mirror of
https://github.com/MariaDB/server.git
synced 2025-01-24 15:54:37 +01:00
19bbb7cc85
Optimised version of ADD/DROP/REORGANIZE partitions for non-NDB storage engines. New syntax to handle REBUILD/OPTIMIZE/ANALYZE/CHECK/REPAIR partitions Quite a few bug fixes include/thr_lock.h: New method to downgrade locks from TL_WRITE_ONLY Possibility to upgrade lock while aborting locks mysql-test/r/ndb_autodiscover.result: Fix for lowercase and that all NDB tables are now partitioned mysql-test/r/ndb_bitfield.result: Fix for lowercase and that all NDB tables are now partitioned mysql-test/r/ndb_gis.result: Fix for lowercase and that all NDB tables are now partitioned mysql-test/r/ndb_partition_key.result: New test case mysql-test/r/partition.result: New test case mysql-test/r/partition_error.result: New test case mysql-test/r/partition_mgm_err.result: Fix of test case results mysql-test/t/disabled.def: partition_03ndb still has bug mysql-test/t/ndb_partition_key.test: New test cases for new functionality and bugs mysql-test/t/partition.test: New test cases for new functionality and bugs mysql-test/t/partition_error.test: New test cases for new functionality and bugs mysql-test/t/partition_mgm_err.test: New test cases for new functionality and bugs mysys/thr_lock.c: New method to downgrade TL_WRITE_ONLY locks Possibility to specify if locks are to be upgraded at abort locks sql/ha_archive.cc: New handlerton methods sql/ha_berkeley.cc: New handlerton methods sql/ha_blackhole.cc: New handlerton methods sql/ha_federated.cc: New handlerton methods sql/ha_heap.cc: New handlerton methods sql/ha_innodb.cc: New handlerton methods sql/ha_myisam.cc: New handlerton methods sql/ha_myisammrg.cc: New handlerton methods sql/ha_ndbcluster.cc: New handlerton methods Moved out packfrm and unpackfrm methods Adapted many parts to use table_share instead of table->s Ensured that .ndb file uses filename and not tablename according to new encoding of names (WL 1324) All NDB tables are partitioned and set up partition info Fixed such that tablenames use tablenames and not filenames in NDB NDB uses auto partitioning for ENGINE=NDB tables Warning for very large tables Set RANGE data Set LIST data New method to set-up partition info Set Default number of partitions flag Set linear hash flag Set node group array Set number of fragments Set max rows Set tablespace names New method to get number of partitions of table to use at open table sql/ha_ndbcluster.h: Removed partition_flags and alter_table_flags from handler class A couple of new and changed method headers sql/ha_ndbcluster_binlog.cc: Use new method headers sql/ha_partition.cc: New handlerton methods Lots of new function headers Use #P# as separator between table name and partition name and #SP# as separator between partition name and subpartition name Use filename encoding for files both of table name part and of partition name parts New method to drop partitions based on partition state New method to rename partitions based on partition state New methods to optimize, analyze, check and repair partitions New methods to optimize, analyze, check and repair table Helper method to create new partition, open it and external lock it, not needed to lock it internally since no one else knows about it yet. Cleanup method at error for new partitions New methods to perform bulk of work at ADD/REORGANIZE partitions (change_partitions, copy_partitions) sql/ha_partition.h: New methods and variables A few dropped ones and a few changed ones sql/handler.cc: Handlerton interface changes New flag to open_table_from_share sql/handler.h: New alter_table_flags New partition flags New partition states More states for default handling Lots of new, dropped and changed interfaces sql/lex.h: Added REBUILD and changed name of REORGANISE to REORGANIZE sql/lock.cc: Method to downgrade locks Able to specify if locks upgraded on abort locks sql/log.cc: New handlerton methods sql/mysql_priv.h: Lots of new interfaces sql/share/errmsg.txt: Lots of new, dropped and changed error messages sql/sql_base.cc: Adapted to new method headers New method to abort and upgrade lock New method to close open tables and downgrade lock New method to wait for completed table sql/sql_lex.h: New