when execution
|
|
resumes after wait for a table intention lock), set intention locks
|
|
on the tables, or assign a read view */
|
|
|
|
if (node->into_list && (thr->prev_node == que_node_get_parent(node))) {
|
|
|
|
node->state = SEL_NODE_OPEN;
|
|
}
|
|
|
|
if (node->state == SEL_NODE_OPEN) {
|
|
|
|
/* It may be that the current session has not yet started
|
|
its transaction, or it has been committed: */
|
|
|
|
trx_start_if_not_started_xa(thr_get_trx(thr), false);
|
|
|
|
plan_reset_cursor(sel_node_get_nth_plan(node, 0));
|
|
|
|
if (node->consistent_read) {
|
|
/* Assign a read view for the query */
|
|
trx_assign_read_view(thr_get_trx(thr));
|
|
|
|
if (thr_get_trx(thr)->read_view != NULL) {
|
|
node->read_view = thr_get_trx(thr)->read_view;
|
|
} else {
|
|
node->read_view = NULL;
|
|
}
|
|
|
|
} else {
|
|
sym_node_t* table_node;
|
|
lock_mode i_lock_mode;
|
|
|
|
if (node->set_x_locks) {
|
|
i_lock_mode = LOCK_IX;
|
|
} else {
|
|
i_lock_mode = LOCK_IS;
|
|
}
|
|
|
|
for (table_node = node->table_list;
|
|
table_node != 0;
|
|
table_node = static_cast<sym_node_t*>(
|
|
que_node_get_next(table_node))) {
|
|
|
|
dberr_t err = lock_table(
|
|
0, table_node->table, i_lock_mode,
|
|
thr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
trx_t* trx;
|
|
|
|
trx = thr_get_trx(thr);
|
|
trx->error_state = err;
|
|
|
|
return(NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this is an explicit cursor, copy stored procedure
|
|
variable values, so that the values cannot change between
|
|
fetches (currently, we copy them also for non-explicit
|
|
cursors) */
|
|
|
|
if (node->explicit_cursor
|
|
&& UT_LIST_GET_FIRST(node->copy_variables)) {
|
|
|
|
row_sel_copy_input_variable_vals(node);
|
|
}
|
|
|
|
node->state = SEL_NODE_FETCH;
|
|
node->fetch_table = 0;
|
|
|
|
if (node->is_aggregate) {
|
|
/* Reset the aggregate total values */
|
|
sel_reset_aggregate_vals(node);
|
|
}
|
|
}
|
|
|
|
dberr_t err = row_sel(node, thr);
|
|
|
|
/* NOTE! if queries are parallelized, the following assignment may
|
|
have problems; the assignment should be made only if thr is the
|
|
only top-level thr in the graph: */
|
|
|
|
thr->graph->last_sel_node = node;
|
|
|
|
if (err != DB_SUCCESS) {
|
|
thr_get_trx(thr)->error_state = err;
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
return(thr);
|
|
}
|
|
|
|
/**********************************************************************//**
|
|
Performs a fetch for a cursor.
|
|
@return query thread to run next or NULL */
|
|
que_thr_t*
|
|
fetch_step(
|
|
/*=======*/
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
{
|
|
sel_node_t* sel_node;
|
|
fetch_node_t* node;
|
|
|
|
ut_ad(thr);
|
|
|
|
node = static_cast<fetch_node_t*>(thr->run_node);
|
|
sel_node = node->cursor_def;
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_FETCH);
|
|
|
|
if (thr->prev_node != que_node_get_parent(node)) {
|
|
|
|
if (sel_node->state != SEL_NODE_NO_MORE_ROWS) {
|
|
|
|
if (node->into_list) {
|
|
sel_assign_into_var_values(node->into_list,
|
|
sel_node);
|
|
} else {
|
|
ibool ret = (*node->func->func)(
|
|
sel_node, node->func->arg);
|
|
|
|
if (!ret) {
|
|
sel_node->state
|
|
= SEL_NODE_NO_MORE_ROWS;
|
|
}
|
|
}
|
|
}
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
|
|
return(thr);
|
|
}
|
|
|
|
/* Make the fetch node the parent of the cursor definition for
|
|
the time of the fetch, so that execution knows to return to this
|
|
fetch node after a row has been selected or we know that there is
|
|
no row left */
|
|
|
|
sel_node->common.parent = node;
|
|
|
|
if (sel_node->state == SEL_NODE_CLOSED) {
|
|
ib::error() << "fetch called on a closed cursor";
|
|
|
|
thr_get_trx(thr)->error_state = DB_ERROR;
|
|
|
|
return(NULL);
|
|
}
|
|
|
|
thr->run_node = sel_node;
|
|
|
|
return(thr);
|
|
}
|
|
|
|
/***********************************************************//**
|
|
Prints a row in a select result.
|
|
@return query thread to run next or NULL */
|
|
que_thr_t*
|
|
row_printf_step(
|
|
/*============*/
|
|
que_thr_t* thr) /*!< in: query thread */
|
|
{
|
|
row_printf_node_t* node;
|
|
sel_node_t* sel_node;
|
|
que_node_t* arg;
|
|
|
|
ut_ad(thr);
|
|
|
|
node = static_cast<row_printf_node_t*>(thr->run_node);
|
|
|
|
sel_node = node->sel_node;
|
|
|
|
ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF);
|
|
|
|
if (thr->prev_node == que_node_get_parent(node)) {
|
|
|
|
/* Reset the cursor */
|
|
sel_node->state = SEL_NODE_OPEN;
|
|
|
|
/* Fetch next row to print */
|
|
|
|
thr->run_node = sel_node;
|
|
|
|
return(thr);
|
|
}
|
|
|
|
if (sel_node->state != SEL_NODE_FETCH) {
|
|
|
|
ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS);
|
|
|
|
/* No more rows to print */
|
|
|
|
thr->run_node = que_node_get_parent(node);
|
|
|
|
return(thr);
|
|
}
|
|
|
|
arg = sel_node->select_list;
|
|
|
|
while (arg) {
|
|
dfield_print_also_hex(que_node_get_val(arg));
|
|
|
|
fputs(" ::: ", stderr);
|
|
|
|
arg = que_node_get_next(arg);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
|
|
/* Fetch next row to print */
|
|
|
|
thr->run_node = sel_node;
|
|
|
|
return(thr);
|
|
}
|
|
|
|
/****************************************************************//**
|
|
Converts a key value stored in MySQL format to an Innobase dtuple. The last
|
|
field of the key value may be just a prefix of a fixed length field: hence
|
|
the parameter key_len. But currently we do not allow search keys where the
|
|
last field is only a prefix of the full key field len and print a warning if
|
|
such appears. A counterpart of this function is
|
|
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
void
|
|
row_sel_convert_mysql_key_to_innobase(
|
|
/*==================================*/
|
|
dtuple_t* tuple, /*!< in/out: tuple where to build;
|
|
NOTE: we assume that the type info
|
|
in the tuple is already according
|
|
to index! */
|
|
byte* buf, /*!< in: buffer to use in field
|
|
conversions; NOTE that dtuple->data
|
|
may end up pointing inside buf so
|
|
do not discard that buffer while
|
|
the tuple is being used. See
|
|
row_mysql_store_col_in_innobase_format()
|
|
in the case of DATA_INT */
|
|
ulint buf_len, /*!< in: buffer length */
|
|
dict_index_t* index, /*!< in: index of the key value */
|
|
const byte* key_ptr, /*!< in: MySQL key value */
|
|
ulint key_len, /*!< in: MySQL key value length */
|
|
trx_t* trx) /*!< in: transaction */
|
|
{
|
|
byte* original_buf = buf;
|
|
const byte* original_key_ptr = key_ptr;
|
|
dict_field_t* field;
|
|
dfield_t* dfield;
|
|
ulint data_offset;
|
|
ulint data_len;
|
|
ulint data_field_len;
|
|
ibool is_null;
|
|
const byte* key_end;
|
|
ulint n_fields = 0;
|
|
|
|
/* For documentation of the key value storage format in MySQL, see
|
|
ha_innobase::store_key_val_for_row() in ha_innodb.cc. */
|
|
|
|
key_end = key_ptr + key_len;
|
|
|
|
/* Permit us to access any field in the tuple (ULINT_MAX): */
|
|
|
|
dtuple_set_n_fields(tuple, ULINT_MAX);
|
|
|
|
dfield = dtuple_get_nth_field(tuple, 0);
|
|
field = dict_index_get_nth_field(index, 0);
|
|
|
|
if (UNIV_UNLIKELY(dfield_get_type(dfield)->mtype == DATA_SYS)) {
|
|
/* A special case: we are looking for a position in the
|
|
generated clustered index which InnoDB automatically added
|
|
to a table with no primary key: the first and the only
|
|
ordering column is ROW_ID which InnoDB stored to the key_ptr
|
|
buffer. */
|
|
|
|
ut_a(key_len == DATA_ROW_ID_LEN);
|
|
|
|
dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN);
|
|
|
|
dtuple_set_n_fields(tuple, 1);
|
|
|
|
return;
|
|
}
|
|
|
|
while (key_ptr < key_end) {
|
|
|
|
ulint type = dfield_get_type(dfield)->mtype;
|
|
ut_a(field->col->mtype == type);
|
|
|
|
data_offset = 0;
|
|
is_null = FALSE;
|
|
|
|
if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) {
|
|
/* The first byte in the field tells if this is
|
|
an SQL NULL value */
|
|
|
|
data_offset = 1;
|
|
|
|
if (*key_ptr != 0) {
|
|
dfield_set_null(dfield);
|
|
|
|
is_null = TRUE;
|
|
}
|
|
}
|
|
|
|
/* Calculate data length and data field total length */
|
|
if (DATA_LARGE_MTYPE(type) || DATA_GEOMETRY_MTYPE(type)) {
|
|
|
|
/* For R-tree index, data length should be the
|
|
total size of the wkb data.*/
|
|
if (dict_index_is_spatial(index)) {
|
|
ut_ad(DATA_GEOMETRY_MTYPE(type));
|
|
data_len = key_len;
|
|
data_field_len = data_offset + data_len;
|
|
} else {
|
|
/* The key field is a column prefix of a BLOB
|
|
or TEXT. */
|
|
|
|
ut_a(field->prefix_len > 0);
|
|
|
|
/* MySQL stores the actual data length to the
|
|
first 2 bytes after the optional SQL NULL
|
|
marker byte. The storage format is
|
|
little-endian, that is, the most significant
|
|
byte at a higher address. In UTF-8, MySQL
|
|
seems to reserve field->prefix_len bytes for
|
|
storing this field in the key value buffer,
|
|
even though the actual value only takes data
|
|
len bytes from the start. */
|
|
|
|
data_len = key_ptr[data_offset]
|
|
+ 256 * key_ptr[data_offset + 1];
|
|
data_field_len = data_offset + 2
|
|
+ field->prefix_len;
|
|
|
|
data_offset += 2;
|
|
|
|
/* Now that we know the length, we store the
|
|
column value like it would be a fixed char
|
|
field */
|
|
}
|
|
|
|
|
|
} else if (field->prefix_len > 0) {
|
|
/* Looks like MySQL pads unused end bytes in the
|
|
prefix with space. Therefore, also in UTF-8, it is ok
|
|
to compare with a prefix containing full prefix_len
|
|
bytes, and no need to take at most prefix_len / 3
|
|
UTF-8 characters from the start.
|
|
If the prefix is used as the upper end of a LIKE
|
|
'abc%' query, then MySQL pads the end with chars
|
|
0xff. TODO: in that case does it any harm to compare
|
|
with the full prefix_len bytes. How do characters
|
|
0xff in UTF-8 behave? */
|
|
|
|
data_len = field->prefix_len;
|
|
data_field_len = data_offset + data_len;
|
|
} else {
|
|
data_len = dfield_get_type(dfield)->len;
|
|
data_field_len = data_offset + data_len;
|
|
}
|
|
|
|
if ((dtype_get_mysql_type(dfield_get_type(dfield))
|
|
== DATA_MYSQL_TRUE_VARCHAR)
|
|
&& (type != DATA_INT)) {
|
|
/* In a MySQL key value format, a true VARCHAR is
|
|
always preceded by 2 bytes of a length field.
|
|
dfield_get_type(dfield)->len returns the maximum
|
|
'payload' len in bytes. That does not include the
|
|
2 bytes that tell the actual data length.
|
|
|
|
We added the check != DATA_INT to make sure we do
|
|
not treat MySQL ENUM or SET as a true VARCHAR! */
|
|
|
|
data_len += 2;
|
|
data_field_len += 2;
|
|
}
|
|
|
|
/* Storing may use at most data_len bytes of buf */
|
|
|
|
if (UNIV_LIKELY(!is_null)) {
|
|
buf = row_mysql_store_col_in_innobase_format(
|
|
dfield, buf,
|
|
FALSE, /* MySQL key value format col */
|
|
key_ptr + data_offset, data_len,
|
|
dict_table_is_comp(index->table));
|
|
ut_a(buf <= original_buf + buf_len);
|
|
}
|
|
|
|
key_ptr += data_field_len;
|
|
|
|
if (UNIV_UNLIKELY(key_ptr > key_end)) {
|
|
/* The last field in key was not a complete key field
|
|
but a prefix of it.
|
|
|
|
Print a warning about this! HA_READ_PREFIX_LAST does
|
|
not currently work in InnoDB with partial-field key
|
|
value prefixes. Since MySQL currently uses a padding
|
|
trick to calculate LIKE 'abc%' type queries there
|
|
should never be partial-field prefixes in searches. */
|
|
|
|
ib::warn() << "Using a partial-field key prefix in"
|
|
" search, index " << index->name
|
|
<< " of table " << index->table->name
|
|
<< ". Last data field length "
|
|
<< data_field_len << " bytes, key ptr now"
|
|
" exceeds key end by " << (key_ptr - key_end)
|
|
<< " bytes. Key value in the MySQL format:";
|
|
|
|
ut_print_buf(stderr, original_key_ptr, key_len);
|
|
putc('\n', stderr);
|
|
|
|
if (!is_null) {
|
|
ulint len = dfield_get_len(dfield);
|
|
dfield_set_len(dfield, len
|
|
- (ulint) (key_ptr - key_end));
|
|
}
|
|
ut_ad(0);
|
|
}
|
|
|
|
n_fields++;
|
|
field++;
|
|
dfield++;
|
|
}
|
|
|
|
ut_a(buf <= original_buf + buf_len);
|
|
|
|
/* We set the length of tuple to n_fields: we assume that the memory
|
|
area allocated for it is big enough (usually bigger than n_fields). */
|
|
|
|
dtuple_set_n_fields(tuple, n_fields);
|
|
}
|
|
|
|
/**************************************************************//**
|
|
Stores the row id to the prebuilt struct. */
|
|
static
|
|
void
|
|
row_sel_store_row_id_to_prebuilt(
|
|
/*=============================*/
|
|
row_prebuilt_t* prebuilt, /*!< in/out: prebuilt */
|
|
const rec_t* index_rec, /*!< in: record */
|
|
const dict_index_t* index, /*!< in: index of the record */
|
|
const ulint* offsets) /*!< in: rec_get_offsets
|
|
(index_rec, index) */
|
|
{
|
|
const byte* data;
|
|
ulint len;
|
|
|
|
ut_ad(rec_offs_validate(index_rec, index, offsets));
|
|
|
|
data = rec_get_nth_field(
|
|
index_rec, offsets,
|
|
dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len);
|
|
|
|
if (UNIV_UNLIKELY(len != DATA_ROW_ID_LEN)) {
|
|
|
|
ib::error() << "Row id field is wrong length " << len << " in"
|
|
" index " << index->name
|
|
<< " of table " << index->table->name
|
|
<< ", Field number "
|
|
<< dict_index_get_sys_col_pos(index, DATA_ROW_ID)
|
|
<< ", record:";
|
|
|
|
rec_print_new(stderr, index_rec, offsets);
|
|
putc('\n', stderr);
|
|
ut_error;
|
|
}
|
|
|
|
ut_memcpy(prebuilt->row_id, data, len);
|
|
}
|
|
|
|
/**************************************************************//**
|
|
Stores a non-SQL-NULL field in the MySQL format. The counterpart of this
|
|
function is row_mysql_store_col_in_innobase_format() in row0mysql.cc. */
|
|
void
|
|
row_sel_field_store_in_mysql_format_func(
|
|
byte* dest,
|
|
const mysql_row_templ_t* templ,
|
|
#ifdef UNIV_DEBUG
|
|
const dict_index_t* index,
|
|
ulint field_no,
|
|
#endif /* UNIV_DEBUG */
|
|
const byte* data,
|
|
ulint len)
|
|
{
|
|
byte* ptr;
|
|
#ifdef UNIV_DEBUG
|
|
const dict_field_t* field
|
|
= templ->is_virtual
|
|
? NULL : dict_index_get_nth_field(index, field_no);
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
ut_ad(len != UNIV_SQL_NULL);
|
|
UNIV_MEM_ASSERT_RW(data, len);
|
|
UNIV_MEM_ASSERT_W(dest, templ->mysql_col_len);
|
|
UNIV_MEM_INVALID(dest, templ->mysql_col_len);
|
|
|
|
switch (templ->type) {
|
|
const byte* field_end;
|
|
byte* pad;
|
|
case DATA_INT:
|
|
/* Convert integer data from Innobase to a little-endian
|
|
format, sign bit restored to normal */
|
|
|
|
ptr = dest + len;
|
|
|
|
for (;;) {
|
|
ptr--;
|
|
*ptr = *data;
|
|
if (ptr == dest) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
if (!templ->is_unsigned) {
|
|
dest[len - 1] = (byte) (dest[len - 1] ^ 128);
|
|
}
|
|
|
|
ut_ad(templ->mysql_col_len == len);
|
|
break;
|
|
|
|
case DATA_VARCHAR:
|
|
case DATA_VARMYSQL:
|
|
case DATA_BINARY:
|
|
field_end = dest + templ->mysql_col_len;
|
|
|
|
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) {
|
|
/* This is a >= 5.0.3 type true VARCHAR. Store the
|
|
length of the data to the first byte or the first
|
|
two bytes of dest. */
|
|
|
|
dest = row_mysql_store_true_var_len(
|
|
dest, len, templ->mysql_length_bytes);
|
|
/* Copy the actual data. Leave the rest of the
|
|
buffer uninitialized. */
|
|
memcpy(dest, data, len);
|
|
break;
|
|
}
|
|
|
|
/* Copy the actual data */
|
|
ut_memcpy(dest, data, len);
|
|
|
|
/* Pad with trailing spaces. */
|
|
|
|
pad = dest + len;
|
|
|
|
ut_ad(templ->mbminlen <= templ->mbmaxlen);
|
|
|
|
/* We treat some Unicode charset strings specially. */
|
|
switch (templ->mbminlen) {
|
|
case 4:
|
|
/* InnoDB should never have stripped partial
|
|
UTF-32 characters. */
|
|
ut_a(!(len & 3));
|
|
break;
|
|
case 2:
|
|
/* A space char is two bytes,
|
|
0x0020 in UCS2 and UTF-16 */
|
|
|
|
if (UNIV_UNLIKELY(len & 1)) {
|
|
/* A 0x20 has been stripped from the column.
