mariadb/storage/innobase/mem/mem0mem.c
2010-05-17 01:57:42 -07:00

573 lines
15 KiB
C

/*****************************************************************************
Copyright (c) 1994, 2010, Innobase Oy. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA
*****************************************************************************/
/********************************************************************//**
@file mem/mem0mem.c
The memory management
Created 6/9/1994 Heikki Tuuri
*************************************************************************/
#include "mem0mem.h"
#ifdef UNIV_NONINL
#include "mem0mem.ic"
#endif
#include "buf0buf.h"
#include "srv0srv.h"
#include "mem0dbg.c"
#include <stdarg.h>
/*
THE MEMORY MANAGEMENT
=====================
The basic element of the memory management is called a memory
heap. A memory heap is conceptually a
stack from which memory can be allocated. The stack may grow infinitely.
The top element of the stack may be freed, or
the whole stack can be freed at one time. The advantage of the
memory heap concept is that we can avoid using the malloc and free
functions of C which are quite expensive, for example, on the Solaris + GCC
system (50 MHz Sparc, 1993) the pair takes 3 microseconds,
on Win NT + 100MHz Pentium, 2.5 microseconds.
When we use a memory heap,
we can allocate larger blocks of memory at a time and thus
reduce overhead. Slightly more efficient the method is when we
allocate the memory from the index page buffer pool, as we can
claim a new page fast. This is called buffer allocation.
When we allocate the memory from the dynamic memory of the
C environment, that is called dynamic allocation.
The default way of operation of the memory heap is the following.
First, when the heap is created, an initial block of memory is
allocated. In dynamic allocation this may be about 50 bytes.
If more space is needed, additional blocks are allocated
and they are put into a linked list.
After the initial block, each allocated block is twice the size of the
previous, until a threshold is attained, after which the sizes
of the blocks stay the same. An exception is, of course, the case
where the caller requests a memory buffer whose size is
bigger than the threshold. In that case a block big enough must
be allocated.
The heap is physically arranged so that if the current block
becomes full, a new block is allocated and always inserted in the
chain of blocks as the last block.
In the debug version of the memory management, all the allocated
heaps are kept in a list (which is implemented as a hash table).
Thus we can notice if the caller tries to free an already freed
heap. In addition, each buffer given to the caller contains
start field at the start and a trailer field at the end of the buffer.
The start field has the following content:
A. sizeof(ulint) bytes of field length (in the standard byte order)
B. sizeof(ulint) bytes of check field (a random number)
The trailer field contains:
A. sizeof(ulint) bytes of check field (the same random number as at the start)
Thus we can notice if something has been copied over the
borders of the buffer, which is illegal.
The memory in the buffers is initialized to a random byte sequence.
After freeing, all the blocks in the heap are set to random bytes
to help us discover errors which result from the use of
buffers in an already freed heap. */
#ifdef MEM_PERIODIC_CHECK
ibool mem_block_list_inited;
/* List of all mem blocks allocated; protected by the mem_comm_pool mutex */
UT_LIST_BASE_NODE_T(mem_block_t) mem_block_list;
#endif
/**********************************************************************//**
Duplicates a NUL-terminated string, allocated from a memory heap.
@return own: a copy of the string */
UNIV_INTERN
char*
mem_heap_strdup(
/*============*/
mem_heap_t* heap, /*!< in: memory heap where string is allocated */
const char* str) /*!< in: string to be copied */
{
return(mem_heap_dup(heap, str, strlen(str) + 1));
}
/**********************************************************************//**
Duplicate a block of data, allocated from a memory heap.
@return own: a copy of the data */
UNIV_INTERN
void*
mem_heap_dup(
/*=========*/
mem_heap_t* heap, /*!< in: memory heap where copy is allocated */
const void* data, /*!< in: data to be copied */
ulint len) /*!< in: length of data, in bytes */
{
return(memcpy(mem_heap_alloc(heap, len), data, len));
}
/**********************************************************************//**
Concatenate two strings and return the result, using a memory heap.