flags sql/sql_partition.cc: Return int instead of bool in get_partition_id More defaults handling Make use of new mem_alloc_error method More work on function headers Changes to generate partition syntax to cater for intermediate partition states Lots of new code with large comments describing new features for Partition Management: ADD/DROP/REORGANIZE/OPTIMIZE/ANALYZE/CHECK/REPAIR partitions sql/sql_show.cc: Minors sql/sql_table.cc: Moved a couple of methods New methods to copy create lists and key lists for use with mysql_prepare_table New method to write frm file New handling of handlers with auto partitioning Fix CREATE TABLE LIKE Moved code for ADD/DROP/REORGANIZE partitions Use handlerton method for alter_table_flags sql/sql_yacc.yy: More memory alloc error checks New syntax for REBUILD, ANALYZE, CHECK, OPTIMIZE, REPAIR partitions sql/table.cc: Fix length of extra part to be 4 bytes Partition state introduced in frm file sql/table.h: Partition state introduced sql/unireg.cc: Partition state introduced Default partition storage/csv/ha_tina.cc: New handlerton methods storage/example/ha_example.cc: New handlerton methods storage/ndb/include/kernel/ndb_limits.h: RANGE DATA storage/ndb/include/kernel/signaldata/AlterTable.hpp: New interfaces in ALTER TABLE towards NDB kernel storage/ndb/include/kernel/signaldata/DiAddTab.hpp: New section storage/ndb/include/kernel/signaldata/DictTabInfo.hpp: Lots of new parts of table description storage/ndb/include/kernel/signaldata/LqhFrag.hpp: tablespace id specified in LQHFRAGREQ storage/ndb/include/ndbapi/NdbDictionary.hpp: Lots of new methods in NDB dictionary storage/ndb/src/common/debugger/signaldata/DictTabInfo.cpp: Lots of new variables in table description storage/ndb/src/kernel/blocks/dbdict/Dbdict.cpp: Lots of new variables in table description storage/ndb/src/kernel/blocks/dbdict/Dbdict.hpp: Lots of new variables in table description storage/ndb/src/kernel/blocks/dblqh/DblqhMain.cpp: New error insertion storage/ndb/src/kernel/blocks/dbtup/DbtupMeta.cpp: a few extra jam's storage/ndb/src/ndbapi/NdbBlob.cpp: Changes to definition of blob tables storage/ndb/src/ndbapi/NdbDictionary.cpp: Lots of new stuff in NDB dictionary storage/ndb/src/ndbapi/NdbDictionaryImpl.cpp: Lots of new stuff in NDB dictionary storage/ndb/src/ndbapi/NdbDictionaryImpl.hpp: Lots of new stuff in NDB dictionary storage/ndb/test/ndbapi/test_event.cpp: removed use of methods no longer in existence storage/ndb/tools/restore/Restore.cpp: Renamed variable
740 lines
22 KiB
C++
740 lines
22 KiB
C++
/* Copyright (C) 2003 MySQL AB
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
|
|
|
/*
|
|
ha_example is a stubbed storage engine. It does nothing at this point. It
|
|
will let you create/open/delete tables but that is all. You can enable it
|
|
in your buld by doing the following during your build process:
|
|
./configure --with-example-storage-engine
|
|
|
|
Once this is done mysql will let you create tables with:
|
|
CREATE TABLE A (...) ENGINE=EXAMPLE;
|
|
|
|
The example is setup to use table locks. It implements an example "SHARE"
|
|
that is inserted into a hash by table name. You can use this to store
|
|
information of state that any example handler object will be able to see
|
|
if it is using the same table.
|
|
|
|
Please read the object definition in ha_example.h before reading the rest
|
|
if this file.
|
|
|
|
To get an idea of what occurs here is an example select that would do a
|
|
scan of an entire table:
|
|
ha_example::store_lock
|
|
ha_example::external_lock
|
|
ha_example::info
|
|
ha_example::rnd_init
|
|
ha_example::extra
|
|
ENUM HA_EXTRA_CACHE Cash record in HA_rrnd()
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::rnd_next
|
|
ha_example::extra
|
|
ENUM HA_EXTRA_NO_CACHE End cacheing of records (def)
|
|
ha_example::external_lock
|
|
ha_example::extra
|
|
ENUM HA_EXTRA_RESET Reset database to after open
|
|
|
|
In the above example has 9 row called before rnd_next signalled that it was
|
|
at the end of its data. In the above example the table was already opened
|
|
(or you would have seen a call to ha_example::open(). Calls to
|
|
ha_example::extra() are hints as to what will be occuring to the request.
|
|
|
|
Happy coding!
