mariadb/storage/xtradb/buf/buf0mtflu.cc
Jan Lindström 6a756b3a44 Code cleanup: Removed some unnecessary outputs from standard builds (available on
special builds UNIV_PAGECOMPRESS_DEBUG and UNIV_MTFLUSH_DEBUG).

Added a new status variable compress_pages_page_compression_error to count possible
compression errors.
2014-03-21 15:46:36 +02:00

704 lines
20 KiB
C++

/*****************************************************************************
Copyright (C) 2013, 2014, Fusion-io. All Rights Reserved.
Copyright (C) 2013, 2014, SkySQL Ab. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/******************************************************************//**
@file buf/buf0mtflu.cc
Multi-threaded flush method implementation
Created 06/11/2013 Dhananjoy Das DDas@fusionio.com
Modified 12/12/2013 Jan Lindström jan.lindstrom@skysql.com
Modified 03/02/2014 Dhananjoy Das DDas@fusionio.com
Modified 06/02/2014 Jan Lindström jan.lindstrom@skysql.com
***********************************************************************/
#include "buf0buf.h"
#include "buf0flu.h"
#include "buf0mtflu.h"
#include "buf0checksum.h"
#include "srv0start.h"
#include "srv0srv.h"
#include "page0zip.h"
#include "ut0byte.h"
#include "ut0lst.h"
#include "page0page.h"
#include "fil0fil.h"
#include "buf0lru.h"
#include "buf0rea.h"
#include "ibuf0ibuf.h"
#include "log0log.h"
#include "os0file.h"
#include "os0sync.h"
#include "trx0sys.h"
#include "srv0mon.h"
#include "mysql/plugin.h"
#include "mysql/service_thd_wait.h"
#include "fil0pagecompress.h"
#define MT_COMP_WATER_MARK 50
/** Time to wait for a message. */
#define MT_WAIT_IN_USECS 5000000
/* Work item status */
typedef enum wrk_status {
WRK_ITEM_UNSET=0, /*!< Work item is not set */
WRK_ITEM_START=1, /*!< Processing of work item has started */
WRK_ITEM_DONE=2, /*!< Processing is done usually set to
SUCCESS/FAILED */
WRK_ITEM_SUCCESS=2, /*!< Work item successfully processed */
WRK_ITEM_FAILED=3, /*!< Work item process failed */
WRK_ITEM_EXIT=4, /*!< Exiting */
WRK_ITEM_SET=5, /*!< Work item is set */
WRK_ITEM_STATUS_UNDEFINED
} wrk_status_t;
/* Work item task type */
typedef enum mt_wrk_tsk {
MT_WRK_NONE=0, /*!< Exit queue-wait */
MT_WRK_WRITE=1, /*!< Flush operation */
MT_WRK_READ=2, /*!< Read operation */
MT_WRK_UNDEFINED
} mt_wrk_tsk_t;
/* Work thread status */
typedef enum wthr_status {
WTHR_NOT_INIT=0, /*!< Work thread not initialized */
WTHR_INITIALIZED=1, /*!< Work thread initialized */
WTHR_SIG_WAITING=2, /*!< Work thread wating signal */
WTHR_RUNNING=3, /*!< Work thread running */
WTHR_NO_WORK=4, /*!< Work thread has no work */
WTHR_KILL_IT=5, /*!< Work thread should exit */
WTHR_STATUS_UNDEFINED
} wthr_status_t;
/* Write work task */
typedef struct wr_tsk {
buf_pool_t *buf_pool; /*!< buffer-pool instance */
buf_flush_t flush_type; /*!< flush-type for buffer-pool
flush operation */
ulint min; /*!< minimum number of pages
requested to be flushed */
lsn_t lsn_limit; /*!< lsn limit for the buffer-pool
flush operation */
} wr_tsk_t;
/* Read work task */
typedef struct rd_tsk {
buf_pool_t *page_pool; /*!< list of pages to decompress; */
} rd_tsk_t;
/* Work item */
typedef struct wrk_itm
{
mt_wrk_tsk_t tsk; /*!< Task type. Based on task-type
one of the entries wr_tsk/rd_tsk
will be used */
wr_tsk_t wr; /*!< Flush page list */
rd_tsk_t rd; /*!< Decompress page list */
ulint n_flushed; /*!< Flushed pages count */
os_thread_id_t id_usr; /*!< Thread-id currently working */
wrk_status_t wi_status; /*!< Work item status */
