mariadb/sql/ha_heap.cc
dlenev@jabberwock.localdomain f6bff2e6c6 WL#1266 "Separate auto-set logic from TIMESTAMP type."
Final version of patch.

Adds support for specifying of DEFAULT NOW() and/or ON UPDATE NOW()
clauses for TIMESTAMP field definition.
Current implementation allows only one such field per table and
uses several unireg types for storing info about this properties of
field. It should be replaced with better implementation when new
.frm format is introduced.
2004-04-02 10:12:53 +04:00

367 lines
10 KiB
C++

/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include <myisampack.h>
#include "ha_heap.h"
/*****************************************************************************
** HEAP tables
*****************************************************************************/
const char **ha_heap::bas_ext() const
{ static const char *ext[1]= { NullS }; return ext; }
int ha_heap::open(const char *name, int mode, uint test_if_locked)
{
if (!(file= heap_open(name, mode)) && my_errno == ENOENT)
{
HA_CREATE_INFO create_info;
bzero(&create_info, sizeof(create_info));
if (!create(name, table, &create_info))
{
file= heap_open(name, mode);
implicit_emptied= 1;
}
}
ref_length= sizeof(HEAP_PTR);
if (file)
{
/* Initialize variables for the opened table */
btree_keys.clear_all();
for (uint i= 0 ; i < table->keys ; i++)
{
if (table->key_info[i].algorithm == HA_KEY_ALG_BTREE)
btree_keys.set_bit(i);
}
}
return (file ? 0 : 1);
}
int ha_heap::close(void)
{
return heap_close(file);
}
int ha_heap::write_row(byte * buf)
{
statistic_increment(ha_write_count,&LOCK_status);
if (table->timestamp_default_now)
update_timestamp(buf+table->timestamp_default_now-1);
if (table->next_number_field && buf == table->record[0])
update_auto_increment();
return heap_write(file,buf);
}
int ha_heap::update_row(const byte * old_data, byte * new_data)
{
statistic_increment(ha_update_count,&LOCK_status);
if (table->timestamp_on_update_now)
update_timestamp(new_data+table->timestamp_on_update_now-1);
return heap_update(file,old_data,new_data);
}
int ha_heap::delete_row(const byte * buf)
{
statistic_increment(ha_delete_count,&LOCK_status);
return heap_delete(file,buf);
}
int ha_heap::index_read(byte * buf, const byte * key, uint key_len,
enum ha_rkey_function find_flag)
{
statistic_increment(ha_read_key_count, &LOCK_status);
int error = heap_rkey(file,buf,active_index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_last(byte *buf, const byte *key, uint key_len)
{
statistic_increment(ha_read_key_count, &LOCK_status);
int error= heap_rkey(file, buf, active_index, key, key_len,
HA_READ_PREFIX_LAST);
table->status= error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_read_idx(byte * buf, uint index, const byte * key,
uint key_len, enum ha_rkey_function find_flag)
{
statistic_increment(ha_read_key_count, &LOCK_status);
int error = heap_rkey(file, buf, index, key, key_len, find_flag);
table->status = error ? STATUS_NOT_FOUND : 0;
return error;
}
int ha_heap::index_next(byte * buf)
{
statistic_increment(ha_read_next_count,&LOCK_status);
int error=heap_rnext(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_prev(byte * buf)
{
statistic_increment(ha_read_prev_count,&LOCK_status);
int error=heap_rprev(file,buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_first(byte * buf)
{
statistic_increment(ha_read_first_count,&LOCK_status);
int error=heap_rfirst(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::index_last(byte * buf)
{
statistic_increment(ha_read_last_count,&LOCK_status);
int error=heap_rlast(file, buf, active_index);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_init(bool scan)
{
return scan ? heap_scan_init(file) : 0;
}
int ha_heap::rnd_next(byte *buf)
{
statistic_increment(ha_read_rnd_next_count,&LOCK_status);
int error=heap_scan(file, buf);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
int ha_heap::rnd_pos(byte * buf, byte *pos)
{
int error;
HEAP_PTR position;
statistic_increment(ha_read_rnd_count,&LOCK_status);
memcpy_fixed((char*) &position,pos,sizeof(HEAP_PTR));
error=heap_rrnd(file, buf, position);
table->status=error ? STATUS_NOT_FOUND: 0;
return error;
}
void ha_heap::position(const byte *record)
{
*(HEAP_PTR*) ref= heap_position(file); // Ref is aligned
}
void ha_heap::info(uint flag)
{
HEAPINFO info;
(void) heap_info(file,&info,flag);
records = info.records;
deleted = info.deleted;
errkey = info.errkey;
mean_rec_length=info.reclength;
data_file_length=info.data_length;