|
|
-Brian
|
|
*/
|
|
|
|
#ifdef USE_PRAGMA_IMPLEMENTATION
|
|
#pragma implementation // gcc: Class implementation
|
|
#endif
|
|
|
|
#include "mysql_priv.h"
|
|
#include "ha_example.h"
|
|
|
|
#include <plugin.h>
|
|
|
|
static handler* example_create_handler(TABLE_SHARE *table);
|
|
static int example_init_func();
|
|
|
|
handlerton example_hton= {
|
|
MYSQL_HANDLERTON_INTERFACE_VERSION,
|
|
"EXAMPLE",
|
|
SHOW_OPTION_YES,
|
|
"Example storage engine",
|
|
DB_TYPE_EXAMPLE_DB,
|
|
(bool (*)()) example_init_func,
|
|
0, /* slot */
|
|
0, /* savepoint size. */
|
|
NULL, /* close_connection */
|
|
NULL, /* savepoint */
|
|
NULL, /* rollback to savepoint */
|
|
NULL, /* release savepoint */
|
|
NULL, /* commit */
|
|
NULL, /* rollback */
|
|
NULL, /* prepare */
|
|
NULL, /* recover */
|
|
NULL, /* commit_by_xid */
|
|
NULL, /* rollback_by_xid */
|
|
NULL, /* create_cursor_read_view */
|
|
NULL, /* set_cursor_read_view */
|
|
NULL, /* close_cursor_read_view */
|
|
example_create_handler, /* Create a new handler */
|
|
NULL, /* Drop a database */
|
|
NULL, /* Panic call */
|
|
NULL, /* Start Consistent Snapshot */
|
|
NULL, /* Flush logs */
|
|
NULL, /* Show status */
|
|
NULL, /* Partition flags */
|
|
NULL, /* Alter table flags */
|
|
NULL, /* Alter tablespace */
|
|
HTON_CAN_RECREATE
|
|
};
|
|
|
|
/* Variables for example share methods */
|
|
static HASH example_open_tables; // Hash used to track open tables
|
|
pthread_mutex_t example_mutex; // This is the mutex we use to init the hash
|
|
static int example_init= 0; // Variable for checking the init state of hash
|
|
|
|
|
|
/*
|
|
Function we use in the creation of our hash to get key.
|
|
*/
|
|
static byte* example_get_key(EXAMPLE_SHARE *share,uint *length,
|
|
my_bool not_used __attribute__((unused)))
|
|
{
|
|
*length=share->table_name_length;
|
|
return (byte*) share->table_name;
|
|
}
|
|
|
|
|
|
static int example_init_func()
|
|
{
|
|
if (!example_init)
|
|
{
|
|
example_init++;
|
|
VOID(pthread_mutex_init(&example_mutex,MY_MUTEX_INIT_FAST));
|
|
(void) hash_init(&example_open_tables,system_charset_info,32,0,0,
|
|
(hash_get_key) example_get_key,0,0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int example_done_func()
|
|
{
|
|
if (example_init)
|
|
{
|
|
if (example_open_tables.records)
|
|
{
|
|
return 1;
|
|
}
|
|
hash_free(&example_open_tables);
|
|
pthread_mutex_destroy(&example_mutex);
|
|
example_init--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
Example of simple lock controls. The "share" it creates is structure we will
|
|
pass to each example handler. Do you have to have one of these? Well, you have
|
|
pieces that are used for locking, and they are needed to function.
|
|
*/
|
|
static EXAMPLE_SHARE *get_share(const char *table_name, TABLE *table)
|
|
{
|
|
EXAMPLE_SHARE *share;
|
|
uint length;
|
|
char *tmp_name;
|
|
|
|
pthread_mutex_lock(&example_mutex);
|
|
length=(uint) strlen(table_name);
|
|
|
|
if (!(share=(EXAMPLE_SHARE*) hash_search(&example_open_tables,
|
|
(byte*) table_name,
|
|
length)))
|
|
{
|
|
if (!(share=(EXAMPLE_SHARE *)
|
|
my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
|
|
&share, sizeof(*share),
|
|
&tmp_name, length+1,
|
|
NullS)))
|
|
{
|
|
pthread_mutex_unlock(&example_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
share->use_count=0;
|
|
share->table_name_length=length;
|
|
share->table_name=tmp_name;
|
|
strmov(share->table_name,table_name);
|
|
if (my_hash_insert(&example_open_tables, (byte*) share))
|
|
goto error;
|
|
thr_lock_init(&share->lock);
|
|
pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST);
|
|
}
|
|
share->use_count++;
|
|
pthread_mutex_unlock(&example_mutex);
|
|
|
|
return share;
|
|
|
|
error:
|
|
pthread_mutex_destroy(&share->mutex);
|
|
my_free((gptr) share, MYF(0));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
Free lock controls. We call this whenever we close a table. If the table had
|
|
the last reference to the share then we free memory associated with it.