struct wrk_itm *next; /*!< Next work item */
mem_heap_t *wheap; /*!< Heap were to allocate memory
for queue nodes */
mem_heap_t *rheap;
} wrk_t;
typedef struct thread_data
{
os_thread_id_t wthread_id; /*!< Identifier */
os_thread_t wthread; /*!< Thread id */
wthr_status_t wt_status; /*!< Worker thread status */
} thread_data_t;
/* Thread syncronization data */
typedef struct thread_sync
{
/* Global variables used by all threads */
os_fast_mutex_t thread_global_mtx; /*!< Mutex used protecting below
variables */
ulint n_threads; /*!< Number of threads */
ib_wqueue_t *wq; /*!< Work Queue */
ib_wqueue_t *wr_cq; /*!< Write Completion Queue */
ib_wqueue_t *rd_cq; /*!< Read Completion Queue */
mem_heap_t* wheap; /*!< Work heap where memory
is allocated */
mem_heap_t* rheap; /*!< Work heap where memory
is allocated */
wthr_status_t gwt_status; /*!< Global thread status */
/* Variables used by only one thread at a time */
thread_data_t* thread_data; /*!< Thread specific data */
} thread_sync_t;
static int mtflush_work_initialized = -1;
static thread_sync_t* mtflush_ctx=NULL;
static os_fast_mutex_t mtflush_mtx;
/******************************************************************//**
Set multi-threaded flush work initialized. */
static inline
void
buf_mtflu_work_init(void)
/*=====================*/
{
mtflush_work_initialized = 1;
}
/******************************************************************//**
Return true if multi-threaded flush is initialized
@return true if initialized */
bool
buf_mtflu_init_done(void)
/*=====================*/
{
return(mtflush_work_initialized == 1);
}
/******************************************************************//**
Fush buffer pool instance.
@return number of flushed pages, or 0 if error happened
*/
static
ulint
buf_mtflu_flush_pool_instance(
/*==========================*/
wrk_t *work_item) /*!< inout: work item to be flushed */
{
flush_counters_t n;
ut_a(work_item != NULL);
ut_a(work_item->wr.buf_pool != NULL);
memset(&n, 0, sizeof(flush_counters_t));
if (!buf_flush_start(work_item->wr.buf_pool, work_item->wr.flush_type)) {
/* We have two choices here. If lsn_limit was
specified then skipping an instance of buffer
pool means we cannot guarantee that all pages
up to lsn_limit has been flushed. We can
return right now with failure or we can try
to flush remaining buffer pools up to the
lsn_limit. We attempt to flush other buffer
pools based on the assumption that it will
help in the retry which will follow the
failure. */
#ifdef UNIV_MTFLUSH_DEBUG
fprintf(stderr, "InnoDB: Note: buf flush start failed there is already active flush for this buffer pool.\n");
#endif
return 0;
}
if (work_item->wr.flush_type == BUF_FLUSH_LRU) {
/* srv_LRU_scan_depth can be arbitrarily large value.
* We cap it with current LRU size.
*/
buf_pool_mutex_enter(work_item->wr.buf_pool);
work_item->wr.min = UT_LIST_GET_LEN(work_item->wr.buf_pool->LRU);
buf_pool_mutex_exit(work_item->wr.buf_pool);
work_item->wr.min = ut_min(srv_LRU_scan_depth,work_item->wr.min);
}
buf_flush_batch(work_item->wr.buf_pool,
work_item->wr.flush_type,
work_item->wr.min,
work_item->wr.lsn_limit,
false,
&n);
work_item->n_flushed = n.flushed;
buf_flush_end(work_item->wr.buf_pool, work_item->wr.flush_type);
buf_flush_common(work_item->wr.flush_type, work_item->n_flushed);
return work_item->n_flushed;
}
/******************************************************************//**
Worker function to wait for work items and processing them and
sending reply back.
