mariadb/mysys/my_alloc.c
unknown 813fc4104e A fix and a test case for Bug#6513 "Test Suite: Values inserted by using
cursor is interpreted latin1 character and Bug#9819 "Cursors: Mysql Server
Crash while fetching from table with 5 million records."
A fix for a possible memory leak when fetching into an SP cursor
in a long loop.
The patch uses a common implementation of cursors in the binary protocol and 
in stored procedures and implements materialized cursors.
For implementation details, see comments in sql_cursor.cc


include/my_sys.h:
  - declaration for multi_alloc_root
libmysqld/Makefile.am:
  - drop protocol_cursor.cc, add sql_cursor.cc (replaces the old
  implementation of cursors with a new one)
mysql-test/r/ctype_ujis.result:
  - test results fixed (a test case for Bug#6513)
mysql-test/r/sp-big.result:
  - test results fixed (a test case for Bug#9819)
mysql-test/t/ctype_ujis.test:
  Add a test case for Bug#6513 "Test Suite: Values inserted by using cursor is
   interpreted latin1 character"
mysql-test/t/sp-big.test:
  Add a restricted test case for Bug#9819 "Cursors: Mysql Server Crash
  while fetching from table with 5 million records."
mysys/my_alloc.c:
  - an implementation of multi_alloc_root; this is largely a copy-paste
    from mulalloc.c, but the function is small and there is no easy way
    to reuse the existing C function.
sql/Makefile.am:
  - add sql_cursor.h, sql_cursor.cc (a new implementation of stored procedure
  cursors) and drop protocol_cursor.cc (the old one)
sql/handler.cc:
  - now TABLE object has its mem_root always initialized.
    Adjust the implementation handler::ha_open
sql/item_subselect.cc:
  - adjust to the changed declaration of st_select_lex_unit::prepare
sql/protocol.h:
  - drop Protocol_cursor
sql/sp_head.cc:
  - move juggling with Query_arena::free_list and Item::next to
    sp_eval_func_item, as this is needed in 3 places already.
sql/sp_head.h:
  - declare a no-op implementation for cleanup_stmt in sp_instr_cpush.
    This method is needed for non-materializing cursors, which are yet not 
    used in stored procedures.
  - declaration for sp_eval_func_item
sql/sp_rcontext.cc:
  - reimplement sp_cursor using the new implementation of server side cursors.
  - use sp_eval_func_item to assign values of SP variables from the
    row fetched from a cursor. This should fix a possible memory leak in 
    the old implementation of sp_cursor::fetch
sql/sp_rcontext.h:
  - reimplement sp_cursor using the new implementation of server side cursors.
sql/sql_class.cc:
  - disable the functionality that closes transient cursors at commit/rollback;
    transient cursors are not used in 5.0, instead we use materialized ones.
    To be enabled in a later version.
sql/sql_class.h:
  - adjust to the rename Cursor -> Server_side_cursor
  - additional declarations of select_union used in materialized cursors
sql/sql_derived.cc:
  - reuse bits of tmp table code in UNION, derived tables, and materialized
    cursors
  - cleanup comments
sql/sql_lex.h:
  - declarations of auxiliary methods used by materialized cursors
  - a cleanup in st_select_lex_unit interface
sql/sql_list.h:
  - add an array operator new[] to class Sql_alloc
sql/sql_prepare.cc:
  - split the tight coupling of cursors and prepared statements to reuse 
    the same implementation in stored procedures
  - cleanups of error processing in Prepared_statement::{prepare,execute}
sql/sql_select.cc:
  - move the implementation of sensitive (non-materializing) cursors to 
    sql_cursor.cc
  - make temporary tables self-contained: the table, its record and fields
    are allocated in TABLE::mem_root. This implementation is not clean
    and resets thd->mem_root several times because of the way create_tmp_table 
    works (many additional things are done inside it).
