mariadb/sql/sp_head.h
Konstantin Osipov 36290c0923 A pre-requisite patch for the fix for Bug#52044.
This patch also fixes Bug#55452 "SET PASSWORD is
replicated twice in RBR mode".

The goal of this patch is to remove the release of 
metadata locks from close_thread_tables().
This is necessary to not mistakenly release
the locks in the course of a multi-step
operation that involves multiple close_thread_tables()
or close_tables_for_reopen().

On the same token, move statement commit outside 
close_thread_tables().

Other cleanups:
Cleanup COM_FIELD_LIST.
Don't call close_thread_tables() in COM_SHUTDOWN -- there
are no open tables there that can be closed (we leave
the locked tables mode in THD destructor, and this
close_thread_tables() won't leave it anyway).

Make open_and_lock_tables() and open_and_lock_tables_derived()
call close_thread_tables() upon failure.
Remove the calls to close_thread_tables() that are now
unnecessary.

Simplify the back off condition in Open_table_context.

Streamline metadata lock handling in LOCK TABLES 
implementation.

Add asserts to ensure correct life cycle of 
statement transaction in a session.

Remove a piece of dead code that has also become redundant
after the fix for Bug 37521.

mysql-test/r/variables.result:
  Update results: set @@autocommit and statement transaction/
  prelocked mode.
mysql-test/r/view.result:
  A harmless change in CHECK TABLE <view> status for a broken view.
  If previously a failure to prelock all functions used in a view 
  would leave the connection in LTM_PRELOCKED mode, now we call
  close_thread_tables() from open_and_lock_tables()
  and leave prelocked mode, thus some check in mysql_admin_table() that
  works only in prelocked/locked tables mode is no longer activated.
mysql-test/suite/rpl/r/rpl_row_implicit_commit_binlog.result:
  Fixed Bug#55452 "SET PASSWORD is replicated twice in
  RBR mode": extra binlog events are gone from the
  binary log.
mysql-test/t/variables.test:
  Add a test case: set autocommit and statement transaction/prelocked
  mode.
sql/event_data_objects.cc:
  Simplify code in Event_job_data::execute().
  Move sp_head memory management to lex_end().
sql/event_db_repository.cc:
  Move the release of metadata locks outside
  close_thread_tables().
  Make sure we call close_thread_tables() when
  open_and_lock_tables() fails and remove extra
  code from the events data dictionary.
  Use close_mysql_tables(), a new internal
  function to properly close mysql.* tables
  in the data dictionary.
  Contract Event_db_repository::drop_events_by_field,
  drop_schema_events into one function.
  When dropping all events in a schema,
  make sure we don't mistakenly release all
  locks acquired by DROP DATABASE. These
  include locks on the database name
  and the global intention exclusive
  metadata lock.
sql/event_db_repository.h:
  Function open_event_table() does not require an instance 
  of Event_db_repository.
sql/events.cc:
  Use close_mysql_tables() instead of close_thread_tables()
  to bootstrap events, since the latter no longer
  releases metadata locks.
sql/ha_ndbcluster.cc:
  - mysql_rm_table_part2 no longer releases
  acquired metadata locks. Do it in the caller.
sql/ha_ndbcluster_binlog.cc:
  Deploy the new protocol for closing thread
  tables in run_query() and ndb_binlog_index
  code.
sql/handler.cc:
  Assert that we never call ha_commit_trans/
  ha_rollback_trans in sub-statement, which
  is now the case.
sql/handler.h:
  Add an accessor to check whether THD_TRANS object
  is empty (has no transaction started).
sql/log.cc:
  Update a comment.
sql/log_event.cc:
  Since now we commit/rollback statement transaction in 
  mysql_execute_command(), we need a mechanism to communicate
  from Query_log_event::do_apply_event() to mysql_execute_command()
  that the statement transaction should be rolled back, not committed.
  Ideally it would be a virtual method of THD. I hesitate
  to make THD a virtual base class in this already large patch.
  Use a thd->variables.option_bits for now.
  
  Remove a call to close_thread_tables() from the slave IO
  thread. It doesn't open any tables, and the protocol
  for closing thread tables is more complicated now.
  