|
|
Pad it back. */
|
|
|
|
if (pad < field_end) {
|
|
*pad++ = 0x20;
|
|
}
|
|
}
|
|
}
|
|
|
|
row_mysql_pad_col(templ->mbminlen, pad, field_end - pad);
|
|
break;
|
|
|
|
case DATA_BLOB:
|
|
/* Store a pointer to the BLOB buffer to dest: the BLOB was
|
|
already copied to the buffer in row_sel_store_mysql_rec */
|
|
|
|
row_mysql_store_blob_ref(dest, templ->mysql_col_len, data,
|
|
len);
|
|
break;
|
|
|
|
case DATA_GEOMETRY:
|
|
/* We store all geometry data as BLOB data at server layer. */
|
|
row_mysql_store_geometry(dest, templ->mysql_col_len, data, len);
|
|
break;
|
|
|
|
case DATA_MYSQL:
|
|
memcpy(dest, data, len);
|
|
|
|
ut_ad(templ->mysql_col_len >= len);
|
|
ut_ad(templ->mbmaxlen >= templ->mbminlen);
|
|
|
|
/* If field_no equals to templ->icp_rec_field_no,
|
|
we are examining a row pointed by "icp_rec_field_no".
|
|
There is possibility that icp_rec_field_no refers to
|
|
a field in a secondary index while templ->rec_field_no
|
|
points to field in a primary index. The length
|
|
should still be equal, unless the field pointed
|
|
by icp_rec_field_no has a prefix */
|
|
ut_ad(templ->mbmaxlen > templ->mbminlen
|
|
|| templ->mysql_col_len == len
|
|
|| (field_no == templ->icp_rec_field_no
|
|
&& field->prefix_len > 0));
|
|
|
|
/* The following assertion would fail for old tables
|
|
containing UTF-8 ENUM columns due to Bug #9526. */
|
|
ut_ad(!templ->mbmaxlen
|
|
|| !(templ->mysql_col_len % templ->mbmaxlen));
|
|
ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len
|
|
|| (field_no == templ->icp_rec_field_no
|
|
&& field->prefix_len > 0)
|
|
|| templ->rec_field_is_prefix);
|
|
|
|
ut_ad(templ->is_virtual
|
|
|| !(field->prefix_len % templ->mbmaxlen));
|
|
|
|
if (templ->mbminlen == 1 && templ->mbmaxlen != 1) {
|
|
/* Pad with spaces. This undoes the stripping
|
|
done in row0mysql.cc, function
|
|
row_mysql_store_col_in_innobase_format(). */
|
|
|
|
memset(dest + len, 0x20, templ->mysql_col_len - len);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
#ifdef UNIV_DEBUG
|
|
case DATA_SYS_CHILD:
|
|
case DATA_SYS:
|
|
/* These column types should never be shipped to MySQL. */
|
|
ut_ad(0);
|
|
/* fall through */
|
|
|
|
case DATA_CHAR:
|
|
case DATA_FIXBINARY:
|
|
case DATA_FLOAT:
|
|
case DATA_DOUBLE:
|
|
case DATA_DECIMAL:
|
|
/* Above are the valid column types for MySQL data. */
|
|
#endif /* UNIV_DEBUG */
|
|
ut_ad((templ->is_virtual && !field)
|
|
|| (field && field->prefix_len
|
|
? field->prefix_len == len
|
|
: templ->mysql_col_len == len));
|
|
memcpy(dest, data, len);
|
|
}
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
/** Convert a field from Innobase format to MySQL format. */
|
|
# define row_sel_store_mysql_field(m,p,r,i,o,f,t) \
|
|
row_sel_store_mysql_field_func(m,p,r,i,o,f,t)
|
|
#else /* UNIV_DEBUG */
|
|
/** Convert a field from Innobase format to MySQL format. */
|
|
# define row_sel_store_mysql_field(m,p,r,i,o,f,t) \
|
|
row_sel_store_mysql_field_func(m,p,r,o,f,t)
|
|
#endif /* UNIV_DEBUG */
|
|
/** Convert a field in the Innobase format to a field in the MySQL format.
|
|
@param[out] mysql_rec record in the MySQL format
|
|
@param[in,out] prebuilt prebuilt struct
|
|
@param[in] rec InnoDB record; must be protected
|
|
by a page latch
|
|
@param[in] index index of rec
|
|
@param[in] offsets array returned by rec_get_offsets()
|
|
@param[in] field_no templ->rec_field_no or
|
|
templ->clust_rec_field_no
|
|
or templ->icp_rec_field_no
|
|
@param[in] templ row template
|
|
*/
|
|
static MY_ATTRIBUTE((warn_unused_result))
|
|
ibool
|
|
row_sel_store_mysql_field_func(
|
|
byte* mysql_rec,
|
|
row_prebuilt_t* prebuilt,
|
|
const rec_t* rec,
|
|
#ifdef UNIV_DEBUG
|
|
const dict_index_t* index,
|
|
#endif
|
|
const ulint* offsets,
|
|
ulint field_no,
|
|
const mysql_row_templ_t*templ)
|
|
{
|
|
DBUG_ENTER("row_sel_store_mysql_field_func");
|
|
|
|
const byte* data;
|
|
ulint len;
|
|
|
|
ut_ad(prebuilt->default_rec);
|
|
ut_ad(templ);
|
|
ut_ad(templ >= prebuilt->mysql_template);
|
|
ut_ad(templ < &prebuilt->mysql_template[prebuilt->n_template]);
|
|
ut_ad(field_no == templ->clust_rec_field_no
|
|
|| field_no == templ->rec_field_no
|
|
|| field_no == templ->icp_rec_field_no);
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no))) {
|
|
|
|
mem_heap_t* heap;
|
|
/* Copy an externally stored field to a temporary heap */
|
|
|
|
ut_ad(field_no == templ->clust_rec_field_no);
|
|
|
|
if (DATA_LARGE_MTYPE(templ->type)) {
|
|
if (prebuilt->blob_heap == NULL) {
|
|
prebuilt->blob_heap = mem_heap_create(
|
|
UNIV_PAGE_SIZE);
|
|
}
|
|
|
|
heap = prebuilt->blob_heap;
|
|
} else {
|
|
heap = mem_heap_create(UNIV_PAGE_SIZE);
|
|
}
|
|
|
|
/* NOTE: if we are retrieving a big BLOB, we may
|
|
already run out of memory in the next call, which
|
|
causes an assert */
|
|
|
|
data = btr_rec_copy_externally_stored_field(
|
|
rec, offsets,
|
|
dict_table_page_size(prebuilt->table),
|
|
field_no, &len, heap);
|
|
|
|
if (UNIV_UNLIKELY(!data)) {
|
|
/* The externally stored field was not written
|
|
yet. This record should only be seen by
|
|
recv_recovery_rollback_active() or any
|
|
TRX_ISO_READ_UNCOMMITTED transactions. */
|
|
|
|
if (heap != prebuilt->blob_heap) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
ut_a(prebuilt->trx->isolation_level
|
|
== TRX_ISO_READ_UNCOMMITTED);
|
|
DBUG_RETURN(FALSE);
|
|
}
|
|
|
|
ut_a(len != UNIV_SQL_NULL);
|
|
|
|
row_sel_field_store_in_mysql_format(
|
|
mysql_rec + templ->mysql_col_offset,
|
|
templ, index, field_no, data, len);
|
|
|
|
if (heap != prebuilt->blob_heap) {
|
|
mem_heap_free(heap);
|
|
}
|
|
} else {
|
|
/* Field is stored in the row. */
|
|
|
|
data = rec_get_nth_field(rec, offsets, field_no, &len);
|
|
|
|
if (len == UNIV_SQL_NULL) {
|
|
/* MySQL assumes that the field for an SQL
|
|
NULL value is set to the default value. */
|
|
ut_ad(templ->mysql_null_bit_mask);
|
|
|
|
UNIV_MEM_ASSERT_RW(prebuilt->default_rec
|
|
+ templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
mysql_rec[templ->mysql_null_byte_offset]
|
|
|= (byte) templ->mysql_null_bit_mask;
|
|
memcpy(mysql_rec + templ->mysql_col_offset,
|
|
(const byte*) prebuilt->default_rec
|
|
+ templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
if (DATA_LARGE_MTYPE(templ->type)
|
|
|| DATA_GEOMETRY_MTYPE(templ->type)) {
|
|
|
|
/* It is a BLOB field locally stored in the
|
|
InnoDB record: we MUST copy its contents to
|
|
prebuilt->blob_heap here because
|
|
row_sel_field_store_in_mysql_format() stores a
|
|
pointer to the data, and the data passed to us
|
|
will be invalid as soon as the
|
|
mini-transaction is committed and the page
|
|
latch on the clustered index page is
|
|
released. */
|
|
|
|
if (prebuilt->blob_heap == NULL) {
|
|
prebuilt->blob_heap = mem_heap_create(
|
|
UNIV_PAGE_SIZE);
|
|
DBUG_PRINT("anna", ("blob_heap allocated: %p",
|
|
prebuilt->blob_heap));
|
|
}
|
|
|
|
data = static_cast<byte*>(
|
|
mem_heap_dup(prebuilt->blob_heap, data, len));
|
|
}
|
|
|
|
row_sel_field_store_in_mysql_format(
|
|
mysql_rec + templ->mysql_col_offset,
|
|
templ, index, field_no, data, len);
|
|
}
|
|
|
|
ut_ad(len != UNIV_SQL_NULL);
|
|
|
|
if (templ->mysql_null_bit_mask) {
|
|
/* It is a nullable column with a non-NULL
|
|
value */
|
|
mysql_rec[templ->mysql_null_byte_offset]
|
|
&= ~(byte) templ->mysql_null_bit_mask;
|
|
}
|
|
|
|
DBUG_RETURN(TRUE);
|
|
}
|
|
|
|
/** Convert a row in the Innobase format to a row in the MySQL format.
|
|
Note that the template in prebuilt may advise us to copy only a few
|
|
columns to mysql_rec, other columns are left blank. All columns may not
|
|
be needed in the query.
|
|
@param[out] mysql_rec row in the MySQL format
|
|
@param[in] prebuilt cursor
|
|
@param[in] rec Innobase record in the index
|
|
which was described in prebuilt's
|
|
template, or in the clustered index;
|
|
must be protected by a page latch
|
|
@param[in] vrow virtual columns
|
|
@param[in] rec_clust whether index must be the clustered index
|
|
@param[in] index index of rec
|
|
@param[in] offsets array returned by rec_get_offsets(rec)
|
|
@retval true on success
|
|
@retval false if not all columns could be retrieved */
|
|
MY_ATTRIBUTE((warn_unused_result))
|
|
static bool row_sel_store_mysql_rec(
|
|
byte* mysql_rec,
|
|
row_prebuilt_t* prebuilt,
|
|
const rec_t* rec,
|
|
const dtuple_t* vrow,
|
|
bool rec_clust,
|
|
const dict_index_t* index,
|
|
const ulint* offsets)
|
|
{
|
|
DBUG_ENTER("row_sel_store_mysql_rec");
|
|
|
|
ut_ad(rec_clust || index == prebuilt->index);
|
|
ut_ad(!rec_clust || dict_index_is_clust(index));
|
|
|
|
if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) {
|
|
row_mysql_prebuilt_free_blob_heap(prebuilt);
|
|
}
|
|
|
|
for (ulint i = 0; i < prebuilt->n_template; i++) {
|
|
const mysql_row_templ_t*templ = &prebuilt->mysql_template[i];
|
|
|
|
if (templ->is_virtual && dict_index_is_clust(index)) {
|
|
/* Virtual columns are never declared NOT NULL. */
|
|
ut_ad(templ->mysql_null_bit_mask);
|
|
|
|
/* Skip virtual columns if it is not a covered
|
|
search or virtual key read is not requested. */
|
|
if (!rec_clust
|
|
|| !prebuilt->index->has_virtual()
|
|
|| (!prebuilt->read_just_key
|
|
&& !prebuilt->m_read_virtual_key)) {
|
|
/* Initialize the NULL bit. */
|
|
mysql_rec[templ->mysql_null_byte_offset]
|
|
|= (byte) templ->mysql_null_bit_mask;
|
|
continue;
|
|
}
|
|
|
|
dict_v_col_t* col;
|
|
col = dict_table_get_nth_v_col(
|
|
index->table, templ->clust_rec_field_no);
|
|
|
|
ut_ad(vrow);
|
|
|
|
const dfield_t* dfield = dtuple_get_nth_v_field(
|
|
vrow, col->v_pos);
|
|
|
|
/* If this is a partitioned table, it might request
|
|
InnoDB to fill out virtual column data for serach
|
|
index key values while other non key columns are also
|
|
getting selected. The non-key virtual columns may
|
|
not be materialized and we should skip them. */
|
|
if (dfield_get_type(dfield)->mtype == DATA_MISSING) {
|
|
#ifdef UNIV_DEBUG
|
|
ulint prefix;
|
|
#endif /* UNIV_DEBUG */
|
|
ut_ad(prebuilt->m_read_virtual_key);
|
|
|
|
/* If it is part of index key the data should
|
|
have been materialized. */
|
|
ut_ad(dict_index_get_nth_col_or_prefix_pos(
|
|
prebuilt->index, col->v_pos, false,
|
|
true, &prefix) == ULINT_UNDEFINED);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (dfield->len == UNIV_SQL_NULL) {
|
|
mysql_rec[templ->mysql_null_byte_offset]
|
|
|= (byte) templ->mysql_null_bit_mask;
|
|
memcpy(mysql_rec
|
|
+ templ->mysql_col_offset,
|
|
(const byte*) prebuilt->default_rec
|
|
+ templ->mysql_col_offset,
|
|
templ->mysql_col_len);
|
|
} else {
|
|
row_sel_field_store_in_mysql_format(
|
|
mysql_rec + templ->mysql_col_offset,
|
|
templ, index, templ->clust_rec_field_no,
|
|
(const byte*)dfield->data, dfield->len);
|
|
if (templ->mysql_null_bit_mask) {
|
|
mysql_rec[
|
|
templ->mysql_null_byte_offset]
|
|
&= ~(byte) templ->mysql_null_bit_mask;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
const ulint field_no
|
|
= rec_clust
|
|
? templ->clust_rec_field_no
|
|
: templ->rec_field_no;
|
|
/* We should never deliver column prefixes to MySQL,
|
|
except for evaluating innobase_index_cond(). */
|
|
/* ...actually, we do want to do this in order to
|
|
support the prefix query optimization.