|
|
*/
|
|
static int free_share(EXAMPLE_SHARE *share)
|
|
{
|
|
pthread_mutex_lock(&example_mutex);
|
|
if (!--share->use_count)
|
|
{
|
|
hash_delete(&example_open_tables, (byte*) share);
|
|
thr_lock_delete(&share->lock);
|
|
pthread_mutex_destroy(&share->mutex);
|
|
my_free((gptr) share, MYF(0));
|
|
}
|
|
pthread_mutex_unlock(&example_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static handler* example_create_handler(TABLE_SHARE *table)
|
|
{
|
|
return new ha_example(table);
|
|
}
|
|
|
|
|
|
ha_example::ha_example(TABLE_SHARE *table_arg)
|
|
:handler(&example_hton, table_arg)
|
|
{}
|
|
|
|
/*
|
|
If frm_error() is called then we will use this to to find out what file extentions
|
|
exist for the storage engine. This is also used by the default rename_table and
|
|
delete_table method in handler.cc.
|
|
*/
|
|
static const char *ha_example_exts[] = {
|
|
NullS
|
|
};
|
|
|
|
const char **ha_example::bas_ext() const
|
|
{
|
|
return ha_example_exts;
|
|
}
|
|
|
|
|
|
/*
|
|
Used for opening tables. The name will be the name of the file.
|
|
A table is opened when it needs to be opened. For instance
|
|
when a request comes in for a select on the table (tables are not
|
|
open and closed for each request, they are cached).
|
|
|
|
Called from handler.cc by handler::ha_open(). The server opens all tables by
|
|
calling ha_open() which then calls the handler specific open().
|
|
*/
|
|
int ha_example::open(const char *name, int mode, uint test_if_locked)
|
|
{
|
|
DBUG_ENTER("ha_example::open");
|
|
|
|
if (!(share = get_share(name, table)))
|
|
DBUG_RETURN(1);
|
|
thr_lock_data_init(&share->lock,&lock,NULL);
|
|
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Closes a table. We call the free_share() function to free any resources
|
|
that we have allocated in the "shared" structure.
|
|
|
|
Called from sql_base.cc, sql_select.cc, and table.cc.
|
|
In sql_select.cc it is only used to close up temporary tables or during
|
|
the process where a temporary table is converted over to being a
|
|
myisam table.
|
|
For sql_base.cc look at close_data_tables().
|
|
*/
|
|
int ha_example::close(void)
|
|
{
|
|
DBUG_ENTER("ha_example::close");
|
|
DBUG_RETURN(free_share(share));
|
|
}
|
|
|
|
|
|
/*
|
|
write_row() inserts a row. No extra() hint is given currently if a bulk load
|
|
is happeneding. buf() is a byte array of data. You can use the field
|
|
information to extract the data from the native byte array type.
|
|
Example of this would be:
|
|
for (Field **field=table->field ; *field ; field++)
|
|
{
|
|
...
|
|
}
|
|
|
|
See ha_tina.cc for an example of extracting all of the data as strings.
|
|
ha_berekly.cc has an example of how to store it intact by "packing" it
|
|
for ha_berkeley's own native storage type.
|
|
|
|
See the note for update_row() on auto_increments and timestamps. This
|
|
case also applied to write_row().
|
|
|
|
Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
|
|
sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.
|
|
*/
|
|
int ha_example::write_row(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::write_row");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
Yes, update_row() does what you expect, it updates a row. old_data will have
|
|
the previous row record in it, while new_data will have the newest data in
|
|
it.
|
|
Keep in mind that the server can do updates based on ordering if an ORDER BY
|
|
clause was used. Consecutive ordering is not guarenteed.