  Make sure we properly close thread tables, however, 
  in Load_data_log_event, which doesn't
  follow the standard server execution procedure
  with mysql_execute_command().
  @todo: this piece should use Server_runnable
  framework instead.
  Remove an unnecessary call to mysql_unlock_tables().
sql/rpl_rli.cc:
  Update Relay_log_info::slave_close_thread_tables()
  to follow the new close protocol.
sql/set_var.cc:
  Remove an unused header.
sql/slave.cc:
  Remove an unnecessary call to
  close_thread_tables().
sql/sp.cc:
  Remove unnecessary calls to close_thread_tables()
  from SP DDL implementation. The tables will
  be closed by the caller, in mysql_execute_command().
  When dropping all routines in a database, make sure
  to not mistakenly drop all metadata locks acquired
  so far, they include the scoped lock on the schema.
sql/sp_head.cc:
  Correct the protocol that closes thread tables
  in an SP instruction.
  Clear lex->sphead before cleaning up lex
  with lex_end to make sure that we don't
  delete the sphead twice. It's considered
  to be "cleaner" and more in line with
  future changes than calling delete lex->sphead
  in other places that cleanup the lex.
sql/sp_head.h:
  When destroying m_lex_keeper of an instruction,
  don't delete the sphead that all lex objects
  share. 
  @todo: don't store a reference to routine's sp_head
  instance in instruction's lex.
sql/sql_acl.cc:
  Don't call close_thread_tables() where the caller will
  do that for us.
  Fix Bug#55452 "SET PASSWORD is replicated twice in RBR 
  mode" by disabling RBR replication in change_password()
  function.
  Use close_mysql_tables() in bootstrap and ACL reload
  code to make sure we release all metadata locks.
sql/sql_base.cc:
  This is the main part of the patch:
  - remove manipulation with thd->transaction
  and thd->mdl_context from close_thread_tables().
  Now this function is only responsible for closing
  tables, nothing else.
  This is necessary to be able to easily use
  close_thread_tables() in procedures, that
  involve multiple open/close tables, which all
  need to be protected continuously by metadata
  locks.
  Add asserts ensuring that TABLE object
  is only used when is protected by a metadata lock.
  Simplify the back off condition of Open_table_context,
  we no longer need to look at the autocommit mode.
  Make open_and_lock_tables() and open_normal_and_derived_tables()
  close thread tables and release metadata locks acquired so-far 
  upon failure. This simplifies their usage.
  Implement close_mysql_tables().
sql/sql_base.h:
  Add declaration for close_mysql_tables().
sql/sql_class.cc:
  Remove a piece of dead code that has also become redundant
  after the fix for Bug 37521.
  The code became dead when my_eof() was made a non-protocol method,
  but a method that merely modifies the diagnostics area.
  The code became redundant with the fix for Bug#37521, when 
  we started to cal close_thread_tables() before
  Protocol::end_statement().
sql/sql_do.cc:
  Do nothing in DO if inside a substatement
  (the assert moved out of trans_rollback_stmt).
sql/sql_handler.cc:
  Add comments.
sql/sql_insert.cc:
  Remove dead code. 
  Release metadata locks explicitly at the
  end of the delayed insert thread.
sql/sql_lex.cc:
  Add destruction of lex->sphead to lex_end(),
  lex "reset" method called at the end of each statement.
sql/sql_parse.cc:
  Move close_thread_tables() and other related
  cleanups to mysql_execute_command()
  from dispatch_command(). This has become
  possible after the fix for Bug#37521.
  Mark federated SERVER statements as DDL.
  
  Next step: make sure that we don't store
  eof packet in the query cache, and move
  the query cache code outside mysql_parse.
  
  Brush up the code of COM_FIELD_LIST.
  Remove unnecessary calls to close_thread_tables().
  
  When killing a query, don't report "OK"
  if it was a suicide.
sql/sql_parse.h:
  Remove declaration of a function that is now static.
sql/sql_partition.cc:
  Remove an unnecessary call to close_thread_tables().
sql/sql_plugin.cc:
  open_and_lock_tables() will clean up
  after itself after a failure.
  Move close_thread_tables() above
  end: label, and replace with close_mysql_tables(),
  which will also release the metadata lock
  on mysql.plugin.
sql/sql_prepare.cc:
  Now that we no longer release locks in close_thread_tables()
  statement prepare code has become more straightforward.
  Remove the now redundant check for thd->killed() (used
  only by the backup project) from Execute_server_runnable.
  Reorder code to take into account that now mysql_execute_command()
  performs lex->unit.cleanup() and close_thread_tables().
sql/sql_priv.h:
  Add a new option to server options to interact
  between the slave SQL thread and execution
  framework (hack). @todo: use a virtual
  method of class THD instead.
sql/sql_servers.cc:
  Due to Bug 25705 replication of 
  DROP/CREATE/ALTER SERVER is broken.
  Make sure at least we do not attempt to 
  replicate these statements using RBR,
  as this violates the assert in close_mysql_tables().
sql/sql_table.cc:
  Do not release metadata locks in mysql_rm_table_part2,
  this is done by the caller.
  Do not call close_thread_tables() in mysql_create_table(),
  this is done by the caller. 
  Fix a bug in DROP TABLE under LOCK TABLES when,
  upon error in wait_while_table_is_used() we would mistakenly
  release the metadata lock on a non-dropped table.
  Explicitly release metadata locks when doing an implicit
  commit.
sql/sql_trigger.cc:
  Now that we delete lex->sphead in lex_end(),
  zero the trigger's sphead in lex after loading
  the trigger, to avoid double deletion.
sql/sql_udf.cc:
  Use close_mysql_tables() instead of close_thread_tables().
sql/sys_vars.cc:
  Remove code added in scope of WL#4284 which would
  break when we perform set @@session.autocommit along
  with setting other variables and using tables or functions.
  A test case added to variables.test.
sql/transaction.cc:
  Add asserts.
sql/tztime.cc:
  Use close_mysql_tables() rather than close_thread_tables().
2010-07-27 14:25:53 +04:00