  - adjust to the changed declaration of st_select_lex_unit::prepare
sql/sql_select.h:
  - move the declaration of sensitive (non-materializing) cursors to 
    sql_cursor.cc
sql/sql_union.cc:
  - move pieces of st_select_unit::prepare to select_union and st_table
    methods to be able to reuse code in the implementation of materialized
    cursors
sql/sql_view.cc:
  - adjust to the changed signature of st_select_lex_unit::prepare
sql/table.cc:
  - implement auxiliary st_table methods for use with temporary tables
sql/table.h:
  - add declarations for auxiliary methods of st_table used to work with 
   temporary tables
tests/mysql_client_test.c:
  - if cursors are materialized, a parallel update of the table used
    in the cursor may go through: update the test.
sql/sql_cursor.cc:
  New BitKeeper file ``sql/sql_cursor.cc'' -- implementation of server side
  cursors
sql/sql_cursor.h:
  New BitKeeper file ``sql/sql_cursor.h'' - declarations for
  server side cursors.
2005-09-22 02:11:21 +04:00

417 lines
12 KiB
C

/* Copyright (C) 2000 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* Routines to handle mallocing of results which will be freed the same time */
#include <my_global.h>
#include <my_sys.h>
#include <m_string.h>
#undef EXTRA_DEBUG
#define EXTRA_DEBUG
/*
Initialize memory root
SYNOPSIS
init_alloc_root()
mem_root - memory root to initialize
block_size - size of chunks (blocks) used for memory allocation
(It is external size of chunk i.e. it should include
memory required for internal structures, thus it
should be no less than ALLOC_ROOT_MIN_BLOCK_SIZE)
pre_alloc_size - if non-0, then size of block that should be
pre-allocated during memory root initialization.
DESCRIPTION
This function prepares memory root for further use, sets initial size of
chunk for memory allocation and pre-allocates first block if specified.
Altough error can happen during execution of this function if
pre_alloc_size is non-0 it won't be reported. Instead it will be
reported as error in first alloc_root() on this memory root.
*/
void init_alloc_root(MEM_ROOT *mem_root, uint block_size,
uint pre_alloc_size __attribute__((unused)))
{
DBUG_ENTER("init_alloc_root");
DBUG_PRINT("enter",("root: 0x%lx", mem_root));
mem_root->free= mem_root->used= mem_root->pre_alloc= 0;
mem_root->min_malloc= 32;
mem_root->block_size= block_size - ALLOC_ROOT_MIN_BLOCK_SIZE;
mem_root->error_handler= 0;
mem_root->block_num= 4; /* We shift this with >>2 */
mem_root->first_block_usage= 0;
#if !(defined(HAVE_purify) && defined(EXTRA_DEBUG))
if (pre_alloc_size)
{
if ((mem_root->free= mem_root->pre_alloc=
(USED_MEM*) my_malloc(pre_alloc_size+ ALIGN_SIZE(sizeof(USED_MEM)),
MYF(0))))
{
mem_root->free->size= pre_alloc_size+ALIGN_SIZE(sizeof(USED_MEM));
mem_root->free->left= pre_alloc_size;
mem_root->free->next= 0;
}
}
#endif
DBUG_VOID_RETURN;
}
/*
SYNOPSIS
reset_root_defaults()
mem_root memory root to change defaults of
block_size new value of block size. Must be greater or equal
than ALLOC_ROOT_MIN_BLOCK_SIZE (this value is about
68 bytes and depends on platform and compilation flags)
pre_alloc_size new size of preallocated block. If not zero,
must be equal to or greater than block size,
otherwise means 'no prealloc'.
DESCRIPTION
Function aligns and assigns new value to block size; then it tries to
reuse one of existing blocks as prealloc block, or malloc new one of
requested size. If no blocks can be reused, all unused blocks are freed
before allocation.
*/
void reset_root_defaults(MEM_ROOT *mem_root, uint block_size,
uint pre_alloc_size __attribute__((unused)))
{
DBUG_ASSERT(alloc_root_inited(mem_root));
mem_root->block_size= block_size - ALLOC_ROOT_MIN_BLOCK_SIZE;
#if !(defined(HAVE_purify) && defined(EXTRA_DEBUG))
if (pre_alloc_size)
{
uint size= pre_alloc_size + ALIGN_SIZE(sizeof(USED_MEM));
if (!mem_root->pre_alloc || mem_root->pre_alloc->size != size)
{
USED_MEM *mem, **prev= &mem_root->free;
/*
Free unused blocks, so that consequent calls
to reset_root_defaults won't eat away memory.