|
|
|
|
ut_ad(dict_index_get_nth_field(index, field_no)->prefix_len
|
|
== 0);
|
|
|
|
...so we disable this assert. */
|
|
|
|
if (!row_sel_store_mysql_field(mysql_rec, prebuilt,
|
|
rec, index, offsets,
|
|
field_no, templ)) {
|
|
|
|
DBUG_RETURN(false);
|
|
}
|
|
}
|
|
|
|
/* FIXME: We only need to read the doc_id if an FTS indexed
|
|
column is being updated.
|
|
NOTE, the record can be cluster or secondary index record.
|
|
if secondary index is used then FTS_DOC_ID column should be part
|
|
of this index. */
|
|
if (dict_table_has_fts_index(prebuilt->table)) {
|
|
if (dict_index_is_clust(index)
|
|
|| prebuilt->fts_doc_id_in_read_set) {
|
|
prebuilt->fts_doc_id = fts_get_doc_id_from_rec(
|
|
prebuilt->table, rec, index, NULL);
|
|
}
|
|
}
|
|
|
|
DBUG_RETURN(true);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Builds a previous version of a clustered index record for a consistent read
|
|
@return DB_SUCCESS or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result))
|
|
dberr_t
|
|
row_sel_build_prev_vers_for_mysql(
|
|
/*==============================*/
|
|
ReadView* read_view, /*!< in: read view */
|
|
dict_index_t* clust_index, /*!< in: clustered index */
|
|
row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */
|
|
const rec_t* rec, /*!< in: record in a clustered index */
|
|
ulint** offsets, /*!< in/out: offsets returned by
|
|
rec_get_offsets(rec, clust_index) */
|
|
mem_heap_t** offset_heap, /*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
rec_t** old_vers, /*!< out: old version, or NULL if the
|
|
record does not exist in the view:
|
|
i.e., it was freshly inserted
|
|
afterwards */
|
|
dtuple_t** vrow, /*!< out: dtuple to hold old virtual
|
|
column data */
|
|
mtr_t* mtr) /*!< in: mtr */
|
|
{
|
|
dberr_t err;
|
|
|
|
if (prebuilt->old_vers_heap) {
|
|
mem_heap_empty(prebuilt->old_vers_heap);
|
|
} else {
|
|
prebuilt->old_vers_heap = mem_heap_create(200);
|
|
}
|
|
|
|
err = row_vers_build_for_consistent_read(
|
|
rec, mtr, clust_index, offsets, read_view, offset_heap,
|
|
prebuilt->old_vers_heap, old_vers, vrow);
|
|
return(err);
|
|
}
|
|
|
|
/*********************************************************************//**
|
|
Retrieves the clustered index record corresponding to a record in a
|
|
non-clustered index. Does the necessary locking. Used in the MySQL
|
|
interface.
|
|
@return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */
|
|
static MY_ATTRIBUTE((warn_unused_result))
|
|
dberr_t
|
|
row_sel_get_clust_rec_for_mysql(
|
|
/*============================*/
|
|
row_prebuilt_t* prebuilt,/*!< in: prebuilt struct in the handle */
|
|
dict_index_t* sec_index,/*!< in: secondary index where rec resides */
|
|
const rec_t* rec, /*!< in: record in a non-clustered index; if
|
|
this is a locking read, then rec is not
|
|
allowed to be delete-marked, and that would
|
|
not make sense either */
|
|
que_thr_t* thr, /*!< in: query thread */
|
|
const rec_t** out_rec,/*!< out: clustered record or an old version of
|
|
it, NULL if the old version did not exist
|
|
in the read view, i.e., it was a fresh
|
|
inserted version */
|
|
ulint** offsets,/*!< in: offsets returned by
|
|
rec_get_offsets(rec, sec_index);
|
|
out: offsets returned by
|
|
rec_get_offsets(out_rec, clust_index) */
|
|
mem_heap_t** offset_heap,/*!< in/out: memory heap from which
|
|
the offsets are allocated */
|
|
dtuple_t** vrow, /*!< out: virtual column to fill */
|
|
mtr_t* mtr) /*!< in: mtr used to get access to the
|
|
non-clustered record; the same mtr is used to
|
|
access the clustered index */
|
|
{
|
|
dict_index_t* clust_index;
|
|
const rec_t* clust_rec;
|
|
rec_t* old_vers;
|
|
dberr_t err;
|
|
trx_t* trx;
|
|
|
|
*out_rec = NULL;
|
|
trx = thr_get_trx(thr);
|
|
|
|
srv_stats.n_sec_rec_cluster_reads.inc(
|
|
thd_get_thread_id(trx->mysql_thd));
|
|
|
|
row_build_row_ref_in_tuple(prebuilt->clust_ref, rec,
|
|
sec_index, *offsets, trx);
|
|
|
|
clust_index = dict_table_get_first_index(sec_index->table);
|
|
|
|
btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref,
|
|
PAGE_CUR_LE, BTR_SEARCH_LEAF,
|
|
prebuilt->clust_pcur, 0, mtr);
|
|
|
|
clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur);
|
|
|
|
prebuilt->clust_pcur->trx_if_known = trx;
|
|
|
|
/* Note: only if the search ends up on a non-infimum record is the
|
|
low_match value the real match to the search tuple */
|
|
|
|
if (!page_rec_is_user_rec(clust_rec)
|
|
|| btr_pcur_get_low_match(prebuilt->clust_pcur)
|
|
< dict_index_get_n_unique(clust_index)) {
|
|
btr_cur_t* btr_cur = btr_pcur_get_btr_cur(prebuilt->pcur);
|
|
|
|
/* If this is a spatial index scan, and we are reading
|
|
from a shadow buffer, the record could be already
|
|
deleted (due to rollback etc.). So get the original
|
|
page and verify that */
|
|
if (dict_index_is_spatial(sec_index)
|
|
&& btr_cur->rtr_info->matches
|
|
&& (page_align(rec)
|
|
== btr_cur->rtr_info->matches->block.frame
|
|
|| rec != btr_pcur_get_rec(prebuilt->pcur))) {
|
|
#ifdef UNIV_DEBUG
|
|
rtr_info_t* rtr_info = btr_cur->rtr_info;
|
|
mutex_enter(&rtr_info->matches->rtr_match_mutex);
|
|
/* The page could be deallocated (by rollback etc.) */
|
|
if (!rtr_info->matches->valid) {
|
|
mutex_exit(&rtr_info->matches->rtr_match_mutex);
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
mutex_exit(&rtr_info->matches->rtr_match_mutex);
|
|
|
|
if (rec_get_deleted_flag(rec,
|
|
dict_table_is_comp(sec_index->table))
|
|
&& prebuilt->select_lock_type == LOCK_NONE) {
|
|
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
if (rec != btr_pcur_get_rec(prebuilt->pcur)) {
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
/* FIXME: Why is this block not the
|
|
same as btr_pcur_get_block(prebuilt->pcur),
|
|
and is it not unsafe to use RW_NO_LATCH here? */
|
|
buf_block_t* block = buf_page_get_gen(
|
|
btr_pcur_get_block(prebuilt->pcur)->page.id,
|
|
dict_table_page_size(sec_index->table),
|
|
RW_NO_LATCH, NULL, BUF_GET,
|
|
__FILE__, __LINE__, mtr, &err);
|
|
mem_heap_t* heap = mem_heap_create(256);
|
|
dtuple_t* tuple = dict_index_build_data_tuple(
|
|
rec, sec_index, true,
|
|
sec_index->n_fields, heap);
|
|
page_cur_t page_cursor;
|
|
|
|
ulint low_match = page_cur_search(
|
|
block, sec_index, tuple,
|
|
PAGE_CUR_LE, &page_cursor);
|
|
|
|
ut_ad(low_match < dtuple_get_n_fields_cmp(tuple));
|
|
mem_heap_free(heap);
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
#endif /* UNIV_DEBUG */
|
|
} else if (!rec_get_deleted_flag(rec,
|
|
dict_table_is_comp(sec_index->table))
|
|
|| prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* In a rare case it is possible that no clust
|
|
rec is found for a delete-marked secondary index
|
|
record: if in row0umod.cc in
|
|
row_undo_mod_remove_clust_low() we have already removed
|
|
the clust rec, while purge is still cleaning and
|
|
removing secondary index records associated with
|
|
earlier versions of the clustered index record.
|
|
In that case we know that the clustered index
|
|
record did not exist in the read view of trx. */
|
|
ib::error() << "Clustered record for sec rec not found"
|
|
" index " << sec_index->name
|
|
<< " of table " << sec_index->table->name;
|
|
|
|
fputs("InnoDB: sec index record ", stderr);
|
|
rec_print(stderr, rec, sec_index);
|
|
fputs("\n"
|
|
"InnoDB: clust index record ", stderr);
|
|
rec_print(stderr, clust_rec, clust_index);
|
|
putc('\n', stderr);
|
|
trx_print(stderr, trx, 600);
|
|
fputs("\n"
|
|
"InnoDB: Submit a detailed bug report"
|
|
" to https://jira.mariadb.org/\n", stderr);
|
|
ut_ad(0);
|
|
}
|
|
|
|
clust_rec = NULL;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
*offsets = rec_get_offsets(clust_rec, clust_index, *offsets, true,
|
|
ULINT_UNDEFINED, offset_heap);
|
|
|
|
if (prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* Try to place a lock on the index record; we are searching
|
|
the clust rec with a unique condition, hence
|
|
we set a LOCK_REC_NOT_GAP type lock */
|
|
|
|
err = lock_clust_rec_read_check_and_lock(
|
|
0, btr_pcur_get_block(prebuilt->clust_pcur),
|
|
clust_rec, clust_index, *offsets,
|
|
static_cast<lock_mode>(prebuilt->select_lock_type),
|
|
LOCK_REC_NOT_GAP,
|
|
thr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
break;
|
|
default:
|
|
goto err_exit;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
old_vers = NULL;
|
|
|
|
/* If the isolation level allows reading of uncommitted data,
|
|
then we never look for an earlier version */
|
|
|
|
if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED
|
|
&& !lock_clust_rec_cons_read_sees(
|
|
clust_rec, clust_index, *offsets,
|
|
trx_get_read_view(trx))) {
|
|
|
|
/* The following call returns 'offsets' associated with
|
|
'old_vers' */
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
trx->read_view, clust_index, prebuilt,
|
|
clust_rec, offsets, offset_heap, &old_vers,
|
|
vrow, mtr);
|
|
|
|
if (err != DB_SUCCESS || old_vers == NULL) {
|
|
|
|
goto err_exit;
|
|
}
|
|
|
|
clust_rec = old_vers;
|
|
}
|
|
|
|
/* If we had to go to an earlier version of row or the
|
|
secondary index record is delete marked, then it may be that
|
|
the secondary index record corresponding to clust_rec
|
|
(or old_vers) is not rec; in that case we must ignore
|
|
such row because in our snapshot rec would not have existed.
|
|
Remember that from rec we cannot see directly which transaction
|
|
id corresponds to it: we have to go to the clustered index
|
|
record. A query where we want to fetch all rows where
|
|
the secondary index value is in some interval would return
|
|
a wrong result if we would not drop rows which we come to
|
|
visit through secondary index records that would not really
|
|
exist in our snapshot. */
|
|
|
|
/* And for spatial index, since the rec is from shadow buffer,
|
|
so we need to check if it's exactly match the clust_rec. */
|
|
if (clust_rec
|
|
&& (old_vers
|
|
|| trx->isolation_level <= TRX_ISO_READ_UNCOMMITTED
|
|
|| dict_index_is_spatial(sec_index)
|
|
|| rec_get_deleted_flag(rec, dict_table_is_comp(
|
|
sec_index->table)))
|
|
&& !row_sel_sec_rec_is_for_clust_rec(
|
|
rec, sec_index, clust_rec, clust_index, thr)) {
|
|
clust_rec = NULL;
|
|
}
|
|
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
func_exit:
|
|
*out_rec = clust_rec;
|
|
|
|
if (prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* We may use the cursor in update or in unlock_row():
|
|
store its position */
|
|
|
|
btr_pcur_store_position(prebuilt->clust_pcur, mtr);
|
|
}
|
|
|
|
err_exit:
|
|
return(err);
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Restores cursor position after it has been stored. We have to take into
|
|
account that the record cursor was positioned on may have been deleted.
|
|
Then we may have to move the cursor one step up or down.
|
|
@return TRUE if we may need to process the record the cursor is now
|
|
positioned on (i.e. we should not go to the next record yet) */
|
|
static
|
|
ibool
|
|
sel_restore_position_for_mysql(
|
|
/*===========================*/
|
|
ibool* same_user_rec, /*!< out: TRUE if we were able to restore
|
|
the cursor on a user record with the
|
|
same ordering prefix in in the
|
|
B-tree index */
|
|
ulint latch_mode, /*!< in: latch mode wished in
|
|
restoration */
|
|
btr_pcur_t* pcur, /*!< in: cursor whose position
|
|
has been stored */
|
|
ibool moves_up, /*!< in: TRUE if the cursor moves up
|
|
in the index */
|
|
mtr_t* mtr) /*!< in: mtr; CAUTION: may commit
|
|
mtr temporarily! */
|
|
{
|
|
ibool success;
|
|
|
|
success = btr_pcur_restore_position(latch_mode, pcur, mtr);
|
|
|
|
*same_user_rec = success;
|
|
|
|
ut_ad(!success || pcur->rel_pos == BTR_PCUR_ON);
|
|
#ifdef UNIV_DEBUG
|
|
if (pcur->pos_state == BTR_PCUR_IS_POSITIONED_OPTIMISTIC) {
|
|
ut_ad(pcur->rel_pos == BTR_PCUR_BEFORE
|
|
|| pcur->rel_pos == BTR_PCUR_AFTER);
|
|
} else {
|
|
ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED);
|
|
ut_ad((pcur->rel_pos == BTR_PCUR_ON)
|
|
== btr_pcur_is_on_user_rec(pcur));
|
|
}
|
|
#endif /* UNIV_DEBUG */
|
|
|
|
/* The position may need be adjusted for rel_pos and moves_up. */
|
|
|
|
switch (pcur->rel_pos) {
|
|
case BTR_PCUR_ON:
|
|
if (!success && moves_up) {
|
|
next:
|
|
btr_pcur_move_to_next(pcur, mtr);
|
|
return(TRUE);
|
|
}
|
|
return(!success);
|
|
case BTR_PCUR_AFTER_LAST_IN_TREE:
|
|
case BTR_PCUR_BEFORE_FIRST_IN_TREE:
|
|
return(TRUE);
|
|
case BTR_PCUR_AFTER:
|
|
/* positioned to record after pcur->old_rec. */
|
|
pcur->pos_state = BTR_PCUR_IS_POSITIONED;
|
|
prev:
|
|
if (btr_pcur_is_on_user_rec(pcur) && !moves_up) {
|
|
btr_pcur_move_to_prev(pcur, mtr);
|
|
}
|
|
return(TRUE);
|
|
case BTR_PCUR_BEFORE:
|
|
/* For non optimistic restoration:
|
|
The position is now set to the record before pcur->old_rec.
|
|
|
|
For optimistic restoration:
|
|
The position also needs to take the previous search_mode into
|
|
consideration. */
|
|
|
|
switch (pcur->pos_state) {
|
|
case BTR_PCUR_IS_POSITIONED_OPTIMISTIC:
|
|
pcur->pos_state = BTR_PCUR_IS_POSITIONED;
|
|
if (pcur->search_mode == PAGE_CUR_GE) {
|
|
/* Positioned during Greater or Equal search
|
|
with BTR_PCUR_BEFORE. Optimistic restore to
|
|
the same record. If scanning for lower then
|
|
we must move to previous record.