1360 lines
34 KiB
C++

/* -*- C++ -*- */
/* Copyright (C) 2002 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef _SP_HEAD_H_
#define _SP_HEAD_H_
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
/*
It is necessary to include set_var.h instead of item.h because there
are dependencies on include order for set_var.h and item.h. This
will be resolved later.
*/
#include "my_global.h" /* NO_EMBEDDED_ACCESS_CHECKS */
#include "sql_class.h" // THD, set_var.h: THD
#include "set_var.h" // Item
#include <stddef.h>
/**
@defgroup Stored_Routines Stored Routines
@ingroup Runtime_Environment
@{
*/
// Values for the type enum. This reflects the order of the enum declaration
// in the CREATE TABLE command.
#define TYPE_ENUM_FUNCTION 1
#define TYPE_ENUM_PROCEDURE 2
#define TYPE_ENUM_TRIGGER 3
Item_result
sp_map_result_type(enum enum_field_types type);
Item::Type
sp_map_item_type(enum enum_field_types type);
uint
sp_get_flags_for_command(LEX *lex);
struct sp_label;
class sp_instr;
class sp_instr_opt_meta;
class sp_instr_jump_if_not;
struct sp_cond_type;
struct sp_variable;
/*************************************************************************/
/**
Stored_program_creation_ctx -- base class for creation context of stored
programs (stored routines, triggers, events).
*/
class Stored_program_creation_ctx :public Default_object_creation_ctx
{
public:
CHARSET_INFO *get_db_cl()
{
return m_db_cl;
}
public:
virtual Stored_program_creation_ctx *clone(MEM_ROOT *mem_root) = 0;
protected:
Stored_program_creation_ctx(THD *thd)
: Default_object_creation_ctx(thd),
m_db_cl(thd->variables.collation_database)
{ }
Stored_program_creation_ctx(CHARSET_INFO *client_cs,
CHARSET_INFO *connection_cl,
CHARSET_INFO *db_cl)
: Default_object_creation_ctx(client_cs, connection_cl),
m_db_cl(db_cl)
{ }
protected:
virtual void change_env(THD *thd) const
{
thd->variables.collation_database= m_db_cl;
Default_object_creation_ctx::change_env(thd);
}
protected:
/**
db_cl stores the value of the database collation. Both character set
and collation attributes are used.
Database collation is included into the context because it defines the
default collation for stored-program variables.
*/
CHARSET_INFO *m_db_cl;
};
/*************************************************************************/
class sp_name : public Sql_alloc
{
public:
LEX_STRING m_db;
LEX_STRING m_name;
LEX_STRING m_qname;
bool m_explicit_name; /**< Prepend the db name? */
sp_name(LEX_STRING db, LEX_STRING name, bool use_explicit_name)
: m_db(db), m_name(name), m_explicit_name(use_explicit_name)
{
m_qname.str= 0;
m_qname.length= 0;
}
/** Create temporary sp_name object from MDL key. */
sp_name(const MDL_key *key, char *qname_buff);
// Init. the qualified name from the db and name.
void init_qname(THD *thd); // thd for memroot allocation
~sp_name()
{}
};
bool
check_routine_name(LEX_STRING *ident);
class sp_head :private Query_arena
{
sp_head(const sp_head &); /**< Prevent use of these */
void operator=(sp_head &);
MEM_ROOT main_mem_root;
public:
/** Possible values of m_flags */
enum {
HAS_RETURN= 1, // For FUNCTIONs only: is set if has RETURN
MULTI_RESULTS= 8, // Is set if a procedure with SELECT(s)
CONTAINS_DYNAMIC_SQL= 16, // Is set if a procedure with PREPARE/EXECUTE
IS_INVOKED= 32, // Is set if this sp_head is being used
HAS_SET_AUTOCOMMIT_STMT= 64,// Is set if a procedure with 'set autocommit'
/* Is set if a procedure with COMMIT (implicit or explicit) | ROLLBACK */
HAS_COMMIT_OR_ROLLBACK= 128,
LOG_SLOW_STATEMENTS= 256, // Used by events
LOG_GENERAL_LOG= 512, // Used by events
HAS_SQLCOM_RESET= 1024,
HAS_SQLCOM_FLUSH= 2048
};
/** TYPE_ENUM_FUNCTION, TYPE_ENUM_PROCEDURE or TYPE_ENUM_TRIGGER */
int m_type;
uint m_flags; // Boolean attributes of a stored routine
Create_field m_return_field_def; /**< This is used for FUNCTIONs only. */
const char *m_tmp_query; ///< Temporary pointer to sub query string
st_sp_chistics *m_chistics;
ulong m_sql_mode; ///< For SHOW CREATE and execution
LEX_STRING m_qname; ///< db.name
bool m_explicit_name; ///< Prepend the db name? */
LEX_STRING m_db;
LEX_STRING m_name;
LEX_STRING m_params;
LEX_STRING m_body;
LEX_STRING m_body_utf8;
LEX_STRING m_defstr;
LEX_STRING m_definer_user;
LEX_STRING m_definer_host;
/**
Is this routine being executed?
*/
bool is_invoked() const { return m_flags & IS_INVOKED; }
/**
Get the value of the SP cache version, as remembered
when the routine was inserted into the cache.
*/
ulong sp_cache_version() const { return m_sp_cache_version; }
/** Set the value of the SP cache version. */
void set_sp_cache_version(ulong version_arg)
{
m_sp_cache_version= version_arg;
}
private:
/**
Version of the stored routine cache at the moment when the
routine was added to it. Is used only for functions and
procedures, not used for triggers or events. When sp_head is
created, its version is 0. When it's added to the cache, the
version is assigned the global value 'Cversion'.
If later on Cversion is incremented, we know that the routine