*/
while (*prev)
{
mem= *prev;
if (mem->size == size)
{
/* We found a suitable block, no need to do anything else */
mem_root->pre_alloc= mem;
return;
}
if (mem->left + ALIGN_SIZE(sizeof(USED_MEM)) == mem->size)
{
/* remove block from the list and free it */
*prev= mem->next;
my_free((gptr) mem, MYF(0));
}
else
prev= &mem->next;
}
/* Allocate new prealloc block and add it to the end of free list */
if ((mem= (USED_MEM *) my_malloc(size, MYF(0))))
{
mem->size= size;
mem->left= pre_alloc_size;
mem->next= *prev;
*prev= mem_root->pre_alloc= mem;
}
}
}
else
#endif
mem_root->pre_alloc= 0;
}
gptr alloc_root(MEM_ROOT *mem_root,unsigned int Size)
{
#if defined(HAVE_purify) && defined(EXTRA_DEBUG)
reg1 USED_MEM *next;
DBUG_ENTER("alloc_root");
DBUG_PRINT("enter",("root: 0x%lx", mem_root));
DBUG_ASSERT(alloc_root_inited(mem_root));
Size+=ALIGN_SIZE(sizeof(USED_MEM));
if (!(next = (USED_MEM*) my_malloc(Size,MYF(MY_WME))))
{
if (mem_root->error_handler)
(*mem_root->error_handler)();
DBUG_RETURN((gptr) 0); /* purecov: inspected */
}
next->next= mem_root->used;
next->size= Size;
mem_root->used= next;
DBUG_PRINT("exit",("ptr: 0x%lx", (((char*) next)+
ALIGN_SIZE(sizeof(USED_MEM)))));
DBUG_RETURN((gptr) (((char*) next)+ALIGN_SIZE(sizeof(USED_MEM))));
#else
uint get_size, block_size;
gptr point;
reg1 USED_MEM *next= 0;
reg2 USED_MEM **prev;
DBUG_ENTER("alloc_root");
DBUG_PRINT("enter",("root: 0x%lx", mem_root));
DBUG_ASSERT(alloc_root_inited(mem_root));
Size= ALIGN_SIZE(Size);
if ((*(prev= &mem_root->free)) != NULL)
{
if ((*prev)->left < Size &&
mem_root->first_block_usage++ >= ALLOC_MAX_BLOCK_USAGE_BEFORE_DROP &&
(*prev)->left < ALLOC_MAX_BLOCK_TO_DROP)
{
next= *prev;
*prev= next->next; /* Remove block from list */
next->next= mem_root->used;
mem_root->used= next;
mem_root->first_block_usage= 0;
}
for (next= *prev ; next && next->left < Size ; next= next->next)
prev= &next->next;
}
if (! next)
{ /* Time to alloc new block */
block_size= mem_root->block_size * (mem_root->block_num >> 2);
get_size= Size+ALIGN_SIZE(sizeof(USED_MEM));
get_size= max(get_size, block_size);
if (!(next = (USED_MEM*) my_malloc(get_size,MYF(MY_WME))))
{
if (mem_root->error_handler)
(*mem_root->error_handler)();
return((gptr) 0); /* purecov: inspected */
}
mem_root->block_num++;
next->next= *prev;
next->size= get_size;
next->left= get_size-ALIGN_SIZE(sizeof(USED_MEM));
*prev=next;
}
point= (gptr) ((char*) next+ (next->size-next->left));
/*TODO: next part may be unneded due to mem_root->first_block_usage counter*/
if ((next->left-= Size) < mem_root->min_malloc)
{ /* Full block */
*prev= next->next; /* Remove block from list */
next->next= mem_root->used;
mem_root->used= next;
mem_root->first_block_usage= 0;
}
DBUG_PRINT("exit",("ptr: 0x%lx", (ulong) point));
DBUG_RETURN(point);
#endif
}
/*
Allocate many pointers at the same time.
DESCRIPTION
ptr1, ptr2, etc all point into big allocated memory area.
SYNOPSIS
multi_alloc_root()
root Memory root
ptr1, length1 Multiple arguments terminated by a NULL pointer
ptr2, length2 ...
...
NULL
RETURN VALUE
A pointer to the beginning of the allocated memory block
in case of success or NULL if out of memory.
*/
gptr multi_alloc_root(MEM_ROOT *root, ...)