|
|
This can happen with:
|
|
HANDLER READ idx a = (const);
|
|
HANDLER READ idx PREV; */
|
|
goto prev;
|
|
}
|
|
return(TRUE);
|
|
case BTR_PCUR_IS_POSITIONED:
|
|
if (moves_up && btr_pcur_is_on_user_rec(pcur)) {
|
|
goto next;
|
|
}
|
|
return(TRUE);
|
|
case BTR_PCUR_WAS_POSITIONED:
|
|
case BTR_PCUR_NOT_POSITIONED:
|
|
break;
|
|
}
|
|
}
|
|
ut_ad(0);
|
|
return(TRUE);
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Copies a cached field for MySQL from the fetch cache. */
|
|
static
|
|
void
|
|
row_sel_copy_cached_field_for_mysql(
|
|
/*================================*/
|
|
byte* buf, /*!< in/out: row buffer */
|
|
const byte* cache, /*!< in: cached row */
|
|
const mysql_row_templ_t*templ) /*!< in: column template */
|
|
{
|
|
ulint len;
|
|
|
|
buf += templ->mysql_col_offset;
|
|
cache += templ->mysql_col_offset;
|
|
|
|
UNIV_MEM_ASSERT_W(buf, templ->mysql_col_len);
|
|
|
|
if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR
|
|
&& (templ->type != DATA_INT)) {
|
|
/* Check for != DATA_INT to make sure we do
|
|
not treat MySQL ENUM or SET as a true VARCHAR!
|
|
Find the actual length of the true VARCHAR field. */
|
|
row_mysql_read_true_varchar(
|
|
&len, cache, templ->mysql_length_bytes);
|
|
len += templ->mysql_length_bytes;
|
|
UNIV_MEM_INVALID(buf, templ->mysql_col_len);
|
|
} else {
|
|
len = templ->mysql_col_len;
|
|
}
|
|
|
|
ut_memcpy(buf, cache, len);
|
|
}
|
|
|
|
/** Copy used fields from cached row.
|
|
Copy cache record field by field, don't touch fields that
|
|
are not covered by current key.
|
|
@param[out] buf Where to copy the MySQL row.
|
|
@param[in] cached_rec What to copy (in MySQL row format).
|
|
@param[in] prebuilt prebuilt struct. */
|
|
void
|
|
row_sel_copy_cached_fields_for_mysql(
|
|
byte* buf,
|
|
const byte* cached_rec,
|
|
row_prebuilt_t* prebuilt)
|
|
{
|
|
const mysql_row_templ_t*templ;
|
|
ulint i;
|
|
for (i = 0; i < prebuilt->n_template; i++) {
|
|
templ = prebuilt->mysql_template + i;
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual) {
|
|
continue;
|
|
}
|
|
|
|
row_sel_copy_cached_field_for_mysql(
|
|
buf, cached_rec, templ);
|
|
/* Copy NULL bit of the current field from cached_rec
|
|
to buf */
|
|
if (templ->mysql_null_bit_mask) {
|
|
buf[templ->mysql_null_byte_offset]
|
|
^= (buf[templ->mysql_null_byte_offset]
|
|
^ cached_rec[templ->mysql_null_byte_offset])
|
|
& (byte) templ->mysql_null_bit_mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Pops a cached row for MySQL from the fetch cache. */
|
|
UNIV_INLINE
|
|
void
|
|
row_sel_dequeue_cached_row_for_mysql(
|
|
/*=================================*/
|
|
byte* buf, /*!< in/out: buffer where to copy the
|
|
row */
|
|
row_prebuilt_t* prebuilt) /*!< in: prebuilt struct */
|
|
{
|
|
ulint i;
|
|
const mysql_row_templ_t*templ;
|
|
const byte* cached_rec;
|
|
ut_ad(prebuilt->n_fetch_cached > 0);
|
|
ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len);
|
|
|
|
UNIV_MEM_ASSERT_W(buf, prebuilt->mysql_row_len);
|
|
|
|
cached_rec = prebuilt->fetch_cache[prebuilt->fetch_cache_first];
|
|
|
|
if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) {
|
|
row_sel_copy_cached_fields_for_mysql(buf, cached_rec, prebuilt);
|
|
} else if (prebuilt->mysql_prefix_len > 63) {
|
|
/* The record is long. Copy it field by field, in case
|
|
there are some long VARCHAR column of which only a
|
|
small length is being used. */
|
|
UNIV_MEM_INVALID(buf, prebuilt->mysql_prefix_len);
|
|
|
|
/* First copy the NULL bits. */
|
|
ut_memcpy(buf, cached_rec, prebuilt->null_bitmap_len);
|
|
/* Then copy the requested fields. */
|
|
|
|
for (i = 0; i < prebuilt->n_template; i++) {
|
|
templ = prebuilt->mysql_template + i;
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual
|
|
&& !(dict_index_has_virtual(prebuilt->index)
|
|
&& prebuilt->read_just_key)) {
|
|
continue;
|
|
}
|
|
|
|
row_sel_copy_cached_field_for_mysql(
|
|
buf, cached_rec, templ);
|
|
}
|
|
} else {
|
|
ut_memcpy(buf, cached_rec, prebuilt->mysql_prefix_len);
|
|
}
|
|
|
|
prebuilt->n_fetch_cached--;
|
|
prebuilt->fetch_cache_first++;
|
|
|
|
if (prebuilt->n_fetch_cached == 0) {
|
|
prebuilt->fetch_cache_first = 0;
|
|
}
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Initialise the prefetch cache. */
|
|
UNIV_INLINE
|
|
void
|
|
row_sel_prefetch_cache_init(
|
|
/*========================*/
|
|
row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
ulint i;
|
|
ulint sz;
|
|
byte* ptr;
|
|
|
|
/* Reserve space for the magic number. */
|
|
sz = UT_ARR_SIZE(prebuilt->fetch_cache) * (prebuilt->mysql_row_len + 8);
|
|
ptr = static_cast<byte*>(ut_malloc_nokey(sz));
|
|
|
|
for (i = 0; i < UT_ARR_SIZE(prebuilt->fetch_cache); i++) {
|
|
|
|
/* A user has reported memory corruption in these
|
|
buffers in Linux. Put magic numbers there to help
|
|
to track a possible bug. */
|
|
|
|
mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N);
|
|
ptr += 4;
|
|
|
|
prebuilt->fetch_cache[i] = ptr;
|
|
ptr += prebuilt->mysql_row_len;
|
|
|
|
mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N);
|
|
ptr += 4;
|
|
}
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Get the last fetch cache buffer from the queue.
|
|
@return pointer to buffer. */
|
|
UNIV_INLINE
|
|
byte*
|
|
row_sel_fetch_last_buf(
|
|
/*===================*/
|
|
row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
ut_ad(!prebuilt->templ_contains_blob);
|
|
ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE);
|
|
|
|
if (prebuilt->fetch_cache[0] == NULL) {
|
|
/* Allocate memory for the fetch cache */
|
|
ut_ad(prebuilt->n_fetch_cached == 0);
|
|
|
|
row_sel_prefetch_cache_init(prebuilt);
|
|
}
|
|
|
|
ut_ad(prebuilt->fetch_cache_first == 0);
|
|
UNIV_MEM_INVALID(prebuilt->fetch_cache[prebuilt->n_fetch_cached],
|
|
prebuilt->mysql_row_len);
|
|
|
|
return(prebuilt->fetch_cache[prebuilt->n_fetch_cached]);
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Pushes a row for MySQL to the fetch cache. */
|
|
UNIV_INLINE
|
|
void
|
|
row_sel_enqueue_cache_row_for_mysql(
|
|
/*================================*/
|
|
byte* mysql_rec, /*!< in/out: MySQL record */
|
|
row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */
|
|
{
|
|
/* For non ICP code path the row should already exist in the
|
|
next fetch cache slot. */
|
|
|
|
if (prebuilt->idx_cond != NULL) {
|
|
byte* dest = row_sel_fetch_last_buf(prebuilt);
|
|
|
|
ut_memcpy(dest, mysql_rec, prebuilt->mysql_row_len);
|
|
}
|
|
|
|
++prebuilt->n_fetch_cached;
|
|
}
|
|
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
/*********************************************************************//**
|
|
Tries to do a shortcut to fetch a clustered index record with a unique key,
|
|
using the hash index if possible (not always). We assume that the search
|
|
mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx,
|
|
btr search latch has been locked in S-mode if AHI is enabled.
|
|
@return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */
|
|
static
|
|
ulint
|
|
row_sel_try_search_shortcut_for_mysql(
|
|
/*==================================*/
|
|
const rec_t** out_rec,/*!< out: record if found */
|
|
row_prebuilt_t* prebuilt,/*!< in: prebuilt struct */
|
|
ulint** offsets,/*!< in/out: for rec_get_offsets(*out_rec) */
|
|
mem_heap_t** heap, /*!< in/out: heap for rec_get_offsets() */
|
|
mtr_t* mtr) /*!< in: started mtr */
|
|
{
|
|
dict_index_t* index = prebuilt->index;
|
|
const dtuple_t* search_tuple = prebuilt->search_tuple;
|
|
btr_pcur_t* pcur = prebuilt->pcur;
|
|
trx_t* trx = prebuilt->trx;
|
|
const rec_t* rec;
|
|
|
|
ut_ad(dict_index_is_clust(index));
|
|
ut_ad(!prebuilt->templ_contains_blob);
|
|
|
|
btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE,
|
|
BTR_SEARCH_LEAF, pcur, RW_S_LATCH, mtr);
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (!page_rec_is_user_rec(rec)) {
|
|
|
|
return(SEL_RETRY);
|
|
}
|
|
|
|
/* As the cursor is now placed on a user record after a search with
|
|
the mode PAGE_CUR_GE, the up_match field in the cursor tells how many
|
|
fields in the user record matched to the search tuple */
|
|
|
|
if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) {
|
|
|
|
return(SEL_EXHAUSTED);
|
|
}
|
|
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
*offsets = rec_get_offsets(rec, index, *offsets, true,
|
|
ULINT_UNDEFINED, heap);
|
|
|
|
if (!lock_clust_rec_cons_read_sees(
|
|
rec, index, *offsets, trx_get_read_view(trx))) {
|
|
|
|
return(SEL_RETRY);
|
|
}
|
|
|
|
if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) {
|
|
/* In delete-marked records, DB_TRX_ID must
|
|
always refer to an existing undo log record. */
|
|
ut_ad(row_get_rec_trx_id(rec, index, *offsets));
|
|
|
|
return(SEL_EXHAUSTED);
|
|
}
|
|
|
|
*out_rec = rec;
|
|
|
|
return(SEL_FOUND);
|
|
}
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
|
|
/*********************************************************************//**
|
|
Check a pushed-down index condition.
|
|
@return ICP_NO_MATCH, ICP_MATCH, or ICP_OUT_OF_RANGE */
|
|
static
|
|
ICP_RESULT
|
|
row_search_idx_cond_check(
|
|
/*======================*/
|
|
byte* mysql_rec, /*!< out: record
|
|
in MySQL format (invalid unless
|
|
prebuilt->idx_cond!=NULL and
|
|
we return ICP_MATCH) */
|
|
row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct
|
|
for the table handle */
|
|
const rec_t* rec, /*!< in: InnoDB record */
|
|
const ulint* offsets) /*!< in: rec_get_offsets() */
|
|
{
|
|
ICP_RESULT result;
|
|
ulint i;
|
|
|
|
ut_ad(rec_offs_validate(rec, prebuilt->index, offsets));
|
|
|
|
if (!prebuilt->idx_cond) {
|
|
return(ICP_MATCH);
|
|
}
|
|
|
|
MONITOR_INC(MONITOR_ICP_ATTEMPTS);
|
|
|
|
/* Convert to MySQL format those fields that are needed for
|
|
evaluating the index condition. */
|
|
|
|
if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) {
|
|
mem_heap_empty(prebuilt->blob_heap);
|
|
}
|
|
|
|
for (i = 0; i < prebuilt->idx_cond_n_cols; i++) {
|
|
const mysql_row_templ_t*templ = &prebuilt->mysql_template[i];
|
|
|
|
/* Skip virtual columns */
|
|
if (templ->is_virtual) {
|
|
continue;
|
|
}
|
|
|
|
if (!row_sel_store_mysql_field(mysql_rec, prebuilt,
|
|
rec, prebuilt->index, offsets,
|
|
templ->icp_rec_field_no,
|
|
templ)) {
|
|
return(ICP_NO_MATCH);
|
|
}
|
|
}
|
|
|
|
/* We assume that the index conditions on
|
|
case-insensitive columns are case-insensitive. The
|
|
case of such columns may be wrong in a secondary
|
|
index, if the case of the column has been updated in
|
|
the past, or a record has been deleted and a record
|
|
inserted in a different case. */
|
|
result = innobase_index_cond(prebuilt->idx_cond);
|
|
switch (result) {
|
|
case ICP_MATCH:
|
|
/* Convert the remaining fields to MySQL format.
|
|
If this is a secondary index record, we must defer
|
|
this until we have fetched the clustered index record. */
|
|
if (!prebuilt->need_to_access_clustered
|
|
|| dict_index_is_clust(prebuilt->index)) {
|
|
if (!row_sel_store_mysql_rec(
|
|
mysql_rec, prebuilt, rec, NULL, false,
|
|
prebuilt->index, offsets)) {
|
|
ut_ad(dict_index_is_clust(prebuilt->index));
|
|
return(ICP_NO_MATCH);
|
|
}
|
|
}
|
|
MONITOR_INC(MONITOR_ICP_MATCH);
|
|
return(result);
|
|
case ICP_NO_MATCH:
|
|
MONITOR_INC(MONITOR_ICP_NO_MATCH);
|
|
return(result);
|
|
case ICP_OUT_OF_RANGE:
|
|
MONITOR_INC(MONITOR_ICP_OUT_OF_RANGE);
|
|
return(result);
|
|
case ICP_ERROR:
|
|
case ICP_ABORTED_BY_USER:
|
|
return(result);
|
|
}
|
|
|
|
ut_error;
|
|
return(result);
|
|
}
|
|
|
|
/** Extract virtual column data from a virtual index record and fill a dtuple
|
|
@param[in] rec the virtual (secondary) index record
|
|
@param[in] index the virtual index
|
|
@param[in,out] vrow the dtuple where data extract to
|
|
@param[in] heap memory heap to allocate memory
|
|
*/
|
|
static
|
|
void
|
|
row_sel_fill_vrow(
|
|
const rec_t* rec,
|
|
dict_index_t* index,
|
|
dtuple_t** vrow,
|
|
mem_heap_t* heap)
|
|
{
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(!(*vrow));
|
|
ut_ad(page_rec_is_leaf(rec));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
*vrow = dtuple_create_with_vcol(
|
|
heap, 0, dict_table_get_n_v_cols(index->table));
|
|
|
|
/* Initialize all virtual row's mtype to DATA_MISSING */
|
|
dtuple_init_v_fld(*vrow);
|
|
|
|
for (ulint i = 0; i < dict_index_get_n_fields(index); i++) {
|
|
const dict_field_t* field;
|
|
const dict_col_t* col;
|
|
|
|
field = dict_index_get_nth_field(index, i);
|
|
col = dict_field_get_col(field);
|
|
|
|
if (dict_col_is_virtual(col)) {
|
|
const byte* data;
|
|
ulint len;
|
|
|
|
data = rec_get_nth_field(rec, offsets, i, &len);
|
|
|
|
const dict_v_col_t* vcol = reinterpret_cast<
|
|
const dict_v_col_t*>(col);
|
|
|
|
dfield_t* dfield = dtuple_get_nth_v_field(
|
|
*vrow, vcol->v_pos);
|
|
dfield_set_data(dfield, data, len);
|
|
dict_col_copy_type(col, dfield_get_type(dfield));
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Return the record field length in characters.
|
|
@param[in] col table column of the field
|
|
@param[in] field_no field number
|
|
@param[in] rec physical record
|
|
@param[in] offsets field offsets in the physical record
|
|
@return field length in characters. */
|
|
static
|
|
size_t
|
|
rec_field_len_in_chars(
|
|
const dict_col_t* col,
|
|
const ulint field_no,
|
|
const rec_t* rec,
|
|
const ulint* offsets)
|
|
{
|
|
const ulint cset = dtype_get_charset_coll(col->prtype);
|
|
const CHARSET_INFO* cs = all_charsets[cset];
|
|
ulint rec_field_len;
|
|
const char* rec_field = reinterpret_cast<const char *>(
|
|
rec_get_nth_field(
|
|
rec, offsets, field_no, &rec_field_len));
|
|
|
|
if (UNIV_UNLIKELY(!cs)) {
|
|
ib::warn() << "Missing collation " << cset;
|
|
return SIZE_T_MAX;
|
|
}
|
|
|
|
return(cs->cset->numchars(cs, rec_field, rec_field + rec_field_len));
|
|
}
|
|
|
|
/** Avoid the clustered index lookup if all the following conditions
|
|
are true:
|
|
1) all columns are in secondary index
|
|
2) all values for columns that are prefix-only indexes are shorter
|
|
than the prefix size. This optimization can avoid many IOs for certain schemas.