is obsolete and should not be used --
sp_cache_flush_obsolete() will purge it.
*/
ulong m_sp_cache_version;
Stored_program_creation_ctx *m_creation_ctx;
/**
Boolean combination of (1<<flag), where flag is a member of
LEX::enum_binlog_stmt_unsafe.
*/
uint32 unsafe_flags;
public:
inline Stored_program_creation_ctx *get_creation_ctx()
{
return m_creation_ctx;
}
inline void set_creation_ctx(Stored_program_creation_ctx *creation_ctx)
{
m_creation_ctx= creation_ctx->clone(mem_root);
}
longlong m_created;
longlong m_modified;
/** Recursion level of the current SP instance. The levels are numbered from 0 */
ulong m_recursion_level;
/**
A list of diferent recursion level instances for the same procedure.
For every recursion level we have a sp_head instance. This instances
connected in the list. The list ordered by increasing recursion level
(m_recursion_level).
*/
sp_head *m_next_cached_sp;
/**
Pointer to the first element of the above list
*/
sp_head *m_first_instance;
/**
Pointer to the first free (non-INVOKED) routine in the list of
cached instances for this SP. This pointer is set only for the first
SP in the list of instences (see above m_first_cached_sp pointer).
The pointer equal to 0 if we have no free instances.
For non-first instance value of this pointer meanless (point to itself);
*/
sp_head *m_first_free_instance;
/**
Pointer to the last element in the list of instances of the SP.
For non-first instance value of this pointer meanless (point to itself);
*/
sp_head *m_last_cached_sp;
/**
Set containing names of stored routines used by this routine.
Note that unlike elements of similar set for statement elements of this
set are not linked in one list. Because of this we are able save memory
by using for this set same objects that are used in 'sroutines' sets
for statements of which this stored routine consists.
*/
HASH m_sroutines;
// Pointers set during parsing
const char *m_param_begin;
const char *m_param_end;
private:
const char *m_body_begin;
public:
/*
Security context for stored routine which should be run under
definer privileges.
*/
Security_context m_security_ctx;
static void *
operator new(size_t size) throw ();
static void
operator delete(void *ptr, size_t size) throw ();
sp_head();
/// Initialize after we have reset mem_root
void
init(LEX *lex);
/** Copy sp name from parser. */
void
init_sp_name(THD *thd, sp_name *spname);
/** Set the body-definition start position. */
void
set_body_start(THD *thd, const char *begin_ptr);
/** Set the statement-definition (body-definition) end position. */
void
set_stmt_end(THD *thd);
virtual ~sp_head();
bool
execute_trigger(THD *thd,
const LEX_STRING *db_name,
const LEX_STRING *table_name,
GRANT_INFO *grant_info);
bool
execute_function(THD *thd, Item **args, uint argcount, Field *return_fld);
bool
execute_procedure(THD *thd, List<Item> *args);
bool
show_create_routine(THD *thd, int type);
int
add_instr(sp_instr *instr);
inline uint
instructions()
{
return m_instr.elements;
}
inline sp_instr *
last_instruction()
{
sp_instr *i;
get_dynamic(&m_instr, (uchar*)&i, m_instr.elements-1);
return i;
}
/*
Resets lex in 'thd' and keeps a copy of the old one.
@todo Conflicting comment in sp_head.cc
*/
bool
reset_lex(THD *thd);
/**
Restores lex in 'thd' from our copy, but keeps some status from the
one in 'thd', like ptr, tables, fields, etc.
@todo Conflicting comment in sp_head.cc
*/
bool
restore_lex(THD *thd);
/// Put the instruction on the backpatch list, associated with the label.
int
push_backpatch(sp_instr *, struct sp_label *);
/// Update all instruction with this label in the backpatch list to
/// the current position.
void
backpatch(struct sp_label *);
/// Start a new cont. backpatch level. If 'i' is NULL, the level is just incr.
int
new_cont_backpatch(sp_instr_opt_meta *i);
/// Add an instruction to the current level
int
add_cont_backpatch(sp_instr_opt_meta *i);
/// Backpatch (and pop) the current level to the current position.
void
do_cont_backpatch();
char *name(uint *lenp = 0) const
{
if (lenp)
*lenp= (uint) m_name.length;
return m_name.str;
}
char *create_string(THD *thd, ulong *lenp);
Field *create_result_field(uint field_max_length, const char *field_name,
TABLE *table);
bool fill_field_definition(THD *thd, LEX *lex,
enum enum_field_types field_type,
Create_field *field_def);
void set_info(longlong created, longlong modified,
st_sp_chistics *chistics, ulong sql_mode);
void set_definer(const char *definer, uint definerlen);
void set_definer(const LEX_STRING *user_name, const LEX_STRING *host_name);
void reset_thd_mem_root(THD *thd);
void restore_thd_mem_root(THD *thd);
/**
Optimize the code.
*/
void optimize();
/**
Helper used during flow analysis during code optimization.
See the implementation of <code>opt_mark()</code>.
@param ip the instruction to add to the leads list
@param leads the list of remaining paths to explore in the graph that
represents the code, during flow analysis.
*/
void add_mark_lead(uint ip, List<sp_instr> *leads);