*/
static
void
mtflush_service_io(
/*===============*/
thread_sync_t* mtflush_io, /*!< inout: multi-threaded flush
syncronization data */
thread_data_t* thread_data) /* Thread status data */
{
wrk_t *work_item = NULL;
ulint n_flushed=0;
ut_a(mtflush_io != NULL);
ut_a(thread_data != NULL);
thread_data->wt_status = WTHR_SIG_WAITING;
work_item = (wrk_t *)ib_wqueue_nowait(mtflush_io->wq);
if (work_item == NULL) {
work_item = (wrk_t *)ib_wqueue_timedwait(mtflush_io->wq, MT_WAIT_IN_USECS);
}
if (work_item) {
thread_data->wt_status = WTHR_RUNNING;
} else {
/* Thread did not get any work */
thread_data->wt_status = WTHR_NO_WORK;
return;
}
if (work_item->wi_status != WRK_ITEM_EXIT) {
work_item->wi_status = WRK_ITEM_SET;
}
work_item->id_usr = os_thread_get_curr_id();
/* This works as a producer/consumer model, where in tasks are
* inserted into the work-queue (wq) and completions are based
* on the type of operations performed and as a result the WRITE/
* compression/flush operation completions get posted to wr_cq.
* And READ/decompress operations completions get posted to rd_cq.
* in future we may have others.
*/
switch(work_item->tsk) {
case MT_WRK_NONE:
ut_a(work_item->wi_status == WRK_ITEM_EXIT);
work_item->wi_status = WRK_ITEM_EXIT;
ib_wqueue_add(mtflush_io->wr_cq, work_item, work_item->rheap);
thread_data->wt_status = WTHR_KILL_IT;
break;
case MT_WRK_WRITE:
ut_a(work_item->wi_status == WRK_ITEM_SET);
work_item->wi_status = WRK_ITEM_START;
/* Process work item */
if (0 == (n_flushed = buf_mtflu_flush_pool_instance(work_item))) {
work_item->wi_status = WRK_ITEM_FAILED;
}
work_item->wi_status = WRK_ITEM_SUCCESS;
ib_wqueue_add(mtflush_io->wr_cq, work_item, work_item->rheap);
break;
case MT_WRK_READ:
ut_a(0);
break;
default:
/* None other than Write/Read handling planned */
ut_a(0);
break;
}
}
/******************************************************************//**
Thead used to flush dirty pages when multi-threaded flush is
used.
@return a dummy parameter*/
extern "C" UNIV_INTERN
os_thread_ret_t
DECLARE_THREAD(mtflush_io_thread)(
/*==============================*/
void * arg)
{
thread_sync_t *mtflush_io = ((thread_sync_t *)arg);
thread_data_t *this_thread_data = NULL;
ulint i;
/* Find correct slot for this thread */
os_fast_mutex_lock(&(mtflush_io->thread_global_mtx));
for(i=0; i < mtflush_io->n_threads; i ++) {
if (mtflush_io->thread_data[i].wthread_id == os_thread_get_curr_id()) {
break;
}
}
ut_a(i <= mtflush_io->n_threads);
this_thread_data = &mtflush_io->thread_data[i];
os_fast_mutex_unlock(&(mtflush_io->thread_global_mtx));
while (TRUE) {
#ifdef UNIV_MTFLUSH_DEBUG
fprintf(stderr, "InnoDB: Note. Thread %lu work queue len %lu return queue len %lu\n",
os_thread_get_curr_id(),
ib_wqueue_len(mtflush_io->wq),
ib_wqueue_len(mtflush_io->wr_cq));
#endif /* UNIV_MTFLUSH_DEBUG */
mtflush_service_io(mtflush_io, this_thread_data);
if (this_thread_data->wt_status == WTHR_KILL_IT) {
break;
}
}
os_thread_exit(NULL);
OS_THREAD_DUMMY_RETURN;
}
/******************************************************************//**
Add exit work item to work queue to signal multi-threded flush
threads that they should exit.