index_file_length=info.index_length;
max_data_file_length= info.max_records* info.reclength;
delete_length= info.deleted * info.reclength;
if (flag & HA_STATUS_AUTO)
auto_increment_value= info.auto_increment;
}
int ha_heap::extra(enum ha_extra_function operation)
{
return heap_extra(file,operation);
}
int ha_heap::reset(void)
{
return heap_extra(file,HA_EXTRA_RESET);
}
int ha_heap::delete_all_rows()
{
heap_clear(file);
return 0;
}
int ha_heap::external_lock(THD *thd, int lock_type)
{
return 0; // No external locking
}
THR_LOCK_DATA **ha_heap::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
if (lock_type != TL_IGNORE && file->lock.type == TL_UNLOCK)
file->lock.type=lock_type;
*to++= &file->lock;
return to;
}
/*
We have to ignore ENOENT entries as the HEAP table is created on open and
not when doing a CREATE on the table.
*/
int ha_heap::delete_table(const char *name)
{
int error=heap_delete_table(name);
return error == ENOENT ? 0 : error;
}
int ha_heap::rename_table(const char * from, const char * to)
{
return heap_rename(from,to);
}
ha_rows ha_heap::records_in_range(int inx,
const byte *start_key,uint start_key_len,
enum ha_rkey_function start_search_flag,
const byte *end_key,uint end_key_len,
enum ha_rkey_function end_search_flag)
{
KEY *pos=table->key_info+inx;
if (pos->algorithm == HA_KEY_ALG_BTREE)
{
return hp_rb_records_in_range(file, inx, start_key, start_key_len,
start_search_flag, end_key, end_key_len,
end_search_flag);
}
else
{
if (start_key_len != end_key_len ||
start_key_len != pos->key_length ||
start_search_flag != HA_READ_KEY_EXACT ||
end_search_flag != HA_READ_AFTER_KEY)
return HA_POS_ERROR; // Can't only use exact keys
return 10; // Good guess
}
}
int ha_heap::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
uint key, parts, mem_per_row= 0;
uint auto_key= 0, auto_key_type= 0;
ha_rows max_rows;
HP_KEYDEF *keydef;
HA_KEYSEG *seg;
char buff[FN_REFLEN];
int error;
for (key= parts= 0; key < table_arg->keys; key++)
parts+= table_arg->key_info[key].key_parts;
if (!(keydef= (HP_KEYDEF*) my_malloc(table_arg->keys * sizeof(HP_KEYDEF) +
parts * sizeof(HA_KEYSEG),
MYF(MY_WME))))
return my_errno;
seg= my_reinterpret_cast(HA_KEYSEG*) (keydef + table_arg->keys);
for (key= 0; key < table_arg->keys; key++)
{
KEY *pos= table_arg->key_info+key;
KEY_PART_INFO *key_part= pos->key_part;
KEY_PART_INFO *key_part_end= key_part + pos->key_parts;
mem_per_row+= (pos->key_length + (sizeof(char*) * 2));
keydef[key].keysegs= (uint) pos->key_parts;
keydef[key].flag= (pos->flags & (HA_NOSAME | HA_NULL_ARE_EQUAL));
keydef[key].seg= seg;
keydef[key].algorithm= ((pos->algorithm == HA_KEY_ALG_UNDEF) ?
HA_KEY_ALG_HASH : pos->algorithm);
for (; key_part != key_part_end; key_part++, seg++)
{
uint flag= key_part->key_type;
Field *field= key_part->field;
if (pos->algorithm == HA_KEY_ALG_BTREE)
seg->type= field->key_type();
else
{
if (!f_is_packed(flag) &&
f_packtype(flag) == (int) FIELD_TYPE_DECIMAL &&
!(flag & FIELDFLAG_BINARY))
seg->type= (int) HA_KEYTYPE_TEXT;
else
seg->type= (int) HA_KEYTYPE_BINARY;
}
seg->start= (uint) key_part->offset;
seg->length= (uint) key_part->length;
seg->flag = 0;
seg->charset= field->charset();
if (field->null_ptr)
{
seg->null_bit= field->null_bit;
seg->null_pos= (uint) (field->null_ptr - (uchar*) table_arg->record[0]);
}
else
{
seg->null_bit= 0;
seg->null_pos= 0;
}
if (field->flags & AUTO_INCREMENT_FLAG)
{
auto_key= key + 1;
auto_key_type= field->key_type();
}
}
}
mem_per_row+= MY_ALIGN(table_arg->reclength + 1, sizeof(char*));
max_rows = (ha_rows) (current_thd->variables.max_heap_table_size /
mem_per_row);
HP_CREATE_INFO hp_create_info;
hp_create_info.auto_key= auto_key;
hp_create_info.auto_key_type= auto_key_type;
hp_create_info.auto_increment= (create_info->auto_increment_value ?
create_info->auto_increment_value - 1 : 0);
error= heap_create(fn_format(buff,name,"","",4+2),
table_arg->keys,keydef, table_arg->reclength,
(ulong) ((table_arg->max_rows < max_rows &&
table_arg->max_rows) ?
table_arg->max_rows : max_rows),
(ulong) table_arg->min_rows, &hp_create_info);
my_free((gptr) keydef, MYF(0));
if (file)
info(HA_STATUS_NO_LOCK | HA_STATUS_CONST | HA_STATUS_VARIABLE);
return (error);
}
void ha_heap::update_create_info(HA_CREATE_INFO *create_info)
{
table->file->info(HA_STATUS_AUTO);
if (!(create_info->used_fields & HA_CREATE_USED_AUTO))
create_info->auto_increment_value= auto_increment_value;
}
longlong ha_heap::get_auto_increment()
{
ha_heap::info(HA_STATUS_AUTO);
return auto_increment_value;
}