void recursion_level_error(THD *thd);
inline sp_instr *
get_instr(uint i)
{
sp_instr *ip;
if (i < m_instr.elements)
get_dynamic(&m_instr, (uchar*)&ip, i);
else
ip= NULL;
return ip;
}
/* Add tables used by routine to the table list. */
bool add_used_tables_to_table_list(THD *thd,
TABLE_LIST ***query_tables_last_ptr,
TABLE_LIST *belong_to_view);
/**
Check if this stored routine contains statements disallowed
in a stored function or trigger, and set an appropriate error message
if this is the case.
*/
bool is_not_allowed_in_function(const char *where)
{
if (m_flags & CONTAINS_DYNAMIC_SQL)
my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "Dynamic SQL");
else if (m_flags & MULTI_RESULTS)
my_error(ER_SP_NO_RETSET, MYF(0), where);
else if (m_flags & HAS_SET_AUTOCOMMIT_STMT)
my_error(ER_SP_CANT_SET_AUTOCOMMIT, MYF(0));
else if (m_flags & HAS_COMMIT_OR_ROLLBACK)
my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0));
else if (m_flags & HAS_SQLCOM_RESET)
my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "RESET");
else if (m_flags & HAS_SQLCOM_FLUSH)
my_error(ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0), "FLUSH");
return test(m_flags &
(CONTAINS_DYNAMIC_SQL|MULTI_RESULTS|HAS_SET_AUTOCOMMIT_STMT|
HAS_COMMIT_OR_ROLLBACK|HAS_SQLCOM_RESET|HAS_SQLCOM_FLUSH));
}
#ifndef DBUG_OFF
int show_routine_code(THD *thd);
#endif
/*
This method is intended for attributes of a routine which need
to propagate upwards to the Query_tables_list of the caller (when
a property of a sp_head needs to "taint" the calling statement).
*/
void propagate_attributes(Query_tables_list *prelocking_ctx)
{
DBUG_ENTER("sp_head::propagate_attributes");
/*
If this routine needs row-based binary logging, the entire top statement
too (we cannot switch from statement-based to row-based only for this
routine, as in statement-based the top-statement may be binlogged and
the substatements not).
*/
DBUG_PRINT("info", ("lex->get_stmt_unsafe_flags(): 0x%x",
prelocking_ctx->get_stmt_unsafe_flags()));
DBUG_PRINT("info", ("sp_head(0x%p=%s)->unsafe_flags: 0x%x",
this, name(), unsafe_flags));
prelocking_ctx->set_stmt_unsafe_flags(unsafe_flags);
DBUG_VOID_RETURN;
}
sp_pcontext *get_parse_context() { return m_pcont; }
private:
MEM_ROOT *m_thd_root; ///< Temp. store for thd's mem_root
THD *m_thd; ///< Set if we have reset mem_root
sp_pcontext *m_pcont; ///< Parse context
List<LEX> m_lex; ///< Temp. store for the other lex
DYNAMIC_ARRAY m_instr; ///< The "instructions"
typedef struct
{
struct sp_label *lab;
sp_instr *instr;
} bp_t;
List<bp_t> m_backpatch; ///< Instructions needing backpatching
/**
We need a special list for backpatching of instructions with a continue
destination (in the case of a continue handler catching an error in
the test), since it would otherwise interfere with the normal backpatch
mechanism - e.g. jump_if_not instructions have two different destinations
which are to be patched differently.
Since these occur in a more restricted way (always the same "level" in
the code), we don't need the label.
*/
List<sp_instr_opt_meta> m_cont_backpatch;
uint m_cont_level; // The current cont. backpatch level
/**
Multi-set representing optimized list of tables to be locked by this
routine. Does not include tables which are used by invoked routines.
@note
For prelocking-free SPs this multiset is constructed too.
We do so because the same instance of sp_head may be called both
in prelocked mode and in non-prelocked mode.
*/
HASH m_sptabs;
bool
execute(THD *thd);
/**
Perform a forward flow analysis in the generated code.
Mark reachable instructions, for the optimizer.
*/
void opt_mark();
/**
Merge the list of tables used by query into the multi-set of tables used
by routine.
*/
bool merge_table_list(THD *thd, TABLE_LIST *table, LEX *lex_for_tmp_check);
}; // class sp_head : public Sql_alloc
//
// "Instructions"...
//
class sp_instr :public Query_arena, public Sql_alloc
{
sp_instr(const sp_instr &); /**< Prevent use of these */
void operator=(sp_instr &);
public:
uint marked;
uint m_ip; ///< My index
sp_pcontext *m_ctx; ///< My parse context
/// Should give each a name or type code for debugging purposes?
sp_instr(uint ip, sp_pcontext *ctx)
:Query_arena(0, INITIALIZED_FOR_SP), marked(0), m_ip(ip), m_ctx(ctx)
{}
virtual ~sp_instr()
{ free_items(); }
/**
Execute this instruction
@param thd Thread handle
@param[out] nextp index of the next instruction to execute. (For most
instructions this will be the instruction following this
one). Note that this parameter is undefined in case of
errors, use get_cont_dest() to find the continuation
instruction for CONTINUE error handlers.
@retval 0 on success,
@retval other if some error occured
*/
virtual int execute(THD *thd, uint *nextp) = 0;
/**
Execute <code>open_and_lock_tables()</code> for this statement.
Open and lock the tables used by this statement, as a pre-requisite
to execute the core logic of this instruction with
<code>exec_core()</code>.
@param thd the current thread