*/
void
buf_mtflu_io_thread_exit(void)
/*==========================*/
{
long i;
thread_sync_t* mtflush_io = mtflush_ctx;
wrk_t* work_item = NULL;
ut_a(mtflush_io != NULL);
/* Allocate work items for shutdown message */
work_item = (wrk_t*)mem_heap_alloc(mtflush_io->wheap, sizeof(wrk_t)*srv_mtflush_threads);
memset(work_item, 0, sizeof(wrk_t)*srv_mtflush_threads);
/* Confirm if the io-thread KILL is in progress, bailout */
if (mtflush_io->gwt_status == WTHR_KILL_IT) {
return;
}
mtflush_io->gwt_status = WTHR_KILL_IT;
fprintf(stderr, "InnoDB: [Note]: Signal mtflush_io_threads to exit [%lu]\n",
srv_mtflush_threads);
/* Send one exit work item/thread */
for (i=0; i < srv_mtflush_threads; i++) {
work_item[i].tsk = MT_WRK_NONE;
work_item[i].wi_status = WRK_ITEM_EXIT;
work_item[i].wheap = mtflush_io->wheap;
work_item[i].rheap = mtflush_io->rheap;
ib_wqueue_add(mtflush_io->wq,
(void *)&(work_item[i]),
mtflush_io->wheap);
}
/* Wait until all work items on a work queue are processed */
while(!ib_wqueue_is_empty(mtflush_io->wq)) {
/* Wait */
os_thread_sleep(MT_WAIT_IN_USECS);
}
ut_a(ib_wqueue_is_empty(mtflush_io->wq));
/* Collect all work done items */
for (i=0; i < srv_mtflush_threads;) {
wrk_t* work_item = NULL;
work_item = (wrk_t *)ib_wqueue_timedwait(mtflush_io->wr_cq, MT_WAIT_IN_USECS);
/* If we receive reply to work item and it's status is exit,
thead has processed this message and existed */
if (work_item && work_item->wi_status == WRK_ITEM_EXIT) {
i++;
}
}
/* Wait about 1/2 sec to allow threads really exit */
os_thread_sleep(MT_WAIT_IN_USECS);
ut_a(ib_wqueue_is_empty(mtflush_io->wq));
ut_a(ib_wqueue_is_empty(mtflush_io->wr_cq));
ut_a(ib_wqueue_is_empty(mtflush_io->rd_cq));
/* Free all queues */
ib_wqueue_free(mtflush_io->wq);
ib_wqueue_free(mtflush_io->wr_cq);
ib_wqueue_free(mtflush_io->rd_cq);
os_fast_mutex_free(&mtflush_mtx);
os_fast_mutex_free(&mtflush_io->thread_global_mtx);
/* Free heap */
mem_heap_free(mtflush_io->wheap);
mem_heap_free(mtflush_io->rheap);
}
/******************************************************************//**
Initialize multi-threaded flush thread syncronization data.
@return Initialized multi-threaded flush thread syncroniztion data. */
void*
buf_mtflu_handler_init(
/*===================*/
ulint n_threads, /*!< in: Number of threads to create */
ulint wrk_cnt) /*!< in: Number of work items */
{
ulint i;
mem_heap_t* mtflush_heap;
mem_heap_t* mtflush_heap2;
/* Create heap, work queue, write completion queue, read
completion queue for multi-threaded flush, and init
handler. */
mtflush_heap = mem_heap_create(0);
ut_a(mtflush_heap != NULL);
mtflush_heap2 = mem_heap_create(0);
ut_a(mtflush_heap2 != NULL);
mtflush_ctx = (thread_sync_t *)mem_heap_alloc(mtflush_heap,
sizeof(thread_sync_t));
memset(mtflush_ctx, 0, sizeof(thread_sync_t));
ut_a(mtflush_ctx != NULL);
mtflush_ctx->thread_data = (thread_data_t*)mem_heap_alloc(
mtflush_heap, sizeof(thread_data_t) * n_threads);
ut_a(mtflush_ctx->thread_data);
memset(mtflush_ctx->thread_data, 0, sizeof(thread_data_t) * n_threads);
mtflush_ctx->n_threads = n_threads;