@return own: the result */
UNIV_INTERN
char*
mem_heap_strcat(
/*============*/
mem_heap_t* heap, /*!< in: memory heap where string is allocated */
const char* s1, /*!< in: string 1 */
const char* s2) /*!< in: string 2 */
{
char* s;
ulint s1_len = strlen(s1);
ulint s2_len = strlen(s2);
s = mem_heap_alloc(heap, s1_len + s2_len + 1);
memcpy(s, s1, s1_len);
memcpy(s + s1_len, s2, s2_len);
s[s1_len + s2_len] = '\0';
return(s);
}
/****************************************************************//**
Helper function for mem_heap_printf.
@return length of formatted string, including terminating NUL */
static
ulint
mem_heap_printf_low(
/*================*/
char* buf, /*!< in/out: buffer to store formatted string
in, or NULL to just calculate length */
const char* format, /*!< in: format string */
va_list ap) /*!< in: arguments */
{
ulint len = 0;
while (*format) {
/* Does this format specifier have the 'l' length modifier. */
ibool is_long = FALSE;
/* Length of one parameter. */
size_t plen;
if (*format++ != '%') {
/* Non-format character. */
len++;
if (buf) {
*buf++ = *(format - 1);
}
continue;
}
if (*format == 'l') {
is_long = TRUE;
format++;
}
switch (*format++) {
case 's':
/* string */
{
char* s = va_arg(ap, char*);
/* "%ls" is a non-sensical format specifier. */
ut_a(!is_long);
plen = strlen(s);
len += plen;
if (buf) {
memcpy(buf, s, plen);
buf += plen;
}
}
break;
case 'u':
/* unsigned int */
{
char tmp[32];
unsigned long val;
/* We only support 'long' values for now. */
ut_a(is_long);
val = va_arg(ap, unsigned long);
plen = sprintf(tmp, "%lu", val);
len += plen;
if (buf) {
memcpy(buf, tmp, plen);
buf += plen;
}
}
break;
case '%':
/* "%l%" is a non-sensical format specifier. */
ut_a(!is_long);
len++;
if (buf) {
*buf++ = '%';
}
break;
default:
ut_error;
}
}
/* For the NUL character. */
len++;
if (buf) {
*buf = '\0';
}
return(len);
}
/****************************************************************//**
A simple (s)printf replacement that dynamically allocates the space for the
formatted string from the given heap. This supports a very limited set of
the printf syntax: types 's' and 'u' and length modifier 'l' (which is
required for the 'u' type).
@return heap-allocated formatted string */
UNIV_INTERN
char*
mem_heap_printf(
/*============*/
mem_heap_t* heap, /*!< in: memory heap */
const char* format, /*!< in: format string */
...)
{
va_list ap;
char* str;
ulint len;
/* Calculate length of string */
len = 0;
va_start(ap, format);
len = mem_heap_printf_low(NULL, format, ap);
va_end(ap);
/* Now create it for real. */
str = mem_heap_alloc(heap, len);
va_start(ap, format);
mem_heap_printf_low(str, format, ap);
va_end(ap);
return(str);
}
/***************************************************************//**
Creates a memory heap block where data can be allocated.