@param tables the list of tables to open and lock
@return zero on success, non zero on failure.
*/
int exec_open_and_lock_tables(THD *thd, TABLE_LIST *tables);
/**
Get the continuation destination of this instruction.
@return the continuation destination
*/
virtual uint get_cont_dest();
/*
Execute core function of instruction after all preparations (e.g.
setting of proper LEX, saving part of the thread context have been
done).
Should be implemented for instructions using expressions or whole
statements (thus having to have own LEX). Used in concert with
sp_lex_keeper class and its descendants (there are none currently).
*/
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str) = 0;
virtual void backpatch(uint dest, sp_pcontext *dst_ctx)
{}
/**
Mark this instruction as reachable during optimization and return the
index to the next instruction. Jump instruction will add their
destination to the leads list.
*/
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads)
{
marked= 1;
return m_ip+1;
}
/**
Short-cut jumps to jumps during optimization. This is used by the
jump instructions' opt_mark() methods. 'start' is the starting point,
used to prevent the mark sweep from looping for ever. Return the
end destination.
*/
virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
return m_ip;
}
/**
Inform the instruction that it has been moved during optimization.
Most instructions will simply update its index, but jump instructions
must also take care of their destination pointers. Forward jumps get
pushed to the backpatch list 'ibp'.
*/
virtual void opt_move(uint dst, List<sp_instr> *ibp)
{
m_ip= dst;
}
}; // class sp_instr : public Sql_alloc
/**
Auxilary class to which instructions delegate responsibility
for handling LEX and preparations before executing statement
or calculating complex expression.
Exist mainly to avoid having double hierarchy between instruction
classes.
@todo
Add ability to not store LEX and do any preparations if
expression used is simple.
*/
class sp_lex_keeper
{
/** Prevent use of these */
sp_lex_keeper(const sp_lex_keeper &);
void operator=(sp_lex_keeper &);
public:
sp_lex_keeper(LEX *lex, bool lex_resp)
: m_lex(lex), m_lex_resp(lex_resp),
lex_query_tables_own_last(NULL)
{
lex->sp_lex_in_use= TRUE;
}
virtual ~sp_lex_keeper()
{
if (m_lex_resp)
{
/* Prevent endless recursion. */
m_lex->sphead= NULL;
lex_end(m_lex);
delete m_lex;
}
}
/**
Prepare execution of instruction using LEX, if requested check whenever
we have read access to tables used and open/lock them, call instruction's
exec_core() method, perform cleanup afterwards.
@todo Conflicting comment in sp_head.cc
*/
int reset_lex_and_exec_core(THD *thd, uint *nextp, bool open_tables,
sp_instr* instr);
inline uint sql_command() const
{
return (uint)m_lex->sql_command;
}
void disable_query_cache()
{
m_lex->safe_to_cache_query= 0;
}
private:
LEX *m_lex;
/**
Indicates whenever this sp_lex_keeper instance responsible
for LEX deletion.
*/
bool m_lex_resp;
/*
Support for being able to execute this statement in two modes:
a) inside prelocked mode set by the calling procedure or its ancestor.
b) outside of prelocked mode, when this statement enters/leaves
prelocked mode itself.
*/
/**
List of additional tables this statement needs to lock when it
enters/leaves prelocked mode on its own.
*/
TABLE_LIST *prelocking_tables;
/**
The value m_lex->query_tables_own_last should be set to this when the
statement enters/leaves prelocked mode on its own.
*/
TABLE_LIST **lex_query_tables_own_last;
};
/**
Call out to some prepared SQL statement.
*/
class sp_instr_stmt : public sp_instr
{
sp_instr_stmt(const sp_instr_stmt &); /**< Prevent use of these */
void operator=(sp_instr_stmt &);
public:
LEX_STRING m_query; ///< For thd->query
sp_instr_stmt(uint ip, sp_pcontext *ctx, LEX *lex)
: sp_instr(ip, ctx), m_lex_keeper(lex, TRUE)
{
m_query.str= 0;
m_query.length= 0;
}
virtual ~sp_instr_stmt()
{};
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
private:
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_stmt : public sp_instr
class sp_instr_set : public sp_instr
{
sp_instr_set(const sp_instr_set &); /**< Prevent use of these */
void operator=(sp_instr_set &);
public:
sp_instr_set(uint ip, sp_pcontext *ctx,
uint offset, Item *val, enum enum_field_types type_arg,
LEX *lex, bool lex_resp)
: sp_instr(ip, ctx), m_offset(offset), m_value(val), m_type(type_arg),
m_lex_keeper(lex, lex_resp)
{}
virtual ~sp_instr_set()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
private:
uint m_offset; ///< Frame offset
Item *m_value;
enum enum_field_types m_type; ///< The declared type
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_set : public sp_instr
/**
Set NEW/OLD row field value instruction. Used in triggers.
*/
class sp_instr_set_trigger_field : public sp_instr
{
sp_instr_set_trigger_field(const sp_instr_set_trigger_field &);
void operator=(sp_instr_set_trigger_field &);
public:
sp_instr_set_trigger_field(uint ip, sp_pcontext *ctx,