mtflush_ctx->wq = ib_wqueue_create();
ut_a(mtflush_ctx->wq);
mtflush_ctx->wr_cq = ib_wqueue_create();
ut_a(mtflush_ctx->wr_cq);
mtflush_ctx->rd_cq = ib_wqueue_create();
ut_a(mtflush_ctx->rd_cq);
mtflush_ctx->wheap = mtflush_heap;
mtflush_ctx->rheap = mtflush_heap2;
os_fast_mutex_init(PFS_NOT_INSTRUMENTED, &mtflush_ctx->thread_global_mtx);
os_fast_mutex_init(PFS_NOT_INSTRUMENTED, &mtflush_mtx);
/* Create threads for page-compression-flush */
for(i=0; i < n_threads; i++) {
os_thread_id_t new_thread_id;
mtflush_ctx->thread_data[i].wt_status = WTHR_INITIALIZED;
mtflush_ctx->thread_data[i].wthread = os_thread_create(
mtflush_io_thread,
((void *) mtflush_ctx),
&new_thread_id);
mtflush_ctx->thread_data[i].wthread_id = new_thread_id;
}
buf_mtflu_work_init();
return((void *)mtflush_ctx);
}
/******************************************************************//**
Flush buffer pool instances.
@return number of pages flushed. */
ulint
buf_mtflu_flush_work_items(
/*=======================*/
ulint buf_pool_inst, /*!< in: Number of buffer pool instances */
ulint *per_pool_pages_flushed, /*!< out: Number of pages
flushed/instance */
buf_flush_t flush_type, /*!< in: Type of flush */
ulint min_n, /*!< in: Wished minimum number of
blocks to be flushed */
lsn_t lsn_limit) /*!< in: All blocks whose
oldest_modification is smaller than
this should be flushed (if their
number does not exceed min_n) */
{
ulint n_flushed=0, i;
mem_heap_t* work_heap;
mem_heap_t* reply_heap;
wrk_t work_item[MTFLUSH_MAX_WORKER];
/* Allocate heap where all work items used and queue
node items areallocated */
work_heap = mem_heap_create(0);
reply_heap = mem_heap_create(0);
memset(work_item, 0, sizeof(wrk_t)*MTFLUSH_MAX_WORKER);
for(i=0;i<buf_pool_inst; i++) {
work_item[i].tsk = MT_WRK_WRITE;
work_item[i].wr.buf_pool = buf_pool_from_array(i);
work_item[i].wr.flush_type = flush_type;
work_item[i].wr.min = min_n;
work_item[i].wr.lsn_limit = lsn_limit;
work_item[i].wi_status = WRK_ITEM_UNSET;
work_item[i].wheap = work_heap;
work_item[i].rheap = reply_heap;
ib_wqueue_add(mtflush_ctx->wq,
(void *)(work_item + i),
work_heap);
}
/* wait on the completion to arrive */
for(i=0; i< buf_pool_inst;) {
wrk_t *done_wi = NULL;
done_wi = (wrk_t *)ib_wqueue_wait(mtflush_ctx->wr_cq);
if (done_wi != NULL) {
per_pool_pages_flushed[i] = done_wi->n_flushed;
#if UNIV_DEBUG
if((int)done_wi->id_usr == 0 &&
(done_wi->wi_status == WRK_ITEM_SET ||
done_wi->wi_status == WRK_ITEM_UNSET)) {
fprintf(stderr,
"**Set/Unused work_item[%lu] flush_type=%d\n",
i,
done_wi->wr.flush_type);
ut_a(0);
}
#endif
n_flushed+= done_wi->n_flushed;
i++;
}
}
ut_a(ib_wqueue_is_empty(mtflush_ctx->wq));
ut_a(ib_wqueue_is_empty(mtflush_ctx->wr_cq));
/* Release used work_items and queue nodes */
mem_heap_free(work_heap);
mem_heap_free(reply_heap);
return(n_flushed);
}
/*******************************************************************//**
Multi-threaded version of buf_flush_list
*/
bool
buf_mtflu_flush_list(
/*=================*/
ulint min_n, /*!< in: wished minimum mumber of blocks
flushed (it is not guaranteed that the
actual number is that big, though) */