@return own: memory heap block, NULL if did not succeed (only possible
for MEM_HEAP_BTR_SEARCH type heaps) */
UNIV_INTERN
mem_block_t*
mem_heap_create_block(
/*==================*/
mem_heap_t* heap, /*!< in: memory heap or NULL if first block
should be created */
ulint n, /*!< in: number of bytes needed for user data */
ulint type, /*!< in: type of heap: MEM_HEAP_DYNAMIC or
MEM_HEAP_BUFFER */
const char* file_name,/*!< in: file name where created */
ulint line) /*!< in: line where created */
{
#ifndef UNIV_HOTBACKUP
buf_block_t* buf_block = NULL;
#endif /* !UNIV_HOTBACKUP */
mem_block_t* block;
ulint len;
ut_ad((type == MEM_HEAP_DYNAMIC) || (type == MEM_HEAP_BUFFER)
|| (type == MEM_HEAP_BUFFER + MEM_HEAP_BTR_SEARCH));
if (heap && heap->magic_n != MEM_BLOCK_MAGIC_N) {
mem_analyze_corruption(heap);
}
/* In dynamic allocation, calculate the size: block header + data. */
len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n);
#ifndef UNIV_HOTBACKUP
if (type == MEM_HEAP_DYNAMIC || len < UNIV_PAGE_SIZE / 2) {
ut_ad(type == MEM_HEAP_DYNAMIC || n <= MEM_MAX_ALLOC_IN_BUF);
block = mem_area_alloc(&len, mem_comm_pool);
} else {
len = UNIV_PAGE_SIZE;
if ((type & MEM_HEAP_BTR_SEARCH) && heap) {
/* We cannot allocate the block from the
buffer pool, but must get the free block from
the heap header free block field */
buf_block = heap->free_block;
heap->free_block = NULL;
if (UNIV_UNLIKELY(!buf_block)) {
return(NULL);
}
} else {
buf_block = buf_block_alloc(NULL, 0);
}
block = (mem_block_t*) buf_block->frame;
}
ut_ad(block);
block->buf_block = buf_block;
block->free_block = NULL;
#else /* !UNIV_HOTBACKUP */
len = MEM_BLOCK_HEADER_SIZE + MEM_SPACE_NEEDED(n);
block = ut_malloc(len);
ut_ad(block);
#endif /* !UNIV_HOTBACKUP */
block->magic_n = MEM_BLOCK_MAGIC_N;
ut_strlcpy_rev(block->file_name, file_name, sizeof(block->file_name));
block->line = line;
#ifdef MEM_PERIODIC_CHECK
mutex_enter(&(mem_comm_pool->mutex));
if (!mem_block_list_inited) {
mem_block_list_inited = TRUE;
UT_LIST_INIT(mem_block_list);
}
UT_LIST_ADD_LAST(mem_block_list, mem_block_list, block);
mutex_exit(&(mem_comm_pool->mutex));
#endif
mem_block_set_len(block, len);
mem_block_set_type(block, type);
mem_block_set_free(block, MEM_BLOCK_HEADER_SIZE);
mem_block_set_start(block, MEM_BLOCK_HEADER_SIZE);
if (UNIV_UNLIKELY(heap == NULL)) {
/* This is the first block of the heap. The field
total_size should be initialized here */
block->total_size = len;
} else {
/* Not the first allocation for the heap. This block's
total_length field should be set to undefined. */
ut_d(block->total_size = ULINT_UNDEFINED);
UNIV_MEM_INVALID(&block->total_size,
sizeof block->total_size);
heap->total_size += len;
}
ut_ad((ulint)MEM_BLOCK_HEADER_SIZE < len);
return(block);
}
/***************************************************************//**
Adds a new block to a memory heap.