|
|
@return true, to avoid clustered index lookup. */
|
|
static
|
|
bool row_search_with_covering_prefix(
|
|
row_prebuilt_t* prebuilt,
|
|
const rec_t* rec,
|
|
const ulint* offsets)
|
|
{
|
|
const dict_index_t* index = prebuilt->index;
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
if (!srv_prefix_index_cluster_optimization) {
|
|
return false;
|
|
}
|
|
|
|
/** Optimization only applicable if there the number of secondary index
|
|
fields are greater than or equal to number of clustered index fields. */
|
|
if (prebuilt->n_template > index->n_fields) {
|
|
return false;
|
|
}
|
|
|
|
for (ulint i = 0; i < prebuilt->n_template; i++) {
|
|
mysql_row_templ_t* templ = prebuilt->mysql_template + i;
|
|
ulint j = templ->rec_prefix_field_no;
|
|
|
|
/** Condition (1) : is the field in the index. */
|
|
if (j == ULINT_UNDEFINED) {
|
|
return false;
|
|
}
|
|
|
|
/** Condition (2): If this is a prefix index then
|
|
row's value size shorter than prefix length. */
|
|
|
|
if (!templ->rec_field_is_prefix) {
|
|
continue;
|
|
}
|
|
|
|
ulint rec_size = rec_offs_nth_size(offsets, j);
|
|
const dict_field_t* field = dict_index_get_nth_field(index, j);
|
|
ulint max_chars = field->prefix_len / templ->mbmaxlen;
|
|
|
|
ut_a(field->prefix_len > 0);
|
|
|
|
if (rec_size < max_chars) {
|
|
/* Record in bytes shorter than the index
|
|
prefix length in char. */
|
|
continue;
|
|
}
|
|
|
|
if (rec_size * templ->mbminlen >= field->prefix_len) {
|
|
/* Shortest representation string by the
|
|
byte length of the record is longer than the
|
|
maximum possible index prefix. */
|
|
return false;
|
|
}
|
|
|
|
size_t num_chars = rec_field_len_in_chars(
|
|
field->col, j, rec, offsets);
|
|
|
|
if (num_chars >= max_chars) {
|
|
/* No of chars to store the record exceeds
|
|
the index prefix character length. */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* If prefix index optimization condition satisfied then
|
|
for all columns above, use rec_prefix_field_no instead of
|
|
rec_field_no, and skip the clustered lookup below. */
|
|
for (ulint i = 0; i < prebuilt->n_template; i++) {
|
|
mysql_row_templ_t* templ = prebuilt->mysql_template + i;
|
|
templ->rec_field_no = templ->rec_prefix_field_no;
|
|
ut_a(templ->rec_field_no != ULINT_UNDEFINED);
|
|
}
|
|
|
|
srv_stats.n_sec_rec_cluster_reads_avoided.inc();
|
|
return true;
|
|
}
|
|
|
|
/** Searches for rows in the database using cursor.
|
|
Function is mainly used for tables that are shared across connections and
|
|
so it employs technique that can help re-construct the rows that
|
|
transaction is suppose to see.
|
|
It also has optimization such as pre-caching the rows, using AHI, etc.
|
|
|
|
@param[out] buf buffer for the fetched row in MySQL format
|
|
@param[in] mode search mode PAGE_CUR_L
|
|
@param[in,out] prebuilt prebuilt struct for the table handler;
|
|
this contains the info to search_tuple,
|
|
index; if search tuple contains 0 field then
|
|
we position the cursor at start or the end of
|
|
index, depending on 'mode'
|
|
@param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX
|
|
@param[in] direction 0 or ROW_SEL_NEXT or ROW_SEL_PREV;
|
|
Note: if this is != 0, then prebuilt must has a
|
|
pcur with stored position! In opening of a
|
|
cursor 'direction' should be 0.
|
|
@return DB_SUCCESS or error code */
|
|
dberr_t
|
|
row_search_mvcc(
|
|
byte* buf,
|
|
page_cur_mode_t mode,
|
|
row_prebuilt_t* prebuilt,
|
|
ulint match_mode,
|
|
ulint direction)
|
|
{
|
|
DBUG_ENTER("row_search_mvcc");
|
|
|
|
dict_index_t* index = prebuilt->index;
|
|
ibool comp = dict_table_is_comp(index->table);
|
|
const dtuple_t* search_tuple = prebuilt->search_tuple;
|
|
btr_pcur_t* pcur = prebuilt->pcur;
|
|
trx_t* trx = prebuilt->trx;
|
|
dict_index_t* clust_index;
|
|
que_thr_t* thr;
|
|
const rec_t* rec;
|
|
dtuple_t* vrow = NULL;
|
|
const rec_t* result_rec = NULL;
|
|
const rec_t* clust_rec;
|
|
dberr_t err = DB_SUCCESS;
|
|
ibool unique_search = FALSE;
|
|
ibool mtr_has_extra_clust_latch = FALSE;
|
|
ibool moves_up = FALSE;
|
|
ibool set_also_gap_locks = TRUE;
|
|
/* if the query is a plain locking SELECT, and the isolation level
|
|
is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */
|
|
ibool did_semi_consistent_read = FALSE;
|
|
/* if the returned record was locked and we did a semi-consistent
|
|
read (fetch the newest committed version), then this is set to
|
|
TRUE */
|
|
ulint next_offs;
|
|
ibool same_user_rec;
|
|
mtr_t mtr;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
ibool table_lock_waited = FALSE;
|
|
byte* next_buf = 0;
|
|
bool spatial_search = false;
|
|
|
|
rec_offs_init(offsets_);
|
|
|
|
ut_ad(index && pcur && search_tuple);
|
|
ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED);
|
|
ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED);
|
|
|
|
/* We don't support FTS queries from the HANDLER interfaces, because
|
|
we implemented FTS as reversed inverted index with auxiliary tables.
|
|
So anything related to traditional index query would not apply to
|
|
it. */
|
|
if (prebuilt->index->type & DICT_FTS) {
|
|
DBUG_RETURN(DB_END_OF_INDEX);
|
|
}
|
|
|
|
ut_ad(!sync_check_iterate(sync_check()));
|
|
|
|
if (dict_table_is_discarded(prebuilt->table)) {
|
|
DBUG_RETURN(DB_TABLESPACE_DELETED);
|
|
} else if (!prebuilt->table->is_readable()) {
|
|
DBUG_RETURN(fil_space_get(prebuilt->table->space)
|
|
? DB_DECRYPTION_FAILED
|
|
: DB_TABLESPACE_NOT_FOUND);
|
|
} else if (!prebuilt->index_usable) {
|
|
DBUG_RETURN(DB_MISSING_HISTORY);
|
|
} else if (prebuilt->index->is_corrupted()) {
|
|
DBUG_RETURN(DB_CORRUPTION);
|
|
}
|
|
|
|
/* We need to get the virtual column values stored in secondary
|
|
index key, if this is covered index scan or virtual key read is
|
|
requested. */
|
|
bool need_vrow = dict_index_has_virtual(prebuilt->index)
|
|
&& (prebuilt->read_just_key
|
|
|| prebuilt->m_read_virtual_key);
|
|
|
|
/* Reset the new record lock info if srv_locks_unsafe_for_binlog
|
|
is set or session is using a READ COMMITED isolation level. Then
|
|
we are able to remove the record locks set here on an individual
|
|
row. */
|
|
prebuilt->new_rec_locks = 0;
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 1: Try to pop the row from the prefetch cache */
|
|
|
|
if (UNIV_UNLIKELY(direction == 0)) {
|
|
trx->op_info = "starting index read";
|
|
|
|
prebuilt->n_rows_fetched = 0;
|
|
prebuilt->n_fetch_cached = 0;
|
|
prebuilt->fetch_cache_first = 0;
|
|
|
|
if (prebuilt->sel_graph == NULL) {
|
|
/* Build a dummy select query graph */
|
|
row_prebuild_sel_graph(prebuilt);
|
|
}
|
|
} else {
|
|
trx->op_info = "fetching rows";
|
|
|
|
if (prebuilt->n_rows_fetched == 0) {
|
|
prebuilt->fetch_direction = direction;
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) {
|
|
if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) {
|
|
ut_error;
|
|
/* TODO: scrollable cursor: restore cursor to
|
|
the place of the latest returned row,
|
|
or better: prevent caching for a scroll
|
|
cursor! */
|
|
}
|
|
|
|
prebuilt->n_rows_fetched = 0;
|
|
prebuilt->n_fetch_cached = 0;
|
|
prebuilt->fetch_cache_first = 0;
|
|
|
|
} else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) {
|
|
row_sel_dequeue_cached_row_for_mysql(buf, prebuilt);
|
|
|
|
prebuilt->n_rows_fetched++;
|
|
|
|
err = DB_SUCCESS;
|
|
goto func_exit;
|
|
}
|
|
|
|
if (prebuilt->fetch_cache_first > 0
|
|
&& prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) {
|
|
|
|
/* The previous returned row was popped from the fetch
|
|
cache, but the cache was not full at the time of the
|
|
popping: no more rows can exist in the result set */
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_exit;
|
|
}
|
|
|
|
prebuilt->n_rows_fetched++;
|
|
|
|
if (prebuilt->n_rows_fetched > 1000000000) {
|
|
/* Prevent wrap-over */
|
|
prebuilt->n_rows_fetched = 500000000;
|
|
}
|
|
|
|
mode = pcur->search_mode;
|
|
}
|
|
|
|
/* In a search where at most one record in the index may match, we
|
|
can use a LOCK_REC_NOT_GAP type record lock when locking a
|
|
non-delete-marked matching record.
|
|
|
|
Note that in a unique secondary index there may be different
|
|
delete-marked versions of a record where only the primary key
|
|
values differ: thus in a secondary index we must use next-key
|
|
locks when locking delete-marked records. */
|
|
|
|
if (match_mode == ROW_SEL_EXACT
|
|
&& dict_index_is_unique(index)
|
|
&& dtuple_get_n_fields(search_tuple)
|
|
== dict_index_get_n_unique(index)
|
|
&& (dict_index_is_clust(index)
|
|
|| !dtuple_contains_null(search_tuple))) {
|
|
|
|
/* Note above that a UNIQUE secondary index can contain many
|
|
rows with the same key value if one of the columns is the SQL
|
|
null. A clustered index under MySQL can never contain null
|
|
columns because we demand that all the columns in primary key
|
|
are non-null. */
|
|
|
|
unique_search = TRUE;
|
|
|
|
/* Even if the condition is unique, MySQL seems to try to
|
|
retrieve also a second row if a primary key contains more than
|
|
1 column. Return immediately if this is not a HANDLER
|
|
command. */
|
|
|
|
if (UNIV_UNLIKELY(direction != 0
|
|
&& !prebuilt->used_in_HANDLER)) {
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto func_exit;
|
|
}
|
|
}
|
|
|
|
/* We don't support sequencial scan for Rtree index, because it
|
|
is no meaning to do so. */
|
|
if (dict_index_is_spatial(index)
|
|
&& !RTREE_SEARCH_MODE(mode)) {
|
|
err = DB_END_OF_INDEX;
|
|
goto func_exit;
|
|
}
|
|
|
|
mtr.start();
|
|
|
|
#ifdef BTR_CUR_HASH_ADAPT
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 2: Try fast adaptive hash index search if possible */
|
|
|
|
/* Next test if this is the special case where we can use the fast
|
|
adaptive hash index to try the search. Since we must release the
|
|
search system latch when we retrieve an externally stored field, we
|
|
cannot use the adaptive hash index in a search in the case the row
|
|
may be long and there may be externally stored fields */
|
|
|
|
if (UNIV_UNLIKELY(direction == 0)
|
|
&& unique_search
|
|
&& btr_search_enabled
|
|
&& dict_index_is_clust(index)
|
|
&& !prebuilt->templ_contains_blob
|
|
&& !prebuilt->used_in_HANDLER
|
|
&& (prebuilt->mysql_row_len < UNIV_PAGE_SIZE / 8)) {
|
|
|
|
mode = PAGE_CUR_GE;
|
|
|
|
if (trx->mysql_n_tables_locked == 0
|
|
&& prebuilt->select_lock_type == LOCK_NONE
|
|
&& trx->isolation_level > TRX_ISO_READ_UNCOMMITTED
|
|
&& MVCC::is_view_active(trx->read_view)) {
|
|
|
|
/* This is a SELECT query done as a consistent read,
|
|
and the read view has already been allocated:
|
|
let us try a search shortcut through the hash
|
|
index.
|
|
NOTE that we must also test that
|
|
mysql_n_tables_locked == 0, because this might
|
|
also be INSERT INTO ... SELECT ... or
|
|
CREATE TABLE ... SELECT ... . Our algorithm is
|
|
NOT prepared to inserts interleaved with the SELECT,
|
|
and if we try that, we can deadlock on the adaptive
|
|
hash index semaphore! */
|
|
|
|
rw_lock_s_lock(btr_get_search_latch(index));
|
|
|
|
switch (row_sel_try_search_shortcut_for_mysql(
|
|
&rec, prebuilt, &offsets, &heap,
|
|
&mtr)) {
|
|
case SEL_FOUND:
|
|
/* At this point, rec is protected by
|
|
a page latch that was acquired by
|
|
row_sel_try_search_shortcut_for_mysql().