lsn_t lsn_limit, /*!< in the case BUF_FLUSH_LIST all
blocks whose oldest_modification is
smaller than this should be flushed
(if their number does not exceed
min_n), otherwise ignored */
ulint* n_processed) /*!< out: the number of pages
which were processed is passed
back to caller. Ignored if NULL */
{
ulint i;
bool success = true;
ulint cnt_flush[MTFLUSH_MAX_WORKER];
if (n_processed) {
*n_processed = 0;
}
if (min_n != ULINT_MAX) {
/* Ensure that flushing is spread evenly amongst the
buffer pool instances. When min_n is ULINT_MAX
we need to flush everything up to the lsn limit
so no limit here. */
min_n = (min_n + srv_buf_pool_instances - 1)
/ srv_buf_pool_instances;
}
/* This lock is to safequard against re-entry if any. */
os_fast_mutex_lock(&mtflush_mtx);
buf_mtflu_flush_work_items(srv_buf_pool_instances,
cnt_flush, BUF_FLUSH_LIST,
min_n, lsn_limit);
os_fast_mutex_unlock(&mtflush_mtx);
for (i = 0; i < srv_buf_pool_instances; i++) {
if (n_processed) {
*n_processed += cnt_flush[i];
}
if (cnt_flush[i]) {
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_FLUSH_BATCH_TOTAL_PAGE,
MONITOR_FLUSH_BATCH_COUNT,
MONITOR_FLUSH_BATCH_PAGES,
cnt_flush[i]);
}
}
#ifdef UNIV_MTFLUSH_DEBUG
fprintf(stderr, "%s: [1] [*n_processed: (min:%lu)%lu ]\n",
__FUNCTION__, (min_n * srv_buf_pool_instances), *n_processed);
#endif
return(success);
}
/*********************************************************************//**
Clears up tail of the LRU lists:
* Put replaceable pages at the tail of LRU to the free list
* Flush dirty pages at the tail of LRU to the disk
The depth to which we scan each buffer pool is controlled by dynamic
config parameter innodb_LRU_scan_depth.
@return total pages flushed */
UNIV_INTERN
ulint
buf_mtflu_flush_LRU_tail(void)
/*==========================*/
{
ulint total_flushed=0, i;
ulint cnt_flush[MTFLUSH_MAX_WORKER];
ut_a(buf_mtflu_init_done());
/* This lock is to safeguard against re-entry if any */
os_fast_mutex_lock(&mtflush_mtx);
buf_mtflu_flush_work_items(srv_buf_pool_instances,
cnt_flush, BUF_FLUSH_LRU, srv_LRU_scan_depth, 0);
os_fast_mutex_unlock(&mtflush_mtx);
for (i = 0; i < srv_buf_pool_instances; i++) {
if (cnt_flush[i]) {
total_flushed += cnt_flush[i];
MONITOR_INC_VALUE_CUMULATIVE(
MONITOR_LRU_BATCH_TOTAL_PAGE,
MONITOR_LRU_BATCH_COUNT,
MONITOR_LRU_BATCH_PAGES,
cnt_flush[i]);
}
}
#if UNIV_MTFLUSH_DEBUG
fprintf(stderr, "[1] [*n_processed: (min:%lu)%lu ]\n", (
srv_LRU_scan_depth * srv_buf_pool_instances), total_flushed);
#endif
return(total_flushed);
}
/*********************************************************************//**
Set correct thread identifiers to io thread array based on
information we have. */
void
buf_mtflu_set_thread_ids(
/*=====================*/
ulint n_threads, /*!<in: Number of threads to fill */
void* ctx, /*!<in: thread context */
os_thread_id_t* thread_ids) /*!<in: thread id array */
{
thread_sync_t *mtflush_io = ((thread_sync_t *)ctx);
ulint i;
ut_a(mtflush_io != NULL);
ut_a(thread_ids != NULL);
for(i = 0; i < n_threads; i++) {
thread_ids[i] = mtflush_io->thread_data[i].wthread_id;
}
}