{
va_list args;
char **ptr, *start, *res;
uint tot_length, length;
DBUG_ENTER("multi_alloc_root");
va_start(args, root);
tot_length= 0;
while ((ptr= va_arg(args, char **)))
{
length= va_arg(args, uint);
tot_length+= ALIGN_SIZE(length);
}
va_end(args);
if (!(start= (char*) alloc_root(root, tot_length)))
DBUG_RETURN(0); /* purecov: inspected */
va_start(args, root);
res= start;
while ((ptr= va_arg(args, char **)))
{
*ptr= res;
length= va_arg(args, uint);
res+= ALIGN_SIZE(length);
}
va_end(args);
DBUG_RETURN((gptr) start);
}
#define TRASH_MEM(X) TRASH(((char*)(X) + ((X)->size-(X)->left)), (X)->left)
/* Mark all data in blocks free for reusage */
static inline void mark_blocks_free(MEM_ROOT* root)
{
reg1 USED_MEM *next;
reg2 USED_MEM **last;
/* iterate through (partially) free blocks, mark them free */
last= &root->free;
for (next= root->free; next; next= *(last= &next->next))
{
next->left= next->size - ALIGN_SIZE(sizeof(USED_MEM));
TRASH_MEM(next);
}
/* Combine the free and the used list */
*last= next=root->used;
/* now go through the used blocks and mark them free */
for (; next; next= next->next)
{
next->left= next->size - ALIGN_SIZE(sizeof(USED_MEM));
TRASH_MEM(next);
}
/* Now everything is set; Indicate that nothing is used anymore */
root->used= 0;
root->first_block_usage= 0;
}
/*
Deallocate everything used by alloc_root or just move
used blocks to free list if called with MY_USED_TO_FREE
SYNOPSIS
free_root()
root Memory root
MyFlags Flags for what should be freed:
MY_MARK_BLOCKS_FREED Don't free blocks, just mark them free
MY_KEEP_PREALLOC If this is not set, then free also the
preallocated block
NOTES
One can call this function either with root block initialised with
init_alloc_root() or with a bzero()-ed block.
It's also safe to call this multiple times with the same mem_root.
*/
void free_root(MEM_ROOT *root, myf MyFlags)
{
reg1 USED_MEM *next,*old;
DBUG_ENTER("free_root");
DBUG_PRINT("enter",("root: 0x%lx flags: %u", root, (uint) MyFlags));
if (!root) /* QQ: Should be deleted */
DBUG_VOID_RETURN; /* purecov: inspected */
if (MyFlags & MY_MARK_BLOCKS_FREE)
{
mark_blocks_free(root);
DBUG_VOID_RETURN;
}
if (!(MyFlags & MY_KEEP_PREALLOC))
root->pre_alloc=0;
for (next=root->used; next ;)
{
old=next; next= next->next ;
if (old != root->pre_alloc)
my_free((gptr) old,MYF(0));
}
for (next=root->free ; next ;)
{
old=next; next= next->next;
if (old != root->pre_alloc)
my_free((gptr) old,MYF(0));
}
root->used=root->free=0;
if (root->pre_alloc)
{
root->free=root->pre_alloc;
root->free->left=root->pre_alloc->size-ALIGN_SIZE(sizeof(USED_MEM));
TRASH_MEM(root->pre_alloc);
root->free->next=0;
}
root->block_num= 4;
root->first_block_usage= 0;
DBUG_VOID_RETURN;
}
/*
Find block that contains an object and set the pre_alloc to it
*/
void set_prealloc_root(MEM_ROOT *root, char *ptr)
{
USED_MEM *next;
for (next=root->used; next ; next=next->next)
{
if ((char*) next <= ptr && (char*) next + next->size > ptr)
{
root->pre_alloc=next;
return;
}
}
for (next=root->free ; next ; next=next->next)
{
if ((char*) next <= ptr && (char*) next + next->size > ptr)
{
root->pre_alloc=next;
return;
}
}
}
char *strdup_root(MEM_ROOT *root,const char *str)
{
return strmake_root(root, str, (uint) strlen(str));
}
char *strmake_root(MEM_ROOT *root,const char *str, uint len)
{
char *pos;
if ((pos=alloc_root(root,len+1)))
{
memcpy(pos,str,len);
pos[len]=0;
}
return pos;
}
char *memdup_root(MEM_ROOT *root,const char *str,uint len)
{
char *pos;
if ((pos=alloc_root(root,len)))
memcpy(pos,str,len);
return pos;
}