|
|
Currently new_data will not have an updated auto_increament record, or
|
|
and updated timestamp field. You can do these for example by doing these:
|
|
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
|
|
table->timestamp_field->set_time();
|
|
if (table->next_number_field && record == table->record[0])
|
|
update_auto_increment();
|
|
|
|
Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
|
|
*/
|
|
int ha_example::update_row(const byte * old_data, byte * new_data)
|
|
{
|
|
|
|
DBUG_ENTER("ha_example::update_row");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
This will delete a row. buf will contain a copy of the row to be deleted.
|
|
The server will call this right after the current row has been called (from
|
|
either a previous rnd_nexT() or index call).
|
|
If you keep a pointer to the last row or can access a primary key it will
|
|
make doing the deletion quite a bit easier.
|
|
Keep in mind that the server does no guarentee consecutive deletions. ORDER BY
|
|
clauses can be used.
|
|
|
|
Called in sql_acl.cc and sql_udf.cc to manage internal table information.
|
|
Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select it is
|
|
used for removing duplicates while in insert it is used for REPLACE calls.
|
|
*/
|
|
int ha_example::delete_row(const byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::delete_row");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
Positions an index cursor to the index specified in the handle. Fetches the
|
|
row if available. If the key value is null, begin at the first key of the
|
|
index.
|
|
*/
|
|
int ha_example::index_read(byte * buf, const byte * key,
|
|
uint key_len __attribute__((unused)),
|
|
enum ha_rkey_function find_flag
|
|
__attribute__((unused)))
|
|
{
|
|
DBUG_ENTER("ha_example::index_read");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
Positions an index cursor to the index specified in key. Fetches the
|
|
row if any. This is only used to read whole keys.
|
|
*/
|
|
int ha_example::index_read_idx(byte * buf, uint index, const byte * key,
|
|
uint key_len __attribute__((unused)),
|
|
enum ha_rkey_function find_flag
|
|
__attribute__((unused)))
|
|
{
|
|
DBUG_ENTER("ha_example::index_read_idx");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
Used to read forward through the index.
|
|
*/
|
|
int ha_example::index_next(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::index_next");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
Used to read backwards through the index.
|
|
*/
|
|
int ha_example::index_prev(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::index_prev");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
index_first() asks for the first key in the index.
|
|
|
|
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
|
|
and sql_select.cc.
|
|
*/
|
|
int ha_example::index_first(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::index_first");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
index_last() asks for the last key in the index.
|
|
|
|
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
|
|
and sql_select.cc.
|
|
*/
|
|
int ha_example::index_last(byte * buf)
|
|
{
|
|
DBUG_ENTER("ha_example::index_last");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
rnd_init() is called when the system wants the storage engine to do a table
|
|
scan.
|
|
See the example in the introduction at the top of this file to see when
|
|
rnd_init() is called.
|
|
|
|
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc, sql_table.cc,
|
|
and sql_update.cc.
|
|
*/
|
|
int ha_example::rnd_init(bool scan)
|
|
{
|
|
DBUG_ENTER("ha_example::rnd_init");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
int ha_example::rnd_end()
|
|
{
|
|
DBUG_ENTER("ha_example::rnd_end");
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/*
|
|
This is called for each row of the table scan. When you run out of records
|
|
you should return HA_ERR_END_OF_FILE. Fill buff up with the row information.
|
|
The Field structure for the table is the key to getting data into buf
|
|
in a manner that will allow the server to understand it.
|
|
|
|
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc, sql_table.cc,
|
|
and sql_update.cc.
|
|
*/
|
|
int ha_example::rnd_next(byte *buf)
|
|
{
|
|
DBUG_ENTER("ha_example::rnd_next");
|
|
DBUG_RETURN(HA_ERR_END_OF_FILE);
|
|
}
|
|
|
|
|
|
/*
|
|
position() is called after each call to rnd_next() if the data needs
|
|
to be ordered. You can do something like the following to store
|
|
the position:
|
|
my_store_ptr(ref, ref_length, current_position);
|
|
|
|
The server uses ref to store data. ref_length in the above case is
|
|
the size needed to store current_position. ref is just a byte array
|
|
that the server will maintain. If you are using offsets to mark rows, then
|
|
current_position should be the offset. If it is a primary key like in
|
|
BDB, then it needs to be a primary key.