Item_trigger_field *trg_fld,
Item *val, LEX *lex)
: sp_instr(ip, ctx),
trigger_field(trg_fld),
value(val), m_lex_keeper(lex, TRUE)
{}
virtual ~sp_instr_set_trigger_field()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
private:
Item_trigger_field *trigger_field;
Item *value;
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_trigger_field : public sp_instr
/**
An abstract class for all instructions with destinations that
needs to be updated by the optimizer.
Even if not all subclasses will use both the normal destination and
the continuation destination, we put them both here for simplicity.
*/
class sp_instr_opt_meta : public sp_instr
{
public:
uint m_dest; ///< Where we will go
uint m_cont_dest; ///< Where continue handlers will go
sp_instr_opt_meta(uint ip, sp_pcontext *ctx)
: sp_instr(ip, ctx),
m_dest(0), m_cont_dest(0), m_optdest(0), m_cont_optdest(0)
{}
sp_instr_opt_meta(uint ip, sp_pcontext *ctx, uint dest)
: sp_instr(ip, ctx),
m_dest(dest), m_cont_dest(0), m_optdest(0), m_cont_optdest(0)
{}
virtual ~sp_instr_opt_meta()
{}
virtual void set_destination(uint old_dest, uint new_dest)
= 0;
virtual uint get_cont_dest();
protected:
sp_instr *m_optdest; ///< Used during optimization
sp_instr *m_cont_optdest; ///< Used during optimization
}; // class sp_instr_opt_meta : public sp_instr
class sp_instr_jump : public sp_instr_opt_meta
{
sp_instr_jump(const sp_instr_jump &); /**< Prevent use of these */
void operator=(sp_instr_jump &);
public:
sp_instr_jump(uint ip, sp_pcontext *ctx)
: sp_instr_opt_meta(ip, ctx)
{}
sp_instr_jump(uint ip, sp_pcontext *ctx, uint dest)
: sp_instr_opt_meta(ip, ctx, dest)
{}
virtual ~sp_instr_jump()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads);
virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start);
virtual void opt_move(uint dst, List<sp_instr> *ibp);
virtual void backpatch(uint dest, sp_pcontext *dst_ctx)
{
/* Calling backpatch twice is a logic flaw in jump resolution. */
DBUG_ASSERT(m_dest == 0);
m_dest= dest;
}
/**
Update the destination; used by the optimizer.
*/
virtual void set_destination(uint old_dest, uint new_dest)
{
if (m_dest == old_dest)
m_dest= new_dest;
}
}; // class sp_instr_jump : public sp_instr_opt_meta
class sp_instr_jump_if_not : public sp_instr_jump
{
sp_instr_jump_if_not(const sp_instr_jump_if_not &); /**< Prevent use of these */
void operator=(sp_instr_jump_if_not &);
public:
sp_instr_jump_if_not(uint ip, sp_pcontext *ctx, Item *i, LEX *lex)
: sp_instr_jump(ip, ctx), m_expr(i),
m_lex_keeper(lex, TRUE)
{}
sp_instr_jump_if_not(uint ip, sp_pcontext *ctx, Item *i, uint dest, LEX *lex)
: sp_instr_jump(ip, ctx, dest), m_expr(i),
m_lex_keeper(lex, TRUE)
{}
virtual ~sp_instr_jump_if_not()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads);
/** Override sp_instr_jump's shortcut; we stop here */
virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
return m_ip;
}
virtual void opt_move(uint dst, List<sp_instr> *ibp);
virtual void set_destination(uint old_dest, uint new_dest)
{
sp_instr_jump::set_destination(old_dest, new_dest);
if (m_cont_dest == old_dest)
m_cont_dest= new_dest;
}
private:
Item *m_expr; ///< The condition
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_jump_if_not : public sp_instr_jump
class sp_instr_freturn : public sp_instr
{
sp_instr_freturn(const sp_instr_freturn &); /**< Prevent use of these */
void operator=(sp_instr_freturn &);
public:
sp_instr_freturn(uint ip, sp_pcontext *ctx,
Item *val, enum enum_field_types type_arg, LEX *lex)
: sp_instr(ip, ctx), m_value(val), m_type(type_arg),
m_lex_keeper(lex, TRUE)
{}
virtual ~sp_instr_freturn()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads)
{
marked= 1;
return UINT_MAX;
}
protected:
Item *m_value;
enum enum_field_types m_type;
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_freturn : public sp_instr
class sp_instr_hpush_jump : public sp_instr_jump
{
sp_instr_hpush_jump(const sp_instr_hpush_jump &); /**< Prevent use of these */
void operator=(sp_instr_hpush_jump &);
public:
sp_instr_hpush_jump(uint ip, sp_pcontext *ctx, int htype, uint fp)
: sp_instr_jump(ip, ctx), m_type(htype), m_frame(fp)
{
m_cond.empty();
}
virtual ~sp_instr_hpush_jump()
{
m_cond.empty();
}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads);
/** Override sp_instr_jump's shortcut; we stop here. */
virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
return m_ip;
}
inline void add_condition(struct sp_cond_type *cond)
{
m_cond.push_front(cond);
}
private:
int m_type; ///< Handler type
uint m_frame;
List<struct sp_cond_type> m_cond;
}; // class sp_instr_hpush_jump : public sp_instr_jump
class sp_instr_hpop : public sp_instr
{
sp_instr_hpop(const sp_instr_hpop &); /**< Prevent use of these */
void operator=(sp_instr_hpop &);
public:
sp_instr_hpop(uint ip, sp_pcontext *ctx, uint count)
: sp_instr(ip, ctx), m_count(count)
{}
virtual ~sp_instr_hpop()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
private:
uint m_count;
}; // class sp_instr_hpop : public sp_instr