|
|
The latch will not be released until
|
|
mtr.commit(). */
|
|
ut_ad(!rec_get_deleted_flag(rec, comp));
|
|
|
|
if (prebuilt->idx_cond) {
|
|
switch (row_search_idx_cond_check(
|
|
buf, prebuilt,
|
|
rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
case ICP_OUT_OF_RANGE:
|
|
case ICP_ABORTED_BY_USER:
|
|
case ICP_ERROR:
|
|
goto shortcut_mismatch;
|
|
case ICP_MATCH:
|
|
goto shortcut_match;
|
|
}
|
|
}
|
|
|
|
if (!row_sel_store_mysql_rec(
|
|
buf, prebuilt,
|
|
rec, NULL, false, index,
|
|
offsets)) {
|
|
/* Only fresh inserts may contain
|
|
incomplete externally stored
|
|
columns. Pretend that such
|
|
records do not exist. Such
|
|
records may only be accessed
|
|
at the READ UNCOMMITTED
|
|
isolation level or when
|
|
rolling back a recovered
|
|
transaction. Rollback happens
|
|
at a lower level, not here. */
|
|
|
|
/* Proceed as in case SEL_RETRY. */
|
|
break;
|
|
}
|
|
|
|
shortcut_match:
|
|
mtr.commit();
|
|
|
|
/* NOTE that we do NOT store the cursor
|
|
position */
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
|
|
goto func_exit;
|
|
|
|
case SEL_EXHAUSTED:
|
|
shortcut_mismatch:
|
|
mtr.commit();
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
|
|
/* NOTE that we do NOT store the cursor
|
|
position */
|
|
|
|
goto func_exit;
|
|
|
|
case SEL_RETRY:
|
|
break;
|
|
|
|
default:
|
|
ut_ad(0);
|
|
}
|
|
|
|
mtr.commit();
|
|
mtr.start();
|
|
|
|
rw_lock_s_unlock(btr_get_search_latch(index));
|
|
}
|
|
}
|
|
#endif /* BTR_CUR_HASH_ADAPT */
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 3: Open or restore index cursor position */
|
|
|
|
spatial_search = dict_index_is_spatial(index)
|
|
&& mode >= PAGE_CUR_CONTAIN;
|
|
|
|
/* The state of a running trx can only be changed by the
|
|
thread that is currently serving the transaction. Because we
|
|
are that thread, we can read trx->state without holding any
|
|
mutex. */
|
|
ut_ad(prebuilt->sql_stat_start || trx->state == TRX_STATE_ACTIVE);
|
|
|
|
ut_ad(!trx_is_started(trx) || trx->state == TRX_STATE_ACTIVE);
|
|
|
|
ut_ad(prebuilt->sql_stat_start
|
|
|| prebuilt->select_lock_type != LOCK_NONE
|
|
|| MVCC::is_view_active(trx->read_view)
|
|
|| srv_read_only_mode);
|
|
|
|
trx_start_if_not_started(trx, false);
|
|
|
|
if (trx->isolation_level <= TRX_ISO_READ_COMMITTED
|
|
&& prebuilt->select_lock_type != LOCK_NONE
|
|
&& trx->mysql_thd != NULL
|
|
&& thd_is_select(trx->mysql_thd)) {
|
|
/* It is a plain locking SELECT and the isolation
|
|
level is low: do not lock gaps */
|
|
|
|
set_also_gap_locks = FALSE;
|
|
}
|
|
|
|
/* Note that if the search mode was GE or G, then the cursor
|
|
naturally moves upward (in fetch next) in alphabetical order,
|
|
otherwise downward */
|
|
|
|
if (UNIV_UNLIKELY(direction == 0)) {
|
|
if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G
|
|
|| mode >= PAGE_CUR_CONTAIN) {
|
|
moves_up = TRUE;
|
|
}
|
|
} else if (direction == ROW_SEL_NEXT) {
|
|
moves_up = TRUE;
|
|
}
|
|
|
|
thr = que_fork_get_first_thr(prebuilt->sel_graph);
|
|
|
|
que_thr_move_to_run_state_for_mysql(thr, trx);
|
|
|
|
clust_index = dict_table_get_first_index(index->table);
|
|
|
|
/* Do some start-of-statement preparations */
|
|
|
|
if (!prebuilt->sql_stat_start) {
|
|
/* No need to set an intention lock or assign a read view */
|
|
|
|
if (!MVCC::is_view_active(trx->read_view)
|
|
&& !srv_read_only_mode
|
|
&& prebuilt->select_lock_type == LOCK_NONE) {
|
|
|
|
ib::error() << "MySQL is trying to perform a"
|
|
" consistent read but the read view is not"
|
|
" assigned!";
|
|
trx_print(stderr, trx, 600);
|
|
fputc('\n', stderr);
|
|
ut_error;
|
|
}
|
|
} else if (prebuilt->select_lock_type == LOCK_NONE) {
|
|
/* This is a consistent read */
|
|
/* Assign a read view for the query */
|
|
|
|
if (!srv_read_only_mode) {
|
|
trx_assign_read_view(trx);
|
|
}
|
|
|
|
prebuilt->sql_stat_start = FALSE;
|
|
} else {
|
|
wait_table_again:
|
|
err = lock_table(0, index->table,
|
|
prebuilt->select_lock_type == LOCK_S
|
|
? LOCK_IS : LOCK_IX, thr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
table_lock_waited = TRUE;
|
|
goto lock_table_wait;
|
|
}
|
|
prebuilt->sql_stat_start = FALSE;
|
|
}
|
|
|
|
/* Open or restore index cursor position */
|
|
|
|
if (UNIV_LIKELY(direction != 0)) {
|
|
if (spatial_search) {
|
|
/* R-Tree access does not need to do
|
|
cursor position and resposition */
|
|
goto next_rec;
|
|
}
|
|
|
|
ibool need_to_process = sel_restore_position_for_mysql(
|
|
&same_user_rec, BTR_SEARCH_LEAF,
|
|
pcur, moves_up, &mtr);
|
|
|
|
if (UNIV_UNLIKELY(need_to_process)) {
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type
|
|
== ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
/* We did a semi-consistent read,
|
|
but the record was removed in
|
|
the meantime. */
|
|
prebuilt->row_read_type
|
|
= ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
} else if (UNIV_LIKELY(prebuilt->row_read_type
|
|
!= ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
|
|
/* The cursor was positioned on the record
|
|
that we returned previously. If we need
|
|
to repeat a semi-consistent read as a
|
|
pessimistic locking read, the record
|
|
cannot be skipped. */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
} else if (dtuple_get_n_fields(search_tuple) > 0) {
|
|
pcur->btr_cur.thr = thr;
|
|
|
|
if (dict_index_is_spatial(index)) {
|
|
bool need_pred_lock;
|
|
|
|
need_pred_lock = (set_also_gap_locks
|
|
&& !(srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type
|
|
!= LOCK_NONE);
|
|
|
|
if (!prebuilt->rtr_info) {
|
|
prebuilt->rtr_info = rtr_create_rtr_info(
|
|
need_pred_lock, true,
|
|
btr_pcur_get_btr_cur(pcur), index);
|
|
prebuilt->rtr_info->search_tuple = search_tuple;
|
|
prebuilt->rtr_info->search_mode = mode;
|
|
rtr_info_update_btr(btr_pcur_get_btr_cur(pcur),
|
|
prebuilt->rtr_info);
|
|
} else {
|
|
rtr_info_reinit_in_cursor(
|
|
btr_pcur_get_btr_cur(pcur),
|
|
index, need_pred_lock);
|
|
prebuilt->rtr_info->search_tuple = search_tuple;
|
|
prebuilt->rtr_info->search_mode = mode;
|
|
}
|
|
}
|
|
|
|
err = btr_pcur_open_with_no_init(index, search_tuple, mode,
|
|
BTR_SEARCH_LEAF,
|
|
pcur, 0, &mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
rec = NULL;
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
pcur->trx_if_known = trx;
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
ut_ad(page_rec_is_leaf(rec));
|
|
|
|
if (!moves_up
|
|
&& !page_rec_is_supremum(rec)
|
|
&& set_also_gap_locks
|
|
&& !(srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type != LOCK_NONE
|
|
&& !dict_index_is_spatial(index)) {
|
|
|
|
/* Try to place a gap lock on the next index record
|
|
to prevent phantoms in ORDER BY ... DESC queries */
|
|
const rec_t* next_rec = page_rec_get_next_const(rec);
|
|
|
|
offsets = rec_get_offsets(next_rec, index, offsets,
|
|
true,
|
|
ULINT_UNDEFINED, &heap);
|
|
err = sel_set_rec_lock(pcur,
|
|
next_rec, index, offsets,
|
|
prebuilt->select_lock_type,
|
|
LOCK_GAP, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
/* fall through */
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
} else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) {
|
|
err = btr_pcur_open_at_index_side(
|
|
mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF,
|
|
pcur, false, 0, &mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
if (err == DB_DECRYPTION_FAILED) {
|
|
ib_push_warning(trx->mysql_thd,
|
|
DB_DECRYPTION_FAILED,
|
|
"Table %s is encrypted but encryption service or"
|
|
" used key_id is not available. "
|
|
" Can't continue reading table.",
|
|
prebuilt->table->name.m_name);
|
|
index->table->file_unreadable = true;
|
|
}
|
|
rec = NULL;
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
rec_loop:
|
|
DEBUG_SYNC_C("row_search_rec_loop");
|
|
if (trx_is_interrupted(trx)) {
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
err = DB_INTERRUPTED;
|
|
goto normal_return;
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 4: Look for matching records in a loop */
|
|
|
|
rec = btr_pcur_get_rec(pcur);
|
|
|
|
if (!index->table->is_readable()) {
|
|
err = DB_DECRYPTION_FAILED;
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
ut_ad(!!page_rec_is_comp(rec) == comp);
|
|
ut_ad(page_rec_is_leaf(rec));
|
|
|
|
if (page_rec_is_infimum(rec)) {
|
|
|
|
/* The infimum record on a page cannot be in the result set,
|
|
and neither can a record lock be placed on it: we skip such
|
|
a record. */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (page_rec_is_supremum(rec)) {
|
|
|
|
if (set_also_gap_locks
|
|
&& !(srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type != LOCK_NONE
|
|
&& !dict_index_is_spatial(index)) {
|
|
|
|
/* Try to place a lock on the index record */
|
|
|
|
/* If innodb_locks_unsafe_for_binlog option is used
|
|
or this session is using a READ COMMITTED or lower isolation
|
|
level we do not lock gaps. Supremum record is really
|
|
a gap and therefore we do not set locks there. */
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
err = sel_set_rec_lock(pcur,
|
|
rec, index, offsets,
|
|
prebuilt->select_lock_type,
|
|
LOCK_ORDINARY, thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
err = DB_SUCCESS;
|
|
/* fall through */
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
/* A page supremum record cannot be in the result set: skip
|
|
it now that we have placed a possible lock on it */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* Do sanity checks in case our cursor has bumped into page
|
|
corruption */
|
|
|
|
if (comp) {
|
|
next_offs = rec_get_next_offs(rec, TRUE);
|
|
if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) {
|
|
|
|
goto wrong_offs;
|
|
}
|
|
} else {
|
|
next_offs = rec_get_next_offs(rec, FALSE);
|
|
if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) {
|
|
|
|
goto wrong_offs;
|
|
}
|
|
}
|
|
|
|
if (UNIV_UNLIKELY(next_offs >= UNIV_PAGE_SIZE - PAGE_DIR)) {
|
|
|
|
wrong_offs:
|
|
if (srv_force_recovery == 0 || moves_up == FALSE) {
|
|
ib::error() << "Rec address "
|
|
<< static_cast<const void*>(rec)
|
|
<< ", buf block fix count "
|
|
<< btr_cur_get_block(
|
|
btr_pcur_get_btr_cur(pcur))->page
|
|
.buf_fix_count;
|
|
|
|
ib::error() << "Index corruption: rec offs "
|
|
<< page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no "
|
|
<< page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name
|
|
<< " of table " << index->table->name
|
|
<< ". Run CHECK TABLE. You may need to"
|
|
" restore from a backup, or dump + drop +"
|
|
" reimport the table.";
|
|
ut_ad(0);
|
|
err = DB_CORRUPTION;
|
|
|
|
goto lock_wait_or_error;
|
|
} else {
|
|
/* The user may be dumping a corrupt table. Jump
|
|
over the corruption to recover as much as possible. */
|
|
|
|
ib::info() << "Index corruption: rec offs "
|
|
<< page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no "
|
|
<< page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name
|
|
<< " of table " << index->table->name
|
|
<< ". We try to skip the rest of the page.";
|
|
|
|
page_cur_set_after_last(btr_pcur_get_block(pcur),
|
|
btr_pcur_get_page_cur(pcur));
|
|
pcur->old_stored = false;
|
|
goto next_rec;
|
|
}
|
|
}
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/* Calculate the 'offsets' associated with 'rec' */
|
|
|
|
ut_ad(fil_page_index_page_check(btr_pcur_get_page(pcur)));
|
|
ut_ad(btr_page_get_index_id(btr_pcur_get_page(pcur)) == index->id);
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
|
|
if (UNIV_UNLIKELY(srv_force_recovery > 0)) {
|
|
if (!rec_validate(rec, offsets)
|
|
|| !btr_index_rec_validate(rec, index, FALSE)) {
|
|
|
|
ib::error() << "Index corruption: rec offs "
|
|
<< page_offset(rec) << " next offs "
|
|
<< next_offs << ", page no "
|
|
<< page_get_page_no(page_align(rec))
|
|
<< ", index " << index->name
|
|
<< " of table " << index->table->name
|
|
<< ". We try to skip the record.";
|
|
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
/* Note that we cannot trust the up_match value in the cursor at this
|
|
place because we can arrive here after moving the cursor! Thus
|
|
we have to recompare rec and search_tuple to determine if they
|
|
match enough. */
|
|
|
|
if (match_mode == ROW_SEL_EXACT) {
|
|
/* Test if the index record matches completely to search_tuple
|
|
in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */
|
|
|
|
/* fputs("Comparing rec and search tuple\n", stderr); */
|
|
|
|
if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) {
|
|
|
|
if (set_also_gap_locks
|
|
&& !(srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type != LOCK_NONE
|
|
&& !dict_index_is_spatial(index)) {
|
|
|
|
/* Try to place a gap lock on the index
|
|
record only if innodb_locks_unsafe_for_binlog
|
|
option is not set or this session is not
|
|
using a READ COMMITTED or lower isolation level. */
|
|
|
|
err = sel_set_rec_lock(
|
|
pcur,
|
|
rec, index, offsets,
|
|
prebuilt->select_lock_type, LOCK_GAP,
|
|
thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
|
|
/* The found record was not a match, but may be used
|
|
as NEXT record (index_next). Set the relative position
|
|
to BTR_PCUR_BEFORE, to reflect that the position of
|
|
the persistent cursor is before the found/stored row
|
|
(pcur->old_rec). */
|
|
ut_ad(pcur->rel_pos == BTR_PCUR_ON);
|
|
pcur->rel_pos = BTR_PCUR_BEFORE;
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
|
|
} else if (match_mode == ROW_SEL_EXACT_PREFIX) {
|
|
|
|
if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) {
|
|
|
|
if (set_also_gap_locks
|
|
&& !(srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type != LOCK_NONE
|
|
&& !dict_index_is_spatial(index)) {
|
|
|
|
/* Try to place a gap lock on the index
|
|
record only if innodb_locks_unsafe_for_binlog
|
|
option is not set or this session is not
|
|
using a READ COMMITTED or lower isolation level. */
|
|
|
|
err = sel_set_rec_lock(
|
|
pcur,
|
|
rec, index, offsets,
|
|
prebuilt->select_lock_type, LOCK_GAP,
|
|
thr, &mtr);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
case DB_SUCCESS:
|
|
break;
|
|
default:
|
|
goto lock_wait_or_error;
|
|
}
|
|
}
|
|
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
|
|
/* The found record was not a match, but may be used
|
|
as NEXT record (index_next). Set the relative position
|
|
to BTR_PCUR_BEFORE, to reflect that the position of
|
|
the persistent cursor is before the found/stored row
|
|
(pcur->old_rec). */
|
|
ut_ad(pcur->rel_pos == BTR_PCUR_ON);
|
|
pcur->rel_pos = BTR_PCUR_BEFORE;
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto normal_return;
|
|
}
|
|
}
|
|
|
|
/* We are ready to look at a possible new index entry in the result
|
|
set: the cursor is now placed on a user record */
|
|
|
|
if (prebuilt->select_lock_type != LOCK_NONE) {
|
|
/* Try to place a lock on the index record; note that delete
|
|
marked records are a special case in a unique search. If there
|
|
is a non-delete marked record, then it is enough to lock its
|
|
existence with LOCK_REC_NOT_GAP. */
|
|
|
|
/* If innodb_locks_unsafe_for_binlog option is used
|
|
or this session is using a READ COMMITED isolation
|
|
level we lock only the record, i.e., next-key locking is
|
|
not used. */
|
|
|
|
ulint lock_type;
|
|
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED) {
|
|
/* At READ COMMITTED or READ UNCOMMITTED
|
|
isolation levels, do not lock committed
|
|
delete-marked records. */
|
|
if (!rec_get_deleted_flag(rec, comp)) {
|
|
goto no_gap_lock;
|
|
}
|
|
|
|
/* At most one transaction can be active
|
|
for temporary table. */
|
|
if (dict_table_is_temporary(clust_index->table)) {
|
|
goto no_gap_lock;
|
|
}
|
|
|
|
if (index == clust_index) {
|
|
trx_id_t trx_id = row_get_rec_trx_id(
|
|
rec, index, offsets);
|
|
/* In delete-marked records, DB_TRX_ID must
|
|
always refer to an existing undo log record. */
|
|
ut_ad(trx_id);
|
|
if (!trx_rw_is_active(trx_id, NULL, false)) {
|
|
/* The clustered index record
|
|
was delete-marked in a committed
|
|
transaction. Ignore the record. */
|
|
goto locks_ok_del_marked;
|
|
}
|
|
} else if (trx_t* trx = row_vers_impl_x_locked(
|
|
rec, index, offsets)) {
|
|
/* The record belongs to an active
|
|
transaction. We must acquire a lock. */
|
|
trx_release_reference(trx);
|
|
} else {
|
|
/* The secondary index record does not
|
|
point to a delete-marked clustered index
|
|
record that belongs to an active transaction.
|
|
Ignore the secondary index record, because
|
|
it is not locked. */
|
|
goto next_rec;
|
|
}
|
|
|
|
goto no_gap_lock;
|
|
}
|
|
|
|
if (!set_also_gap_locks
|
|
|| (unique_search && !rec_get_deleted_flag(rec, comp))
|
|
|| dict_index_is_spatial(index)) {
|
|
|
|
goto no_gap_lock;
|
|
} else {
|
|
lock_type = LOCK_ORDINARY;
|
|
}
|
|
|
|
/* If we are doing a 'greater or equal than a primary key
|
|
value' search from a clustered index, and we find a record
|
|
that has that exact primary key value, then there is no need
|
|
to lock the gap before the record, because no insert in the
|
|
gap can be in our search range. That is, no phantom row can
|
|
appear that way.