|
|
|
|
Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
|
|
*/
|
|
void ha_example::position(const byte *record)
|
|
{
|
|
DBUG_ENTER("ha_example::position");
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
This is like rnd_next, but you are given a position to use
|
|
to determine the row. The position will be of the type that you stored in
|
|
ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
|
|
or position you saved when position() was called.
|
|
Called from filesort.cc records.cc sql_insert.cc sql_select.cc sql_update.cc.
|
|
*/
|
|
int ha_example::rnd_pos(byte * buf, byte *pos)
|
|
{
|
|
DBUG_ENTER("ha_example::rnd_pos");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
::info() is used to return information to the optimizer.
|
|
see my_base.h for the complete description
|
|
|
|
Currently this table handler doesn't implement most of the fields
|
|
really needed. SHOW also makes use of this data
|
|
Another note, you will probably want to have the following in your
|
|
code:
|
|
if (records < 2)
|
|
records = 2;
|
|
The reason is that the server will optimize for cases of only a single
|
|
record. If in a table scan you don't know the number of records
|
|
it will probably be better to set records to two so you can return
|
|
as many records as you need.
|
|
Along with records a few more variables you may wish to set are:
|
|
records
|
|
deleted
|
|
data_file_length
|
|
index_file_length
|
|
delete_length
|
|
check_time
|
|
Take a look at the public variables in handler.h for more information.
|
|
|
|
Called in:
|
|
filesort.cc
|
|
ha_heap.cc
|
|
item_sum.cc
|
|
opt_sum.cc
|
|
sql_delete.cc
|
|
sql_delete.cc
|
|
sql_derived.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_select.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_show.cc
|
|
sql_table.cc
|
|
sql_union.cc
|
|
sql_update.cc
|
|
|
|
*/
|
|
void ha_example::info(uint flag)
|
|
{
|
|
DBUG_ENTER("ha_example::info");
|
|
DBUG_VOID_RETURN;
|
|
}
|
|
|
|
|
|
/*
|
|
extra() is called whenever the server wishes to send a hint to
|
|
the storage engine. The myisam engine implements the most hints.
|
|
ha_innodb.cc has the most exhaustive list of these hints.
|
|
*/
|
|
int ha_example::extra(enum ha_extra_function operation)
|
|
{
|
|
DBUG_ENTER("ha_example::extra");
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Deprecated and likely to be removed in the future. Storage engines normally
|
|
just make a call like:
|
|
ha_example::extra(HA_EXTRA_RESET);
|
|
to handle it.
|
|
*/
|
|
int ha_example::reset(void)
|
|
{
|
|
DBUG_ENTER("ha_example::reset");
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
Used to delete all rows in a table. Both for cases of truncate and
|
|
for cases where the optimizer realizes that all rows will be
|
|
removed as a result of a SQL statement.
|
|
|
|
Called from item_sum.cc by Item_func_group_concat::clear(),
|
|
Item_sum_count_distinct::clear(), and Item_func_group_concat::clear().
|
|
Called from sql_delete.cc by mysql_delete().
|
|
Called from sql_select.cc by JOIN::reinit().
|
|
Called from sql_union.cc by st_select_lex_unit::exec().
|
|
*/
|
|
int ha_example::delete_all_rows()
|
|
{
|
|
DBUG_ENTER("ha_example::delete_all_rows");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
|
|
/*
|
|
First you should go read the section "locking functions for mysql" in
|
|
lock.cc to understand this.
|
|
This create a lock on the table. If you are implementing a storage engine
|
|
that can handle transacations look at ha_berkely.cc to see how you will
|
|
want to goo about doing this. Otherwise you should consider calling flock()
|
|
here.
|
|
|
|
Called from lock.cc by lock_external() and unlock_external(). Also called
|
|
from sql_table.cc by copy_data_between_tables().
|
|
*/
|
|
int ha_example::external_lock(THD *thd, int lock_type)
|
|
{
|
|
DBUG_ENTER("ha_example::external_lock");
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
|
|
/*
|
|
The idea with handler::store_lock() is the following:
|
|
|
|
The statement decided which locks we should need for the table
|
|
for updates/deletes/inserts we get WRITE locks, for SELECT... we get
|
|
read locks.
|
|
|
|
Before adding the lock into the table lock handler (see thr_lock.c)
|
|
mysqld calls store lock with the requested locks. Store lock can now
|
|
modify a write lock to a read lock (or some other lock), ignore the
|
|
lock (if we don't want to use MySQL table locks at all) or add locks
|
|
for many tables (like we do when we are using a MERGE handler).