class sp_instr_hreturn : public sp_instr_jump
{
sp_instr_hreturn(const sp_instr_hreturn &); /**< Prevent use of these */
void operator=(sp_instr_hreturn &);
public:
sp_instr_hreturn(uint ip, sp_pcontext *ctx, uint fp)
: sp_instr_jump(ip, ctx), m_frame(fp)
{}
virtual ~sp_instr_hreturn()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
/* This instruction will not be short cut optimized. */
virtual uint opt_shortcut_jump(sp_head *sp, sp_instr *start)
{
return m_ip;
}
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads);
private:
uint m_frame;
}; // class sp_instr_hreturn : public sp_instr_jump
/** This is DECLARE CURSOR */
class sp_instr_cpush : public sp_instr
{
sp_instr_cpush(const sp_instr_cpush &); /**< Prevent use of these */
void operator=(sp_instr_cpush &);
public:
sp_instr_cpush(uint ip, sp_pcontext *ctx, LEX *lex, uint offset)
: sp_instr(ip, ctx), m_lex_keeper(lex, TRUE), m_cursor(offset)
{}
virtual ~sp_instr_cpush()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
/**
This call is used to cleanup the instruction when a sensitive
cursor is closed. For now stored procedures always use materialized
cursors and the call is not used.
*/
virtual void cleanup_stmt() { /* no op */ }
private:
sp_lex_keeper m_lex_keeper;
uint m_cursor; /**< Frame offset (for debugging) */
}; // class sp_instr_cpush : public sp_instr
class sp_instr_cpop : public sp_instr
{
sp_instr_cpop(const sp_instr_cpop &); /**< Prevent use of these */
void operator=(sp_instr_cpop &);
public:
sp_instr_cpop(uint ip, sp_pcontext *ctx, uint count)
: sp_instr(ip, ctx), m_count(count)
{}
virtual ~sp_instr_cpop()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
private:
uint m_count;
}; // class sp_instr_cpop : public sp_instr
class sp_instr_copen : public sp_instr
{
sp_instr_copen(const sp_instr_copen &); /**< Prevent use of these */
void operator=(sp_instr_copen &);
public:
sp_instr_copen(uint ip, sp_pcontext *ctx, uint c)
: sp_instr(ip, ctx), m_cursor(c)
{}
virtual ~sp_instr_copen()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
private:
uint m_cursor; ///< Stack index
}; // class sp_instr_copen : public sp_instr_stmt
class sp_instr_cclose : public sp_instr
{
sp_instr_cclose(const sp_instr_cclose &); /**< Prevent use of these */
void operator=(sp_instr_cclose &);
public:
sp_instr_cclose(uint ip, sp_pcontext *ctx, uint c)
: sp_instr(ip, ctx), m_cursor(c)
{}
virtual ~sp_instr_cclose()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
private:
uint m_cursor;
}; // class sp_instr_cclose : public sp_instr
class sp_instr_cfetch : public sp_instr
{
sp_instr_cfetch(const sp_instr_cfetch &); /**< Prevent use of these */
void operator=(sp_instr_cfetch &);
public:
sp_instr_cfetch(uint ip, sp_pcontext *ctx, uint c)
: sp_instr(ip, ctx), m_cursor(c)
{
m_varlist.empty();
}
virtual ~sp_instr_cfetch()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
void add_to_varlist(struct sp_variable *var)
{
m_varlist.push_back(var);
}
private:
uint m_cursor;
List<struct sp_variable> m_varlist;
}; // class sp_instr_cfetch : public sp_instr
class sp_instr_error : public sp_instr
{
sp_instr_error(const sp_instr_error &); /**< Prevent use of these */
void operator=(sp_instr_error &);
public:
sp_instr_error(uint ip, sp_pcontext *ctx, int errcode)
: sp_instr(ip, ctx), m_errcode(errcode)
{}
virtual ~sp_instr_error()
{}
virtual int execute(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads)
{
marked= 1;
return UINT_MAX;
}
private:
int m_errcode;
}; // class sp_instr_error : public sp_instr
class sp_instr_set_case_expr : public sp_instr_opt_meta
{
public:
sp_instr_set_case_expr(uint ip, sp_pcontext *ctx, uint case_expr_id,
Item *case_expr, LEX *lex)
: sp_instr_opt_meta(ip, ctx),
m_case_expr_id(case_expr_id), m_case_expr(case_expr),
m_lex_keeper(lex, TRUE)
{}
virtual ~sp_instr_set_case_expr()
{}
virtual int execute(THD *thd, uint *nextp);
virtual int exec_core(THD *thd, uint *nextp);
virtual void print(String *str);
virtual uint opt_mark(sp_head *sp, List<sp_instr> *leads);
virtual void opt_move(uint dst, List<sp_instr> *ibp);
virtual void set_destination(uint old_dest, uint new_dest)
{
if (m_cont_dest == old_dest)
m_cont_dest= new_dest;
}
private:
uint m_case_expr_id;
Item *m_case_expr;
sp_lex_keeper m_lex_keeper;
}; // class sp_instr_set_case_expr : public sp_instr_opt_meta
#ifndef NO_EMBEDDED_ACCESS_CHECKS
bool
sp_change_security_context(THD *thd, sp_head *sp,
Security_context **backup);
void
sp_restore_security_context(THD *thd, Security_context *backup);
bool
set_routine_security_ctx(THD *thd, sp_head *sp, bool is_proc,
Security_context **save_ctx);
#endif /* NO_EMBEDDED_ACCESS_CHECKS */
TABLE_LIST *
sp_add_to_query_tables(THD *thd, LEX *lex,
const char *db, const char *name,
thr_lock_type locktype,
enum_mdl_type mdl_type);
Item *
sp_prepare_func_item(THD* thd, Item **it_addr);
bool
sp_eval_expr(THD *thd, Field *result_field, Item **expr_item_ptr);
/**
@} (end of group Stored_Routines)
*/
#endif /* _SP_HEAD_H_ */