|
|
|
|
An example: if col1 is the primary key, the search is WHERE
|
|
col1 >= 100, and we find a record where col1 = 100, then no
|
|
need to lock the gap before that record. */
|
|
|
|
if (index == clust_index
|
|
&& mode == PAGE_CUR_GE
|
|
&& direction == 0
|
|
&& dtuple_get_n_fields_cmp(search_tuple)
|
|
== dict_index_get_n_unique(index)
|
|
&& 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) {
|
|
no_gap_lock:
|
|
lock_type = LOCK_REC_NOT_GAP;
|
|
}
|
|
|
|
err = sel_set_rec_lock(pcur,
|
|
rec, index, offsets,
|
|
prebuilt->select_lock_type,
|
|
lock_type, thr, &mtr);
|
|
|
|
switch (err) {
|
|
const rec_t* old_vers;
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED) {
|
|
/* Note that a record of
|
|
prebuilt->index was locked. */
|
|
prebuilt->new_rec_locks = 1;
|
|
}
|
|
err = DB_SUCCESS;
|
|
/* fall through */
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_LOCK_WAIT:
|
|
/* Lock wait for R-tree should already
|
|
be handled in sel_set_rtr_rec_lock() */
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
/* Never unlock rows that were part of a conflict. */
|
|
prebuilt->new_rec_locks = 0;
|
|
|
|
if (UNIV_LIKELY(prebuilt->row_read_type
|
|
!= ROW_READ_TRY_SEMI_CONSISTENT)
|
|
|| unique_search
|
|
|| index != clust_index) {
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
/* The following call returns 'offsets'
|
|
associated with 'old_vers' */
|
|
row_sel_build_committed_vers_for_mysql(
|
|
clust_index, prebuilt, rec,
|
|
&offsets, &heap, &old_vers, need_vrow ? &vrow : NULL,
|
|
&mtr);
|
|
|
|
/* Check whether it was a deadlock or not, if not
|
|
a deadlock and the transaction had to wait then
|
|
release the lock it is waiting on. */
|
|
|
|
err = lock_trx_handle_wait(trx);
|
|
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
/* The lock was granted while we were
|
|
searching for the last committed version.
|
|
Do a normal locking read. */
|
|
|
|
offsets = rec_get_offsets(
|
|
rec, index, offsets, true,
|
|
ULINT_UNDEFINED, &heap);
|
|
goto locks_ok;
|
|
case DB_DEADLOCK:
|
|
goto lock_wait_or_error;
|
|
case DB_LOCK_WAIT:
|
|
ut_ad(!dict_index_is_spatial(index));
|
|
err = DB_SUCCESS;
|
|
break;
|
|
default:
|
|
ut_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The row was not yet committed */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
did_semi_consistent_read = TRUE;
|
|
rec = old_vers;
|
|
break;
|
|
case DB_RECORD_NOT_FOUND:
|
|
if (dict_index_is_spatial(index)) {
|
|
goto next_rec;
|
|
} else {
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
default:
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
} else {
|
|
/* This is a non-locking consistent read: if necessary, fetch
|
|
a previous version of the record */
|
|
|
|
if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED) {
|
|
|
|
/* Do nothing: we let a non-locking SELECT read the
|
|
latest version of the record */
|
|
|
|
} else if (index == clust_index) {
|
|
|
|
/* Fetch a previous version of the row if the current
|
|
one is not visible in the snapshot; if we have a very
|
|
high force recovery level set, we try to avoid crashes
|
|
by skipping this lookup */
|
|
|
|
if (srv_force_recovery < 5
|
|
&& !lock_clust_rec_cons_read_sees(
|
|
rec, index, offsets,
|
|
trx_get_read_view(trx))) {
|
|
|
|
rec_t* old_vers;
|
|
/* The following call returns 'offsets'
|
|
associated with 'old_vers' */
|
|
err = row_sel_build_prev_vers_for_mysql(
|
|
trx->read_view, clust_index,
|
|
prebuilt, rec, &offsets, &heap,
|
|
&old_vers, need_vrow ? &vrow : NULL,
|
|
&mtr);
|
|
|
|
if (err != DB_SUCCESS) {
|
|
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (old_vers == NULL) {
|
|
/* The row did not exist yet in
|
|
the read view */
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
rec = old_vers;
|
|
}
|
|
} else {
|
|
/* We are looking into a non-clustered index,
|
|
and to get the right version of the record we
|
|
have to look also into the clustered index: this
|
|
is necessary, because we can only get the undo
|
|
information via the clustered index record. */
|
|
|
|
ut_ad(!dict_index_is_clust(index));
|
|
|
|
if (!srv_read_only_mode
|
|
&& !lock_sec_rec_cons_read_sees(
|
|
rec, index, trx->read_view)) {
|
|
/* We should look at the clustered index.
|
|
However, as this is a non-locking read,
|
|
we can skip the clustered index lookup if
|
|
the condition does not match the secondary
|
|
index entry. */
|
|
switch (row_search_idx_cond_check(
|
|
buf, prebuilt, rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
goto next_rec;
|
|
case ICP_OUT_OF_RANGE:
|
|
case ICP_ABORTED_BY_USER:
|
|
case ICP_ERROR:
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto idx_cond_failed;
|
|
case ICP_MATCH:
|
|
goto requires_clust_rec;
|
|
}
|
|
|
|
ut_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
locks_ok:
|
|
/* NOTE that at this point rec can be an old version of a clustered
|
|
index record built for a consistent read. We cannot assume after this
|
|
point that rec is on a buffer pool page. Functions like
|
|
page_rec_is_comp() cannot be used! */
|
|
|
|
if (rec_get_deleted_flag(rec, comp)) {
|
|
locks_ok_del_marked:
|
|
/* In delete-marked records, DB_TRX_ID must
|
|
always refer to an existing undo log record. */
|
|
ut_ad(index != clust_index
|
|
|| row_get_rec_trx_id(rec, index, offsets));
|
|
|
|
/* The record is delete-marked: we can skip it */
|
|
|
|
/* This is an optimization to skip setting the next key lock
|
|
on the record that follows this delete-marked record. This
|
|
optimization works because of the unique search criteria
|
|
which precludes the presence of a range lock between this
|
|
delete marked record and the record following it.
|
|
|
|
For now this is applicable only to clustered indexes while
|
|
doing a unique search except for HANDLER queries because
|
|
HANDLER allows NEXT and PREV even in unique search on
|
|
clustered index. There is scope for further optimization
|
|
applicable to unique secondary indexes. Current behaviour is
|
|
to widen the scope of a lock on an already delete marked record
|
|
if the same record is deleted twice by the same transaction */
|
|
if (index == clust_index && unique_search
|
|
&& !prebuilt->used_in_HANDLER) {
|
|
|
|
err = DB_RECORD_NOT_FOUND;
|
|
|
|
goto normal_return;
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
/* Check if the record matches the index condition. */
|
|
switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) {
|
|
case ICP_NO_MATCH:
|
|
if (did_semi_consistent_read) {
|
|
row_unlock_for_mysql(prebuilt, TRUE);
|
|
}
|
|
goto next_rec;
|
|
case ICP_OUT_OF_RANGE:
|
|
case ICP_ABORTED_BY_USER:
|
|
case ICP_ERROR:
|
|
err = DB_RECORD_NOT_FOUND;
|
|
goto idx_cond_failed;
|
|
case ICP_MATCH:
|
|
break;
|
|
}
|
|
|
|
if (index != clust_index && prebuilt->need_to_access_clustered) {
|
|
if (row_search_with_covering_prefix(prebuilt, rec, offsets)) {
|
|
goto use_covering_index;
|
|
}
|
|
requires_clust_rec:
|
|
ut_ad(index != clust_index);
|
|
/* We use a 'goto' to the preceding label if a consistent
|
|
read of a secondary index record requires us to look up old
|
|
versions of the associated clustered index record. */
|
|
|
|
ut_ad(rec_offs_validate(rec, index, offsets));
|
|
|
|
/* It was a non-clustered index and we must fetch also the
|
|
clustered index record */
|
|
|
|
mtr_has_extra_clust_latch = TRUE;
|
|
|
|
ut_ad(!vrow);
|
|
/* The following call returns 'offsets' associated with
|
|
'clust_rec'. Note that 'clust_rec' can be an old version
|
|
built for a consistent read. */
|
|
|
|
err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec,
|
|
thr, &clust_rec,
|
|
&offsets, &heap,
|
|
need_vrow ? &vrow : NULL,
|
|
&mtr);
|
|
switch (err) {
|
|
case DB_SUCCESS:
|
|
if (clust_rec == NULL) {
|
|
/* The record did not exist in the read view */
|
|
ut_ad(prebuilt->select_lock_type == LOCK_NONE
|
|
|| dict_index_is_spatial(index));
|
|
|
|
goto next_rec;
|
|
}
|
|
break;
|
|
case DB_SUCCESS_LOCKED_REC:
|
|
ut_a(clust_rec != NULL);
|
|
if (srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level
|
|
<= TRX_ISO_READ_COMMITTED) {
|
|
/* Note that the clustered index record
|
|
was locked. */
|
|
prebuilt->new_rec_locks = 2;
|
|
}
|
|
err = DB_SUCCESS;
|
|
break;
|
|
default:
|
|
vrow = NULL;
|
|
goto lock_wait_or_error;
|
|
}
|
|
|
|
if (rec_get_deleted_flag(clust_rec, comp)) {
|
|
|
|
/* The record is delete marked: we can skip it */
|
|
|
|
if ((srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
|
|
&& prebuilt->select_lock_type != LOCK_NONE) {
|
|
|
|
/* No need to keep a lock on a delete-marked
|
|
record if we do not want to use next-key
|
|
locking. */
|
|
|
|
row_unlock_for_mysql(prebuilt, TRUE);
|
|
}
|
|
|
|
goto next_rec;
|
|
}
|
|
|
|
if (need_vrow && !vrow) {
|
|
if (!heap) {
|
|
heap = mem_heap_create(100);
|
|
}
|
|
row_sel_fill_vrow(rec, index, &vrow, heap);
|
|
}
|
|
|
|
result_rec = clust_rec;
|
|
ut_ad(rec_offs_validate(result_rec, clust_index, offsets));
|
|
|
|
if (prebuilt->idx_cond) {
|
|
/* Convert the record to MySQL format. We were
|
|
unable to do this in row_search_idx_cond_check(),
|
|
because the condition is on the secondary index
|
|
and the requested column is in the clustered index.
|
|
We convert all fields, including those that
|
|
may have been used in ICP, because the
|
|
secondary index may contain a column prefix
|
|
rather than the full column. Also, as noted
|
|
in Bug #56680, the column in the secondary
|
|
index may be in the wrong case, and the
|
|
authoritative case is in result_rec, the
|
|
appropriate version of the clustered index record. */
|
|
if (!row_sel_store_mysql_rec(
|
|
buf, prebuilt, result_rec, vrow,
|
|
true, clust_index, offsets)) {
|
|
goto next_rec;
|
|
}
|
|
}
|
|
} else {
|
|
use_covering_index:
|
|
result_rec = rec;
|
|
}
|
|
|
|
/* We found a qualifying record 'result_rec'. At this point,
|
|
'offsets' are associated with 'result_rec'. */
|
|
|
|
ut_ad(rec_offs_validate(result_rec,
|
|
result_rec != rec ? clust_index : index,
|
|
offsets));
|
|
ut_ad(!rec_get_deleted_flag(result_rec, comp));
|
|
|
|
/* Decide whether to prefetch extra rows.
|
|
At this point, the clustered index record is protected
|
|
by a page latch that was acquired when pcur was positioned.
|
|
The latch will not be released until mtr.commit(). */
|
|
|
|
if ((match_mode == ROW_SEL_EXACT
|
|
|| prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD)
|
|
&& prebuilt->select_lock_type == LOCK_NONE
|
|
&& !prebuilt->m_no_prefetch
|
|
&& !prebuilt->templ_contains_blob
|
|
&& !prebuilt->clust_index_was_generated
|
|
&& !prebuilt->used_in_HANDLER
|
|
&& prebuilt->template_type != ROW_MYSQL_DUMMY_TEMPLATE
|
|
&& !prebuilt->in_fts_query) {
|
|
|
|
/* Inside an update, for example, we do not cache rows,
|
|
since we may use the cursor position to do the actual
|
|
update, that is why we require ...lock_type == LOCK_NONE.
|
|
Since we keep space in prebuilt only for the BLOBs of
|
|
a single row, we cannot cache rows in the case there
|
|
are BLOBs in the fields to be fetched. In HANDLER we do
|
|
not cache rows because there the cursor is a scrollable
|
|
cursor. */
|
|
|
|
ut_a(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE);
|
|
|
|
/* We only convert from InnoDB row format to MySQL row
|
|
format when ICP is disabled. */
|
|
|
|
if (!prebuilt->idx_cond) {
|
|
|
|
/* We use next_buf to track the allocation of buffers
|
|
where we store and enqueue the buffers for our
|
|
pre-fetch optimisation.
|
|
|
|
If next_buf == 0 then we store the converted record
|
|
directly into the MySQL record buffer (buf). If it is
|
|
!= 0 then we allocate a pre-fetch buffer and store the
|
|
converted record there.
|
|
|
|
If the conversion fails and the MySQL record buffer
|
|
was not written to then we reset next_buf so that
|
|
we can re-use the MySQL record buffer in the next
|
|
iteration. */
|
|
|
|
next_buf = next_buf
|
|
? row_sel_fetch_last_buf(prebuilt) : buf;
|
|
|
|
if (!row_sel_store_mysql_rec(
|
|
next_buf, prebuilt, result_rec, vrow,
|
|
result_rec != rec,
|
|
result_rec != rec ? clust_index : index,
|
|
offsets)) {
|
|
|
|
if (next_buf == buf) {
|
|
ut_a(prebuilt->n_fetch_cached == 0);
|
|
next_buf = 0;
|
|
}
|
|
|
|
/* Only fresh inserts may contain incomplete
|
|
externally stored columns. Pretend that such
|
|
records do not exist. Such records may only be
|
|
accessed at the READ UNCOMMITTED isolation
|
|
level or when rolling back a recovered
|
|
transaction. Rollback happens at a lower
|
|
level, not here. */
|
|
goto next_rec;
|
|
}
|
|
|
|
if (next_buf != buf) {
|
|
row_sel_enqueue_cache_row_for_mysql(
|
|
next_buf, prebuilt);
|
|
}
|
|
} else {
|
|
row_sel_enqueue_cache_row_for_mysql(buf, prebuilt);
|
|
}
|
|
|
|
if (prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE) {
|
|
goto next_rec;
|
|
}
|
|
|
|
} else {
|
|
if (UNIV_UNLIKELY
|
|
(prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE)) {
|
|
/* CHECK TABLE: fetch the row */
|
|
|
|
if (result_rec != rec
|
|
&& !prebuilt->need_to_access_clustered) {
|
|
/* We used 'offsets' for the clust
|
|
rec, recalculate them for 'rec' */
|
|
offsets = rec_get_offsets(rec, index, offsets,
|
|
true,
|
|
ULINT_UNDEFINED,
|
|
&heap);
|
|
result_rec = rec;
|
|
}
|
|
|
|
memcpy(buf + 4, result_rec
|
|
- rec_offs_extra_size(offsets),
|
|
rec_offs_size(offsets));
|
|
mach_write_to_4(buf,
|
|
rec_offs_extra_size(offsets) + 4);
|
|
} else if (!prebuilt->idx_cond) {
|
|
/* The record was not yet converted to MySQL format. */
|
|
if (!row_sel_store_mysql_rec(
|
|
buf, prebuilt, result_rec, vrow,
|
|
result_rec != rec,
|
|
result_rec != rec ? clust_index : index,
|
|
offsets)) {
|
|
/* Only fresh inserts may contain
|
|
incomplete externally stored
|
|
columns. Pretend that such records do
|
|
not exist. Such records may only be
|
|
accessed at the READ UNCOMMITTED
|
|
isolation level or when rolling back a
|
|
recovered transaction. Rollback
|
|
happens at a lower level, not here. */
|
|
goto next_rec;
|
|
}
|
|
}
|
|
|
|
if (prebuilt->clust_index_was_generated) {
|
|
row_sel_store_row_id_to_prebuilt(
|
|
prebuilt, result_rec,
|
|
result_rec == rec ? index : clust_index,
|
|
offsets);
|
|
}
|
|
}
|
|
|
|
/* From this point on, 'offsets' are invalid. */
|
|
|
|
/* We have an optimization to save CPU time: if this is a consistent
|
|
read on a unique condition on the clustered index, then we do not
|
|
store the pcur position, because any fetch next or prev will anyway
|
|
return 'end of file'. Exceptions are locking reads and the MySQL
|
|
HANDLER command where the user can move the cursor with PREV or NEXT
|
|
even after a unique search. */
|
|
|
|
err = DB_SUCCESS;
|
|
|
|
idx_cond_failed:
|
|
if (!unique_search
|
|
|| !dict_index_is_clust(index)
|
|
|| direction != 0
|
|
|| prebuilt->select_lock_type != LOCK_NONE
|
|
|| prebuilt->used_in_HANDLER) {
|
|
|
|
/* Inside an update always store the cursor position */
|
|
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
}
|
|
|
|
goto normal_return;
|
|
|
|
next_rec:
|
|
/* Reset the old and new "did semi-consistent read" flags. */
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type
|
|
== ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
did_semi_consistent_read = FALSE;
|
|
prebuilt->new_rec_locks = 0;
|
|
vrow = NULL;
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/* PHASE 5: Move the cursor to the next index record */
|
|
|
|
/* NOTE: For moves_up==FALSE, the mini-transaction will be
|
|
committed and restarted every time when switching b-tree
|
|
pages. For moves_up==TRUE in index condition pushdown, we can
|
|
scan an entire secondary index tree within a single
|
|
mini-transaction. As long as the prebuilt->idx_cond does not
|
|
match, we do not need to consult the clustered index or
|
|
return records to MySQL, and thus we can avoid repositioning
|
|
the cursor. What prevents us from buffer-fixing all leaf pages
|
|
within the mini-transaction is the btr_leaf_page_release()
|
|
call in btr_pcur_move_to_next_page(). Only the leaf page where
|
|
the cursor is positioned will remain buffer-fixed.