|
|
|
|
Berkeley DB for example changes all WRITE locks to TL_WRITE_ALLOW_WRITE
|
|
(which signals that we are doing WRITES, but we are still allowing other
|
|
reader's and writer's.
|
|
|
|
When releasing locks, store_lock() are also called. In this case one
|
|
usually doesn't have to do anything.
|
|
|
|
In some exceptional cases MySQL may send a request for a TL_IGNORE;
|
|
This means that we are requesting the same lock as last time and this
|
|
should also be ignored. (This may happen when someone does a flush
|
|
table when we have opened a part of the tables, in which case mysqld
|
|
closes and reopens the tables and tries to get the same locks at last
|
|
time). In the future we will probably try to remove this.
|
|
|
|
Called from lock.cc by get_lock_data().
|
|
*/
|
|
THR_LOCK_DATA **ha_example::store_lock(THD *thd,
|
|
THR_LOCK_DATA **to,
|
|
enum thr_lock_type lock_type)
|
|
{
|
|
if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK)
|
|
lock.type=lock_type;
|
|
*to++= &lock;
|
|
return to;
|
|
}
|
|
|
|
/*
|
|
Used to delete a table. By the time delete_table() has been called all
|
|
opened references to this table will have been closed (and your globally
|
|
shared references released. The variable name will just be the name of
|
|
the table. You will need to remove any files you have created at this point.
|
|
|
|
If you do not implement this, the default delete_table() is called from
|
|
handler.cc and it will delete all files with the file extentions returned
|
|
by bas_ext().
|
|
|
|
Called from handler.cc by delete_table and ha_create_table(). Only used
|
|
during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
|
|
the storage engine.
|
|
*/
|
|
int ha_example::delete_table(const char *name)
|
|
{
|
|
DBUG_ENTER("ha_example::delete_table");
|
|
/* This is not implemented but we want someone to be able that it works. */
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
/*
|
|
Renames a table from one name to another from alter table call.
|
|
|
|
If you do not implement this, the default rename_table() is called from
|
|
handler.cc and it will delete all files with the file extentions returned
|
|
by bas_ext().
|
|
|
|
Called from sql_table.cc by mysql_rename_table().
|
|
*/
|
|
int ha_example::rename_table(const char * from, const char * to)
|
|
{
|
|
DBUG_ENTER("ha_example::rename_table ");
|
|
DBUG_RETURN(HA_ERR_WRONG_COMMAND);
|
|
}
|
|
|
|
/*
|
|
Given a starting key, and an ending key estimate the number of rows that
|
|
will exist between the two. end_key may be empty which in case determine
|
|
if start_key matches any rows.
|
|
|
|
Called from opt_range.cc by check_quick_keys().
|
|
*/
|
|
ha_rows ha_example::records_in_range(uint inx, key_range *min_key,
|
|
key_range *max_key)
|
|
{
|
|
DBUG_ENTER("ha_example::records_in_range");
|
|
DBUG_RETURN(10); // low number to force index usage
|
|
}
|
|
|
|
|
|
/*
|
|
create() is called to create a database. The variable name will have the name
|
|
of the table. When create() is called you do not need to worry about opening
|
|
the table. Also, the FRM file will have already been created so adjusting
|
|
create_info will not do you any good. You can overwrite the frm file at this
|
|
point if you wish to change the table definition, but there are no methods
|
|
currently provided for doing that.
|
|
|
|
Called from handle.cc by ha_create_table().
|
|
*/
|
|
int ha_example::create(const char *name, TABLE *table_arg,
|
|
HA_CREATE_INFO *create_info)
|
|
{
|
|
DBUG_ENTER("ha_example::create");
|
|
/* This is not implemented but we want someone to be able that it works. */
|
|
DBUG_RETURN(0);
|
|
}
|
|
|
|
mysql_declare_plugin
|
|
{
|
|
MYSQL_STORAGE_ENGINE_PLUGIN,
|
|
&example_hton,
|
|
example_hton.name,
|
|
"Brian Aker, MySQL AB",
|
|
"Example Storage Engine",
|
|
example_init_func, /* Plugin Init */
|
|
example_done_func, /* Plugin Deinit */
|
|
0x0001 /* 0.1 */,
|
|
}
|
|
mysql_declare_plugin_end;
|
|
|