@return created block, NULL if did not succeed (only possible for
MEM_HEAP_BTR_SEARCH type heaps) */
UNIV_INTERN
mem_block_t*
mem_heap_add_block(
/*===============*/
mem_heap_t* heap, /*!< in: memory heap */
ulint n) /*!< in: number of bytes user needs */
{
mem_block_t* block;
mem_block_t* new_block;
ulint new_size;
ut_ad(mem_heap_check(heap));
block = UT_LIST_GET_LAST(heap->base);
/* We have to allocate a new block. The size is always at least
doubled until the standard size is reached. After that the size
stays the same, except in cases where the caller needs more space. */
new_size = 2 * mem_block_get_len(block);
if (heap->type != MEM_HEAP_DYNAMIC) {
/* From the buffer pool we allocate buffer frames */
ut_a(n <= MEM_MAX_ALLOC_IN_BUF);
if (new_size > MEM_MAX_ALLOC_IN_BUF) {
new_size = MEM_MAX_ALLOC_IN_BUF;
}
} else if (new_size > MEM_BLOCK_STANDARD_SIZE) {
new_size = MEM_BLOCK_STANDARD_SIZE;
}
if (new_size < n) {
new_size = n;
}
new_block = mem_heap_create_block(heap, new_size, heap->type,
heap->file_name, heap->line);
if (new_block == NULL) {
return(NULL);
}
/* Add the new block as the last block */
UT_LIST_INSERT_AFTER(list, heap->base, block, new_block);
return(new_block);
}
/******************************************************************//**
Frees a block from a memory heap. */
UNIV_INTERN
void
mem_heap_block_free(
/*================*/
mem_heap_t* heap, /*!< in: heap */
mem_block_t* block) /*!< in: block to free */
{
ulint type;
ulint len;
#ifndef UNIV_HOTBACKUP
buf_block_t* buf_block = block->buf_block;
#endif /* !UNIV_HOTBACKUP */
if (block->magic_n != MEM_BLOCK_MAGIC_N) {
mem_analyze_corruption(block);
}
UT_LIST_REMOVE(list, heap->base, block);
#ifdef MEM_PERIODIC_CHECK
mutex_enter(&(mem_comm_pool->mutex));
UT_LIST_REMOVE(mem_block_list, mem_block_list, block);
mutex_exit(&(mem_comm_pool->mutex));
#endif
ut_ad(heap->total_size >= block->len);
heap->total_size -= block->len;
type = heap->type;
len = block->len;
block->magic_n = MEM_FREED_BLOCK_MAGIC_N;
#ifndef UNIV_HOTBACKUP
if (!srv_use_sys_malloc) {
#ifdef UNIV_MEM_DEBUG
/* In the debug version we set the memory to a random
combination of hex 0xDE and 0xAD. */
mem_erase_buf((byte*)block, len);
#else /* UNIV_MEM_DEBUG */
UNIV_MEM_ASSERT_AND_FREE(block, len);
#endif /* UNIV_MEM_DEBUG */
}
if (type == MEM_HEAP_DYNAMIC || len < UNIV_PAGE_SIZE / 2) {
ut_ad(!buf_block);
mem_area_free(block, mem_comm_pool);
} else {
ut_ad(type & MEM_HEAP_BUFFER);
buf_block_free(buf_block);
}
#else /* !UNIV_HOTBACKUP */
#ifdef UNIV_MEM_DEBUG
/* In the debug version we set the memory to a random
combination of hex 0xDE and 0xAD. */
mem_erase_buf((byte*)block, len);
#else /* UNIV_MEM_DEBUG */
UNIV_MEM_ASSERT_AND_FREE(block, len);
#endif /* UNIV_MEM_DEBUG */
ut_free(block);
#endif /* !UNIV_HOTBACKUP */
}
#ifndef UNIV_HOTBACKUP
/******************************************************************//**
Frees the free_block field from a memory heap. */
UNIV_INTERN
void
mem_heap_free_block_free(
/*=====================*/
mem_heap_t* heap) /*!< in: heap */
{
if (UNIV_LIKELY_NULL(heap->free_block)) {
buf_block_free(heap->free_block);
heap->free_block = NULL;
}
}
#endif /* !UNIV_HOTBACKUP */
#ifdef MEM_PERIODIC_CHECK
/******************************************************************//**
Goes through the list of all allocated mem blocks, checks their magic
numbers, and reports possible corruption. */
UNIV_INTERN
void
mem_validate_all_blocks(void)
/*=========================*/
{
mem_block_t* block;
mutex_enter(&(mem_comm_pool->mutex));
block = UT_LIST_GET_FIRST(mem_block_list);
while (block) {
if (block->magic_n != MEM_BLOCK_MAGIC_N) {
mem_analyze_corruption(block);
}
block = UT_LIST_GET_NEXT(mem_block_list, block);
}
mutex_exit(&(mem_comm_pool->mutex));
}
#endif