|
|
For R-tree spatial search, we also commit the mini-transaction
|
|
each time */
|
|
|
|
if (mtr_has_extra_clust_latch || spatial_search) {
|
|
/* If we have extra cluster latch, we must commit
|
|
mtr if we are moving to the next non-clustered
|
|
index record, because we could break the latching
|
|
order if we would access a different clustered
|
|
index page right away without releasing the previous. */
|
|
|
|
/* No need to do store restore for R-tree */
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
mtr.commit();
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
mtr.start();
|
|
|
|
if (!spatial_search
|
|
&& sel_restore_position_for_mysql(&same_user_rec,
|
|
BTR_SEARCH_LEAF,
|
|
pcur, moves_up, &mtr)) {
|
|
goto rec_loop;
|
|
}
|
|
}
|
|
|
|
if (moves_up) {
|
|
if (UNIV_UNLIKELY(spatial_search)) {
|
|
if (rtr_pcur_move_to_next(
|
|
search_tuple, mode, pcur, 0, &mtr)) {
|
|
goto rec_loop;
|
|
}
|
|
} else {
|
|
const buf_block_t* block = btr_pcur_get_block(pcur);
|
|
/* This is based on btr_pcur_move_to_next(),
|
|
but avoids infinite read loop of a corrupted page. */
|
|
ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED);
|
|
ut_ad(pcur->latch_mode != BTR_NO_LATCHES);
|
|
pcur->old_stored = false;
|
|
if (btr_pcur_is_after_last_on_page(pcur)) {
|
|
if (btr_pcur_is_after_last_in_tree(pcur,
|
|
&mtr)) {
|
|
goto not_moved;
|
|
}
|
|
btr_pcur_move_to_next_page(pcur, &mtr);
|
|
if (UNIV_UNLIKELY(btr_pcur_get_block(pcur)
|
|
== block)) {
|
|
err = DB_CORRUPTION;
|
|
goto lock_wait_or_error;
|
|
}
|
|
} else {
|
|
btr_pcur_move_to_next_on_page(pcur);
|
|
}
|
|
|
|
goto rec_loop;
|
|
}
|
|
} else {
|
|
if (btr_pcur_move_to_prev(pcur, &mtr)) {
|
|
goto rec_loop;
|
|
}
|
|
}
|
|
|
|
not_moved:
|
|
if (!spatial_search) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
|
|
err = match_mode ? DB_RECORD_NOT_FOUND : DB_END_OF_INDEX;
|
|
goto normal_return;
|
|
|
|
lock_wait_or_error:
|
|
/* Reset the old and new "did semi-consistent read" flags. */
|
|
if (UNIV_UNLIKELY(prebuilt->row_read_type
|
|
== ROW_READ_DID_SEMI_CONSISTENT)) {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
did_semi_consistent_read = FALSE;
|
|
|
|
/*-------------------------------------------------------------*/
|
|
if (!dict_index_is_spatial(index)) {
|
|
if (rec) {
|
|
btr_pcur_store_position(pcur, &mtr);
|
|
}
|
|
}
|
|
|
|
lock_table_wait:
|
|
mtr.commit();
|
|
mtr_has_extra_clust_latch = FALSE;
|
|
|
|
trx->error_state = err;
|
|
|
|
/* The following is a patch for MySQL */
|
|
|
|
if (thr->is_active) {
|
|
que_thr_stop_for_mysql(thr);
|
|
}
|
|
|
|
thr->lock_state = QUE_THR_LOCK_ROW;
|
|
|
|
if (row_mysql_handle_errors(&err, trx, thr, NULL)) {
|
|
/* It was a lock wait, and it ended */
|
|
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
mtr.start();
|
|
|
|
/* Table lock waited, go try to obtain table lock
|
|
again */
|
|
if (table_lock_waited) {
|
|
table_lock_waited = FALSE;
|
|
|
|
goto wait_table_again;
|
|
}
|
|
|
|
if (!dict_index_is_spatial(index)) {
|
|
sel_restore_position_for_mysql(
|
|
&same_user_rec, BTR_SEARCH_LEAF, pcur,
|
|
moves_up, &mtr);
|
|
}
|
|
|
|
if ((srv_locks_unsafe_for_binlog
|
|
|| trx->isolation_level <= TRX_ISO_READ_COMMITTED)
|
|
&& !same_user_rec) {
|
|
|
|
/* Since we were not able to restore the cursor
|
|
on the same user record, we cannot use
|
|
row_unlock_for_mysql() to unlock any records, and
|
|
we must thus reset the new rec lock info. Since
|
|
in lock0lock.cc we have blocked the inheriting of gap
|
|
X-locks, we actually do not have any new record locks
|
|
set in this case.
|
|
|
|
Note that if we were able to restore on the 'same'
|
|
user record, it is still possible that we were actually
|
|
waiting on a delete-marked record, and meanwhile
|
|
it was removed by purge and inserted again by some
|
|
other user. But that is no problem, because in
|
|
rec_loop we will again try to set a lock, and
|
|
new_rec_lock_info in trx will be right at the end. */
|
|
|
|
prebuilt->new_rec_locks = 0;
|
|
}
|
|
|
|
mode = pcur->search_mode;
|
|
|
|
goto rec_loop;
|
|
}
|
|
|
|
thr->lock_state = QUE_THR_LOCK_NOLOCK;
|
|
|
|
goto func_exit;
|
|
|
|
normal_return:
|
|
/*-------------------------------------------------------------*/
|
|
que_thr_stop_for_mysql_no_error(thr, trx);
|
|
|
|
mtr.commit();
|
|
|
|
DEBUG_SYNC_C("row_search_for_mysql_before_return");
|
|
|
|
if (prebuilt->idx_cond != 0) {
|
|
|
|
/* When ICP is active we don't write to the MySQL buffer
|
|
directly, only to buffers that are enqueued in the pre-fetch
|
|
queue. We need to dequeue the first buffer and copy the contents
|
|
to the record buffer that was passed in by MySQL. */
|
|
|
|
if (prebuilt->n_fetch_cached > 0) {
|
|
row_sel_dequeue_cached_row_for_mysql(buf, prebuilt);
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
} else if (next_buf != 0) {
|
|
|
|
/* We may or may not have enqueued some buffers to the
|
|
pre-fetch queue, but we definitely wrote to the record
|
|
buffer passed to use by MySQL. */
|
|
|
|
DEBUG_SYNC_C("row_search_cached_row");
|
|
err = DB_SUCCESS;
|
|
}
|
|
|
|
#ifdef UNIV_DEBUG
|
|
if (dict_index_is_spatial(index) && err != DB_SUCCESS
|
|
&& err != DB_END_OF_INDEX && err != DB_INTERRUPTED) {
|
|
rtr_node_path_t* path = pcur->btr_cur.rtr_info->path;
|
|
|
|
ut_ad(path->empty());
|
|
}
|
|
#endif
|
|
|
|
func_exit:
|
|
trx->op_info = "";
|
|
if (heap != NULL) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
/* Set or reset the "did semi-consistent read" flag on return.
|
|
The flag did_semi_consistent_read is set if and only if
|
|
the record being returned was fetched with a semi-consistent read. */
|
|
ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS
|
|
|| !did_semi_consistent_read);
|
|
|
|
if (prebuilt->row_read_type != ROW_READ_WITH_LOCKS) {
|
|
if (did_semi_consistent_read) {
|
|
prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT;
|
|
} else {
|
|
prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT;
|
|
}
|
|
}
|
|
|
|
ut_ad(!sync_check_iterate(sync_check()));
|
|
|
|
DEBUG_SYNC_C("innodb_row_search_for_mysql_exit");
|
|
|
|
DBUG_RETURN(err);
|
|
}
|
|
|
|
/********************************************************************//**
|
|
Count rows in a R-Tree leaf level.
|
|
@return DB_SUCCESS if successful */
|
|
dberr_t
|
|
row_count_rtree_recs(
|
|
/*=================*/
|
|
row_prebuilt_t* prebuilt, /*!< in: prebuilt struct for the
|
|
table handle; this contains the info
|
|
of search_tuple, index; if search
|
|
tuple contains 0 fields then we
|
|
position the cursor at the start or
|
|
the end of the index, depending on
|
|
'mode' */
|
|
ulint* n_rows) /*!< out: number of entries
|
|
seen in the consistent read */
|
|
{
|
|
dict_index_t* index = prebuilt->index;
|
|
dberr_t ret = DB_SUCCESS;
|
|
mtr_t mtr;
|
|
mem_heap_t* heap;
|
|
dtuple_t* entry;
|
|
dtuple_t* search_entry = prebuilt->search_tuple;
|
|
ulint entry_len;
|
|
ulint i;
|
|
byte* buf;
|
|
|
|
ut_a(dict_index_is_spatial(index));
|
|
|
|
*n_rows = 0;
|
|
|
|
heap = mem_heap_create(256);
|
|
|
|
/* Build a search tuple. */
|
|
entry_len = dict_index_get_n_fields(index);
|
|
entry = dtuple_create(heap, entry_len);
|
|
|
|
for (i = 0; i < entry_len; i++) {
|
|
const dict_field_t* ind_field
|
|
= dict_index_get_nth_field(index, i);
|
|
const dict_col_t* col
|
|
= ind_field->col;
|
|
dfield_t* dfield
|
|
= dtuple_get_nth_field(entry, i);
|
|
|
|
if (i == 0) {
|
|
double* mbr;
|
|
double tmp_mbr[SPDIMS * 2];
|
|
|
|
dfield->type.mtype = DATA_GEOMETRY;
|
|
dfield->type.prtype |= DATA_GIS_MBR;
|
|
|
|
/* Allocate memory for mbr field */
|
|
mbr = static_cast<double*>
|
|
(mem_heap_alloc(heap, DATA_MBR_LEN));
|
|
|
|
/* Set mbr field data. */
|
|
dfield_set_data(dfield, mbr, DATA_MBR_LEN);
|
|
|
|
for (uint j = 0; j < SPDIMS; j++) {
|
|
tmp_mbr[j * 2] = DBL_MAX;
|
|
tmp_mbr[j * 2 + 1] = -DBL_MAX;
|
|
}
|
|
dfield_write_mbr(dfield, tmp_mbr);
|
|
continue;
|
|
}
|
|
|
|
dfield->type.mtype = col->mtype;
|
|
dfield->type.prtype = col->prtype;
|
|
|
|
}
|
|
|
|
prebuilt->search_tuple = entry;
|
|
|
|
ulint bufsize = ut_max(UNIV_PAGE_SIZE, prebuilt->mysql_row_len);
|
|
buf = static_cast<byte*>(ut_malloc_nokey(bufsize));
|
|
|
|
ulint cnt = 1000;
|
|
|
|
ret = row_search_for_mysql(buf, PAGE_CUR_WITHIN, prebuilt, 0, 0);
|
|
loop:
|
|
/* Check thd->killed every 1,000 scanned rows */
|
|
if (--cnt == 0) {
|
|
if (trx_is_interrupted(prebuilt->trx)) {
|
|
ret = DB_INTERRUPTED;
|
|
goto func_exit;
|
|
}
|
|
cnt = 1000;
|
|
}
|
|
|
|
switch (ret) {
|
|
case DB_SUCCESS:
|
|
break;
|
|
case DB_DEADLOCK:
|
|
case DB_LOCK_TABLE_FULL:
|
|
case DB_LOCK_WAIT_TIMEOUT:
|
|
case DB_INTERRUPTED:
|
|
goto func_exit;
|
|
default:
|
|
/* fall through (this error is ignored by CHECK TABLE) */
|
|
case DB_END_OF_INDEX:
|
|
ret = DB_SUCCESS;
|
|
func_exit:
|
|
prebuilt->search_tuple = search_entry;
|
|
ut_free(buf);
|
|
mem_heap_free(heap);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
*n_rows = *n_rows + 1;
|
|
|
|
ret = row_search_for_mysql(
|
|
buf, PAGE_CUR_WITHIN, prebuilt, 0, ROW_SEL_NEXT);
|
|
|
|
goto loop;
|
|
}
|
|
|
|
/*******************************************************************//**
|
|
Read the AUTOINC column from the current row. If the value is less than
|
|
0 and the type is not unsigned then we reset the value to 0.
|
|
@return value read from the column */
|
|
static
|
|
ib_uint64_t
|
|
row_search_autoinc_read_column(
|
|
/*===========================*/
|
|
dict_index_t* index, /*!< in: index to read from */
|
|
const rec_t* rec, /*!< in: current rec */
|
|
ulint col_no, /*!< in: column number */
|
|
ulint mtype, /*!< in: column main type */
|
|
ibool unsigned_type) /*!< in: signed or unsigned flag */
|
|
{
|
|
ulint len;
|
|
const byte* data;
|
|
ib_uint64_t value;
|
|
mem_heap_t* heap = NULL;
|
|
ulint offsets_[REC_OFFS_NORMAL_SIZE];
|
|
ulint* offsets = offsets_;
|
|
|
|
rec_offs_init(offsets_);
|
|
ut_ad(page_rec_is_leaf(rec));
|
|
|
|
offsets = rec_get_offsets(rec, index, offsets, true,
|
|
col_no + 1, &heap);
|
|
|
|
if (rec_offs_nth_sql_null(offsets, col_no)) {
|
|
/* There is no non-NULL value in the auto-increment column. */
|
|
value = 0;
|
|
goto func_exit;
|
|
}
|
|
|
|
data = rec_get_nth_field(rec, offsets, col_no, &len);
|
|
|
|
value = row_parse_int(data, len, mtype, unsigned_type);
|
|
|
|
func_exit:
|
|
if (UNIV_LIKELY_NULL(heap)) {
|
|
mem_heap_free(heap);
|
|
}
|
|
|
|
return(value);
|
|
}
|
|
|
|
/** Get the maximum and non-delete-marked record in an index.
|
|
@param[in] index index tree
|
|
@param[in,out] mtr mini-transaction (may be committed and restarted)
|
|
@return maximum record, page s-latched in mtr
|
|
@retval NULL if there are no records, or if all of them are delete-marked */
|
|
static
|
|
const rec_t*
|
|
row_search_get_max_rec(
|
|
dict_index_t* index,
|
|
mtr_t* mtr)
|
|
{
|
|
btr_pcur_t pcur;
|
|
const rec_t* rec;
|
|
/* Open at the high/right end (false), and init cursor */
|
|
btr_pcur_open_at_index_side(
|
|
false, index, BTR_SEARCH_LEAF, &pcur, true, 0, mtr);
|
|
|
|
do {
|
|
const page_t* page;
|
|
|
|
page = btr_pcur_get_page(&pcur);
|
|
rec = page_find_rec_max_not_deleted(page);
|
|
|
|
if (page_rec_is_user_rec(rec)) {
|
|
break;
|
|
} else {
|
|
rec = NULL;
|
|
}
|
|
btr_pcur_move_before_first_on_page(&pcur);
|
|
} while (btr_pcur_move_to_prev(&pcur, mtr));
|
|
|
|
btr_pcur_close(&pcur);
|
|
|
|
return(rec);
|
|
}
|
|
|
|
/** Read the max AUTOINC value from an index.
|
|
@param[in] index index starting with an AUTO_INCREMENT column
|
|
@return the largest AUTO_INCREMENT value
|
|
@retval 0 if no records were found */
|
|
ib_uint64_t
|
|
row_search_max_autoinc(dict_index_t* index)
|
|
{
|
|
const dict_field_t* dfield = dict_index_get_nth_field(index, 0);
|
|
|
|
ib_uint64_t value = 0;
|
|
|
|
mtr_t mtr;
|
|
mtr.start();
|
|
|
|
if (const rec_t* rec = row_search_get_max_rec(index, &mtr)) {
|
|
value = row_search_autoinc_read_column(
|
|
index, rec, 0,
|
|
dfield->col->mtype,
|
|
dfield->col->prtype & DATA_UNSIGNED);
|
|
}
|
|
|
|
mtr.commit();
|
|
return(value);
|
|
}
|